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We present a new vacuum solution of Einstein’s equations describing the near horizon region of two
neutral, extreme (zero-temperature), corotating, nonidentical Kerr black holes. The metric is stationary,
asymptotically near horizon extremal Kerr (NHEK), and contains a localized massless strut along the
symmetry axis between the black holes. In the deep infrared, it flows to two separate throats which we call
“pierced-NHEK” geometries: each throat is NHEK pierced by a conical singularity. We find that in spite of
the presence of the strut for the pierced-NHEK geometries the isometry group SLð2;RÞ × Uð1Þ is restored.
We find the physical parameters and entropy.
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I. INTRODUCTION

Rapidly rotating, (near-)extreme Kerr black holes (BHs)
constitute a unique arena which offers both observational
relevance and enhanced theoretical control. Several high-
spin candidates (cf. [1–4]) have been observed, and such
BHs could produce characteristic signatures for various
current and future experiments, including gravitational-
wave detectors such as LIGO/Virgo, and optical observa-
tories such as the recently triumphant [5] Event Horizon
Telescope. Theoretically, (near-)extreme BHs are espe-
cially tractable since they develop an emergent conformal
symmetry. More precisely, they admit a nondegenerate
near-horizon geometry, the so-called near-horizon extreme
Kerr (NHEK) geometry [6]. This geometry is interesting:
every fixed polar angle slice of it can be thought of either as
2-dimensional anti–de Sitter space (AdS2) with a circle
nontrivially fibered upon it or (equivalently) as a quotient of
the so-called warped AdS3 spacetime. Consequently it
enhances the isometry group of Kerr, R × Uð1Þ (corre-
sponding to stationarity and axisymmetry), to SLð2;RÞ×
Uð1Þ. This motivated the Kerr/CFT conjecture [7], which

hypothesizes that the Kerr BH is dual to a (1þ 1 dimen-
sional) conformal field theory (CFT) living on the boun-
dary of this near horizon geometry. This boundary can be
thought of as the spacetime region in which the NHEK
geometry is glued to the external, asymptotically flat, Kerr
spacetime.
The NHEK geometry has a simpler cousin—the

Robinson-Bertotti universe or AdS2 × S2. This spacetime
arises as an analogous near-horizon limit of maximally
charged Reissner-Nordström BHs. This type of BHs can be
used to construct, remarkably simply, multi-BH configu-
rations [8]. Those are static solutions to Einstein-Maxwell
theory with an arbitrary number of maximally charged (all
with the same sign), nonrotating BHs of any mass. The
time-independence of these solutions is possible since the
BHs’ gravitational attraction and electric repulsion cancel
each other precisely—in the full nonlinear theory—for
arbitrary BH positions. A neat observation regarding these
solutions was made in [9]. Consider a system of two such
maximally charged BHs. When they are widely separated,
there exist also well-separated near-horizon (approximately
AdS2 × S2) throats surrounding each one of the BHs. When
the BHs are close to each other (relative to a length scale
defined by a characteristic mass), however, there exists a
region around them which is approximately an AdS2 × S2

throat which surrounds both horizons, and only when
moving further towards either one of the horizons does
one recover the two separate throats. This phenomenon was
coined in [9] “AdS fragmentation”: the joint throat frag-
ments into two smaller ones, when moving deeper into the
infrared. This generalizes to an arbitrary number of throats:
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one “trunk” throat can fragment into several branches
which can then branch again, and so forth.
This compelling picture depends strongly on the proper-

ties of the special system of choice. The fact that it can be
embedded in a supersymmetric theory, as a solution which
preserves some supersymmetry [10], guarantees this type of
behavior. In this paper, we propose the closest possible
analogue, presumably, to fragmentation in the case of
maximally rotating, uncharged BHs. Since these are not
supersymmetric anymore and there is no known smooth
stationary solution involving such BHs, we allow for a
conical singularity between the BHs which balances the
gravitational attraction and keeps the system stationary. We
study a 1-parameter family of exact axis-symetric solutions
describing two corotating extreme Kerr BHs of arbitrary
masses which are held apart by a conical singularity with
effective pressure, usually called a strut and as we rescale
coordinates to zoom-in on the near-horizon region, we also
shorten the strut separating the BHs. In this way we construct
the exact solution corresponding to the region where NHEK
fragments into two NHEK-like throats which are held apart
by the strut. We call these “NHEK2” geometries. The
solution presented here generalizes [11], which studied a
similar construction for the equal-mass case. These infrared
near-horizon geometries which the strut pierces on its way to
the horizons are analogues of NHEKwhich include a conical
singularity at one of the poles, extending from the horizon all
the way to the NHEK boundary. We verify that this does not
ruin the symmetry structure: the “pierced-NHEK” geometry
still has an SLð2;RÞ × Uð1Þ isometry group. So while the
full NHEK2 does not have SLð2;RÞ × Uð1Þ, it interpolates
from a geometry that does have conformal symmetry in the
ultraviolet to two throats that are also conformally sym-
metric, in the infrared.
Introducing conical singularities has caveats which are

important to stress. First, the stability, both classical and
quantum mechanical, of these solutions is questionable.
A second point is that the type of conical singularities we
use here, the struts, are of excess angle type (rather than
deficit angle); the effective stress-energy associated to
such objects has negative energy density. Keeping these
caveats in mind, we still hope that this construction may
be useful in various contexts. First, such stationary BH
binary solutions have been recently applied to study
astrophysically motivated problems involving dynamical
binaries (see for example [12] for the use of quasistationary,
extremally charged solutions in a gravitational-wave appli-
cation); even though the physics governing the dynamics
of these systems is different it was argued in [13] (see
also references therein) that in some cases such solutions
can be used as tools for modeling the astrophysical
systems’ observational signatures, e.g., gravitational lens-
ing. And secondly, these solutions may give some insight in
the holographic, Kerr/CFT context. In this regard, it is
interesting to note a recent study of holography and
thermodynamics with conical singularities in the bulk

[14]. It should be possible to generalize our construction
to an arbitrary number of BHs with arbitrary masses.
The workhorses of this paper are the binary BH solutions

first found in [15] and further studied, including their
construction via various solution generating techniques in
[16–21]. These exact solutions are stationary, axisymmet-
ric, asymptotically flat solutions which describe two rotat-
ing BHs held apart by a strut along the symmetry axis. The
BHs of these solutions can have arbitrary masses and spins
and in particular can be either co- or counterrotating. We
are interested in the case in which the BHs are maximally
corotating, with arbitrary masses. In particular, we start
from the corotating solution described in [22], and for the
convenience of the interested reader we describe it explic-
itly in the so-called Weyl-coordinates in Appendix A. This
coordinate choice serves best to describe classes of sta-
tionary and axisymmetric solutions of Einstein’s theory of
general relativity in vacuum.
The rest of this paper is organized as follows. We first

construct the new generalized near horizon geometry of the
stationary binary extreme-Kerr BH solution in Sec. II and
analyze its physical properties. In particular, we show how it
admits a localized strut along the symmetry axis between the
black holes but is asymptoticallyNHEK. In Sec. III we zoom-
in further to the infrared of each throat, and find the near-
horizon geometries in which the strut pierces the horizons,
extending fromthehorizonall thewayto theNHEKboundary.
We show that in spite of the strut, the pierced-NHEK geo-
metries have an SLð2;RÞ × Uð1Þ isometry group. Finally, we
will summarize the key results of the paper in Sec. IV.

II. GENERALIZED-NHEK2: GENERALIZED NEAR
HORIZON GEOMETRY OF EXTREME BINARY

KERR BLACK HOLES SOLUTION

In this section, we construct the generalized near horizon
geometry of extreme binary Kerr (Generalized-NHEK2)
black hole solution. Our starting point, is the stationary
solution to Einstein equations in vacuum [22] that contains
two extremal (zero-temperature) corotating black holes.
For convenience and for fixing the notation, we reproduced
the original results of [22] in Appendix A. We will only
consider the solutions characterized by positive values of
the mass that correspond to the parameter range

−
1ffiffiffi
2

p ≤ p < 0; q > 0; q < P ≤ 1: ð1Þ

Note that for P ¼ þ1 the equal mass case, treated in
[11,21], is recovered;1 the extreme mass ratio limit is
recovered for P → ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p2

p
Þþ or P → ð−pÞ−.

1As described in [22], there is another solution with positive
mass that corresponds to −1 < P < −p. This solution belongs to
a more problematic case containing a massless ring singularity
outside the symmetry axis that we will not consider here.
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A. Near-horizon limiting procedure

In previous works [11] we developed the necessary tools
to inspect the extreme corotating binary Kerr black hole
solution. This section is nevertheless self-contained. We
proceed to compute the near horizon geometry of extremal
nonidentical binary Kerr black holes solution, that we are
going to refer to as “generalized-NHEK2”.
The solution of extremal BBHs [22]—that we repro-

duced in Appendix A—has a rather more compact repre-
sentation in Weyl coordinates. We therefore perform the
scaling computations in these coordinates. In this case, we
find that the appropriate near-horizon limiting procedure
for the extremal BBHs is

ρ ¼ ρ̂λ; z ¼ ẑλ; t ¼ t̂
λ
; ϕ ¼ ϕ̂þ 1

2M
t̂
λ
; ð2Þ

p ¼ −
1ffiffiffi
2

p þ 3
ffiffiffi
2

p
− 2P
4

λ; κ ¼ Mλ: ð3Þ

Taking λ → 0 and keeping ðt̂; ρ̂; ẑ; ϕ̂Þ fixed. As a result of
this procedure, we find the generalized (nonidentical mass)
generalized-NHEK2 geometry

ds2 ¼ −
ρ̂2

f
dt̂2 þ fðdϕ̂þ ωdt̂Þ2 þ e2νðdρ̂2 þ dẑ2Þ; ð4Þ

defined by the equations

f ¼ −
4M2μ0ðμ0 þ 2σ20Þ

μ0ðμ0 þ 2σ20 − 2σ1 þ π0Þ þ μ1π1 þ ð1 − y2Þσ0τ0
;

ω ¼ −
π0σ0 þ π1σ1 − μ1 − 4σ0σ1 − ð1 − y2Þτ0=2

2Mðμ0 þ 2σ20Þ
;

e2ν ¼ μ0ðμ0 þ 2σ20 − 2σ1 þ π0Þ þ μ1π1 þ ð1 − y2Þσ0τ0
K2

0ðx2 − y2Þ4 ;

ð5Þ

where

μ0 ¼ −
ρ̂2

2M2
; σ0 ¼ −

x2 − y2

2
þ β0ðx2 þ y2Þ − 2α0xy;

ð6Þ

π1 ¼ 4xðβ0x − α0yÞ − ð1þ 2β0Þðx2 − y2Þ; ð7Þ

μ1 ¼ −Δ0ð−1þ x2Þ2 þ
ffiffiffi
2

p
Qβ20
α0

ðx2 − y2Þ2; ð8Þ

σ1 ¼ Δ0ðx2 − y2Þ þ ð−2Δ0β0 þ β1Þðx2 þ y2Þ
þ 2ð2Δ0α0 − α1Þxy; ð9Þ

π0 ¼
�
1 − 4Δ0β0 þ β1 þ

β0ðβ1 − K1Þ
K0

�
4x2

−
ffiffiffi
2

p
ðPxð1þ x2Þ −Qyð1þ y2ÞÞ ð10Þ

þð
ffiffiffi
2

p
ðβ0Pþ α0QÞx −

ffiffiffi
2

p
ðα0Pþ β0QÞy − β3Þðx2 − y2Þ

ð11Þ

þ
�
4Δ0α0 − α1 −

α0ðβ1 − K1Þ
K0

�
4xy; ð12Þ

τ0 ¼
ffiffiffi
2

p
ðPxþQyÞðx2 − 1Þ þ

�
α3 þ

Qffiffiffi
2

p
α0

x

�
ðx2 − y2Þ

−
�
α3 þ

Qffiffiffi
2

p
α0

�
ð1 − y2Þ; ð13Þ

where we use prolate spheroidal coordinates

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̂2 þ ðẑþMÞ2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̂2 þ ðẑ −MÞ2

p
2M

; ð14Þ

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̂2 þ ðẑþMÞ2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̂2 þ ðẑ −MÞ2

p
2M

; ð15Þ

and introduce the notation

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − P2

p
; Δ0 ¼

3 −
ffiffiffi
2

p
P

2
; K0 ¼ β0 − 1=2;

ð16Þ

K1 ¼ −
1

4

�
Δ0 −

4

Δ0

þ 7

�
ð1 − 2β0Þ −

2β1K0

1 − 2β0
− 4Δ0K0;

ð17Þ

α0 ¼
Qffiffiffi

2
p

− 2P
; β0 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 þ 1=2

q
ð18Þ

α1 ¼
2Q2β20
α0

−
Δ0ffiffiffi
2

p Qð1þ 4β20Þ;

β1 ¼
2PQβ20
α0

−
Δ0ffiffiffi
2

p ðPþ 4Qα0β0Þ; ð19Þ

α3 ¼ −
�
5Δ0

2
−

2

Δ0

þ 3

2

�
;

β3 ¼
Δ0ð1 − 8β20Þ þ 2ðα0α1 þ β0β1Þ

K0

þ ð1 − 4β20ÞK1

2K2
0

;

ð20Þ

for 1=
ffiffiffi
2

p
< P ≤ 1.
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B. Physical parameters

Let us now consider the physical parameters of the
generalized-NHEK2 solution. As we did at the level of the
geometry, the near-horizon limiting procedure can be
applied to the original physical parameters found in [22]
(also reviewed here in Appendix A). Applying this
technique yields the expressions for the masses M1, M2,
and angular momenta J1, J2 in the generalized-NHEK2
solution

M1 ¼
M
2

�
1 −

Qffiffiffi
2

p
− P

�
; M2 ¼

M
2

�
1þ Qffiffiffi

2
p

− P

�
;

ð21Þ

J1 ¼ 2M2
1

�
1−

Qffiffiffi
2

p
−P

�
−1
; J2 ¼ 2M2

2

�
1þ Qffiffiffi

2
p

−P

�
−1
;

ð22Þ

and the corresponding angular velocities

Ω1 ¼ Ω2 ¼
1

2M
; ð23Þ

satisfying at the same time the Smarr relationM1 ¼ 2J1Ω1

andM2 ¼ 2J2Ω2. It is worth noticing that the new solution
contains objects that are in thermal equilibrium. The black
hole entropy is, as usual, the area of the event horizon
divided by 4. This gives

S1 ¼ 4πM2ð2 −
ffiffiffi
2

p
ðPþQÞÞ;

S2 ¼ 4πM2ð2 −
ffiffiffi
2

p
ðP −QÞÞ: ð24Þ

C. Ergospheres

The generalized-NHEK2 spacetime that we constructed
contains regions where the vector ∂t becomes null. We will
refer to the boundary region as the ergosphere, since they
are inherited from the presence of such regions in the
original stationary extreme BBHs geometries. For NHEK2
these are defined by regions where gtt ¼ 0 and give rise to a
set of disconnected regions as shown in Fig. 1. Different
values of the parameter P are bounded by the extreme
mass ratio solution when P ¼ 1=

ffiffiffi
2

p
and identical mass

solution when P ¼ 1. The horizons of the black holes
in generalized-NHEK2 are points in the ðρ̂; ẑÞ-plane and
have finite horizon areas. There is a self-similar behavior
close to each black hole that resembles the ergospheres’
diagrams of isolated extremal Kerr black holes.

D. Asymptotic behavior

In the asymptotic limit, for ρ̂ ¼ r sin θ, ẑ ¼ r cos θ and
r → ∞, the generalized-NHEK2 geometry in Sec. II A has
a limiting metric that corresponds to the NHEK metric—in
Weyl coordinates—(4) with functions

f ¼ 4M2ρ̂2

2ẑ2 þ ρ̂2
; ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ẑ2 þ ρ̂2

p
2M2

; e2ν ¼ M2ð2ẑ2 þ ρ̂2Þ
ðẑ2 þ ρ̂2Þ2 :

ð25Þ

In other words, the generalized-NHEK2 solution is asymp-
totically NHEK. It is worthwhile to mention at this point
that in [23,24] it was shown that in the case of 4D Einstein
gravity the NHEK geometry is the unique (up to diffeo-
morphisms) regular stationary and axisymmetric solution
asymptotic to NHEK with a smooth horizon. The NHEK2
geometry that we unveil is asymptotically NHEK, but is not

FIG. 1. Ergoregion (shaded orange region) of the generalized-NHEK2-black hole solution forM ¼ 1 and P ¼ 1, 0.9, 0.71 (from left to
right). Each black hole is located at ρ ¼ ρ̂H ¼ 0; z ¼ ẑH ¼ �1. Magnified diagrams, close to the locations of the black holes appear in
the corners. The dashed line corresponds to the boundary where ∂ t̂ is null. The different values of P in the diagrams correspond to
solutions with BBHs of distinctive mass ratios. Note that in the generalized-NHEK2 solution the parameter 1=

ffiffiffi
2

p
< P ≤ 1where P ¼ 1

is the equal mass identical black hole case, and 1=
ffiffiffi
2

p
∼ 0.07071 the extreme mass ratio limit.
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diffeomorphic to NHEK; this is not in contradiction with
the results of [23,24] since the NHEK2 geometry is not
smooth on the strut which keeps the BHs apart.

E. Conical singularity

As we have shown in the previous subsection, the
generalized-NHEK2 is exactly asymptotically NHEK with-
out any conical defects. However, as in the original sta-
tionary, extremal BBHs geometry there is in the bulk, a
conical singularity on the ρ̂ ¼ 0 axis localized between the
two black holes. In Weyl coordinates the conical singu-
larities can be easily computed

Δϕ̂ ¼ 2πlim
ρ̂→0

 
1 −

ffiffiffiffiffiffiffiffiffiffiffi
f

ρ̂2e2ν

s !
; −M < z < M: ð26Þ

Our computation for the generalized-NHEK2 metric shows
that there is a nonremovable conical excess between the
two horizons.

Δϕ̂ ¼ 2π

�
1 −

1

2ð ffiffiffi
2

p
− PÞ2

�
: ð27Þ

Outside this localized conical singularity our solutions are
smooth.

III. PIERCED-NHEK: NEAR HORIZON
LIMIT AT FINITE SEPARATION

In this section it is shown that there exists a well-defined
near-horizon limit of the stationary binary extreme Kerr
solution [21,22] even when the BHs, which are held apart
by a conical singularity, are separated by a finite distance.
The near-horizon region is composed of two disconnected
NHEK-like geometries, one near each of the BHs. Each
such geometry can be thought of as “NHEK pierced by a
cosmic string,” the strength of which is determined by
the distance between the BHs. The cosmic string/conical

singularity balances the gravitational attraction of the com-
panion BH, thereby enabling stationarity. The cosmic string
extends all the way from the horizon to infinity in this
geometry which we call the “pierced-NHEK.”
Our starting point is the solution given in [21] (that

corresponds to the identical mass binary black hole
metric in [22] for P ¼ 1 which for convenience we
reviewed in Appendix A). As the most general solution
is quite involved, we will start by fixing the parameters at a
specific, convenient value which will be enough to convey
our point regarding the existence of a nonsingular near-
horizon geometry. It could be nice to explicitly write down
the full most general expression, for arbitrary value of P,
but for the sake of simplicity we will only focus on the
P ¼ 1 case.
Starting with the solution presented in [21] with

parameters p ¼ −1=2, κ ¼ 4ð ffiffiffiffiffi
33

p
− 1Þ−1 (which sets

M ¼ 1, J ¼ 2) and coordinates denoted by fρ; z; t;ϕg,
we choose to focus on the BH located at z̃ ¼ κ and use
the transformation

ρ ¼ ϵR sinΘ; z − κ ¼ ϵR cosΘ; ð28Þ

t ¼ 17þ ffiffiffiffiffi
33

p

16

T
ϵ
; ϕ ¼

�
Φþ ω0

17þ ffiffiffiffiffi
33

p

16

T
ϵ

�
; ð29Þ

where ω0 ¼ ð ffiffiffiffiffi
11

p
−

ffiffiffi
3

p Þ=4 facilitates the transition into a
frame which corotates with the BH. Taking ϵ → 0 yields
the nonsingular geometry

ds2 ¼ ΓðΘÞ
�
−R2dT2 þ dR2

R2
þ dΘ2

þ Λ2ðΘÞ
�
dΦþ

ffiffiffiffiffi
11

p
−

ffiffiffi
3

p

2
RdT

�
2
�
; ð30Þ

where

ΓðΘÞ ¼ 2ð3 ffiffiffiffiffi
33

p
− 13Þ cosΘþ ð15 − ffiffiffiffiffi

33
p Þð3þ cos 2ΘÞ

16
;

ΓðΘÞΛðΘÞ2 ¼ 256sin2Θ
4ð−59þ 11

ffiffiffiffiffi
33

p Þ cosΘþ ð93 − 13
ffiffiffiffiffi
33

p Þð3þ cos 2ΘÞ : ð31Þ

In this geometry, a priori, there could be a conical singularity either at Θ ¼ 0 or at Θ ¼ π. Using (27), however, shows
explicitly that at Θ ¼ 0 there is no conical singularity whereas for θ ¼ π there is an angular excess of

ΔΦ ¼ 2π

ffiffiffiffiffi
33

p
− 1

8
: ð32Þ

Writing the pierced-NHEK geometry in the form (30) shows immediately that it enjoys the isometry group
SLð2;RÞ × Uð1Þ, just like NHEK: the strut on the symmetry axis does not spoil this symmetry.
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IV. DISCUSSION

The aim of this paper was to unveil and analyze the
generalized-NHEK2 geometry. This geometry is obtained
via a limiting procedure that we developed: a zoom-in
on the near-horizon region of a 1-parameter family of
corotating,2 double-extreme Kerr solutions of arbitrary
masses where the two BHs are parametrically close to
each other and are held apart by a conical singularity (strut).
The distance between the BHs is scaled to zero at the same
rate of the zoom-in on the near-horizon region. This gives a
relatively simple solution, which is asymptotically NHEK,
and in the infrared flows to two separate throats which we
call “pierced-NHEK” geometries: each of them is, approx-
imately (when zooming further towards one of the hori-
zons), NHEK pierced by a conical singularity on the
symmetry axis, which runs from one of the poles up to
the boundary. We find that in the deep infrared where the
geometry is approximately pierced-NHEK, the presence of
the strut does not break the isometry group SLð2;RÞ×
Uð1Þ—it is restored there. In Fig. 2, we illustrate the
structure of the generalized-NHEK2 geometry. The gen-
eralized-NHEK2 solution asymptotes to NHEK, yet it is

not diffeomorphic to NHEK. This is not in contradiction to
the discussions in [25,26] since in these papers, smoothness
is assumed while here we allow for a conical singularity
which balances the gravitational attraction between the
BHs. This paper generalizes the construction studied
recently in [11] for the equal mass case.
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APPENDIX: STATIONARY EXTREME KERR
BINARY WITH STRUT—FULL SOLUTION

Here we record, for completeness, the full exact solution
corresponding to two extremal co-rotating BHs which are
held apart by a strut lying on the joint rotation axis, between
the BHs. The solution is axisymmetric, stationary and
asymptotically flat. We follow the conventions of [22] in
which this solution was presented.

FIG. 2. The diagram represents a spatial cross section of the two extremal corotating BHs metric [22] reproduced in Appendix A. The
geometry (in black and gray) has an asymptotically Minkowskian region and a single black hole throat of massM1 þM2 which divides
into two throats of masses M1 and M2. The strut (conical singularity) in the solution is localized between the two black holes (dashed
blue). In the infrared limit λ → 0, when zooming into the near horizon limit, the throat becomes infinitely long and the Minkowski
region decouples. This is the new generalized NHEK2 solution that we constructed (represented in green) that is asymptotically NHEK
(in orange). The splitting of the throat into two pieces survives this limit. In the deep infrared when zooming close to one of the horizons,
we find new geometries that we call “pierced NHEK.” These correspond to the NHEK metric pierced by a conical singularity on the
symmetry axis, which runs from one of the poles up to the boundary (in purple).

2The counterrotating counterpart cannot be used to construct
a similar solution since asymptotically it appears as a non-
extreme BH.
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Define prolate spheroidal coordinates ðx; yÞ by

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðzþ κÞ2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − κÞ2

p
2κ

; ðA1Þ

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðzþ κÞ2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − κÞ2

p
2κ

; ðA2Þ

the metric is given by

ds2 ¼ −
ρ2

f
dt2 þ fðdϕþ ωdtÞ2 þ e2νðdρ2 þ dz2Þ; ðA3Þ

where:

f ¼ κðy2 − 1ÞF
Dω

; e2ν ¼ D
K2

0ðx2 − y2Þ4 ; ω ¼ −
κðy2 − 1ÞFN

½ðκðy2 − 1ÞFÞ2 − ρ2D2� ;

N ¼ μ2 − ðx2 − 1Þð1 − y2Þσ2;
D ¼ N þ μπ þ ð1 − y2Þστ;
F ¼ ðx2 − 1Þσπ þ μτ;

μ ¼ p2ðp2ðx2 − 1Þ2 þ q2ð1 − y2Þ2 þ ðα2 − β2Þðx2 − y2Þ2Þ;
σ ¼ p2ð2½pqðx2 − y2Þ þ βðx2 þ y2Þ − 2αxy�Þ;
π ¼ p2ðð4p2=K0ÞfðK0=p2Þ½pPsxðx2 þ 1Þ þ 2x2 þ qQyðy2 þ 1Þ�

þ 2ðpQþ pPαþ qQβÞ½pqyðx2 − y2Þ þ βyðx2 þ y2Þ − 2αxy2�
− ðK0=p2Þðx2 − y2Þ½ðpQα − qPβÞxþ ðqPα − pQβÞy� − 2ðq2α2 þ p2β2Þðx2 − y2Þ
þ 4ðpqþ βÞðβx2 − αxyÞgÞ;

τ ¼ p2ðð4p2=K0ÞfðK0=p2Þx½ðqQαþ pPβÞðx2 − y2Þ − qPð1 − y2Þ�
þ ðpQþ pPαþ qQβÞy½ðp2 − α2 þ β2Þðx2 − y2Þ þ y2 − 1�
− pQðK0=p2Þyðx2 − 1Þ − 2pðqα2 − qβ2 − pβÞðx2 − y2Þ − ðpqþ βÞð1 − y2ÞgÞ;

K0 ¼ p2ðp2 þ α2 − β2Þ; ðA4Þ
and the parameters are constrained so that

p2 þ q2 ¼ 1; P2 þQ2 ¼ 1: ðA5Þ
For the corotating solution in which we are interested in this paper,

α ¼ −
Q½qΔþ pq2 þ Pð1þ p2Þ�

2ðp2 −Q2Þ ;

β ¼ p½PΔþ qð1þ pPþQ2Þ�
2ðp2 −Q2Þ ;

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2ð1þ pPÞ þ q2ðpþ PÞ2

q
: ðA6Þ

1. Physical parameters

The asymptotic metric does not contain a conical singularity, then the mass M1, M2 and the angular momenta J1, J2 of
the black holes can be easily calculated

M1 ¼
κ½ðqþ pqP − p2QÞΔ − ð1þ pPÞðpþ p3 þ q2P − pqQÞ þ pq3Q�

2pð1þ pPÞðp2 − q2Þ ;

M2 ¼
κ½ðqþ pqPþ p2QÞΔ − ð1þ pPÞðpþ p3 þ q2Pþ pqQÞ − pq3Q�

2pð1þ pPÞðp2 − q2Þ ;
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J1 ¼
ð1þ pPþ qQÞM2

1

2ðpþ PÞ2 ½ð1þ pPþ q2ÞΔ − 4pqþ pqðp − PÞ2�;

J2 ¼
ð1þ pP − qQÞM2

2

2ðpþ PÞ2 ½ð1þ pPþ q2ÞΔ − 4pqþ pqðp − PÞ2�; ðA7Þ

and, employing the Smarr relation, we can easily find the expressions for the angular velocities

Ω1 ¼
M1

2J1
; Ω2 ¼

M2

2J2
: ðA8Þ

Additionally, the entropy for each black hole can be calculated to give:

S1 ¼
2πp2κ2

K2
0

ðK0ð1þ pPþ qQÞ − 2p2ðα − βÞðpðQþ Pαþ qÞ þ ðqQþ 1ÞβÞÞ; ðA9Þ

S2 ¼
2πp2κ2

K2
0

ðK0ð1þ pP − qQÞ − 2p2ðαþ βÞðpðQþ Pα − qÞ þ ðqQ − 1ÞβÞÞ: ðA10Þ
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