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Abstract: In this study, we examined the use of an unmanned aerial system (UAS) to monitor 
fish-eating birds on catfish (Ictalurus spp.) aquaculture facilities in Mississippi, USA. We tested 
2 automated computer algorithms to identify bird species using mosaicked imagery taken from 
a UAS platform. One algorithm identified birds based on color alone (color segmentation), 
and the other algorithm used shape recognition (template matching), and the results of 
each algorithm were compared directly to manual counts of the same imagery. We captured 
digital imagery of great egrets (Ardea alba), great blue herons (A. herodias), and double-
crested cormorants (Phalacrocorax auritus) on aquaculture facilities in Mississippi. When all 
species were combined, template matching algorithm produced an average accuracy of 0.80 
(SD = 0.58), and color segmentation algorithm produced an average accuracy of 0.67 (SD 
= 0.67), but each was highly dependent on weather, image quality, habitat characteristics, 
and characteristics of the birds themselves. Egrets were successfully counted using both 
color segmentation and template matching. Template matching performed best for great blue 
herons compared to color segmentation, and neither algorithm performed well for cormorants. 
Although the computer-guided identification in this study was highly variable, UAS show 
promise as an alternative monitoring tool for birds at aquaculture facilities.
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Manned aircraft have been traditionally 
used to conduct aerial surveys of wildlife in 
large areas where ground surveys would be 
too costly or impractical. Although these aerial 
surveys are effective, they have limitations 
in terms of the high costs associated with the 
purchase or lease of planes and operational 
costs such as fuel and staff and pilot labor. 
Also, considerable expertise and training are 
required of pilots and staff to meet operational 
needs and reduce the risk of injury or even 
death in one of the more hazardous endeavors 
in the wildlife profession (Sasse 2003). Manned 
aircraft are also known for disturbing wildlife 
during low altitude surveys (Christie et al. 
2016) and often result in biased estimates due 
to observer subjectivity (Frederick et al. 1996, 
Green et al. 2008, Bakó et al. 2014). Unmanned 
aerial systems (UAS) are a rapidly advancing 

tool that may be used to address some of the 
issues associated with these legacy approaches 
to aerial survey methods (Linchant et al. 2015). 

A UAS is an unmanned motorized aerial 
vehicle platform that is capable of flying 
autonomously, semi-autonomously, or manu-
ally by a ground-based pilot using a radio 
frequency-based remote control and a ground 
control station. Different UAS platforms have 
unique capabilities and limitations associated 
with the payload or the type of sensor being 
carried, total flight time, and maximum and 
minimum altitude (Anderson and Gaston 
2013). To record the trajectory of flight, a UAS 
platform has an integrated navigation system 
based on global position system (GPS) satellites, 
inertial navigation system, an altimeter, and a 
directional compass (Samiappan et al. 2017). 
Small UAS open new possibilities such as near 
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real-time, low-cost aerial surveying and high-
resolution image capture as an economically 
and ecologically viable alternative to classical 
manned aerial methods (Anderson and Gaston 
2013, Linchant et al. 2015, Hodgson et al. 2016, 
Han et al. 2017). From an ecological perspective, 
UAS have wide-ranging applications in-
cluding collection of wildlife abundance 
and distribution information, reproductive 
estimation, and habitat data metrics, all while 
being potentially less invasive and cheaper 
alternatives to classical manned aircraft methods 
(Anderson and Gaston 2013, Christie et al. 
2016). Additionally, UAS offer an alternative to 
ground-based abundance estimates. Hodgson 
et al. (2018) found abundance estimates taken 
from UAS imagery to be more accurate than 
ground-based counting.

Currently, UAS are limited to use in areas 
smaller in scale than typical manned aerial 
survey methods. As technology and regulatory 
requirements change, their range could be 
significantly expanded. However, a small 
UAS platform may still be used as an effective 
survey method at smaller scales than traditional 
aerial survey methods or in specific situations 
where access is limited or when less invasive 
monitoring methods are preferred (Christie et 
al. 2016). For example, UAS have been used 
numerous times to monitor colonial birds, a 
group of species that are sensitive to disturbance 
and are often found in areas difficult to access 
(Sardà-palomera et al. 2017, Rush et al. 2018).  
Sardà-palomera et al. (2017) were even able to 
collect data on nest success based on distance 
to nearest incubating neighbor of black-headed 
gulls (Chroicocephalus ridibundus) using UAS 
on a remote island. High-resolution imagery 
collected from UAS platforms also provides the 
opportunity for computer-guided algorithms 
to identify target organisms, eliminating the 
time-consuming task of manual counting. 
This application is already showing promising 
results in wildlife monitoring (Abd-Elrahman 
et al. 2005, Linchant et al. 2015). The benefits 
of low altitude sensing with high-resolution 
optical sensors and computer vision algorithms 
to precisely identify and measure ground 
targets make UAS a potentially useful wildlife 
monitoring tool. 

We employed a relatively small, inexpensive 
UAS platform capable of collecting geo-

referenced high-resolution imagery to conduct 
surveys of fish-eating birds on selected catfish 
(Ictalurus spp.) aquaculture facilities in the 
primary aquaculture producing areas of 
Mississippi, USA. Considerable research effort 
has been expended on determining potential 
economic impacts of fish-eating birds on 
the catfish aquaculture industry (Glahn and 
Brugger 1995, Glahn et al. 2000, Glahn and 
King 2004, Dorr et al. 2012). A key component 
in determining the extent of depredation and 
loss has been the distribution of fish-eating 
birds on farm ponds, the proportion of farm 
ponds utilized, and the type or condition of 
ponds utilized. Proportional use and count 
information are essential in determining 
the economic impact of fish-eating birds to 
the catfish aquaculture industry (Dorr et al. 
2008, 2012).  Historically, these surveys have 
been conducted from the ground or by air 
using certified pilots, typically in fixed-wing 
aircraft. Platforms such as UAS may be a useful 
alternative to assess damage to agricultural 
commodities from many sources, including 
wildlife. Our goal was to evaluate the resolution 
and extent of coverage necessary to provide for 
UAS remotely-sensed and pattern recognition-
based censuses of fish-eating birds.

The objectives of this research work were 
to: (1) develop and implement a field data 
collection protocol for evaluating the ability 
of small, relatively inexpensive and readily 
available UAS to detect and identify fish-eating 
birds at aquaculture facilities; (2) evaluate the 
suitability and accuracy of visible spectrum 
imagery ranging from approximately 1–4 cm 
resolutions for automated pattern recognition 
of waterbird species; and (3) determine the 
efficiency of automated pattern recognition 
methods versus manual counting methods 
from UAS-based image mosaics. 

Study area
Mississippi is the leading producer of catfish 

in the United States, and currently the catfish 
aquaculture industry is the state’s fifth largest 
agriculture commodity (Vilsack and Reilly 
2014). Most catfish production occurs within 
an 18,000-km2 region located in the northwest 
portion of the state, known as the Mississippi 
Delta (Vilsack and Reilly 2014, National 
Agricultural Statistics Service [NASS] 2015). 
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Catfish are cultured here in large pond systems 
averaging 3.5 ha in size (U.S. Department of 
Agriculture [USDA] 2010). The majority of 
ponds are open to the environment, which 
readily prompts conflict between producers 
and wildlife. Damages and economic losses 
attributed to fish-eating birds on catfish 
facilities have been a primary and continuous 
problem in this region (Tucker and Hargreaves 
2004). Therefore, to address our objectives, 
we surveyed selected catfish farms within 
the Mississippi Delta. Our goal was to collect 
imagery of the most commonly documented 
avian predators of catfish in the region on 
aquaculture ponds. These species include 
double-crested cormorants (Phalacrocorax 
auritus; hereafter, cormorant), great blue 
herons (Ardea herodias; hereafter, heron), and 
great egrets (A. alba; hereafter, egret; Mott and 
Brunson 1995, Glahn and King 2004).

Methods
The PrecisionHawk Lancaster (PrecisionHawk, 

Raleigh, North Carolina, USA) and Robota 
Triton (Robota, Dallas, Texas, USA) UAS 
platforms were used to collect visible imagery 
at different heights above ground level (AGL) 
from 3 different catfish aquaculture facilities in 
the Mississippi Delta. These 3 catfish facilities 
were opportunistically chosen based on accessi-
bility and known bird presence. 

Study area 1 was located north of Leland, 
Mississippi, in Washington County (-90.891425°, 
33.447374°), covered an area of approximately 
20 ha, and contained 35 ponds with a mean 
area of 0.29 ha (SD = 0.12). Imagery from flights 
at 61 m, 122 m, and 183 m AGL were collected 
using a visible Sony RX100 20MP camera (Sony, 
San Diego, California, USA) on a Robota Triton 
UAS. Flight durations for each height AGL 
were approximately 50, 45, and 30 minutes, 
respectively. For this study, we defined a 
survey as a single day of image collection at a 
given study area. We surveyed study area 1 on 
September 8, 2014, in which only the 122 m AGL 
was flown. This was the only instance in which 
all 3 heights were not flown for a given survey. 
We later surveyed study area 1 again on October 
18, 2014 and collected data at all 3 heights. All 
data from both of these surveys were included 
in subsequent analysis. The ground resolution 
corresponding to the UAS flown at heights 61 

m, 122 m, and 183 m were approximately 1.2 
cm, 2.5 cm, and 3.5 cm, respectively. 

Study area 2 was located south of Indianola, 
Mississippi in Humphrey County (-90.539764°, 
33.327089°), covered an area of approximately 
35 ha, and contained 6 ponds with a mean 
area of 3.91 ha (SD = 1.41). This imagery was 
collected on March 24, 2015, using the same 
camera and heights AGL as area 1, and flight 
durations were approximately 35, 30, and 25 
minutes, respectively. 

Study area 3 was located west of Greenwood, 
Mississippi at the border of Leflore and 
Sunflower Counties (-90.447358°, 33.589214°) 
and surveyed on March 17, 2016. Study area 
3 covered an area of approximately 65 ha and 
contained 11 ponds with an average area of 
4.56 ha (SD = 1.79). Imagery was collected with 
a visible Sony RX100 camera using the Triton 
UAS at 122 m and 183 m AGL. We were unable 
to use the Triton UAS for the 61 m AGL flight 
due to damage; we therefore used a visible 
Nikon camera (Nikon Inc. Melville, New York, 
USA) on the Lancaster UAS to give the same 
ground sample distance as the Sony RX100.  

Although there are minor differences between 
these UAS platforms and cameras (discussed 
below), the resulting imagery and resolution 
produced were comparable and were therefore 
not treated differently. Flight durations were 
74, 26, and 19 minutes, respectively. During 
each survey, the data for each height AGL were 
collected on the same day but almost 2 hours 
apart from each other, so the position and the 
number of birds at each height AGL varied. 
Egrets and herons were observed only at study 
area 1, and cormorants were observed at areas 
2 and 3. 

The Lancaster and Triton weigh approx-
imately 7 kg and 5 kg with payload, respec-
tively, and have a 2.7-m wingspan and 1.5-
m length. Both of these UAS platforms are 
fixed wing, single electric motor, and a mix of 
Styrofoam™ and either plastic or printed circuit 
board construction (Triton and Lancaster, 
respectively) fully autonomous planes that can 
be hand-launched and capable of capturing 
imagery on flights lasting up to 25 minutes for 
the Lancaster and 45 minutes for the Triton. 
They both cruise at approximately 50 km per 
hour. The Lancaster utilizes ArduPilot, an open 
source UAS system sold by 3D Robotics (DYI 
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Drones, Berkeley, California, USA) to create 
and monitor georeferenced flight plans. The 
optimal flight plan for imagery collection is 
automatically estimated by using the onboard 
flight computer depending on the shape of the 
survey area, wind speed, and wind direction. 
This optimization happens after the launch and 
once the aircraft reaches the predetermined 
height AGL to account for real-time local 
weather conditions. The Triton uses its own 
solution, the Goose autopilot, developed in-
house at Robota.  It allows the explicit flight 
lines to be set up within their ground control 
station (GCS) software.

The Lancaster uses an open source GCS 
(similar to a flight instrument) application 
called Mission Planner (DYI Drones, Berkeley, 
California, USA) that provides live information 
about the flight mission, such as the height AGL, 
airspeed, and remaining energy in the battery. 
Mission Planner is based on the ArduPilot 
open source autopilot project that helps set 
up, configure, and tune the UAS for optimum 
performance. Mission Planner is capable of 
loading and saving the flight plans to the 
onboard aircraft computer with the point-and-
click entry of way-points on Google or Bing 
maps. The Triton GCS accomplishes the same 
purpose but is based on internally developed 
software at Robota and communicates only 
with the Goose autopilot.

In this study, we sought to use visible spectrum 
imagery so that it can be compared with direct 
human manual counting. Individual images 
obtained from each flight were mosaicked on 
a per-flight basis using Agisoft Photoscan Pro 
(Agisoft LLC, St. Petersburg, Russia). The UAS 
onboard computer stores the latitude, longitude, 
and height AGL of the aircraft for each image 
taken along with other telemetry information. 
This information was uploaded to Photoscan 
Pro to give initial camera positions and to 
perform georeferencing.  Individual images 
with 60% side overlap and 60% forward overlap 
were used for creating the image mosaics, which 
were typically produced at the high quality 
setting for alignment using the sparse cloud and 
a high quality mesh.  The orthomosaic was then 
exported in a tiled format and stitched together 
into a large image mosaic using Geospatial Data 
Abstraction Layer (GDAL) software (GDAL, 
Version 1.11.0, www.GDAL.org). 

Mosaicked imagery was first processed by 
a human observer to obtain manual counts 
and locations of all avian species present. 
Identifying avian species from the collected 
imagery was rather straightforward due 
to the uniformity of the shape and color of 
aquaculture ponds as well as the lack of 
vegetation. However, in the event an individual 
bird was difficult to identify, a second observer 
would examine the image, and a decision was 
made by both observers on the identification. 
Two different automated pattern recognition 
algorithms, color segmentation and template 
matching (discussed below), were then applied 
to the mosaics to identify and count individual 
birds. All counts were summed on a per-pond 
basis, as that is the unit of interest with respect 
to potential impacts to production. 

We evaluated the accuracy of each method 
at each height AGL and for each species using 
various metrics. These metrics were the mean 
observer count per pond compared to the 
mean algorithm count per pond, the mean 
percent of omission errors, and mean percent 
of commission errors. Observer count was 
divided by the algorithm count to acquire an 
overall accuracy metric of the algorithms. A 
value of 1 for this accuracy estimate indicates 
a perfect match between the observer count 
and algorithm count, while >1 indicates 
underestimation of the algorithm and <1 
indicates overestimation. Omission percent is 
calculated by dividing the number of birds the 
algorithm failed to identify by the actual count 
and multiplying by 100. Commission percent 
is calculated by dividing the number falsely 
identified birds by the algorithm count and 
multiplying by 100 (Abd-Elrahman et al. 2005). 

The sample size was not large enough to 
statistically determine both the influence of 
height AGL and species on the accuracy of the 
algorithms. We therefore combined all species 
and ran an ANOVA for each algorithm using 
height AGL as the independent factor and 
accuracy as the dependent variable. We also ran 
an ANOVA for each algorithm using species as 
the independent factor (height AGL lumped 
together) and accuracy as the dependent 
variable to determine potential differences in 
accuracy among species. 

These models were run using type II sums of 
squares to cope with the unbalanced nature of 
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the data (Langsrud 2003). Model assumptions 
were checked visually using residual plots. 
Any significant results were then followed by 
a Tukey’s post hoc test to determine significant 
difference among levels. These tests were 
done to determine general differences in 
overall accuracy between observer count and 
algorithm count without considering omissions 
or commissions. For each species, we combined 
heights AGL and ran a paired Mann-Whitney-
Wilcoxon test to determine differences in 
percent omission and commission between 
methods for every pond. This nonparametric 
test was chosen due to the data violating the 
assumption of normality (Fay and Proschan 
2010). All statistical analysis was conducted in 
Program R, version 3.5.1 (R Core Team 2018), 
and statistical significance was assessed using 
an alpha of 0.05.  

Color segmentation algorithm
The Delta-E (ΔE) color segmentation 

algorithm (Chen et al. 2004, Baldevbhai and 
Anand 2012) was used to extract the silhouettes 
of birds from the UAS-collected image 
mosaics. Greek letter delta (Δ) is commonly 
used to represent the difference, and E 
stands for Empfindung in German, meaning 
“sensation.” Therefore, ΔE means “a difference 
in sensation.” This algorithm seeks to find the 
difference between pixels in the training set and 
pixels in the test imagery. With the UAS image 
mosaic being the test image, a ΔE value of <1.0 
represents the case where the training and test 
pixels are nearly indistinguishable. The higher 
the value of ΔE, the larger the color difference 
between training and test samples. In our case, 
the UAS-collected visible imagery has red (R), 
green (G), and blue (B) wavelength bands. 
However, ΔE is developed to work best in the 
“Lab” color space, where the color coordinate 
“L” stands for lightness and “a” and “b” 
represent color-opponent dimensions based on 
nonlinearly compressed coordinates. Lab color 
space is known to approximate human vision 
as the L component is developed to be similar 
to human perception of lightness. The RGB 
wavelength bands work better to model color on 
physical devices such as computer or television 
displays rather than human perception. 

The value ΔE is defined by International 
Commission on Illumination (CIE 1976) 

and was used to compute the segmentation 
thresholds. The visible image with R, G, and B 
bands are first converted to CIELAB color space 
using the formulas defined in Baldevbhai and 
Anand (2012). A color image pixel in CIELAB 
is represented as 3 components: L for the 
lightness, and color components a for green-
red and b for blue-yellow. Chroma (Cab) and 
Hue (Hab) were derived from L a b by using 
equations (1) and (2). 

 	
(1)

	
(2)

For a set of training  and test  
 pixels, ΔE can be computed by 

using equation (3):

      
(3)

where, 

  
and       

 and  are weighting factors that are set 
to 1.5, 0.045, and 0.015, respectively.  

After the conversion into the Lab color space, 
ΔE is calculated for each pixel in the mosaic. 
The computation of ΔE is then followed by 
histogram computation of this color difference 
to find a threshold. The algorithm requires 
manual selection of the color of the target object 
that needs to be segmented in the first step 
(training data; Kumar et al. 2016). A connected 
component object counting algorithm is then 
used to accurately count the segmented objects, 
resulting in the estimation of number of birds 
in the imagery.

Template matching algorithm 
Template Matching is a computer vision 

method that allows the identification of objects 
in an image that matches a verified image 
pattern (Sahani et al. 2011). It is especially 
useful for finding regions of an image that 
match (are similar) to a template (training 
or example) image. The algorithm requires a 
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template image and a test image in which we 
seek to find a match to the template image. 
The template image contains the object or bird 
that we are interested in identifying within 
the test image. The goal is to find the best-
matched regions with the highest value of the 
underlying matching metric. Several metrics 
are used in the literature; the popular ones 
are (1) sum of squared differences, or SSD; 
(2) normalized sum of squared differences, 
or NSSD; (3) cross-correlation, or CC; or (4) 
normalized cross-correlation, or NCC. In our 
implementation, NCC is used as an underlying 
metric to estimate the similarity of an image 
region to the template. 

We refer the search image and test image 
as S and T, respectively. Let the size of S be 
NxN and the size of T be MxM, where N>M. 
The template matching process starts with 
registering T at the top left corner of S at the 
pixel location of (x = 1, y = 1) and continues 
shifting the T a pixel at a time in a push-broom 
scanning fashion. The NCC function between 
T and the corresponding pixels in S at a point 
(u,v) is given by equation (4): 

                                                                           
                                                                           (4)

where  and  are the mean of S and T images 
respectively and are given by 

 

The NCC is computed by using equation (4) 
bounded to (-1,+1), with +1 indicating 100% 
match, 0 indicating no match, and -1 indicating 
100% inverse match (matching with the negative 
of the template). To achieve both rotation and 
scale invariance, the template image is further 
scaled and rotated to compute NCC to identify 
fish-eating birds from the mosaicked imagery. 
This allowed finding the template occurrences 
in the source image regardless of its orientation, 
scale, or size. This method uses a pyramid search 
that was adapted to allow multi-angle and multi-
scale matching that can find the rotated and 
scaled instances of the template. Pyramid search 
identifies template position and orientation and 
estimates the matching metric. 

Results
Among the 52 ponds flown during the 4 

separate surveys, 26 ponds contained our 
target species and were used for automated 
image analysis. Overall mean (+SD) correct 
classification (observer count divided by 
algorithm count) with species and heights AGL 
combined were 0.80 (0.58) for template matching 
and 0.67 (0.67) for color segmentation. Accuracy 
varied considerably among species but was best 
overall for egrets (Tables 1 and 2). Egrets were 
also the most observed species in this study and 
were therefore more influential on our overall 
correct classification rate reported compared to 
either herons or cormorants.

There was no significant difference in accuracy 
among heights AGL when all species were 
lumped together for either template matching 
(F2, 53 = 0.02, P = 0.98) or color segmentation 
(F2, 53 = 0.82, P = 0.45). Mean template matching 
accuracy was 0.79 (0.41) at 61 m AGL, 0.81 
(0.59) at 122 m, and 0.78 (0.73) at 183 m. Mean 
color segmentation accuracy was 0.48 (0.52) at 
61 m AGL, 0.76 (0.71) at 122 m, and 0.71 (0.73) 
at 183 m. There was a significant difference in 
accuracy among species when all heights AGL 
were combined for template matching (F2, 53 
= 10.30, P = 0.0001). The Tukey’s test revealed 
mean accuracy to differ between egrets and 
cormorants (P = 0.01), egrets and herons (P = 
0.04), and cormorants and herons (P = 0.0002). 
Mean accuracy for template matching was 0.44 
(0.36) for cormorants, 0.88 (0.49) for egrets, 
and 1.37 (0.80) for herons. There was also a 
significant result for color segmentation among 
species (F2, 53 = 8.59, P = 0.0005), with Tukey’s 
test results revealing egret accuracy to be 
different than cormorants (P = 0.04) and herons 
(P = 0.0007). Color segmentation overestimated 
herons and cormorants compared to egrets with 
a mean accuracy of 0.02 (0.04) for herons, 0.95 
(0.35) for egrets, and 0.52 (0.92) for cormorants. 

Egrets were the most frequently observed 
species, being found on 6 ponds at 61 m AGL, 17 
ponds at 122 m, and 6 ponds at 183 m (Tables 1 and 
2). Color segmentation had significantly lower 
average omission (P = 0.003) and commission (P 
= 0.0001) percentages than template matching. 
Median omission and commission percent was 
0.30 and 0.43 for template matching, and 0.12 
and 0.15 for color segmentation, respectively. 
Actual counts versus algorithm counts were 
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Table 1. Results from a template matching algorithm used to identify 3 fish-eating bird species,  
double-crested cormorants (Phalacrocorax auritus), great blue herons (Ardea herodias), and great 
egrets (A. alba) at 3 different heights above ground level (AGL) on catfish (Ictalurus spp.) aquacul-
ture ponds in Mississippi, USA. This algorithm was applied to mosaicked imagery constructed  
from individual overlapped images captured by an unmanned aerial system. Numbers presented 
are n = number of ponds, mean, and standard deviation in parentheses.

Species n AGL 
(m)

Observer 
count

Algorithm 
count Accuracya Percent 

omissionb
Percent  
commissionc

  6   61 32.7 (25.8) 37.7 (38.5) 0.99 (0.24) 21.2 (14.6) 22.7 (17.7)
Egret 17 122 16.2 (17.1) 19.8 (15.6) 0.87 (0.59) 50.8 (29.7) 56.2 (33.7)

  6 183 19.0 (25.9) 21.3 (24.2) 0.76 (0.34) 14.6 (14.2) 38.5 (20.6)

  4   61   4.5 (5.7)   8.5 (14.3) 0.98 (0.44) 10.3 (15.8) 15 (30)
Heron   3 122   2.3 (1.5)   1.7 (0.6) 1.33 (0.58) 12.6 (28.9)   0 (0)

  1 183   3 (na)   1 (na) 3 (na) 66.7 (na)   0 (na)

  5   61   17.8 (6.6)   72.4 (60.0) 0.38 (0.26) 21.5 (15.0) 69.4 (22.5)
Cormorant   6 122   18.8 (14.8)   57.0 (26.8) 0.39 (0.33) 28.9 (19.2) 73.5 (17.6)

  8 183   16.0 (16.8)   39.9 (28.9) 0.51 (0.45) 31.1 (21.5) 70.1 (20.4)
a Accuracy is calculated by dividing observer counts by algorithm counts. 
b Percent omission is calculated by dividing the number of birds the algorithm failed to identify by 
the actual count and multiplying by 100. 
c Percent commission is calculated by dividing the number of falsely identified birds by the algo-
rithm count and multiplying by 100. 

Table 2. Results from a color segmentation algorithm used to identify 3 fish-eating bird species, 
double-crested cormorants (Phalacrocorax auritus), great blue herons (Ardea herodias), and great 
egrets (A. alba) at 3 different heights above ground level (AGL) on catfish (Ictalurus spp.) aquacul-
ture ponds in Mississippi, USA. This algorithm was applied to mosaicked imagery constructed 
from individual overlapped images captured by an unmanned aerial system. Numbers presented 
are n = number of ponds, mean, and standard deviation in parentheses.

Species n AGL 
(m)

Observer 
count

Algorithm 
count Accuracya Percent 

omissionb
Percent  
commissionc

  6   61 32.7 (25.8)     30.8 (25) 1.04 (0.15) 19.8 (15.2) 17.6 (11)
Egret 17 122 16.2 (17.1)     20.3 (18.4) 0.86 (0.34) 12.3 (13.3) 25.4 (30)

  6 183 19 (25.9)     15 (16.6) 1.10 (0.47) 17.6 (18.5) 15.4 (28)

  4   61   4.5 (5.7) 1491.8 (1340.6) 0.03 (0.05)   1.9 (3.8) 97.0 (5.4)
Heron   3 122   2.3 (1.5)   514 (419) 0.01 (0.01)   0 (0) 99.2 (1)

  1 183   3 (na)   110 (na) 0.03 (na)   0 (na) 97.3 (na)

  5   61 17.8 (6.6) 1865.6 (2261.1) 0.17 (0.34) 22.3 (27.6) 85.2 (30.6)
Cormorant   6 122 18.8 (14.8)   232.0 (251.8) 0.83 (1.35) 24.0 (32.8) 68.7 (32.5)

  8 183 16.0 (16.8)   111.5 (149.3) 0.50 (0.80) 29.8 (34.0) 83.0 (13.3)
a Accuracy is calculated by dividing observer counts by algorithm counts. 
b Percent omission is calculated by dividing the number of birds the algorithm failed to identify by 
the actual count and multiplying by 100. 
c Percent commission is calculated by dividing the number of falsely identified birds by the algo-
rithm count and multiplying by 100. 
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comparable; however, this is due to omissions 
and commissions being similar (Table 1 and 
2). Essentially, each algorithm misidentified 
egrets close to the same rate as it failed to 
identify egrets. Figure 1A shows an example 
of visual spectrum imagery of egrets used for 
performing color segmentation, and Figure 1B 
is the resulting output. 

Herons were digitally captured on imagery 
on 4 ponds at 61 m AGL, 3 ponds at 122 m, 
and only 1 pond at 183 m. Average omission 
percentage of template matching was not 
significantly different from color segmentation 
(P = 0.18), but commission percentages were 
significantly less than color segmentation (P 
= 0.008). Median omission and commission 
percent was 0.04 and 0.0 for template matching, 
and 0.0 and 0.99 for color segmentation, 
respectively. Although the omissions were 
approximately zero for color segmentation, 
commission percent was nearly 100% (Tables 
1 and 2). In effect, color segmentation could 
not accurately differentiate between the color 
of cryptic herons and the background, leading 
the algorithm to classify almost everything in 
the image as a heron. Figure 2A shows visual 
spectrum imagery of egrets and herons, which 
was used for performing template pattern 
matching. Figures 2B shows an example of the 
results of template matching of herons from the 
selected imagery.

Cormorants were observed on 5 ponds at 61 m 
AGL, 6 ponds at 122 m, and 8 ponds at 183 m. We 
unfortunately experienced issues with mosaic 
artifacts due to the larger pond sizes found at 
study areas 2 and 3 relative to study area 1. The 
lack of features to align imagery for mosaicking 
resulted in issues with image overlap and 
distortion during the stitching process. We 
therefore subset some images to smaller areas 
within ponds that contained cormorants and 
for which image quality issues associated with 
mosaicking were largely removed. Despite 
the sub-setting, neither algorithm performed 
well for this species, each having both elevated 
omission and commission percentages. No 
significant difference was detected between 
methods for either omission percentage (P = 
0.89), or commission percentage (P = 0.10). 
Median omission and commission percent was 
0.20 and 0.77 for template matching, and 0.11 
and 0.91 for color segmentation, respectively. 

Mean algorithm count was greatly elevated 
compared to actual count (Tables 1 and 2). 
Figure 3A shows an example of visual spectrum 
imagery containing cormorants used in color 
segmentation that performed well, and Figure 
3B is the resulting output. 	

Discussion
Using UAS, we were able to successfully 

collect imagery of fish-eating birds on catfish 
aquaculture ponds and estimate abundances 
using manual counting. When applying 
computer-automated algorithms to this imagery, 
we observed varying levels of accuracies, which 
were dependent on the species observed, 
the algorithm used, and ambient conditions. 
Overall, the algorithms were able to correctly 
distinguish fish-eating bird species that were 
distinctly different in terms of color and 
morphology. Our sample size for each species 
at each height AGL was low, and we therefore 
cannot establish any real difference in algorithm 

Figure 1. (A) Visual spectrum imagery of great 
egrets (Ardea alba) on a catfish (Ictalurus spp.) 
aquaculture pond in Mississippi, USA, taken on 
August 9, 2017. This imagery was taken using 
a Sony RX100 camera attached to a Triton 
unmanned aerial system at 61 m above ground 
level. (B) Results of a color segmentation 
algorithm specific to great egrets for the area 
outlined in (A).  
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performance based on height AGL or resolution 
for each species. 

We found no difference in accuracy among 
heights AGL when lumping species together 
for either algorithm; however, differences 
among species at differing heights are probable 
given their differences in morphology. Manual 
counting of mosaics was possible for each 
height AGL. However, mosaics at 183 m were 
quite pixelated, making identification more 
time consuming and complicated compared 
to the other heights AGL. Imagery collected 
at 61 m AGL produced the highest resolution; 
however, these flights also took the longest 
time to complete, required the greatest amount 
of memory to store imagery, and had more 
mosaicking issues than other heights AGL. 
Because of these reasons, we recommend using 
a height AGL that produces image quality high 

enough for easy manual counting but does not 
require long flight times or large amounts of 
memory. In this study with our UAS setup, the 
122 m AGL best met these goals. 

We found both color segmentation and 
template matching to perform well on egrets, 
template matching performed better than color 
segmentation for herons, and both algorithms 
performed poorly for cormorants. Overall 
accuracy was measured by dividing actual 
counts by algorithm counts, resulting in a 
metric that is ideally close to 1. However, it is 
important to note differences in both omissions 
and commissions, as these relate directly to the 
ability of the algorithms to successfully detect 
target species as well as its ability to avoid false 
detections. We found similar rates of omissions 
and commissions on a number of ponds for 
different species that can, in a sense, average 

Figure 2. (A) Visual spectrum imagery 
of great egrets (Ardea alba) and great 
blue herons (A. herodias) on a catfish 
(Ictalurus spp.) aquaculture pond in 
Mississippi, USA, taken on October 18, 
2014. This imagery was taken using a 
Sony RX100 camera attached to a Triton 
unmanned aerial system at 61 m above 
ground level. (B) Results of the template 
matching algorithm specific to great blue 
herons for the area in (A).  

Figure 3. (A) Visual spectrum imagery of double-
crested cormorants (Phalacrocorax auritus) on a 
catfish (Ictalurus spp.) aquaculture pond in Missis-
sippi taken on August 8, 2014. This imagery was 
taken using a Sony RX100 camera attached to a 
Triton unmanned aerial system at 122 m above 
ground level. (B) Results of the Delta-E color 
segmentation algorithm specific to double-crested 
cormorants for the area outlined in (A).   
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out and thus produce estimates that are close to 
actual counts in some instances. 

With our algorithms and fieldwork, we 
identified 4 major factors that can influence 
results: (1) morphological and behavioral 
characteristics of the birds themselves, (2) sun 
reflections on the waterbody, (3) bird shadows, 
and (4) mosaicking artifacts. Morphological 
characteristics such as size, shape, and color of 
the target species can influence the performance 
of automated algorithms (Chabot and Francis 
2016, Rush et al. 2018). This was evident in 
the case of color with egrets, which stood out 
starkly in the imagery, increasing accuracy of 
the color segmentation algorithm. Behavioral 
characteristics, such as foraging behavior, will 
affect where the target species is located in the 
environment. In our case, herons and egrets 
both forage along shorelines, while cormorants 
forage in open water. This results in differing 
backgrounds in which the algorithm needs to 
identify specific target species. Additionally, 
specific habitat will also add complexity to 
identifying birds. For example, identifying 
herons on aquaculture is likely easier compared 
to a more diverse and complex tidal marsh. 

Reflections caused by sun on the waterbody 
can be a major issue, as the imagery gets 
saturated and the algorithms are not sensitive 
enough to identify the birds accurately. This 
can be seen where the reflection from the sun 
has caused noise in the imagery (Figure 3). 
Any white bird within that region may go 
unidentified, or conversely, white reflections 
can be misclassified as a bird, resulting in a 
high omission rate. This issue did occur in our 
work when identifying egrets while there was 
bright sun reflectance off of pond water, which 
was a similar white color to the birds. Shadows 
cast by birds are not a major problem with 
color segmentation algorithm, as it relies on 
the red, green, and blue combination of pixels 
rather than shape. With the template matching 
algorithm, shadows can sometimes (based on 
its similarity to the bird) be misclassified as a 
bird. Finally, the image mosaics were created 
by stitching overlapping image snapshots 
captured from the UAS. These individual 
snapshots need to have object features or 
tie points that can be used for stitching as 
features. This was a problem for cormorants at 
study area 2 and 3. Specifically, ponds were so 

large that mosaicking was difficult due to the 
absence of common points among individual 
images. Additionally, with waterbody being 
monotonous, there can be some artifacts in 
the mosaics along the stitching line that can 
influence the algorithm classification.

Color segmentation is a fast and not 
computationally intensive method for iden-
tifying wildlife that tend to be monotypic in 
color and that have strong contrasts against 
the image background. Color segmentation is 
particularly suitable for surveys taking place 
at catfish aquaculture facilities, as background 
colors are particularly uniform and contrast 
nicely against the white color of egrets and 
sometimes the black color of cormorants. 
However, in situations where the background 
contains colors similar to that of the target 
species, color segmentation may produce false 
identification. 

Herons were especially difficult for this 
problem, with the color segmentation results 
showing nearly 100% commission. Herons 
appear light grey in color on the imagery, 
and the algorithm was not sensitive enough 
to differentiate them from the shoreline 
background effectively. Similarly, the cormo-
rants we captured on imagery tended to be on 
ponds with darker, murkier water, reducing 
identification accuracy. In contrast, template 
matching algorithms can be employed to 
identify birds based on shape, and thus may 
perform better with more cryptic wildlife such 
as the case with herons in our study. Although 
template matching accuracy was better for 
herons compared to color segmentation, we 
observed a very limited number of herons 
throughout this study. Therefore, general 
claims about template matching performance 
on herons is difficult, especially in cases where 
heron abundance is greater. Template matching 
performed similarly to color segmentation 
for cormorants. When cormorants sit on 
open water, they are oval in shape, and 
mosaic artifacts and wave ripples seemed 
to match the shape, causing commissions. 
Nonetheless, template matching is much more 
computationally intensive in comparison to 
color segmentation, creating a tradeoff between 
computer processing time and potential 
accuracy, especially on larger images.

The use of UAS in ecological work continues 



327Waterbird abundance • Burr et al.

to grow as the technology advances, their 
user-friendliness increases, and their costs 
decline (Anderson and Gaston 2013, Christie 
et al. 2016, Gonzalez et al. 2016). With UAS 
ability to take high-resolution imagery, the 
development of automated pattern recognition 
has unsurprisingly also become a popular 
tool to identify wildlife (Chabot and Francis 
2016). Whereas larger mammalian studies have 
traditionally used this technology more in the 
past due to the larger size of target species, 
monitoring smaller species, such as birds, is 
now possible (Linchant et al. 2015, Chabot and 
Francis 2016). A similar but more sophisticated 
method than what is presented here is object-
based image analysis (OBIA; Blaschke 2010). 
Commercial products of OBIA software are 
becoming more readily available and user-
friendly for the use of identifying features 
of interest in aerial imagery based on spatial, 
spectral, and texture attribute (Chabot et al. 
2018). Chabot et al. (2018) used off-the-shelf 
OBIA software to develop a repeatable method 
using OBIA on aerial imagery and tested 
it on lesser snow geese (Chen caerulescens) 
imagery taken across the Canadian Arctic with 
impressive accuracy. 

As technological advances continue to 
be made, UAS platforms and computer-
based algorithms will have countless more 
applications in wildlife ecology. The UAS are 
already being used in a variety of creative 
ways in the field. Wilson et al. (2017) attached 
a recording device to a rotary UAS as a means 
of recording songs birds in replacement of 
traditional point count methods. The UAS are 
also showing promise as bird harassment tools 
to reduce agriculture damage (Bhusal et al. 
2018, Wandrie et al. 2019) and to actively herd 
birds away from certain areas (Paranjape et al. 
2018). Interestingly, there is a fine line between 
using UAS to harass purposely, or to discreetly 
monitor avian species. 

Numerous studies have explicitly tested or 
at least reported on bird responses to UAS, 
all which show varying degrees of responses, 
ranging from no response at all to complete 
flushing of the bird. However, these responses 
are very specific to certain factors, such as 
specific species, time of day, reproductive 
status, and height flown above the animal 
(Brisson-curadeau et al. 2017, Sardà-palomera 

et al. 2017, Weimerskirch et al. 2017). Some of 
the current restrictions of UAS use in this field 
include limited coverage area due to battery 
constraints and restricted legislation (Linchant 
et al. 2015). As strides are made to address 
these challenges, it is clear that UAS will 
revolutionize data collection in many aspects of 
ecological research and management.  

Management implications
Here we were able to apply UAS and 

automated counting algorithm technologies 
to estimate the number of fish-eating birds on 
aquaculture facilities. Although our results 
varied in accuracy depending on the species 
and algorithm, this application to identify birds 
on catfish ponds has the potential applications 
to monitor human–wildlife conflict between 
fish-eating birds and catfish producers. These 
methods can rapidly count and identify specific 
target species with minimal disturbance to the 
wildlife over relatively large areas and provide 
near real-time data on both bird locations 
and total abundance. Such information can 
be applied to management efforts to reduce 
depredation, provide estimates to be used in 
damage estimates and crop insurance claims, 
and acquire data on bird foraging ecology.  
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