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Abstract: The analysis of knee kinematic data, which come in the form of a small sample of discrete curves
that describe repeated measurements of the temporal variation of each of the knee three fundamental
angles of rotation during a subject walking cycle, can inform knee pathology classification because, in
general, different pathologies have different kinematic data patterns. However, high data dimensionality
and the scarcity of reference data, which characterize this type of application, challenge classification and
make it prone to error, a problem Duda and Hart refer to as the curse of dimensionality. The purpose of
this study is to investigate a sample-based classifier which evaluates data proximity by the two-sample
Hotelling T2 statistic. This classifier uses the whole sample of an individual’s measurements for a better
support to classification, and the Hotelling T2 hypothesis testing made applicable by dimensionality
reduction. This method was able to discriminate between femero-rotulian (FR) and femero-tibial (FT)
knee osteoarthritis kinematic data with an accuracy of 88.1%, outperforming significantly current
state-of-the-art methods which addressed similar problems. Extended to the much harder three-class
problem involving pathology categories FR and FT, as well as category FR-FT which represents the
incidence of both diseases FR and FT in a same individual, the scheme was able to reach a performance
that justifies its further use and investigation in this and other similar applications.
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1. Introduction

High-dimensional data classification can be quite problematic when the supporting sample is small:
this is what Duda and Hart [1] call the curse of dimensionality, a condition known to degrade the
performance of otherwise potent classifiers [2]. The problem occurs in several subjects, microarray analysis,
for instance, where there are tens of thousands of characteristic genes to analyze but only hundreds of
observations, and biomedical engineering data analysis where there can be hundreds of classification
characteristic variables but samples of only tens of observations.

Investigations of small size dataset classification run along two basic veins. Along one vein,
conventional pattern recognition schemes are adapted to conform to specificities of small datasets.
Prominent methods, emphasized in face recognition, use linear discriminant analysis (LDA) algorithms [3–
6]. Although LDA has been useful in applications such as face recognition, it does not necessarily generalize
to data of other applications, particularly time series signals, the type of data we investigate in this study.
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Along the second vein of investigation, artificial data are synthesized, when possible, that follow the shape
of reference real data and subsequently used with more general classifiers that require large amounts of
data, such as neural networks. However, data synthesis, which had some application in medical imaging
[7,8], may not be applicable or feasible, as with knee kinematic time series data which we investigate in
this study.

Knee kinematic data are in the form of discrete curves, recorded as high-dimensional vectors that
describe the temporal variation of each of the three fundamental angles of knee rotation during a walking
cycle, namely the abduction/adduction angle, with respect to the frontal plane, the flexion/extension
angle, with respect to the sagittal plane, and internal/external angle, with respect to the transverse plane.
For any given subject, the measurements are repeated several times to yield a small sample of discrete
curves. A measurement curve is generally preprocessed to remove unwanted distortions, and re-sampled
to about 100 equally spaced points [9,10], in which case the data dimension is about 300 (Figure 2). The
size of a measurement sample is typically 10 to 15.

Knee kinematic data classification can inform diagnosis [11] and, therefore, assist therapy [12], of knee
musculoskeletal pathologies, such as those of the osteoarthritis category (OA) [13–18]. Current classifiers
commonly average the kinematic curves of a subject’s sample of measurements and then use the resulting
average to describe the subject’s knee movement for the purpose of subsequent classification. However,
averaging may suppress relevant information in the data. Therefore, instead of collapsing a subject’s
sample of measurements to its average, or other single representative curve [13–15], it would be more
expedient to retain all the curves for a more informative support to classification. The classifier we propose
exploits this rather manifest but nevertheless important fact that current studies have generally overlooked.
This classifier assigns class membership to observations of knee kinematic data using the Hotelling T2 test
[19,20] on a reduced-dimensionality representation of the data. The Hotelling T2 statistic is a multivariate
generalization of the univariate Student t statistic. The hypothesis test in this study evaluates kinematic
data sample similarity for classification to use. Therefore, classification proceeds as usual: an observation
is assigned to the most likely category, except that the observation here is a sample of feature vectors rather
than a single such vector, and that similarity in feature space, which enters class membership decision,
is evaluated using the two-sample Hotelling T2 statistic rather than a distance function or other form of
vector proximity. This will be described in greater detail subsequently.

Beyond its basic use in a sample-based generalization of the nearest neighbor classifier, as proposed
in this study, the Hotelling statistic can potentially serve to evaluate similarity in general similarity-based
pattern classification, whenever the measurement data come as samples of vectors rather than single
vectors as it is usually the case. Similarity-based methods include nearest neighbors classification, pattern
clustering , artificial intelligence instance-based and case-based reasoning, and neural network memory
representation [21]. Along the vein of neural network memory representation, for instance, we investigated
a sample-based generalization of the Kohonen associative memory [22]. The main purpose of a Kohonen
memory is to offer a means for a richer, more informative description of classes by unsupervised mapping
of the data onto a network of spatially organized feature nodes that reflect the spread of the application
data. Basically, the sample-based generalization in [22] replaces the Euclidean distance of the original
Kohonen neural network by a Hotelling statistic similarity, so as to accommodate inputs that are samples
of vector data.

The remainder of this paper is organized as follows: Section 2 describes the two-sample Hotelling
T2 test and classification. Section 3 describes the dimensionality reduction and Section 4 details the
experimental results. Finally, Section 5 presents conclusions.



Mach. Learn. Knowl. Extr. 2019, 1 770

2. The Two-Sample Hotelling T2 Test and Classification

Let X = {x1, ..., xn} and Y = {y1, ..., ym} be two samples, of size n and m, of independent realizations
of two d-variate multinomial variables of equal covariance matrices and with means µx and µy.

Let x̄ and ȳ be the sample means of SX and SY, respectively:

x̄ =
1
n

n

∑
i=1

xi; ȳ =
1
m

m

∑
i=1

yi (1)

and Cx, Cy the sample covariances:

Cx =
1

n− 1

n

∑
i=1

(xi − x̄)(xi − x̄)T ,

Cy =
1

m− 1

m

∑
i=1

(yi − ȳ)(yi − ȳ)T .
(2)

The two-sample Hotelling statistic is then given by [19]:

T2 =
nm

n + m
(x̄− ȳ)TC−1(x̄− ȳ), (3)

where C is the pooled covariance estimate of x̄− ȳ given by:

C =
(n− 1)Cx + (m− 1)Cy

n + m− 2
. (4)

For large samples, the distribution of T2 under the null hypothesis H0 : µx = µy against the hypothesis
H1 : µx 6= µy ([20]) is approximately χ2 (chi-squared) with d degrees of freedom, and for small sample
sizes, as in our case, it is better approximated by the F distribution with d degrees of freedom for the
numerator, and n + m− 1− d for the denominator, which, therefore, takes into account the size of the
samples, m and n, and the dimension d of the data [20]:

n + m− d− 1
(n + m− 2)d

T2 ∼ F(d, n + m− 1− d). (5)

The F distribution in Equation (5) can be a good approximation of the T2 statistic distribution when
the dimension of the data are less than the size of the samples [20]. Dimensionality reduction provides, as
in this study, a means to satisfy this condition. This will be taken up in Section 3.

In statistical hypothesis testing, the p-value serves to test the statistical significance of the null
hypothesis H0. The test functions about a reductio ad absurdum argument, according to which rejection
of hypothesis H0 validates the (single) alternate hypothesis H1, its logical complement. Therefore,
classification can proceed in the following manner. For l = 1, . . . , c, let {Rl

j}j be the reference set of

samples of class l, and let X be a sample to classify. Let sl
j be the observed T2 statistic for X and a reference

sample Rl
j and pl

j the corresponding the p-value. Using the right tail event, i.e., the right tail of the
approximating F distribution, the p-value is:

pl
j = 1−

∫ sl
j

0
Fds. (6)

The smaller this p-value, the higher the statistical significance of the observed statistic, and if less
than an arbitrarily set small threshold, called critical value, H0 can be rejected, implying, according to the
reductio ad absurdum argument that H1 can be accepted. In a context of classification, accepting H0 can be
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interpreted to mean that the two observed samples, X and Rl
j, are of the same class, and accepting the

alternate H1 instead that they are not. Considering also that the T2 statistic is (positively) proportional to
the Mahalanobis distance between the samples [20,23], classification can use the following decision rule:
Assign X to class l0 corresponding to the largest p-value:

l0 = arg max
l
{max

j
pl

j}. (7)

However, since the p-value is a monotonically decreasing function of the statistic, it is sufficient
to use the rule that assigns the observed sample X to the class that yields the T2 statistic of lowest
value, foregoing—thus the need to actually compute p-values. One can easily see that classification by
the Hotelling test as presented here is a generalization of the nearest neighbor classifier where pattern
similarity is between two samples of characteristic vectors, rather than between two single such vectors.
The scheme can be condensed as the following pseudo-code (Algorithm 1):

Algorithm 1: Hotelling T2 hypothesis testing and classification

Data: Sample to classify: X
Reference set of samples of class l: {Rl

j}j
Result: l0 : the class of X.
for each class l do

Initialization: pl
j = 0;

for each sample j in class l do
Compute pl

j = Hotelling probability for X and Rl
j;

end
pmaxl = maxj pl

j;

end
l0 = arg maxl pmaxl ;
return l0 as the class of X

3. Dimensionality Reduction

For a hypothesis test for a small-sample statistic such as Hotelling T2 to be applicable, the dimension
of the data must be less than the size of the samples in the test [20]. Therefore, we precede classification by
dimensionality reduction to satisfy this requirement. We performed a Daubechies wavelet transform [24],
often used for dimensionality reduction in pattern analysis and classification [25]. The relevant wavelet
coefficients of the transform are then selected using a filter-based feature selection method.

3.1. Wavelet Representation

A wavelet method of representation retains of the data wavelet decomposition coefficients only those
which correspond to a predetermined energy of the transformed signal [26–28]. A significant advantage of
the wavelet representation is that a decomposition depends on the data item to describe, not on other data,
in contrast to other common feature selection methods such as principal component analysis (PCA) or
singular value decomposition (SVD).
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3.2. Filter-Based Feature Selection

Feature selection identifies the discriminant features in a given set of original features. In our case,
features are wavelet coefficients. In general, feature selection reduces the complexity of describing and
implementing an expert system, increasing its efficiency thereof. The selection of the best features to
use in computer-aided diagnostic systems is a key issue in obtaining a satisfactory performance [2]. We
investigated a filter-based feature selection method that consists of determining the subset of features with
the highest predictive power. More specifically, we used the ReliefF algorithm, which is one of the most
successful filtering feature selection scheme [29]. The scheme is summarized from a top-level point of view
by Algorithm 2 below.

Basically, the ReliefF algorithm weighs the importance of each feature according to its relevance to the
class. Initially, all weights W[F] are set to zero and then updated iteratively. At each iteration, the ReliefF
selects randomly an instance Ri and searches for its k nearest neighbors of the same class, called nearest
hits H, and also k-nearest neighbors from each of the different classes, called nearest misses M. The quality
estimation of the all the features is then updated depending on their values Ri, hits H and misses M as
described in the following pseudo-code.

For two instances I1 and I2, di f f (A, I1, I2) calculates differences between the class of the feature F:

di f f (F, I1, I2) =

{
0, if values(F, I1) = values(F, I2),
1, if values(F, I1) 6= values(F, I2).

The output of the ReliefF algorithm is a weight for each feature, where higher weights indicate better
predictive features, so that a ranking of the features is obtained. In our application, this results in the
selection of wavelet coefficient that best discriminate the knee pathologies in study.

Algorithm 2: ReliefF Algorithm

Data: A vector space for training instances with the value of features and class values
Result: A vector space for training instances with the weight W of each feature
Initialization: w[F]=0;
for i=1 to m do

Randomly select a instance Ri ;
Find nearest hits H and nearest miss M ;
for each feature F do

W[F] = W[F]− di f f (F, Ri, H) + di f f (F, Ri, M)/m
end

end
return The vector W of feature scores that estimate the quality of features

4. Experimental Results

The functional diagram of the knee kinematic data classification method proposed in this study is
illustrated in Figure 1. Following data collection and preprocessing, the study proceeds in three main steps:
dimensionality reduction, which includes features extraction and selection, classification of the kinematic
data of reduced dimension using the Hotteling T2 and, finally, performance evaluation.
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Figure 1. The functional diagram of the knee kinematic data classification system.

Experiments have been performed using osteoarthritis knee kinematic data, namely flexion/extension,
abduction/adduction, and internal/External rotation angles. For each participant, the kinematic curves are
recorded several times, typically 12 to 15 times, giving a sample of independent realizations per participant.
We conducted two validation experiments using the osteoarthritis data described in Section 4.1. The first
experiment considered two classes, C1 and C2. Class C1 represents patients with femoro-tibial osteoarthritis
knee osteoarthritis (FT) and C2 represents patients with femoro-rotular knee osteoarthritis (FR). The dataset
used in this first experiment (DS1) was obtained from 42 patients, 21 in each class. The purpose of the
second experiment is to show the complexity brought in by the inclusion of an additional class of data
from patients with both FR and FT diseases (class C3) forming the data set DS2 of 63 participants.

Using the leave-one-out cross validation procedure, the classifiers performance was evaluated in
terms of the accuracy (Acc) over all test data, i.e., data from all test data classes, as well as classification
accuracy per class. Given a dataset of cardinality N, the leave-one-out testing method is a standard
procedure to evaluate a classifier potency that consists of using in turn each dataset element for tests while
the remaining N − 1 elements serve to train the classifier. The classification rate is then taken to be the
average of the N one-sample classification results. Performance is presented in the form of a confusion
matrix where each row represents the instances in a predicted class and each column represents the
instances in an actual class (ground truth).

4.1. Knee Kinematic Data Collection

The data collection was approved by institutional ethics committees of the University of Montreal
Hospital Research Center (Reference numbers CE 10.001-BSP and BD 07.001-BSP) and of the École de
technologie supérieure (Reference numbers H20100301 and H20170901). All subjects provided written
informed consent before the studies began. The participants data are of the confidential category and
cannot be put in an open repository for unrestricted public access. However, they could be made available
upon request provided a statement of confidentiality is signed.

The kinematic data collection was performed using a noninvasive knee marker attachment apparatus,
the KneeKG system [30]. The system is placed on the participant’s knee to record the three-dimensional
(3D) knee kinematics during two trials of 25 s. The device is first calibrated with respect to the reference
points and axes which serve to measure the knee kinematics signals with respect to the frontal, sagittal,
and transverse planes from each participant while walking on a conventional treadmill at a self-selected
comfortable speed. Accuracy of the attachment system was assessed in studies which evaluated the mean
repeatability of measures ranging from 0.4 degree to 0.8 degree for knee rotation angles and from 0.8 to 2.2
mm for translation [31]. Intra- and inter-observer reliability of the attachment system for recording 3D
knee kinematics during gait was also ascertained [32]. The measurements give three kinematic curves,
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one for each angle. Curves are normalized by resampling to some number of equally spaced points
[31], one hundred in this study, corresponding to the gait cycle percentage (as illustrated in Figure 2, 1%
corresponds to the initial contact and 100% to the end of the swing phase).

Because a participant’s gait is not identical from one cycle to another, the kinematic curves are
recorded several times, for any given participant, typically ten to fifteen times, and then averaged under
the informal assumption that undesirable outlying measurements are present and the effect of which on
classification must be inhibited. As a result, current methods have invariably taken the average curves to
be the participant’s representative curve in subsequent analysis and classification of knee movement data. In
this study, as we mentioned earlier, all of the recorded curves are retained and used together as a sample,
rather than collapsing them into a single curve of representation (Figure 2) because such a collapse more
often than not suppresses information that might be relevant to the identification of the underlying data
class.
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Figure 2. The 12 samples of one participant (a) Flexion/Extension; (b) Abduction/Adduction; and (c)
Internal/External Rotation.

The data in this study come from patients with knee osteoarthritis (OA). The diseases considered are
femerotibial knee osteoarthritis (FT), femero-rotulian knee osteoarthritis (FR), and occurrence of both FT
and FR (designated FT-FR). Patients with symptomatic OA of the knee were recruited from the hospital
community. They were diagnosed by a physiatrist, according to the American College of Rheumatology
(ACR) criteria (Arden 2006), and with radiographic evidence of OA. Patients were excluded if they had a
vestibular or neurological condition, musculoskeletal disorders other than knee OA, a history of lower
extremity injury, and any condition affecting their ability to walk on a treadmill, or if they had already
participated in a physiotherapy program.

The dataset contains measurements from 21 patients from each class. The demographic characteristics
of the data in the three classes are shown in Table 1.

Table 1. Demographic characteristics of the data in the three classes: columns FR, FT, and FR-FT.

Characteristics C1: FR C2: FT C3: FR-FT

Age (years) 46.1 * ± 11.7 59.5 * ± 10.1 59.6± 11.4
Height(m) 1.71± 0.07 1.66± 0.09 1.66± 0.11
Weight (kg) 82.9± 20.7 76.2± 11.2 84.3± 15.9
BMI (kg/m2) 28.3± 7.1 27.4± 3.9 30.3± 5.5
Men% 45 38 33.3

* indicate significant difference (p < 0.05).

4.2. Feature Extraction and Selection

We experimented with different wavelet families, namely Daubechies, Coiflet, and Symlet. Figure 3
illustrates, for a randomly chosen participant’s curve, the wavelet coefficients using a Daubechies DB1
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wavelet. The decomposition is performed on kinematic data in each plane separately: the flexion/extension
angle, with respect to the sagittal plane (Figure 3a), the abduction/adduction angle, with respect to the
frontal plane (Figure 3b), and internal/external angle, with respect to the transverse plane (Figure 3c).
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Figure 3. Wavelet decomposition using Daubechies DB1 (a) Flexion/Extension (Flex./Ext.); (b)
Adduction/Abduction (Abd./Add.); and (c) Internal/External (Int./Ext.) knee rotation angle. Each
line corresponds to a level of decomposition.

The dimension of the data before feature extraction is 100, corresponding to the percentage of gait
cycle (1% to 100%), for each of the three knee rotation angles. Using the wavelet decomposition for
feature extraction, the dimension has been reduced to a lower number of coefficients. For instance, the
wavelet decomposition using Daubechies DB1 at level 3 transforms the data dimension from 100 to 13
approximation coefficients (Figure 3, Line 4).

There are two main reasons for using a wavelet representation for feature extraction: (1) it has been
effective for biomedical signal representation [33] and (2) it has the important property that it depends on
the data to describe only, not on other data that enter the problem, in contrast to other common feature
selection methods such as PCA and SVD [34].

We followed with the ReliefF ranking algorithm to determine the relevant wavelet coefficients from
the obtained coefficients at the end of the decomposition procedure. The ranking has been performed on
the extracted features on each plane separately and also on their concatenation. Following the ranking, we
brought the extracted feature vector dimension to 12, i.e., the smallest sample size over all participants in
the datasets which is the very first dimension reduction limit allowing the applicability of the Hotelling
test.

4.3. Hotelling T2 Test and Classification

The used software tools are from Matlab R2017b platform (Mathworks, Natick, MA, USA), and the
T2Hot2iho routine of [35] for the two-sample, equal variance Hotelling test.

As introduced above, the first experiment uses dataset DS1 that contains data from 21 patients of
the two classes C1 and C2. Table 2 summarizes the classification rate for each plane separately and the
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best combination planes (Frontal and transverse). Using the wavelet decomposition for dimensionality
reduction, the best Hotelling statistic test leave-one-out recognition rate (88.1%), on DS1 was achieved by
the concatenation of seven approximation coefficients in a 3-level DB1 decomposition in the frontal plane
and two approximation coefficients in a 6-level DB1 decomposition in the transverse plane. In this case,
for each participant, the original data matrix is of (12×100) per plane (12 gait cycles × 100 points). Using a
Daubechies DB1 at level 3 wavelet transformation in the frontal plane and a Daubechies DB1 at level 6
wavelet transformation in the transverse plane, the data matrix is reduced to (12 × 15) for each subject (12
gait cycles × 15 wavelet coefficients).

Table 2. Feature selection and corresponding classification accuracy of the Hotelling statistic method
on data in DS1 (classes FT and FR). The data planes are: sagittal(flexion/extension angle), frontal
(abduction/adduction angle) and, transverse (internal/external angle).

Planes Level Number of Number of Classification
Extracted Coefficients Selected Coefficients (Acc %)

Sagital 5 4 3 71.4
Frontal 5 4 4 78.6
Transverse 4 7 7 78.6
Frontal and transverse 3 and 6 15 (13 and 2) 9 (7 and 2) 88.1

Figure 4 shows the classification accuracy according to the number of ranked features. We notice that
the classification rate (Acc) reaches a maximum of 88.1%, using nine features, and then decreases as the
number of features increases. This shows that feature selection algorithm can improve the accuracy of a
classifier by using only relevant features, and also improve computational time as a result.
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Figure 4. Classification accuracy vs. number of features.

The confusion matrix corresponding to the Hotelling statistic classification on DS1 is given in Table 3.
It shows which class is confused with which and at what rate (τCi ). The classification rates τCi are balanced
between the two classes C1 (FR) and C2 (FT) (19/21 (90.4%) in C1 against 18/21 (85.7%) in C2). For the
much harder three-class problem, the second experiment considered three class classification, namely C1 :
FR, C2 : FT, and C3 : FR-FT. The method was able to obtain about 68.25% correct decisions on DS2 using
a leave-one-out procedure (Table 4). We note that the majority of confusion occurred with the class C3:
FR-FT (22%, 14/63).
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Table 3. The confusion matrix corresponding to the proposed Hotelling T2 statistic classification on DS1.

Actual
Predicted C1: FR C2: FT τCi(%)

C1: FR 19 2 90.47 (19/21)
C2: FT 3 18 85.71(18/21)

Table 4. The confusion matrix corresponding to the proposed Hotelling T2 statistic classification on DS2.

Actual
Predicted C1: FR C2: FT C3: FR-FT τCi(%)

C1: FR 13 4 4 61.90 (13/21)
C2: FT 2 15 4 71.42 (15/21)

C3: FR-FT 6 0 15 71.42 (15/21)

As one can expect, classification is much better on the two-class problem than on the three-class
(88.1% compared to 68.25%). This confirms the expectation that inclusion of class C3 (FR-FT) adversely
affects the problem difficulty in a significant way, indirectly confirming informal clinical assessments that
considering class FR-FT, in addition to FR and FT, increases significantly the complexity of diagnosis.

For the three-class problem, which consists of distinguishing between FR, FT, and FR-FT, the method
was able to obtain 68.25% correct decisions, justifying its further use and investigation. To the best of
our knowledge, this study is the first to confront such a classification problem where both compartments
(FR-FT) are affected by the presence of femero-rotulian osteoarthritis (FR) and femero-tibial osteoarthritis
(FT).

4.4. Statistical Analysis

An analysis of variance was performed to verify the demographic characteristic group homogeneity.
A post hoc Tukey test was used to examine the differences between pairs of groups. The implementation
of this statistical processing was done via SPSS 20.0 (Statistical Package for Social Sciences). A p-value of
0.05 was set as the criterion for statistical significance.

The statistical analysis test confirms that there is no statistical difference between the demographic
characteristics except between the age of C1 and the other two classes. These results confirm that the
classification performance is not influenced by the demographic characteristics.

4.5. Comparisons

Comparisons relate to different ways of representation of the knee kinematic data by dimensionality
reduction and to different ways of classifying this data.

4.5.1. Dimensionality Reduction

For ways of data representation by dimensionality reduction, filter-based feature selection of wavelet
coefficients is compared to principal component analysis (PCA), a common dimensionality reduction
method. This comparison is in order to justify using a wavelet decomposition representation of the data,
rather than a PCA representation. The PCA representation reduces the dimensionality by keeping only
the variables that correspond to at least some fixed threshold of the total variation in the training data.
Therefore, one eliminates the variables with no significant information for classification. In some cases,
this can afford an important reduction of the dimensionality without affecting classification accuracy
noticeably. However, PCA solutions are explicitly in terms of the training data, which makes them prone
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to artifacts, outliers, aberrations, and other such data non-representative of the underlying classes of the
data [36].

The comparisons results show that the best result with PCA was obtained with the first two principal
components, which maintained 67% of the data variance. The corresponding recognition rate was 59.52%,
compared to the 88.1%, the best obtained with the Hotelling scheme and wavelet coefficient representation.

4.5.2. Classification

Duch [21] cites a large scale investigation that reviewed and compared the performance of several
classifiers on several databases [37]. Although some classifiers, such as the nearest neighbors, appeared
frequently among the best performers, the investigation found no systematic trend in the behavior of one
classifier compared to the others: for each classifier, the results can be very good on some datasets but not
on others. This is not too surprising because classification performance depends on the classifier, which
itself relies on a model and its assumptions, as well as on the data representation, and the amount and
layout of the learning data in the representation space. Investigations such as [37] legitimize the general
practice in real world applications: seek the best classifier for the expected data inputs of a particular
application rather than for data inputs at large. The choice of a particular classifier for an application
is generally justified by the classifier better performance against the background of existing competing
classifiers. Here, we will contrast the proposed Hotelling T2 statistic method to commonly used classifiers
of biomedical data [38], namely the K-nearest neighbor classifier (KNN), Linear discriminant analysis
(LDA), and Support vector machine (SVM), a review and evaluation of which can be found in [39]. These
methods, which can be potent, and their classification behavior, are also reviewed in pattern recognition
textbooks, notably in classic Duda, Hart, and Stork [1]. Classification of OA data by these methods uses an
average curve, or a single representative curve, rather than a sample, as a whole, of several measurement
curves for each individual, to which it assigns a class membership according to a sample statistic such as
Hotelling as in this study and [22]. This comparison will justify sample representation of data, used by
the Hotelling classification scheme, against single vector representation used by others. We used Matlab
routines to implement the KNN, LDA, and SVM classifiers. The routines are: KNN: ClassificationKNN.fit;
LDA: fitcdiscr; SVM: templateSVM and fitcecoc.

When the feature vector of data representation is the same for all the competing classifiers, then it is
just a matter of running these classifiers and recording the various classification rates. However, when
the feature vectors can vary with classifiers, as with the application in this study, the comparisons can be
exceedingly laborious: for every classifier, the best possible score depends not just on the classification
model but also on feature selection. Our study uses a wavelet representation of the original knee kinematic
data curves. The wavelet coefficients of this representation are first ranked by the classifier-independent
feature selection scheme ReliefF [40]. This type of scheme uses neighborhood feature differences to
evaluate the relevance of features in describing each pattern class and, therefore, provide a way of ranking
the features for subsequent selection to be included in the data representation. Selection looks for the
combination of features that give the best classification performance: this is theoretically a combinatorial
problem. Selection from a small set of ranked features is manageable: this is the case for the Hotelling
statistic method proposed in this study, thanks to the fact that we needed to drop the dimension of
the representation vector below a dozen, as explained earlier, for the Hotelling hypothesis testing to be
applicable. For larger sets, it can be significantly more involved and exceedingly costly: this is the case for
the three benchmark methods we used in the comparisons, namely LDA, KNN, SVM (we will refer to
these as the benchmarks). We can nevertheless select good sets of features for these methods, as explained
here in the following. First, we note that we are not constrained by any maximum number of features
for the benchmarks. Therefore, it is legitimate to use the original kinematic data to determine which of
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the reference planes, or combination of planes thereof, is the most informative in that it gives the best
recognition rate. Doing so gives the combination of the transverse and frontal planes as the best for SVM,
KNN, and LDA (Table 5). This is the same best plane pair as for the Hotelling method. Assuming that
the classifiers are all valid functions, this a reassuring result since it is then a property of the data that we
are looking at. We can now proceed as with the Hotelling method: for each benchmark, use a multilevel
wavelet decomposition of the data, rank the resulting coefficients using ReliefF, and select the combination
of coefficients that yield the best recognition rate. However, the combinatorial dimension is excessive.
Instead, we can have good features by selecting coefficients from the ranked coefficients at the best level
of decomposition, which is level 3 (50 coefficients) for SVM, and 4 (25 coefficients) for KNN, and 1 (100
coefficients) for LDA (see Table 6). Doing so yields Figure 5, which shows the variation of the accuracy
rate of each benchmark as a function of the number of selected coefficients expanded about the benchmark
best decomposition level. The best performances are: SVM: 78% with 48 coefficients, KNN: 81% with 10
coefficients, and LDA: 74% with 98 coefficients, placing the Hotelling method as a better performer at
88.1% with nine coefficients.

Table 5. Accuracies according to planes and plane combinations.

Planes KNN (%) LDA (%) SVM (%)

Frontal 67 (K = 1) 71 69
Sagittal 43 (K = 1) 50 45
Transverse 71(K = 3) 57 64
Frontal & Sagittal 50 (K = 3) 69 57
Frontal &Transverse 71 (K = 3) 74 76
Sagittal & Transverse 48 (K = 3) 59 62
Frontal & Sagittal & Transverse 62 (K = 5) 69 69

Table 6. Benchmarks’ accuracies according to levels of wavelet decomposition.

Level 1 2 3 4 5 6

Numb. of coefs. 100 50 26 14 8 4
SVM (%) 76 78 69 62 64 71
KNN (%) 76 76 76 74 74 72
LDA (%) 74 71 71 69 67 69
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Figure 5. Accuracy of the benchmarks as a function of the number of selected coefficients expanded about
the best level of decomposition of each benchmark.

Another way to gain some insight into the comparative performance of the classifiers is to look at the
behavior of the benchmarks running on a dozen coefficients as with the Hotelling statistic method. To
do so, and to remain consistent with the treatment of the Hotelling method, we applied the same feature
extraction and selection processing as described in Section Feature extraction and selection, i.e., the sample
average curves have been reduced using a DB1 wavelet decomposition (seven approximation coefficients
in a 3-level decomposition in the frontal plane and two coefficients in the transverse plane). The extracted
features have been ranked with the ReliefF ranking algorithm.

The comparative recognition rates (Acc %) as a function of the number of features are shown in
Figure 6. In almost all cases, the proposed Hotelling scheme gives a better recognition rate when tested
on the dataset DS1. The results fit the expectation that using the average curve as input rather than the
whole sample causes loss of information relevant to classification. In other words, averaging may suppress
relevant information in the data which can be overcome when all the curves are retained for a more
informative support to classification.

Ideally, one would be able to confirm the comparative experimentation conclusions by a run of all
the methods on a validation database that has novel data, i.e., data yet unseen by any of the classifiers.
In our case, unfortunately, we do not have such data, i.e., data that fits the application of OA pathology
classification. Moreover, there are only 21 measurements for each pathology class (the small sample
problem that the Hotelling method proposes to address), which is just too few to be able to cut out a
portion to use as validation data.
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Figure 6. Comparisons of classifier accuracies according to the number of retained relevant ranked features.

5. Conclusions

The purpose of this study was to develop a classifier of three-dimensional kinematic data of knee
movement that is reliable for small samples of high-dimensional data. The knee kinematic data come in
the form of high-dimensional vectors representing the temporal variation of the three angles of rotation
of the knee during locomotion. To address the notorious problems caused by high dimensionality
and small sample sizes (the curse of dimensionality), the classifier used a Hotelling T2 statistic on a
reduced-dimensionality representation of the data.

In validation experiments, we applied the method to classify data in two classes of knee osteoarthritis
pathologies, namely femero-rotulian (FR) and femero-tibilal (FT), and extended the application to three
classes to include, in addition to FR and FT, category FR-FT representing the incidence of both diseases
FR and FT in the same individual. The proposed method reaches an excellent 88.1% correct classification
rate for the two-class problem (FR and FT), improving significantly on the conventional classifiers. For
the much harder three-class problem, to distinguish between FR, FT, and FR-FT, the method was able to
obtain 68.25% correct decisions, justifying its further use and investigation. To the best of our knowledge,
this study is the first to confront such a classification problem in spite of its importance.

As mentioned in the section on experimental comparisons, a comparative experimental analysis
of the results obtained for a set of methods using on a train/test dataset, although informed, can be
confirmed by an additional run of all the methods on a validation database that has novel data, i.e., data
yet unseen by any of the methods’ classifiers. The results from such a validation run would offer more
confidence in the generalization potency of the methods. In our case, unfortunately, we do not have
proper data for this, i.e., data that would fit the application of OA pathology classification as used here.
Moreover, there are only 21 measurements for each pathology class (the small sample problem highlighted
in this study and that the Hotelling method proposes to address), which is just too few to allow cutting
out a portion to use as validation data. Such a situation, not surprising in novel applications like ours,
where data measurements are yet scarce, limits the generality of our comparative conclusions. The results
obtained with the available data in this study justify further study of the Hotelling statistic classification
method on new OA measurements of the sort we used, as well as its investigation with other biomedical
data.
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