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Single crystal thin films of CdS were grown onto glass substrates by RF magnetron sputtering at var i-

ous substrate temperatures. Structural, optical and morphology properties of these films were investigated 

through low angle XRD, Raman spectroscopy, scanning electron microscopy (SEM), energy dispersive x-ray 

(EDX) spectroscopy, UV-Visible spectroscopy etc. Formation of single crystal CdS films has been confirmed 

by low angle XRD and Raman spectroscopy analysis. Low angle XRD showed that CdS films has preferred 

orientation in (111) direction. Improvement of crystallinity and increase in average grain size of CdS crys-

tallites has been observed with increase in substrate temperature. Surface morphology investigated using 

SEM showed that CdS films deposited over entire range of substrate temperature are highly smooth, 

dense, homogeneous, and free of flaws and cracks. The EDX data revealed the formation of high-quality 

nearly stoichiometric CdS films by RF magnetron sputtering. Furthermore, the CdS films deposited at low 

substrate temperatures ( 200 0C) are slightly S rich while deposited at higher substrate temperatures 

( 200 0C) are slightly Cd rich. The UV-Visible spectroscopy analysis showed that an average transmission 

~ 80-90 % in the visible range of the spectrum having band gap ~ 2.28 -2.38 eV,  which is quite close to the 

optimum value of band gap for a buffer layer in CdTe/CdS, Cu2S/CdS hetero-junction solar cells. 
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1. INTRODUCTION 
 

Thin films technology is the most promising technol-

ogy for mass production of solar cells due to the low cost 

solar energy conversion, low materials consumption and 

the possibility to obtain very small integrated solar cell 

modules. Cadmium sulphide (CdS) belonging to the II-

VI group received considerable attention in recent 

years for thin film solar cell applications due to its ex-

cellent properties such as wide and direct band gap 

( 2.42 eV) at room temperature, high carrier concen-

tration ( 1016 cm – 3), mobility ( 5 cm2 V – 1 s – 1) [1], 

high absorption coefficient ( 104 cm – 1), high electro-

chemical stability [2] etc. As per as solar cells are con-

cerned, CdS has been used as a window material to-

gether with several semiconductors such as copper in-

dium gallium selenide (CIGS), copper zinc tin sulfide 

(CZTS), cadmium telluride (CdTe), copper sulfide 

(Cu2S) based solar cells [3]. 

There are several deposition techniques used for the 

deposition of CdS thin films. These includes vacuum 

evaporation [4], flash evaporation [5], molecular beam 

epitaxy (MBE) [6], sputtering [7] and screen printing 

[8], pulsed laser ablation (PLA) [9], electrodeposition 

[10], successive ionic layer adsorption and reaction (SI-

LAR) [11], chemical bath deposition (CBD) [12], chemi-

cal spray pyrolysis (CSP) [13],  close space sublimation 

(CSS) [14], chemical vapor deposition [15] etc. Each 

deposition method has its own advantages and limita-

tions and each deposition process produces different 

structural, electrical, optical and morphology properties 

of the CdS thin films. Considering the high material 

utilization ratio, availability of existing sophisticated 

facilities and possibility of scaling up for large area dep-

osition sputtering has been established for industrial 

applications. Furthermore, the RF magnetron sputter-

ing permits deposition at low temperature, and gives 

better adhesion, larger coverage and higher film density 

than other methods. 

The physical properties of CdS thin films deposited 

by RF magnetron sputtering method are affected by the 

deposition parameters such as sputtering power, argon 

gas pressure, substrate temperature, target-substrate 

distance etc. However, the relation between the varia-

tion of deposition parameter and the resulting film 

properties has not been yet fully established. So far, 

there exist few reports on investigation of substrate 

temperature dependent properties of CdS thin films 

prepared by using RF magnetron sputtering method 

[16, 17]. It is with this motivation an attempt has been 

made to study the synthesis and characterization of CdS 

thin films using RF magnetron sputtering method. In 

this paper, we report detail investigation of influence of 

substrate temperature on structural, optical, morpholo-

gy and compositional properties of CdS thin films depos-

ited by RF magnetron sputtering method.  

 

2. EXPERIMENTAL 
 

2.1. Preparation of Films 
 

The CdS films were deposited on corning #7059 

substrates using home-build RF magnetron sputtering 

system details of which been described elsewhere [18]. 

It consists of a cylindrical stainless steel chamber (pro-

cess chamber) coupled with a turbo molecular pump 
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(TMP) followed by a roughing pump which yields a base 

pressure less than 10 – 7 Torr. A target of 4 inch diame-

ter (99.99 %, Vin Karola Instrument, USA) was used 

for the deposition of CdS films and was kept facing the 
substrate holder  7 cm away. To ensure the uniformity of 

films substrates were kept rotating during the sputtering 

process using a stepper motor with variable speed. The 

substrates can be clamped on substrate holder which is 

heated by inbuilt heater using thermocouple and tem-

perature controller. The substrate temperature was 

varied from 50 C to 400 C. The pressure during depo-

sition was kept constant by using automated throttle 

valve and measured with capacitance manometer. 

Sputtering gas, argon (Ar) can be introduced in the 

process chamber through a specially designed gas bank 

assembly which consist of mass flow controllers (MFCs) 

and gas mixing.  The process parameters employed 

during the deposition of CdS films are listed in Table 1. 
 

Table 1 – Process parameters employed during the deposition 

of CdS films 
 

Process parameter Value 

Deposition pressure (pdep) 5 x 10 – 3 mbar 

Deposition time (t) 30 min 

RF power (PRF) 100 W 

Target-to-substrate distance (dt-s)  7 cm 

Ar gas flow rate (FAr) 30 sccm 

Substrate temperature (TSub) 50-400 C 
 

The substrates were cleaned using a standard 

cleaning procedure. Prior to each deposition, the sub-

strate holder and deposition chamber were baked for 

two hours at 100 C to remove any water vapor ab-

sorbed on the substrates and to reduce the oxygen con-

tamination in the film. After that, the substrate tem-

perature was brought to desired value by appropriately 

setting the inbuilt thermocouple and temperature con-

troller. Sputter-etch of 10 min were used to remove the 

target surface contamination. The deposition was car-

ried out for desired amount of time and films were al-

lowed to cool to room temperature in vacuum. 

 

2.2 Characterization of Films 
 

Low angle X-ray diffraction pattern was obtained by 

x-ray diffractometer (Bruker D8 Advance, Germany) 

using CuKα line (  1.54056 Å) at a grazing angle of 

1. The average crystallite size was estimated using the 

classical Scherrer’s formula. The band gap of the films 

was deduced from transmittance and reflectance spec-

tra of the films deposited on corning glass using a 

JASCO, V-670 UV-Visible spectrophotometer in the 

range 350-800 nm by using the procedure followed by 

Tauc. Raman spectra were recorded with Raman spec-

trophotometer (Jobin Yvon Horibra LABRAM-HR) in 

the range 200-800 cm – 1. The spectrometer has 

backscattering geometry for detection of Raman spec-

trum with the resolution of 1 cm – 1. The excitation 

source was 532 nm line of He-Ne laser. The power of 

the Raman laser was kept less than 5 mW to avoid la-

ser-induced crystallization of the films. The scanning 

electron microscopy (SEM) images were recorded using 

a JEOL JSM-6360A microscope with operating voltage 

20 kV to study the surface morphology of the films. The 

thickness of films was determined by a profilometer 

(KLA-Tencor, P-16 +). 

 

3. RESULTS AND DISCUSSION 
 

Sputtering is momentum exchange phenomenon be-

tween ion and atom of the target material. Sputtering 

simply means ejection of electron from its solid materi-

al (target) due to bombardment of energetic particles 

(which are normally gas molecules). The kinetic energy 

of the bombarding particle is much greater than con-

ventional thermal energy. In RF magnetron sputtering 

method for deposition of thin films change in the sub-

strate temperature changes the opto-electronic proper-

ties of films through changes in its structure and com-

position. An increase in substrate temperature increas-

es the energy for the surface mobility for the film pre-

cursors, it increases their diffusion length and there-

fore proper relaxation of the film structure during the 

film growth is possible. However increase in substrate 

temperature can have some adverse effect on the film 

properties too. A balance between the beneficial and 

the adverse effects of increase in substrate temperature 

at a particular temperature range results in a device 

quality film structure. 

 

3.1 Variation of Film Thickness 
 

The thickness of films was determined by a pro-

filometer and was further confirmed by UV-Visible 

spectroscopy analysis. Fig. 1 shows variation of film 

thickness as a function of substrate temperature for 

CdS films deposited by using RF magnetron sputtering. 

As seen the CdS film thickness decreases from 1.10 m 

to 0.26 m when substrate temperature increased from 

50 C to 400 C.  
 

 
 

Fig 1 – Variation of film thickness as function of substrate 

temperature of CdS thin films deposited by RF magnetron 

sputtering 
 

The decrease in film thickness with increase in sub-

strate temperature can be attributed to the increase in 

the radical surface mobility of ad-atom at the growing 

surface. At low substrate temperature, the radical sur-

face mobility of ad-atom is very low and large number 

of these ad-atoms is incorporated in the growing film. 

With an increase in substrate temperature each radical 

receives sufficient energy and its surface mobility en-
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hances. This increases their diffusion length allowing 

them to choose favorable low energy sites. As a result 

the film thickness decreases with increase in substrate 

temperature. The decrease in film thickness with in-

crease in substrate temperature was reported previous-

ly for CdS films by deposited by spray pyrolysis method 

[19] and thermal evaporation method [20]. 

 

3.2 Low Angle XRD Analysis 
 

Low angle x-ray diffraction (low angle-XRD) is a 

widely used nondestructive technique for the structural 

characterization of different materials. Fig. 2 shows 

XRD pattern of as-deposited CdS films deposited on 

glass substrate at various substrate temperatures.  
 

 
 

Fig. 2 – Low angle-XRD pattern of CdS films deposited at 

different substrate temperatures by RF magnetron sputtering 
 

The CdS films deposited at low substrate tempera-

ture show one major diffraction peak at 2  26.5 and 

two tiny peaks at 2  43.8 and 51.4 corresponding to 

the (111), (220) and (311) diffraction planes indicating 

cubic phase of CdS (JCPDS data card No. # 75-1531) 

suggesting that CdS crystallites have preferred orien-

tation in (111) direction. Significant changes in XRD 

pattern has been observed in CdS films with increase 

in substrate temperature. With increase in substrate 

temperature the line-width (full width at half maxi-

mum, FWHM) of diffraction plane (111) decreases and, 

its sharpness and intensity increases implying increase 

in its average grain size (dx-ray) and crystallinity. The 

average crystallite size has been estimated using the 

classical Scherrer's formula, 
 

 -
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B
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β θ
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where,   is the wavelength of diffracted radiation, B is 

the Bragg angle and  is FWHM in radians and its val-

ue was found to be in the range  11-21 nm over the 

entire range of substrate temperature studied. These 

values are also shown in Fig. 2. Furthermore, with in-

crease in substrate temperature the diffraction peaks 

corresponding to (220) and (311) crystallographic 

planes were found disappeared completely. These re-

sults indicate formation of single crystal CdS films with 

increase in substrate temperature. 

 

3.3 Raman Spectroscopy Analysis 
 

Raman spectroscopy is a very powerful non-

destructive technique used to investigate the structure 

of materials because it gives a fast and simple way to 

determine the phase of the material, whether it is 

amorphous, crystalline or nanocrystalline. Fig. 3 shows 

the Raman spectra of CdS films deposited at different 

substrate temperatures by using RF magnetron sput-

tering. The Raman spectra show one major peak cen-

tered  299 cm – 1 and another small peak centered 

 601 cm – 1. They can be assigned to the first and se-

cond-order longitudinal optic (LO) phonon modes of 

CdS, respectively [21]. No marked change in the peak 

position was observed. No other vibrational modes have 

been observed over the entire range of substrate tem-

perature studied except a tiny weak peak at  

 391 cm – 1 which is due to multiple phonon scattering 

and corresponds to 1LO  2E2 phonon mode. These re-

sults signify formation of pure CdS phase. These re-

sults are consistent with low angle XRD analysis and 

further confirm the formation of single crystal CdS thin 

films by RF magnetron sputtering.  
 

 
 

Fig. 3 – Raman spectra of CdS films deposited at different 

substrate temperatures by RF magnetron sputtering 
 

The ratio of 2LO mode intensity to 1LO mode inten-

sity (I2LOII1LO) reflects the exciton-phonon coupling and 

can be attributed to first an increase of the overlap of 

the spatial wave functions of the electron and the hole 

in the electronic excited states in the nanoparticles, and 

the second due to a big decrease of the lifetime of the ex-
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cited state due to trapping on defects on the surface. It 

has been reported that the ratio I2LOII1LO depends on 

crystal phases of CdS where a strong decrease in the 

I2LO/I1LO ratio was observed for the hexagonal phase and 

a weaker one was observed for the cubic phase [22]. A 

large decrease of I2LO/I1LO ratio for nano-particles in com-

parison with a single crystal has been observed depend-

ing on the nanoparticle sizes [23]. In contradiction, Pan et 

al. [24] found an increase in ratio from bulk CdS to CdS 

nano-wires having larger dimensions. Recently, Diwate et 

al. [25] observed increase in I2LOII1LO with increase in 

substrate temperature for CdS films deposited by chemi-

cal spray pyrolysis and attributed to increase in average 

grain size of CdS with substrate temperature. In the pre-

sent study, the ratio, I2LOII1LO was calculated for the CdS 

films and was found  0.10-0.11 over the entire range of 

substrate temperature studied. On the other hand, the 

average grain size increases with increase in substrate 

temperature (see Fig. 2). These results suggest that for 

CdS films deposited by RF magnetron sputtering the 

ratio I2LOII1LO is independent of average grain size. 

 

3.4 SEM and EDX Analysis  
 

Scanning electron microscopy (SEM) is a convenient 

method for studying the topography and the growth of 

CdS thin films. Fig. 4 illustrates the SEM micrographs 

of CdS thin films grown at different substrate tempera-

tures at x100000 magnification. All SEM images were 

taken using a JEOL JSM-6360-LA scanning electron 

microscope. Before imaging, the samples were coated 

with platinum by sputter method. All CdS films are 

highly dense, homogeneous, and free of flaws and 

cracks. The films show complete coverage over the 

glass substrates and highly smooth surface indicating 

that surface morphology of CdS films are independent 

on substrate temperature. The occarance of oscillations 

in UV-Visible trasmission spectra further support this 

conjucture. From SEM images it is clear that the mor-

phological properties of CdS films deposited using RF 

magnetron sputtering are independent on substrate 

temperature. Recently, Islam and others [17] also ob-

served quite smooth surface morphology for RF magne-

tron sputtered CdS thin films compared to CdS thin

 

 
 

Fig. 4 – Scanning electron microscopy images of CdS thin films grown at different substrate temperatures at 100000 magnifica-

tion a) 50 C, b) 200 C and c) 400 C and d) Typical EDX spectra of CdS film deposited at deposition temperature 400 C 
 

films prepared by using close spaced vapour transport 

(CSVT) and chemical bath deposition (CBD) methods. 

The energy-dispersive x-ray (EDX) spectroscopy 

analysis is an  important technique to estimate the 

chemical composition of the material. Fig. 4(f) shows a 

typical EDX spectra of CdS film deposited at deposition 

temperature 400 0C. The results indicate the presence 

of Cd and S peaks with intensity proportional to their 

respective concentrations. The EDX results of 

composition of Cd and S for other CdS films are 

dipected in Table 2. The films contain mainly Cd and S 

in atomic % and negligible amount of impurity 

indicating the purity of deposited material. 
 

Table 2 – EDX analysis of CdS thin films 
 

Substrate temperature (C) 
Cd 

(at. %) 

S 

(at. %) 

Cd/S 

ratio 

50 49.6 50.3 0.99 

100 49.8 50.2 0.99 

200 49.8 50.9 0.96 

300 50.9 49.1 1.04 

400 50.3 48.7 1.03 
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The EDX data analysis reveals that the atomic ratio 

of Cd:S is  1:1 which confirms the formation of high-

quality stoichiometric CdS films by RF magnetron 

sputtering. It is worth to mentioned that CdS films 

deposited at low substrate temperatures ( 200 C) are 

slightly rich in S compare to Cd while deposited at 

higher temperatures ( 200 C) are slightly Cd rich 

compare to S.  

 

3.5 UV-Visible Spectroscopy Analysis 
 

The UV-Visible spectroscopy is used to study the op-

tical properties of the CdS thin films deposited at dif-

ferent deposition temperature using RF magnetron 

sputtering. Figure 5(a) shows the transmission spectra 

of the CdS thin films deposited at the different sub-

strate temperatures by RF magnetron sputtering in the 

range 350-800 nm. A sharp absorption edge has been 

observed in the visible region, indicating good degree of 

crystallinity and low defect density near the band edge. 

The presence of interferences fringes in the transmit-

tance spectra indicates that films have smooth surface 

morphology. The transmission of a film strongly de-

pends on the film structure, which is determined by the 

preparation methods, film thickness and deposition 

conditions [26]. Furthermore, the transmittance of 

films is the result of combination of several effects such 

as structural homogeneity, better crystallinity and the 

smooth surface [27]. In the present study the average 

transmission was found in the range 80-90 % in the 

visible range which is good for opto-electronic devices, 

especially buffer layer in CdTe/CdS, Cu2S/CdS hetero-

junction solar cells. As seen from the scanning electron 

microscopy images the CdS films deposited by RF mag-

netron sputtering exhibits smooth morphology and 

XRD analysis raveled that these films are highly crys-

talline. The presence of smooth morphology and high 

degree of crystallinity reduces the light scattering. As a 

result, CdS films show high transmittance in visible 

range of solar spectrum. 

In the direct transition semiconductor, the optical 

energy band gap (Eopt) and the optical absorption coeffi-

cient () are related by, 
 

 -1/2 1/2
opt(αE) B ( Ε )E , (2) 

 

where  is the absorption coefficient, B is the optical 

density of state and E is the photon energy. The ab-

sorption coefficient () can be calculated from the 

transmittance of the films with the formula,  
 

 
1 1

α ln  
Td

 
  

 
, (3) 

 

where d is the thickness of the films and T is the 

transmittance. Therefore, the optical band gap is ob-

tained by extrapolating the tangential line to the pho-

ton energy (E  h) axis in the plot of (h)2 as a func-

tion of h (Tauc plot). Variation of optical gap as a 

function of substrate temperature for CdS films depos-

ited by using RF magnetron sputtering method is 

shown in fig. 5(b) and the inset shows typical Tauc 

plots for films deposited at 50 C, 200 C and 400 C. As 

seen the optical band gap increases from 2.28 eV to  

 
 

 
 

Fig. 5 – Transmission spectra (a) and variation of optical gap 

as a function of substrate temperature for CdS films deposited 

by using RF magnetron sputtering method (b). The inset is 

typical Tauc plots for films deposited at 50 C, 200 C and 

400 C 
 

2.38 eV when the substrate temperature increased 

from 50 C to 400 C. 

The increase in band gap with increase in substrate 

temperature can be attributed to increase in average 

grain size and increase in crystallanity with substrate 

temperature. With increase in substrate temperature 

sharp absorption edge is formed in transmission spec-

tra [see Fig. 5(a)] due to improvement in crystallanity 

of CdS films and increase in average grain size [see 

Fig. 2]. These results suggest that the high band gap 

makes CdS a more effective window material in photo-

voltaic applications like the CdS/CdTe and CdS/Cu2S 

solar cells. Increase in band gap with increase in sub-

strate temperature is well established in the literature 

for CdS films deposited by chemical spray pyrolysis 

[28], ultrasonic spray pyrolysis [29] methods. 

 

4. CONCULSION 
 

Thin films of single crystal CdS were grown by RF 

magnetron sputtering at various substrate tempera-

tures. Structural, optical and morphology properties of 

these films was investigated by using various charac-

terization techniques. Formation of single crystal CdS 

films has been confirmed by low angle XRD and Raman 

spectroscopy analysis. Low angle XRD showed that CdS 

films has preferred orientation in (111) direction and 

increase in substrate temperature improves crystallini-

ty and average grain size in the CdS films. Surface 
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morphology investigated using SEM showed that CdS 

films deposited over entire range of substrate tempera-

ture are highly smooth, dense, homogeneous, and free 

of flaws and cracks. The EDX data revealed the 

formation of high-quality stoichiometric CdS films by 

RF magnetron sputtering. Furhtermore, the CdS films 

deposited at low substrate temperatures ( 200 0C) are 

slightly S rich while deposited at higher substrate 

temperatures ( 200 C) are slightly Cd rich. The UV-

Visible spectroscopy analysis showed that an average 

transmission ~ 80-90 % in the visible range of the spec-

trum having band gap ~ 2.28-2.38 eV,  which is quite 

close to the optimum value of band gap for a buffer lay-

er in CdTe/CdS, Cu2S/CdS hetero-junction solar cells. 
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