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Summary

Reaction to selection in modern breeding programs has been expanded because of 
constant changes in the techniques for hereditary assessment. Without genomic data, 
hereditary assessment should center on amplifying the accuracy of evaluated breeding values 
(EBVs) and expanding the mean EBV of selected parents so there is no conspicuous chance to 
increase long-term response. The availability of single nucleotide polymorphism (SNP)-chips 
introduces new opportunities to optimize short versus long-term response under restricted 
inbreeding. Whenever frequencies and impacts of alleles underlying trait values can be 
assessed, an exchange between short and long-term optimum selection policies strategies 
will appear. Therefore, a technique to discover the optimum index to maximize long-term 
response is resulting from the weight given to a marker according to its frequency. It is 
probable that long-term genetic gain of genomic selection will be be improved by Jannink’s 
weighting (JW) method, in which rare favorable marker alleles are weighted in the selection 
criterion. The JW technique was spread by including an additional factor to decrease the 
stress on rare favorable alleles over the time horizon and has been called dynamic weighting 
(DW). In comparison to unweighted genomic estimate, both DW and JW can improve long-
term genetic gain and decrease inbreeding rate.

Key words

favorable minor allele, inbreeding, long-term genomic response, selection policy

1 Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, 41635-
1314, Iran

2 Department of Animal and Poultry Science, University of Tehran, Pakdasht, 3391653755, Iran

✉ Corresponding author: nhosseinzadeh@guilan.ac.ir

Received: May 19, 2018 | Accepted: December 11, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/231791978?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Agric. conspec. sci. Vol. 84 (2019) No. 3

220 | Shiva MAFAKHERI, Navid GHAVI HOSSEIN-ZADEH, Abdol Ahad SHADPARVAR, Rostam ABDOLLAHI-ARPANAHI

aCS

Introduction
Selection patterns are usually designed to maximize genetic 

gain with no or a hidden limitation of rates of inbreeding. Some 
researchers have developed selection approaches that decrease 
inbreeding rates. For example, Grundy and Hill (1993) and 
Verrier et al. (1993) reduced family mean weight in their selection 
index relative to that in the best linear unbiased prediction–
estimated breeding value (BLUP EBV), which decreased the 
probability of co-selection of relatives and therefore decreased 
inbreeding. Brisbane and Gibson (1994) and Wray and Goddard 
(1994) have selected animals while putting a charge on the average 
relationship of the selected animals. There is no assurance that 
these approaches yield the maximum genetic gains at some level 
of inbreeding. Furthermore, the actual rate of inbreeding is not 
recognized before the breeding pattern begins.

In a study, Goddard and Howarth (1994) have approved the 
application of dynamic selection rules in contrast to static designs 
of optimum breeding patterns. Dynamic rules optimize the 
selection of the actually available candidates and in this manner 
exploit openings that were not predicted when the reproducing 
program was arranged. For example, Meuwissen (1997) presented 
a dynamic selection rule that maximizes the genetic level of the 
selected parents while limiting their average association. This 
technique was developed for several generations and stable rates of 
genetic gain were achieved, which shows that the technique could 
control short and long-term impacts of selection on inbreeding. 
The technique can also be applied to oblige the variance of 
response by limiting the average prediction error variance of the 
selected animals (Meuwissen, 1997). 

Inbreeding can be controlled at two levels. Firstly, the rate of 
inbreeding in a population as a whole can be limited to a preferred 
level while maximizing the rate of genetic gain, through optimizing 
the long-term contributions of a selected number of breeding 
animals (Wray and Goddard, 1994; Meuwissen, 1997). Secondly, 
at an individual level, avoiding large inbreeding coefficients in 
progeny through controlling mating it is very important to avoid 
reductions in fitness traits (Smith et al. 1998) and homozygous 
lethal recessive alleles. The control of inbreeding levels in progeny 
can be applied using mate allocation (Kinghorn, 1998). 

Mate allocation can also be measured independently of mate 
selection. Although mating plans are normally used to control 
progeny inbreeding in farm animals, they can also be used to 
make culling decisions in young individuals and in situations 
where constraints, such as animal groups, exist (Kinghorn, 2011). 
Simulation investigations and some empirical evaluations of 
“genomic selection” (GS) (Meuwissen et al., 2001) or “genome-
wide selection” (Bernardo, 2007) have indicated that prediction 
accuracies from GS are high enough to allow rapid gains from the 
selection (VanRaden et al., 2009; Lorenzana and Bernardo, 2009; 
Jannink, 2010; Hayes et al., 2009). Therefore, although scientists 
may have confidence that GS can accelerate short-term gain, 
no such confidence is acceptable for long-term gain (Jannink, 
2010). Ideally, experimental investigations of long-term gain 
should be implemented empirically in model systems no matter 
how expensive necessary replicated investigations may be, and 
even in rapid cycling organisms, would not be accomplished in 
a near future. Stochastic simulation remains perhaps the only 

feasible choice to test hypotheses regarding the effect of selection 
approaches on a long-term gain (Hill and Caballero, 1992). 
Approaches for maximizing long-term genetic gain are different 
from those which have been used for maximizing short-term 
genetic gain. Although a quantitative trait locus (QTL) with a 
minor effect and/or with a low frequency of the favorable allele 
may not be essential for short-term gain, it possibly contributes 
more to long-term genetic gain through maintaining genetic 
variance over time. Therefore, over a longer time horizon, these 
alleles should be preserved in the population, for instance by 
unweighting them in the selection criterion. Goddard (2009) 
suggested an optimal index that is likely to maximize the long-
term genetic gain with a two-QTL model example. It has been 
suggested that, in the genomic selection model, the optimum 
weight for each marker depends on its allele frequencies, such 
that a marker with a high (low)-frequency of the favorable allele 
obtains a low (high) weight in the index. Marker effects were not 
involved in this index (Goddard, 2009). Goddard’s optimization 
was further applied by Jannink (2010), but, marker effects, as 
well as allele frequencies, were involved in the selection criterion, 
so it is unclear how accurately the marker effects are projected 
and whether the alleles are favorable or not. Furthermore, when 
there are many genes (compared to Goddard’s two-loci example), 
it makes sense to arrange the loci based on their expected effect 
in order to offset random drift where it causes most problems. 
Jannink (2010), indicated that, as anticipated from Goddard 
(2009), selection on this index originally caused a lower accuracy 
of selection and genetic gain than selection on unweighted 
genomic prediction (GP). However, markers close to QTL stayed 
polymorphic much longer when the selection was on the index, 
leading to greater genetic variance and a further improvement in 
genetic gain in future generations (Jannink, 2010).

In this study, we first review challenges to obtain more long-
term genetic response in traditional selection, then we discuss how 
the optimal contribution selection (OSC) has been improved and 
finally we survey the dynamic of long-term response in genomic 
selection and find the optimum weights in a selection index to 
apply to each marker to maximize long-term response. 

Challenges of Long-Term Genetic Gain with Traditional 
Selection

Traditional genetic gain has relied on using the recorded 
phenotype of each individual together with the data of its pedigree 
to predict its breeding value (BV), most often using statistical 
methods, known as the best linear unbiased selection (BLUP) 
(Henderson, 1984). This approach has been successful, leading to 
genetic gains in most livestock (Van Vleck et al., 1986; Havenstein 
et al., 1994). Despite this success, there has been an interest in 
using simply inherited genetic markers to rise the rate of genetic 
gain (Dekkers and Hospital, 2002) and although some genes with 
known polymorphisms affecting quantitative traits have been 
discovered (Grisart et al., 2002; Jeon et al., 1999; Wilson et al., 
2001), in general they have not added greatly to the efficiency 
of selection based on EBVs calculated from phenotypes and 
pedigrees (Boichard et al., 2006; Dekkers, 2004). 

There are at least three causes. Firstly, there are generally many 
genes affecting a trait, so the proportion of the variance clarified 
by one gene is very small. Meuwissen and Goddard (1996) 
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indicated that the gain in selection response from using individual 
genes was proportional to the variance they explained, so if only 
a few of the genes explaining a small proportion of the variance 
are known, the gain will be too small. Secondly, as there are many 
genes influencing a trait, their effects are typically small and thus 
hard to estimate precisely. For example, polymorphisms in casein 
genes have been recognized for years to affect milk yield in dairy 
cattle. However, the projected effects of these polymorphisms are 
small and differ from one experiment to another (Bouvenhuis and 
Weller, 1994; Goddard and Wiggans, 1999). Thirdly, we identify 
a few genes that are responsible for variation in vital traits. 
Although a gene might be recognized to have a role in physiology, 
it does not mean that there is a genetic variation in this gene that 
has a significant effect on physiological function. In addition, 
genes are usually revealed to affect a trait that was not previously 
suspected from their identified function (Goddard, 2009). For 
example, Moffatt et al. (2007) have found that ORMDL3 affects 
asthma, but this gene had not been involved in asthma. Modern 
molecular biology promises to overcome this shortage in the 
current knowledge. 

Fernando and Grossman (1989) developed a general method 
for estimating BVs using markers in linkage equilibrium with 
QTL. However, in practice, the gains were small and this method 
of marker-assisted selection was rarely used. By saturating a 
QTL region with additional markers, the causal mutation has 
infrequently been discovered (Grisart et al., 2002). Only when it 
explained an unusually large proportion of genetic variance did 
Meuwissen and Goddard (1996) indicate that the gain in selection 
response from marker-assisted selection was nearly proportional 
to the proportion of genetic variance explained by the markers. 
Thus, a new kind of marker-assisted selection was required 
to utilize all QTL and that did not require linkage phase to be 
determined for each family. 

Meuwissen et al. (2001) revealed that a dense panel of markers 
covered the whole genome and in linkage disequilibrium (LD) 
with QTL could lead to large increases in response to selection. 
This type of marker-assisted selection has been known as genomic 
selection. It became achievable with the availability of thousands 
of SNPs that could be genotyped at a reasonable cost. It has been 
widely used in dairy cattle breeding (Dalton, 2009) and is expected 
to revolutionize all livestock genetic improvement programs and 
can also be extended to plants (Bernardo and Yu, 2007; Heffner 
et al. 2009; Zhong et al. 2009), aquaculture (Sonesson and 
Meuwissen, 2009) and prediction of genetic risk in humans (Wray 
et al., 2007). 

Aran Ardebili et al. (2016) assessed that the genetic gain from 
a progeny testing program corresponding to the characteristics 
of Holstein population and an equivalent genomic selection 
program in terms of number of needed male and female parents 
was compared and the effect of number of young bulls on genetic 
gain in these two programs was evaluated. Selection objective 
included the milk production. Genetic gain for milk production 
from four path selection was estimated using gene flow method 
over 150 years. The results indicated that the progeny testing and 
genomic selection varied in terms of selection accuracy, through 
selection intensity and generation interval. The annual genetic 
gain from progeny testing was 114.7 and from genomic selection 
was 173.7 kg suggesting that the genetic gain obtained from 

genomic selection could be higher than that of progeny testing by 
more than 50% due to a shorter generation interval.

Maximizing Genetic Gain at the Desired Rate of Inbreed-
ing (OCS)

Wray and Goddard (1994) and Brisbane and Gibson (1994) 
described methods that decrease inbreeding by maximizing the 
objective: 

c t’EBVt −  k c t’Atct,

where EBVt = vector of BLUP estimated breeding values 
of the candidates for selection in generation t, ct = vector of 
genetic contributions of the selection candidates to generation 
t+1, At = the matrix of additive genetic relationships between 
selection candidates in generation t and k = a cost factor. They 
applied optimization algorithms that did not guarantee to find the 
optimum ct. However, the optimum solution for the cost factor 
method was found by replacing λ0 with k in equation (Meuwissen, 
1997).

ct=At
−1 (EBVt−Qλ)/2λ0

or 

Q’ At
−1 Qλ=Q’At

−1 EBVt−1λ0

where λ0 and λ are LaGrangian multipliers (λ = a vector of two 
LaGrangian multipliers). Q = known incidence matrix for sex (the 
first column yields ones for males and zeros for females, and the 
second column yields ones for females and zeros for males); and 
1/2 = a vector of halves of order 2.

Wray and Goddard (1994) find optimum ct, within a group of 
animals which have been selected by their optimization algorithm. 
The cost factor k is commonly unknown, although Wray and 
Goddard (1994) computed a cost factor based on inbreeding 
depression, variance reductions because of inbreeding, and a time 
horizon. The presumption made here was that practical breeders 
do approximately know which rates of inbreeding are acceptable, 
although they do not have a feel for cost factors and therefore are 
willing to accept only cost factors that result in acceptable rates 
of inbreeding. Hence, the cost factor λ is calculated from the 
acceptable rate of inbreeding by the following equation:

Meuwissen (1997) anticipated that acceptable rates of 
inbreeding are approximately known. Breeding schemes were 
simulated to test whether the intended rate of inbreeding was 
achieved and to compare rates of gain with BLUP selection. For 
all the breeding schemes mating was considered as random. 
Meuwissen (1997) was going to maximize the genetic level of the 
next generation of animals within every round of selection using 
optimal genetic contributions to the next generation. In optimal 
contributions, the average coefficient of co-ancestry of the parents 
of the generation (t) is limited to (t-1) ΔF for t=2, ..., 10, where 
ΔF=0.025 per generation. The average co-ancestry constraint was 
obtained in all generations without reduction of rates of genetic 
gain in later generations. The initial reduction in genetic gain 
was due to reduced genetic variances on account of the selection 
(Bulmer, 1981). In the next generations, rates of genetic gain 
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slightly increased. However, this increase was small in relation to 
standard error and was not statistically significant. An explanation 
is that the inbreeding constraint becomes less stringent. The rates 
of gain and inbreeding of the optimal selection methods to rates 
obtained from the selection on BLUP-EBV (BLUP selection) 
were compared. With BLUP selection, it was found that the 
rate of inbreeding strongly depends on the number of sires and 
dams selected, whereas the results of schemes that optimize 
the selection of sires and dams with equal contributions of the 
selected sires and the selected dams, were close to the numbers 
based on Wright’s (1931) inbreeding formula for random mating: 
ΔF = 1/8ns + 1/8nd, where ns (nd) = the number of sires (dams) 
selected. The results obviously showed the superiority of the 
optimal contribution methods in comparison to BLUP selection 
(Meuwissen, 1997).

The optimal contribution method of selection attains, on 
average, a predefined rate of inbreeding. The realized rates of 
inbreeding fluctuate around this desired rate. This might be due 
to the fact that the realized contributions of the parents fluctuate 
around the optimal contributions due to the variance of family 
sizes. However, because the average relationship between the 
selected parents did not vary around their predefined levels, the 
standard deviation of the inbreeding level in the last generation 
was much lower than BLUP selection. The present method 
limited the average co-ancestry of the selected parents instead of 
the average inbreeding coefficient of their offspring. When co-
ancestry was limited, it was not difficult to achieve the predefined 
rate of inbreeding during the course of selection; the rates of gain 
did not decline and numbers of animals selected did not enhance, 
which suggests that previous selections affect future inbreeding 
only through affecting the present co-ancestry (Meuwissen, 1997). 

This implies that nonrandom mating cannot control 
inbreeding because the relationships between the selected parents 
will be converted into inbreeding in later generations. Nonrandom 
mating can postpone the time until the close relationships are 
transformed into inbreeding, but, cannot prevent it. Conversely, 
nonrandom mating, in which the selected animals with many 
co-selected relatives are mated to those with few co-selected 
relatives, decreases the cumulative effect of multiple generations 
of selection on inbreeding by decreasing the variance of long-term 
genetic contributions (Santiago and Caballero, 1994). The effect 
of decreasing the co-selection of relatives (Meuwissen, 1997) and 
compensatory mating on inbreeding is additive (Grundy et al., 
1994), hence, both BLUP selection and the present method can 
equally benefit from it. Findings revealed that the constrained 
selection achieves the genetic gain by changing the contributions 
of young ancestors rather than those of old ancestors. The 
contributions of old ancestors are hardly changed and do not 
contribute to rates of inbreeding (Meuwissen, 1997).

This agrees with Woolliams and Thompson (1994), who 
computed that the changes in genetic contributions of old 
ancestors added much more to the rate of inbreeding than to 
the genetic gain and should be avoided when rates of inbreeding 
are supposed to be reduced. Thus, at equal rates of inbreeding, 
selection differentials are higher when the contributions of the 
selection differentials are optimized in comparison to applied 
BLUP selection. 

A dynamic selection rule was offered and yielded 21-60% 
greater selection response than best linear unbiased prediction 
selection at the same rate of inbreeding, which may be due to 
increased selection differentials (Meuwissen, 1997). In optimal 
contribution selection (OCS), the contribution of a parent is the 
result of a trade-off among its genetic merit and its relationship to 
other individuals (Fernández et al., 2011; Woolliams et al., 2015). 

Sonesson et al. (2010) have shown that with finite locus 
models (FLM), simulations in which OCS is not able to maintain 
genetic diversity across the whole genome in selected populations, 
relationship coefficients can be estimated from pedigree 
information. In fact, it leads to a strong reduction in diversity 
around QTL regions by favoring alleles with the largest effects. 
To circumvent this flaw, the authors proposed using marker-based 
relationships as they reflect genome sharing between individuals 
more accurately than pedigree-based expectations.

Sánchez-Molano et al. (2016) demonstrate that the use of 
optimum contribution strategies in a genomic context effectively 
decreases the rate of increase in inbreeding while ensuring 
genetic gain for traits of interest in a wide range of scenarios. The 
inbreeding impact on fitness was clearly included, thus allowing 
the maintenance of fitness levels and, therefore, genomic-based 
optimum contribution strategies can be recommended both from 
conservation and animal genetic improvement perspectives.

Attaining the optimal genetic contributions of females would 
require high female reproductive rates, which may be possible in 
poultry, pigs, or in cattle by the use of Ova Pick Up (Kruip et al., 
1994). For example, when the number of selected sires exceeds 
the number of dams, the optimal solution requires mating of one 
dam to several sires. Such flexible female reproductive methods 
may not be existing and often a predefined number of dams is 
selected, say nd, with equal genetic contributions per dam. In 
this situation, we may simply select the nd, dams with the highest 
optimal contributions.

Ghavi Hossein-Zadeh (2010) evaluated the genetic trend of 
milk yield in multiple ovulation and embryo transfer (MOET) 
populations of dairy cows using stochastic simulation and 
concluded that all four MOET breeding schemes could result in 
larger genetic responses than the realized and theoretical genetic 
gains from the current artificial insemination (AI) progeny testing 
populations. This progress was achieved in spite of having a 
small size, closed scheme and restrictions on inbreeding in some 
cases. The small population without restrictions on inbreeding 
accumulated a high level of inbreeding. Such restrictions are not 
usually worthwhile in terms of genetic gain for the time horizon 
studies. Moreover, selection would become ineffective due to 
reductions in genetic variation caused by inbreeding. Regardless 
of population size, higher selection intensity led to a higher degree 
of linkage disequilibrium. The reduction in genetic variation due 
to linkage disequilibrium was as important as that due to the 
accumulation of inbreeding. Large population size led to lower 
random genetic drift.

Wang et al. (2017) noticed that maintaining genetic originality 
is essential for conserving native breeds. It was shown that 
using an OCS approach can effectively maintain the diversity 
of native alleles and genetic originality, while ensuring genetic 
gain. Although traditional OCS provided the greatest breeding 
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values under classical kinship restriction, the extent of migrant 
contribution in the progeny generation was not controlled. When 
migrant contribution was limited or minimized, the kinship 
at native alleles increased compared to the reference scenario. 
Therefore, in addition to limiting migrant contribution, limiting 
kinship at native alleles is needed to ensure that native genetic 
diversity is kept. When kinship at native alleles was constrained, 
the classical kinship was automatically lowered in most cases and 
more sires were selected (Hartwig et al., 2014; Wang et al., 2017).

Genomic Information and Selection Decisions

Applying molecular information to make selection decisions 
in breeding programs was envisaged decades ago (Smith, 1967; 
Soller, 1978). Marker-assisted selection is the most useful method 
for traits which cannot be recorded on an individual prior to the 
(minimum) age of breeding (Meuwissen and Goddard, 1996). 
For example, traits which are only displayed in females or only 
observable late in life or after slaughter would benefit. Traits such 
as milk yield, which is not displayed by bulls, have been improved 
by progeny testing bulls based on their daughters’ milk yield. This 
leads to an accurate estimate of the bulls’ BV but at the expense 
of a long generation interval. The advantage of genomic selection 
is that bulls and heifers can be selected early in life and the 
generation interval leads to approximately double genetic gain per 
year (Schaeffer, 2006; König et al., 2009; Pryce et al., 2010). 

Application of genetic markers and genomic selection helps 
us in selecting the best bulls when they are born and breed from 
them at 1-year of age instead of waiting until they have completed 
a progeny test at 5-years of age. However, the implementation of 
genetic markers into breeding programs has been limited due to 
technological reasons (Goddard et al., 2010). 

The recent advances in SNP markers have offered new 
opportunities to do so. SNP markers can cover the genome with 
high density. SNP genotyping technology has enabled us to profile 
many animals for thousands of marker loci in a single analysis 
with the minimum cost per marker (Williams, 2005). 

The principle of genomic evaluation models is to take benefit 
of both genotypic and phenotypic data available in a training (also 
called ‘reference’) population to build prediction equations of 
the genetic quality of individuals (Meuwissen et al., 2001). These 
equations can be used to select candidates having genotypes but 
not phenotypes. Diverse approaches have also been proposed 
to estimate genetically enhanced breeding values (GEBV), as 
reviewed by Hayes et al. (2009). 

The use of genomic data to make selection decisions, or 
genomic selection, has greatly increased the technical and 
economic efficiency of dairy cattle breeding programs (Schaeffer, 
2006; König et al., 2009). The selection index theory was suggested 
to model the overall gain in accuracy expected from using 
genomic data at some selection stages (Lande and Thompson, 
1990; Dekkers, 2007; Dagnachew et al., 2016). 

Atefi et al. (2016) have found that models with additive gene 
action Reproducing Kernel Hilbert Spaces (RKHS) method such 
as BayesA and BayesL did not perform better than parametric 
methods, and besides that RKHS is more complicated and time-
consuming. Comparison of these methods for non-additive 

models should be done under different simulation and real 
data. Marker density is one of the most important factors that 
affect the genomic prediction accuracy and fortunately by new 
progress in genotyping technologies, the high-density SNP panels 
with low cost are available and could apply easily in getting an 
accurate genomic prediction. Preventing decay of accuracy due to 
recombination across time is one of the most important benefits 
of dense marker panels, so when the highest number of markers 
(1000) was used, the lowest accuracy decay was found. In this 
study, the decreasing trend of accuracy across generations was not 
affected by marker effect estimation methods. In high heritability 
traits, increase in the number of markers had a slight effect on 
accuracy but for low heritability trait, increase in the number of 
markers increased accuracy; therefore, using the dense marker 
panels is imperative for low heritability traits. There was the 
same association between heritability and the interval between 
validating and testing sets so that getting away from validating 
sets somehow declined the accuracy of high heritability trait but 
the decline was severe for low heritability trait.

Impact of Genomic Selection on Inbreeding Rates

Exploiting genomic data helps to estimate the Mendelian 
sampling term of young individuals without having any phenotypic 
data. Therefore, genomic selection is expected to reduce the weight 
of family data in selection decisions by placing the emphasis on 
Mendelian sampling information of young candidates (Daetwyler 
et al., 2007). The largest decreases in inbreeding rates due to the 
use of genomic selection were sighted for traits of low heritability 
(Lillehammer et al., 2011) and when a large part of variance 
was explained by markers (de Roos et al., 2011). By screening a 
large population of candidates, genomic selection facilitates the 
identification of the least related animals having high genetic 
merit with a higher accuracy than before.

In particular, McHugh et al. (2011) indicated that genotyping 
of a large number of females had a very beneficial impact on ∆F 
reduction. However, even though the rate of inbreeding should 
be lower per generation from genomic selection compared with 
progeny testing, and the Mendelian sampling can be estimated 
at the time of selection more accurately (Daetwyler et al., 2007), 
shorter generation intervals can lead to an enhancement in the 
rate of annual rate of inbreeding (e.g., Lillehammer et al., 2011). 
In addition, there is a risk that genomic selection could result in 
large homozygous segments of chromosome surrounding QTL in 
the selected population (Sonesson et al., 2010). For these reasons, 
approaches to control the rate of inbreeding using genomic 
selection schemes are essential. Differentiating the number of 
mating per young bulls on the basis of GEBVs is not a sustainable 
option; it leads to a slight increase in genetic gain at the expense of 
a drastic increase in ∆F (Sørensen and Sørensen, 2009).

Pryce et al. (2012) compared three strategies for controlling 
progeny inbreeding in mating plans. The strategies used data from 
pedigree inbreeding coefficients, genomic relationships, or shared 
runs of homozygosity. The results presented here show that using 
a genomic relationship matrix (GRM) instead of pedigree in a 
mating plan is an effective way to decrease the expected inbreeding 
in progeny. The reduction in inbreeding using a GRM calculated 
using 43,115 SNP (G), a GRM calculated using 3,123 SNP (G3k), 
and pedigree relationships (A) was dependent on the way in 
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which inbreeding was assessed. For instance, the performance of 
G was superior when progeny inbreeding was measured using G 
and A was superior to G when progeny inbreeding was measured 
using A. This shows that the method of measuring inbreeding 
is important when assessing different strategies to control 
inbreeding. However, in none of these examples the measurement 
scale independent of the method was used to control inbreeding 
(Pryce et al., 2012; Gómez-Romano et al., 2016). 

Sonesson et al. (2012) have found when the data used to 
estimate breeding values and to constrain rates of inbreeding 
were either both pedigree-based or both genome-based, rates 
of genomic inbreeding were close to the desired values and the 
identical-by-descent profiles were reasonably uniform across 
the genome. But, with a pedigree-based inbreeding constraint 
and genome-based estimated breeding values, genomic rates 
of inbreeding were much higher than expected rates. With 
pedigree-instead of genome-based estimated breeding values, 
the impact of the largest QTL on the breeding values was much 
smaller, resulting in a more uniform genome-wide identical-by-
descent index but genomic rates of inbreeding were still higher 
than expected, based on pedigree relationships because they 
measure the inbreeding at a neutral locus not linked to any 
QTL. Neutral loci did not exist where there were 100 QTLs on 
each chromosome. With a pedigree-based inbreeding limitation 
and genome-based estimated breeding values, genomic rates of 
inbreeding substantially exceeded the value of its limitation. By 
contrast, with a genome-based inbreeding constraint and genome-
based estimated breeding values, marker frequencies changed. 
However, this change was limited by the inbreeding constraint at 
the marker position.

McHugh et al. (2011) indicated that genotyping of a large 
number of females had a very beneficial impact on ∆F reduction. 
The use of genomic selection to pre-select males for progeny 
testing resulted in a clear diminution of per generation inbreeding 
rates compared with progeny testing schemes, for only slight 
modifications of the generation interval (Pryce et al., 2010; de 
Roos et al., 2011; Lillehammer et al., 2011; Buch et al., 2012). 

The use of genomic information will greatly develop the 
understanding of the genetic architecture of inbreeding depression 
in terms of the identification of lethal haplotypes and regions of 
the genome that are sensitive to inbreeding. The management of 
the associated haplotypes is likely to become increasingly complex 
(MacArthur et al., 2012). As outlined by Van Eenennaam and 
Kinghorn (2014), as the number of lethal loci increases, selection 
or mating strategies will need to optimize the balance among 
accordance in genetic gain and decreasing the effect of inbreeding 
depression. A large number of either lethal or unfavorable 
haplotypes across multiple economically important traits will 
finally be identified. Therefore, methods need to be developed that 
effectively take into account the probability of occurring within 
an individual or progeny, along with their individual importance 
to the overall breeding objective (Van Eenennaam and Kinghorn, 
2014).

Dynamics of Long-Term Response Genomic Selection 

In a simulation looking at several generations, Muir (2007) 
has displayed that the accuracy of genomic prediction reduces 

much more quickly if used for selection than if followed by 
random mating. This result and the putative mechanisms outlined 
suggest that a careful look at long-term selection using GS is 
required to detect mechanisms having an important effect on 
its performance and to give research directions to improve GS. 
There is also a practical need for both crop and animal breeding 
programs. Therefore, insight into the long-term consequences of 
GS deployment would be useful (Jannink, 2010).

In particular, Heffner et al. (2009) have suggested that GS 
separates the breeding process into two cycles; the selection cycle 
and model training cycle. The model training cycle is much more 
constrained than the selection cycle because it needs adequate 
phenotyping data. Therefore, regardless of species, it appears 
likely that the frequency of model updating will be lower than 
that of selection cycles. This limitation raises the questions of how 
accurate GS can be in selection cycles if it has not been improved, 
and to what extent long-term selection will be adversely affected.

Another limitation for GS is the necessity of assembling the 
initial training population (TP) for the model. In simulations using 
population-wide LD, rather large TP has been used (Meuwissen et 
al., 2001; Habier et al., 2007; Zhong et al., 2009). In GS on bi-
parental cross populations, much smaller populations have been 
effective, though these populations have never been suggested for 
long-term selection (Lorenzana and Bernardo, 2009; Wong and 
Bernardo, 2008).

Azizian et al. (2016) demonstrated that accomplishing 
higher accuracies by increasing the size of training set would not 
necessarily lead to the maximum economic efficiency. The optimal 
value of genomic selections accuracy and the corresponding 
number of animals in the training set should be estimated 
according to the economic and breeding situation of the target 
population. In Iran’s condition, the optimal accuracy of genomic 
selection is about 0.63 which would be achieved by allocating 
1,000 individuals in the training set. The cost of genotyping had 
a little effect on the optimal accuracy and the size of the training 
set. Variation of heritability did not affect the optimal accuracy 
and the size of the training set, while this factor increased the 
economic efficiency. 

Eventually, different GS prediction models have proposed 
the impacts which may differ on short and long terms periods. 
In simulations of generations promptly after the TP, models that 
assume all marker effects are distributed with equal variance (i.e., 
ridge regression), have been found to be as or more accurate than 
models that assume some markers do not explain any variance 
(e.g. BayesB) (Meuwissen et al., 2001). However, the accuracy of 
the former decays more quickly over generations than that of the 
latter (Habier, 2007).

To examine the questions of the long-term success of GS, 
the impact of initial training population size, the timing of 
additions of new phenotypes to the training population, and on 
GS analysis method, long-term selection for a quantitative trait 
using GS was simulated. This practice strongly increased primary 
selection gains but also caused the loss of many favorable QTL 
alleles, leading to loss of genetic variance, loss of GS accuracy, 
and a low selection plateau. Placing an additional weight on 
low-frequency favorable marker alleles, however, allowed GS to 
increase their frequency earlier on, causing an initial increase in 
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genetic variance. This dynamic led to higher long-term gain while 
relieving losses in short-term gain. Weighted GS also enhanced 
the maintenance of marker polymorphism, ensuring that QTL-
marker linkage disequilibrium was higher than in unweighted GS. 
Losing favorable alleles that are in weak linkage disequilibrium 
with markers is maybe unavoidable when using GS. Placing an 
additional weight on low-frequency favorable alleles, however, 
may reduce the rate of loss of such alleles to below that of 
phenotypic selection. Applying such weights at the beginning of 
GS implementation is critical (Jannink, 2010).

A useful feature of genomic selection is that the long-term 
response is predictable because the marker allele frequencies are 
well known. This conclusion ignores non-additive effects of the 
QTL which may cause a change in the gene substitution effect 
of the QTL, and thus in the apparent effect of the marker, as the 
selection changes gene frequencies. Of course, it would be possible 
to continually re-estimate marker effects and involve new markers 
which had been divested in the primary index (Goddard, 2009). 

Dekkers and van Arendonk (1998) investigated selection 
for one QTL in combination with phenotypic selection. They 
explained that long-term response could be increased by 
modifying the selection pressure applied to the QTL as its allele 
frequency changes. To obtain the maximum long-term response, 
it is necessary to change the index weights as selection earnings 
(Dekkers and van Arendonk, 1998). Goddard (2009) indicated 
that this should be done by making the index weights proportional 
to  where p is the gene frequency. The use of this index, 
and the transformation of allele frequencies (p) to , 
turns a problem with non-constant selection response but linear 
objective into a problem with a steady selection response but a 
non-linear objective. The optimum long-term index can then be 
calculated using procedures developed to deal with non-linear 
profit functions. This provides an index that puts increased weight 
on rare favorable alleles. This increases their frequency more 
quickly than the optimum short-term index and so increases the 
genetic variance due to them and thus increases the future genetic 
gain as well. This index is similar to the one obtained by Dekkers 
and van Arendonk (1998) and Meuwissen and Sonesson (2004) 
for selection on a single QTL plus a polygenic component. They 
ignored LD between the QTL and when this is taken into account, 
a slightly better index may result (Dekkers and van Arendonk, 
1998; Sanchez et al., 2006).

Improving Long-Term Response by Focus on Favourable 
Minor Alleles

Goddard (2009) and Jannink (2010) anticipated that selection 
was performed for an adequate amount of time to fix all favorable 
alleles. However, when making decisions for optimum selection, 
the end of the time horizon might be previous to a selection limit 
(Wray and Goddard, 1994). If the time horizon is short, increased 
importance of rare favorable alleles are no longer essential to 
enhance genetic gain, and therefore, the short-term genetic gain 
should be maximized. Liu et al. (2014a) assumed that long-term 
genetic gain can be maximized by slowly decreasing weights on the 
rare favorable alleles as the population approaches the end of the 
time horizon. Furthermore, Goddard’s optimization (Goddard, 
2009) and Jannink’s implementation (Jannink, 2010) assume that 
marker effects are known without error and that markers are in 

perfect linkage disequilibrium (LD) with QTL.

However, Bijma (2012) reasoned that even if the true effects 
of alleles are known and selection is for the optimal combination 
of all true allele effects, drift should be computed for because of 
Mendelian sampling, linkage, and recombination. Therefore, by 
chance, certainly favorable alleles will inevitably be absent in 
the selected individuals. Bijma (2012) argued that the optimum 
weights of rare favorable alleles should be larger than the 
optimum weights of Goddard (2009). By doing so, rare favorable 
alleles would be promptly selected towards higher frequency, thus 
decreasing the probability of losing them from the population.

Liu et al. (2014a) extend the Jannink’s weighting (JW) method 
by including an additional parameter to reduce the emphasis on 
rare favorable alleles over the time horizon, with the purpose of 
further improving the long-term genetic gain. They called this 
new method dynamic weighting (DW). Compared to unweighted 
genomic prediction, both dynamic weighting and Jannink’s 
weighting can increase long-term genetic gain and decrease rate of 
inbreeding with a time horizon of 40 generations. The long-term 
genetic gain when using dynamic weighting was 30.8% greater 
than that of unweighted genomic prediction, and also 8% greater 
than Jannink’s weighting, although at the cost of a lower short-
term genetic gain. With a time horizon of 15 generations, the long-
term genetic gain of dynamic weighting can be supported to be at 
least as high as that of unweighted genomic prediction, whereas 
Jannink’s weighting cannot. Consequently, dynamic weighting is 
a promising method that is expected to result in high long-term 
genetic gain within a fixed time frame. 

Results demonstrated that without weighting methods, 
Bayesian lasso (BL) is superior to ridge regression (RR) in keeping 
genetic variance and controlling inbreeding, and therefore can 
result in higher long-term genetic gain, regardless of the length 
of planning horizon and the number of QTL influencing the 
trait. The number of QTL also varied in Liu’s simulations since 
it might influence the accuracy of various prediction models. By 
contrast to prior expectations, the relative superiority of BL over 
RR was larger when the number of QTL was larger and long-term 
response was the scale for comparison. The results indicated that 
the number of QTL mainly affected the loss of favorable alleles 
and the loss of genetic variance, which was greater with RR than 
with BL. This may be due to the fact that with more QTL, the 
selection pressure on each QTL is smaller, and the drift therefore 
becomes relatively more important. The number of QTL did not 
affect the rate of inbreeding since, here, the rate of inbreeding was 
measured based on pedigree information only (Liu et al. 2014a). 
Mating programs such as positive assortative mating can also 
enhance variance by introducing positive co-variances among 
breeding values of selected mates (Fernando and Gianola, 1986; 
Breese, 1956; Wilson, 1965). 

Fernando and Gianola (1986) simulated 20 generations and 
found that selection with assortative mating can have a sizable (10 
to 20%) long-term benefit over selection with the random mating 
of parents when heritability is high, the allele frequency of base 
population is low and proportion selected is large. Hallander et 
al. (2007) revealed that the genetic variance could be sustained 
or even increase in the presence of non-additive genetic effects. 
Consequently, simulations that consider non-additive effects 
with a large number of QTL need additional understanding of 
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the influence of the quantity and distribution of these effects. 
Furthermore, even when epistatic effects exist, this does not 
reduce the importance of maintaining genetic variance and 
rare favorable alleles by weighting methods. It should be noted 
that the aim of the previous studies was to investigate the main 
mechanisms that have consequences in long-term selection 
programs. DW showed a lower accuracy and a lower short-term 
genetic gain than JW, which may be relevant for practical breeding 
programs. Besides, another common way of increasing selection 
limits is to switch the selection rule from truncation selection to 
optimum contribution selection (OCS). OCS works by optimizing 
the genetic contribution (i.e. number of mating) of each selection 
candidate, conditional on EBV and average co-ancestry. By doing 
so, the genetic gain is expected to be maximized and, meantime, 
the rate of inbreeding is limited. This method has been well 
studied in dairy cattle, pig, and fish breeding and has proven to 
be promising in terms of long-term genetic gain (Gandini et al., 
2012; 2014; Nielsen et al., 2011; Liu et al., 2014b; Dagnachew et al., 
2016). Therefore, it will be worthwhile to compare DW with OCS 
in subsequent studies. Combining DW with OCS may result in a 
lower rate of inbreeding and higher genetic gain compared to each 
procedure used alone.

Sun and VanRaden (2014) suggest simple, improved formulas 
for weighting favorable minor alleles to enhance long-term 
progress from the genomic selection with less reduction of short-
term progress. The prior formula used nonlinear weights based on 
square root of the frequency of the favorable allele. Prior formulas 
to implement FMA selection used arcsin (Goddard, 2009) or 
square root (Jannink, 2010) to adjust weights for favorable alleles. 

Goddard (2009) argued that the index weight for long-term 
response alters as the gene frequencies alters due to selection, and 
using a transformation of  leads to a response on the 
transformed scale ζ that is constant regardless of gene frequency. 
The arcsin formula considered only selection direction and allele 
frequency (f) but not effect size, and therefore was not applicable 
for variable effect sizes (Jannink, 2010). 

The square root formula is closely proportional to arcsin 
over a range of allele frequencies and also includes allelic effect, 
hence, it has no parameter to balance long-term gains with short-
term losses. Two new formulas to enforce FMA selection were 
derived. The first used nonlinear weights and the quare root of the 
frequency of the favorable allele as done by Jannink (2010), but 
also included a parameter δ that could vary from 0 to 1 to balance 
long- and short-term progress. The new formula is identical to 
Square root if δ= 1. When 0< fj <1. The second formula involved a 
parameter δ that could vary from 0 to 2, but simple linear weights 
were applied with more weight for favorable minor and less weight 
for favorable major alleles proportional to frequency variation 
from 0.5 (Jannink, 2010).

The formulas were examined by simulation of 20 generations 
(population size of 3,000 for each generation) with direct selection 
on 3,000 QTLs (100 per chromosome). The prior formula had a 
slower response than unweighted selection in primary generations 
and did not recover by generation 20. The long-term response 
was slightly greater with the new formulas than with unweighted 
selection; the linear formula may be best for routine use because 
of more progress in primary generations compared with nonlinear 
formula. Official and adjusted U.S. evaluations based on actual 

genotypes and projected marker effects were correlated by 
0.994 for Holsteins and Jerseys and 0.989 for Brown Swiss using 
a linear weighting of allele frequency, which was higher than 
nonlinear weighting. The difference between adjusted and official 
evaluations was highly correlated negatively with an animal’s 
average genomic relationship to the population. Therefore, 
strategies to reduce genomic inbreeding may obtain almost as 
much long-term progress as a selection of favorable minor alleles 
(Sun and VanRaden, 2014).

Studies have shown that, when performing selection for 
many generations, GS increases the risk of losing favorable QTL 
alleles compared with phenotypic selection (Toosi et al., 2009), 
predomonantly in the first few generations. Some of these alleles 
are rare and inevitably lost due to low linkage disequilibrium (LD) 
with any marker (Lu et al., 2003). The remaining favorable QTL 
alleles are essential to maintaining long-term genetic variance and 
response to selection (Liu et al., 2014a).

Conclusion
Mating plans could be planned to control the rate of inbreeding 

in a subset of individuals in the next generation. If maximizing 
long-term genetic gain while controlling inbreeding in the entire 
population is the desired outcome, then approaches that select 
candidates including data on co-ancestry among the selection 
candidates should be used. As there is no need for the use of a 
pedigree when sequence data is available, it would seem reasonable 
to apply the current population as a reference point. Difference 
in identity between individuals could then simply be realized 
in terms of covariance among breeding values. The strategy 
combining wGEBV with OCS was very promising, as it provided 
higher gain and/or lower true inbreeding than using each of them 
alone in genomic breeding schemes. That’s why using wOCSG 
has been recommended as not only did it boost the cumulative 
genetic gain, but also it restricted the increase in true inbreeding 
across the genome. The OCS with limitations imposed during 
optimization realizes most of the long-term genetic gain realized 
by OCS without restrictions. Realizing 67 to 99% of the additional 
gain with many of limitations demonstrates that OCS is a strong 
selection method. Its strength has been evident even with multiple 
limitations, where several limitations that remove solutions 
from the solution space are imposed at the same time. Dynamic 
weighting was described as a novel genomic selection technique to 
maintain genetic variance and raise long-term genetic gain. This 
technique is made upon Jannink’s weighting technique, in which 
low-frequency favorable alleles obtain a high weight. Jannink’s 
weighting technique was proven to be successful in increasing the 
long-term genetic gain compared with unweighted GP. 
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