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For carbon nanotubes, there is constructed a geometric model of polyhedral type, which allows the ex-
pressing their key structural parameters analytically, as functions of C—C bonds length and nanotube indi-
ces. In general, explicit formulas are obtained for 1D lattice constant and radius. Cylindrical coordinates of
atomic sites and inter-site distances in carbon nanotubes are additionally found for achiral (zigzag and
armchair) nanotubes. ‘Analytic’ geometric model will be useful for theoretical determination of ground-
state and electronic structure parameters of carbon nanotubular materials, credible analysis of correspond-

ing experimental data, as well as purposeful designing devices based on nanotubular carbon.
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1. INTRODUCTION

For theoretical determination of ground-state and
electronic structure parameters of carbon nanotubular
materials, credible analysis of corresponding experi-
mental data, as well as purposeful designing devices
based on nanotubular carbon, it is too important to be
able to predict reliably the geometry of the nanotubes
with given indices and C—C bonds length.

Usually, in studies dealing with carbon nanotubes
these structures are assumed to be constructed by roll-
ing up a plane sheet of graphene, which comprises a
network of perfect hexagons with carbon atoms at verti-
ces, in the sense that all bond lengths and all bond an-
gles are identical. The rolled-up model [1 — 3] implies
that the radius Mnm) of (n,m)nanotube is given by the

expression
Toum) «f3(n2 +nm+m?) 1)
Ay 2

whered, , denotes the C-C bonds length, while

n=123,...and 0<m<n are nanotube indices. The

rolled-up model with almost the same success can be
applied to nanotubes of other materials with hexagonal
structure, like the boron nitride (BN) nanotubes [4].
But, the conventional rolled-up model of nanotubes
ignoring curvature effects does not apply to the very
interesting case of small radii, for which these effects
become significant.

Present work aims analytical determination of gen-
eral (1D lattice constants and radii) and detailed (atomic
sites coordinates and inter-site distances) geometric
parameters of carbon nanotubes based on a geometric
model of polyhedral type.

2. METHOD

Any real nanotubular surface is polyhedral, but not
cylindrical. It was the reason why Cox, Hill and Lee had
proposed [5, 6] (see also Review [7]) so-called ‘idealized’
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geometric model, which accommodates the mentioned
deficiency being based on the exact polyhedral-
cylindrical structure. Their model’s basic assumptions
give rise to a geometric structure for which all bonds in
a nanotube play a truly equal role, unlike conventional
one. In particular, according to the ‘idealized’ polyhedral
model the Eq. (1) gives only the leading term in the
expression of a nanotube radius which, however, should
be added by the correction terms. In general, the small-
er the tube radius, the larger these corrections become.
The main disadvantage of the ‘idealized’ model is that
within its frames, the geometric parameters of a given
nanotube can be found only as numerical solutions of a
complex system of transcendental equations.

For boron nitride nanotubes, Chkhartishvili had
suggested [8-13] so-called ‘analytical’ geometric model —
a different version of polyhedral model for achiral, i.e.
zigzag and armchair, nanotubes with equal bond
lengths and also rolled up from a hexagonal plane sheet,
but at the same time allowing the explicit expressions of
geometric parameters.

To describe a graphitic nanotube as a polyhedron one
must begin with the tessellation of regular hexagons
where the vertices of the tessellation represent the C-
atoms and lines of the hexagons represent C—C chemical
bonds. In their model, Cox, Hill and Lee overlay on this
a second tessellation of equilateral triangles where the
vertices of the triangles are the atoms and every second
triangle also has an atom located at its center. The net
effect of these two tessellations is a single tessellation of
equilateral and isosceles triangles and by fixing the
lengths of the sides, which represent bonds, it is possible
to construct a truly facetted polyhedron, where all verti-
ces are equidistant from an axis of symmetry and all the
bond lengths and bond angles are equal for all atoms.
Chkhartishvili’s model of BN-nanotubes geometry uses
different method of tessellation: equilateral hexagons in
zigzag and armchair sheets are divided into two isosce-
les trapeziums or one rectangle and two isosceles trian-
gles, respectively. It means that all lines of tessellation
are parallel to the tube axis and, therefore, all the atoms
are placed on same cylindrical surface. Recently, an
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analogous approach we have successfully used [14] to
construct a geometric model for all-boron nanotubes.

Present study is based on the ‘analytical’ geometric
model. It is modified for carbon nanotubes and further
developed to obtain geometric parameters of chiral
nanotubes, analyze cases of ultra-small (degenerated) or
ultra-large (asymptotical) radius nanotubes, determine
atomic sites coordinates in carbon nanotubes, etc.

3. RESULTS AND DISCUSSION

As is known, a simple form for a single-walled car-
bon nanotube is a wrapped closed hexagonal atomic
surface inscribed in a cylinder. Such nanotubes can be
found in achiral, i.e. zigzag (n,0) or armchair (n,n),

and also in chiral (n,m) forms. Here n=1,2,3,...and
m=0,1,2,...,n are the tube indices.

Carbon nanotubes contain 4 different types of atomic
sites. Denote them as C1, C2, C3 and C4, respectively.
As for the number of atoms in 1D lattice of a nanotube,
it equals to 4n.

Below the detailed regular geometries of the zigzag
and armchair carbon nanotubes are described using
cylindrical coordinates (p,#,2) .

3.1 Zigzag Nanotubes
3.1.1 General Geometric Parameters

1D lattice constant q,, of a zigzag nanotube (n,0)

(Fig.1) and its radius 7, ;, are determined as follows:

a,
—n =3 @)
d(n,O)

Tag N3 ®

Aoy 4gin
2n

whered,, , is the C—C bond length in such nanotubes.
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Fig. 1 — Lattice constant of a zigzag nanotube

and

At n=1, zigzag nanotube degenerates into the flat
zigzag chain (Fig. 2). Coordination number of constitut-
ing atoms reduces from 3 to 2. Nevertheless Eq. (3)
“works” providing the true value of the radius of (1,0)

tube: 1,0/ dy g, = ﬁ/ 4.
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Fig. 2 — The (1,0) nanotube — flat zigzag chain

Apparently, free-standing (1,0) nanotube cannot ex-

ist, but it can exist as inner wall in multi-walled nano-
tubes or among larger nanotubes in nanotubular bun-
dles.

According to “analytical” model, at n >>1 the radius
of a zigzag nanotube

r(n,O) » ’\En
dioy 27

4

i.e. being proportional to n asymptotically coincides
with that predicted by conventional rolling-up model.

3.1.2 Atomic Sites Coordinates and Inter-site Dis-
tances

The 1D unit cell of a zigzag nanotube consists of 4
parallel atomic rings placed in different planes perpen-
dicular to the tube axis. There are 2 pairs of identical
rings; and each ring consists of n atoms. Positions of
single representative-atoms of each of these rings are
shown in Fig. 3. Let’s introduce the additional indices
1=0,1,2,....,n-1 and k=0,+1,1£2,... numbering atomic
pairs in given pair of the atomic rings and these rings

themselves.
i e
Cl ¢
C2
o C3
Fig. 3 — Non-equivalent atomic sites in a zigzag nanotube

Evidently, coordinate p for all the atomic sites
equals to tube radius:

Ik Ik Ik Ik _ _
#,0Pc1 = (n,0)Pc2 = (n,00PC3 = (n,0)Pc4 = Tn0) =

As for the coordinates ¢ and z in the first and se-
cond pairs of atomic rings, they equal to

Ik 2rx

w01 = moyber == 6
n
nZo = 3[k + ljd )
(n,0)<C1 6 (n,0) ?
20y = S[k - ljd ®)
(n0)%cz 6 %0

and
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1\x
(n, o>¢c3 (n, 0)¢C4 [ 5); , 9
. 1
(n0)?cs = S[k 3 jdm,m ) (10)
(n0)Zcs = 3["’/ + jdm,m ; (11)

respectively.
Let’'s fix I and k at [=k=0 to determine the zig-

zag nanotube’s “central” pair of atomic sites (n%(; C1 and

00 (g .
oy C2:

noPe1 = noybez =0 (12)
d n

(n %())201 (2'0) ) (13)
d n

(n,(())?ZCZ == (2’0) ) (14)

Now one can find the distances between current
atomic sites (n,(l)}i C1, (n,é’;CZ, (n,fﬁCS and (n,é’;C4, and

fixed ones called by us as“central”:

( Q1 Cl)z 3sin2l—”
(n,0) - (n,0) n_ 9k2 , (15)
) 4sin®
2n
3sin? in

(0, C2= () 01)2
2
d(n,O)

4sin

- 1 2

n +9(k-—j , (16)
2 T 3

2n

. 1\x
3sin?| I+= |=
lk Cl 2 [ j 2
(00 €3~ 0 OV _ 2 ”+9[k—%] KoL)

2
i) 4sin® *
2n
.9 1 j a
173 2 3sin“| [+ |~ 2
ca_ mory
() > 0 OV _ 2)n +9(k+l] ,(18)
d(n,O) 4sin? * 6
2n
. ol
I 2 3sin?— 2
Ci1-,%C2
(o) ~ 00 €2 _ n +9(k+lj , (19
din0) 4sin2 z 3
2n
. olm
A 2 3gin?~
(("YO)sz ("O)CZ) n +9k2, (20)
din0) 4sin2 a
2n
. 1\x
I 5 3sin? (l+fj— 2
0°C2
(i O3~ ~ 00 CD" _ 2)n +9(k—1j 21)
i) 4sin? 6
2n
. 1\x
e 5 3sin® (l+fj— 9
'C2
(n0) C4 ~ (nO) ) 2 n+9(k+lJ (22)
) 4sin? 2
2n
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3.2 Armchair Nanotubes
3.2.1 General Geometric Parameters

1D lattice constant a,,, of an armchair nanotube

(n,n) (Fig. 4) and its radiusr, , are determined as

follows:
aQ,
e 3 (23)
(n,n)
and
;5 +4cos z
r(n,n) — 2n (24)
d . ’
(n,n) 4sin —

2n

whered,, ,, is the C—C bond length in such nanotubes.

Fig. 4 — Lattice constant of anarmchair nanotube

Even the smallest (n=1) armchair nanotube does
not degenerate: coordination number of atoms constitut-
ing (1,1) tube remains 3, as normally. This tube is fac-
eted by 2 pairs of planes (Fig. 5). Its radius is deter-

mined by the Eq. (24): 7, /dy,, =5 /4.

sdd3

Fig. 5 — Facets of the (1,1) nanotube

Because of strong curvature effects, forming of a
free-standing (1,1) nanotube seems to be too doubtful.
However, it can exist as inner wall in multi-walled
nanotubes or among larger nanotubes in nanotubular
bundles.

According to the“analytical” model, at n >>1 the ra-
dius of an armchair nanotube
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r(n,n) ~ 3l

d(n,n) 2

, (25)

i.e. asymptotically is proportional to n and coincides
with that predicted by conventional model.

3.2.2 Atomic Sites Coordinates and Inter-site Dis-
tances

The 1D unit cell of an armchair nanotube consists of
2 parallel atomic rings in planes perpendicular to the
tube axis. From its part, each ring consists of n pairs of
carbon atoms. Positions of pairs of representative atoms
of each of these rings are shown in Fig. 6. Now indices
1=0,1,2,....n-1 and £k=0,+1,+2,... number atomic

pairs in atomic rings and these rings.

C3 C4

s
C2 Cl

Fig. 6 — Non-equivalent atomic sites in an armchair nanotube

The coordinate p for all the atomic sites should
equal to the tube radius:

U Ik Uk
() PC1 = (nn)Pc2 = (nn)Pc3 =
T d
i brdcos, iy, (26)
= (n,n)pC4 = r(n,n) = T
4sin—
2n

while the rest cylindrical coordinates in the first and
second atomic rings equal to

2171'
(n,n) ¢C1 ¢1 ) (27)
n
2r
(n, n)¢cz -4 +7 (28)
(n, ffzm (n,n;ZCZ = \ﬁkd(n,n) , (29
and
2Z7Z'
(n, n)¢cs =—¢ -2, + ’ (30)
2[7r
(n, n)¢C4 ¢l +2¢Z+7 (31)
(n,rlf;'zcs = (n,rlffzm = ﬁ(k +§J iy » (32)
respectively. Here
2sin .
sing, = ____2n (33)
5+4cos—
and
sin —
singy, = ———20__ . (34)
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Let’'s fix I and £ at =k =0 to determine the arm-

chair nanotube’s “central” pair of atomic sites (n?gCl

and (n?g C2:
(n, n)¢C1 ¢1 (35)
(n, n)¢C2 ¢1 ) (36)
(n,n)ZCI (n, n)ZC2 =0. (37)

The distances between current atomic sites 3 C1,

lkCz

(n,n)

are determined as:

' i’;CS and (nny’;CAL,and fixed “central” sites

Ir
Im s |B5+4cos ” |sin2*
er-gmon | Jpint
() ; €1 ) n g2 (38)
d(nn) 4sin® =
2n
[2sin(l 1j”+sinl”]2
Im 2 il -
c2-, %¢C1 2
() ~ u €1 n " 13k, (39)
Ly 4sin? —
2n
Im 2
Conmy C3—(nn)C1)
2
d(nn)
[5-r4cos2£]sin2[l—%jz 12 (40)
= n n +3(k+fj ,
4sin® =
2n
((ﬂ”)C4_(nn)Cl)
2
d(nn)
[sin[l+;) +2s1nlﬂ) 1 9 @1
= " n +3[k+fj
4sin2 = 2
2n
2
(251n(l+1j”+sinl”j
Im 2 P -
Ci-,%cC2
o) 2““” ) 2n L3k (4)
Ly 4sin? ©
2n
iz
In o s |5+4cos ” |sin2E
oy [ )
((n,n) y (nn) ) 2n n +3k2,(43)
) 4sin®>
2n
(i C3— (M)C2)
2
d(nn)
2
(sin(l—;)”+251nl”] 1V (44)
= n n +3(k+f] ,
4sin2 = 2
2n
lm
((n,n) " (n, n) CZ)
2
d(nn)
(5+4cos2£]sin2(l+%jz 12 (45)
= n n+3(k+—) .
4sin? = 2
2n
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3.3 Chiral Nanotubes

Toum) 1f3 n(n+2m) 48)
From above obtained expressions of achiral nano- A m) 27

tubes’ 1D lattice constants and radii, it is easy to con-
struct extrapolation formulas for a chiral nanotube

(n,m) lattice constant q, ,, and radius 7, :

1.e. asymptotically approximates that predicted by con-
ventional rolling-up model.

3.4 Example of Geometric Model Based Struc-

% ~ 3(3 2’”) (46) tural Analysis
n
and o It has been reported [15] an on-chip Rayleigh imag-
ing technique using wide-field laser illumination to
\/3 n 2m (1 +9cos j measure optical scattering from individual single-walled
Tnm) - n 2n @) carbon nanotubes with high spatial and spectral resolu-
d(n,m) Asin ’ tion. This method in conjunction with calibrated atomic

on force microscopy accurately measures the diameters
21, m for a large number of tubes in parallel. The tech-

whered,, ., is the C—C bond length in this nanotube. nique was applied for fast mapping of key structural

Thus, according to the “analytical” model at n>>1 parameters, including the chiral indices (n,m) for indi-
the radius of a chiral nanotube vidual single-walled carbon nanotubes. The values of
diameters and indices experimentally determined are

listed in Table 1.

Table 1 — Experimental and theoretical diameters of single-walled carbon nanotubes

No Chiral indices Experimental diameter, nm Theoretical diameter, nm Relative deviation
1 | (13, 1)[11, 3)] 1.07 1.10 [1.07] 2.7 % [0.0 %]
2 (15, 0) 1.19 1.18 0.8 %

3 (12, 11) 1.58 1.58 0.0%

4 (20, 4) [(19, 4)] 1.77 1.85 [1.77] 4.3 % [0.0 %]
5 (22, 2) [(20, 4)] 1.83 1.87 [1.85] 2.1 % [1.1 %]
6 (15, 14) 1.99 1.99 0.0 %

7 | (20,9 [(18,10] | 2.04 2.16 [2.05] 5.6 % [0.4 %]
8 | (23, 5)[(21, 6)] 2.05 2.16 [2.06] 5.1% [0.5 %]
9 (16, 15) 2.13 2.13 0.0 %

10 | (25, 10) [(24, 9)] 2.48 2.62 [2.49] 5.3 % [0.4 %]

In the present work, we have calculated same nano-
tubular diameters based on the ‘analytical’ polyhedral
model for given indices and C—C bonds length of 0.142
nm, the bond length value in graphene. These theoreti-
cal results also are shown in Table 1. One can see that
for all these species relative deviations from theory do
not exceed 5.6 %. Agreement with experiment can be
radically improved — made all deviations less than
1.1 % — if slightly, not more than in +2, change chiral
indices of some nanotubes. Refined values of chiral
indices, radii and corresponding deviations are shown
in brackets. Note that, within the frames of experi-
mental errors, the refined theoretical diameters of a
half of examined species are indistinguishable (with
relative deviation 0.0 %) from that of measured ones.

The possibility of refinement in nanotube’s chiral
indices based on its geometric model reveals the exper-
imentally obtained fact that frequent -chirality-
changing structural defects accompanied with only
slight diameter-changes are characteristic for single-
walled carbon nanotubes. Consequently, it is not im-
probable that measured values of diameter, on the one
hand, and chiral indices, on the other hand, are at-
tributed to different parts of the same nanotube.

Such a possibility seems to be very important be-
cause electronic and other physical properties of single-

walled nanotubes depend on their structure, which
may be characterized by the diameter and the chirality
encoded by two integers — nanotube indices. Usually,
for the synthesis of carbon nanotubes one may achieve
some control over their diameters but little control over
their chiralities. As such tubes may be either metallic
or semiconducting this poor structural control implies a
rather poor control over their electronic properties.
This is a basic problem of carbon nanotechnology. It
was stated and clearly explained elsewhere [16].

4. CONCLUSION

In conclusion, we have introduced the ‘analytic’ ge-
ometric model of polyhedral type for single-wall carbon
nanotubes. The model provides with expressions of
nanotubes 1D lattice constant and radius, and cylindri-
cal coordinates of constituent C-atoms and correspond-
ing inter-atomic distances as explicit functions of C—C
bond length and chiral indices. Radii of carbon nano-
tubes calculated on the basis of this model are in excel-
lent agreement with measured ones. Besides, the model
is able to refine the chiral indices of these nanotubes.

‘Analytic’ geometric model will be useful in calcula-
tions of electronic structure and key physical properties
of carbon nanotubular materials, as well as designing
novel nanodevices based on nanotubular carbon.
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