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1 Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27,
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Abstract: Various types of σ-hole bond complexes were formed with FX, HFY, H2FZ, and H3FT
(X = Cl, Br, I; Y = S, Se, Te; Z = P, As, Sb; T = Si, Ge, Sn) as Lewis acid. In order to examine their
interactions with a protein, N-methylacetamide (NMA), a model of the peptide linkage was used as
the base. These noncovalent bonds were compared by computational means with H-bonds formed
by NMA with XH molecules (X = F, Cl, Br, I). In all cases, the A–F bond, which lies opposite the base
and is responsible for the σ-hole on the A atom (A refers to the bridging atom), elongates and its
stretching frequency undergoes a shift to the red with a band intensification, much as what occurs for
the X–H bond in a H-bond (HB). Unlike the NMR shielding decrease seen in the bridging proton of a
H-bond, the shielding of the bridging A atom is increased. The spectroscopic changes within NMA
are similar for H-bonds and the other noncovalent bonds. The C=O bond of the amide is lengthened
and its stretching frequency red-shifted and intensified. The amide II band shifts to higher frequency
and undergoes a small band weakening. The NMR shielding of the O atom directly involved in the
bond rises, whereas the C and N atoms both undergo a shielding decrease. The frequency shifts of the
amide I and II bands of the base as well as the shielding changes of the three pertinent NMA atoms
correlate well with the strength of the noncovalent bond.

Keywords: stretching frequency; NMR shielding; atomic charge; NBO; energy decomposition

1. Introduction

Our understanding of the H-bond (HB) represents a cornerstone of what has been learned over
the years about solvation phenomena and the structure and function of biological systems [1–4].
The energetic and geometric aspects of the HB have raised our recognition of the requirements of
a stable protein and the mechanism of countless enzymes. As part of the analysis of such systems,
spectroscopic methods are commonly deployed to identify the presence of HBs, and to provide
assessments of their strength. In particular, the shifts in certain IR bands or NMR peaks are frequently
interpreted as a quantitative measure of the strength of each such bond [5–7]. As examples [3,8,9], the
red shift of the A–H stretching frequency is thought to correlate with the strength of the AH···B HB, and
there is a similar type of relationship for the downfield shift of the NMR peak of the bridging proton.

Recent years have witnessed a growing recognition of a set of newly rediscovered noncovalent
bonds. Rather than utilizing a proton as a bridge between a pair of molecules, these related interactions
incorporate a more electronegative atom from the right side of the periodic table. Although this
bridging atom may have an overall partial negative charge, a detailed examination of its surrounding
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electrostatic potential reveals the existence of what has come to be called a σ-hole, a small region of
positive potential lying directly along the extension of the covalent bond connecting it to the rest of the
molecule. Depending upon the column of the periodic table from which this bridging atom is drawn,
the resulting noncovalent bond with a nucleophile is designated as a halogen (XB), chalcogen (YB),
pnicogen (ZB), or tetrel (TB) bond. Like the HB, this class of bonds [10–36] are similarly derived from a
primary electrostatic attraction, supplemented by substantial amounts of charge transfer, polarization,
and dispersion components.

These noncovalent bonds have a number of features in common. They are of a strength comparable
to or even greater than a HB. Each such bond is strengthened by electron-withdrawing substituents
which intensify the σ-hole. These bonds are usually strengthened as one moves down each column of
the periodic table, for example, Cl < Br < I. First-row atoms (i.e., F, O, N, and C) engage in only weak
bonds of this type if at all, but can be coaxed into measurable interactions by appropriate substituents
or by adding a charge [37–43].

Despite the recent amassing of fundamental information about these noncovalent bonds,
their effects upon the IR and NMR spectra have attracted far less attention. The data that have
appeared [37,44–54] are informative to be sure, but they do not consider these systems in a systematic
manner. As such, a thorough understanding is not available of the manner in which each type of
interaction modulates the spectra, or of the processes by which they might do so. Such information
would be essential in detecting their presence in a given chemical or biological system. It would also
be especially useful if correlations could be established, between certain spectroscopic parameters and
the strength or geometry of a given bond, as has proven so very useful for HBs over the years.

The present work represents an attempt to remedy this lack of information. The focus is placed
here on proteins where such noncovalent bonds may be an important component in their structure and
function. Indeed, sparked by very recent recognition of the importance of such interactions, researchers
have begun to search for their presence in previously solved structures and have successfully identified
them in a growing number of cases [18,55–62]. That work would be greatly facilitated if one knew the
trademark spectroscopic fingerprint with which to search for such bonds.

A number of model systems were generated in which a halogen, chalcogen, pnicogen, or tetrel
bond was present. Their interactions with a protein were simulated by using a model of the peptide
group as electron donor, in much the same way that the peptide O atom acts as proton acceptor in
so many protein HBs. Quantum calculations evaluated the strength of each interaction, as well as
its geometric properties. The effects of each bond upon the IR and NMR spectra of the system were
determined and compared with the binding strength, identity of the bond, and nature of the specific
bridging atom. In this way, a systematic set of rules was generated that may hopefully assist in
identifying these types of bonds in a complicated system, and providing some measure of their strength.

As the goal of this work was to determine how the spectroscopic features of H-bonded systems
compared with the same aspects of related noncovalent bonds, a variety of different Lewis acids (i.e.,
σ-hole donors) were chosen to cover a broad range in each category. The full range of hydrogen halides,
namely, FH, ClH, BrH, and IH, represent molecules of varying acidity that donate a proton in a HB.
Within the set of halogen-bonding molecules, FCl, FBr, and FI all place an electron-withdrawing F
substituent on the halogen atom so as to create a σ-hole which can engage with a nucleophile. A similar
philosophy was adopted for the other types of Lewis acids. HFS, HFSe, and HFTe cover a range of
chalcogen-bonding molecules. Pnicogen-bonding was invoked via H2FP, H2FAs, and H2FSb, whereas
H3FSi, H3FGe, and H3FSn represent the set of tetrel-bonding molecules. Of course, one would not
expect these molecules themselves to typically be present within a protein environment, as they serve
merely as models of larger molecules. With respect to nucleophile, the N-methylacetamide (NMA) unit
serves as a commonly invoked model of the protein peptide group. Its O atom is expected to form not
only HBs with proton donors, but also the other types of noncovalent bonds with the various Lewis
acids. It was hoped that this choice of base would enable parallels to be drawn to the spectroscopic
aspects of these interactions within the confines of a protein.
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2. Results

The optimized geometries of some of the sample systems are displayed in Figure 1; others are
quite similar. Coordinates of all optimized complexes are available in the Supplementary Materials
section. It may be noted that the relative orientations are as would be expected for each of the types of
bonds under consideration here, commensurate with the positions of the σ-holes on each type of Lewis
acid, and with the O atom of NMA serving as the electron donor atom.

Figure 1. Optimized geometries of indicated Lewis acids with N-methylacetamide (NMA). Distances
in Å, angles in degrees.

2.1. IR Spectra

The first four rows of Table 1 reiterate the types of changes in the monomers that are well known
for HBs. The X–H bond of the proton donor is elongated and its stretching band is shifted to the red and
intensified. In these particular cases, the stretch of the XH bond increases from 0.032 Å for the smallest
X=F atom up to 0.069 Å for the largest X=I. The red shift is equal to approximately 600–700 cm−1 for
the entire range of X atoms. The intensification of the band is expressed as the ratio of the intensity
within the complex to that within the HX monomer. This quantity is 14 for HF and increases up to 147
for HBr, and then makes a large jump to nearly 48,000 for HI. The changes occurring within the proton
acceptor NMA molecule are somewhat smaller but still easily detectable. Upon forming a HB with
each HX molecule, the C=O bond of NMA elongates by 0.01 Å. Its stretching frequency, commonly
known as the amide I band, shifts to the red by 30–170 cm−1, and becomes more intense by a factor
of 1.6–10. In each case, the magnitude rises along with the size of the X atom, that is, F < Cl < Br < I.
The amide II band is a combination of C–N stretch and N–H bend. This mode shifts to the blue by
25 cm−1, with little sensitivity to the identity of X. There is a small diminution of its intensity for the
three lighter X atoms, and an intensification for HI.

The lower portions of Table 1 refer to halogen, chalcogen, pnicogen, and tetrel bonding, abbreviated
as XB, YB, ZB, and TB, respectively. The general patterns for all of these types of noncovalent bonds
echo the changes observed for HBs. The bond within the Lewis acid molecule that engages with the
partner NMA elongates, and its stretching mode shifts to the red and becomes more intense. Just as in
the case of HBs, the C=O bond of NMA also becomes longer, shifts to the red, and intensifies. The
changes induced in the amide II band are also quite similar to those caused by HB formation, and of
comparable magnitude.
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Table 1. Changes in internal bond lengths (Å), stretching frequencies (cm−1), and band intensification
resultinga from complex formation.

– ∆r (X–H) ∆ν (X–H) Icomp/Imon
∆r

(C=O)
∆ν

(C=O)b Icomp/Imon
∆ν (Amide II

Band)c Icomp/Imon

FH···NMA 0.032 −729 14.0 0.012 −30 1.6 +26 0.9
ClH···NMA 0.051 −695 48.6 0.013 −50 2.8 +25 0.9
BrH···NMA 0.060 −705 146.8 0.014 −75 4.8 +26 0.8
IH···NMA 0.069 −606 47,960.0 0.014 −169 10.1 +25 1.8

XB ∆r (F−X) ∆ν (F−X)
FCl···NMA 0.042 −103 10.5 0.013 −45 2.2 +22 0.9
FBr···NMA 0.048 −80 6.8 0.017 −55 2.5 +30 0.8
FI···NMA 0.044 −58 4.4 0.019 −55 2.6 +35 0.7

YB ∆r (F−Y) ∆ν (F−Y)
HFS···NMA 0.030 −71 3.7 0.009 −28 1.8 +19 1.0
HFSe···NMA 0.039 −64 3.4 0.013 −36 2.1 +25 0.9
HFTe···NMA 0.041 −56 2.6 0.016 −49 2.3 +30 0.8

ZB ∆r (F–Z) ∆ν (F–Z)
H2FP···NMA 0.024 −58 2.3 0.008 −24 1.7 +15 1.0

H2FAs···NMA 0.032 −54 2.2 0.010 −29 1.8 +20 1.0
H2FSb···NMA 0.036 −51 1.9 0.013 −40 1.9 +25 0.9

TB ∆r (F–T) ∆ν (F–T)
H3FSi···NMA 0.024 −57 3.2 0.008 −23 1.5 +17 1.0
H3FGe···NMA 0.031 −57 2.0 0.009 −25 1.6 +20 1.0
H3FSn···NMA 0.034 −50 1.7 0.013 −35 1.8 +28 0.9

a MP2/aug-cc-pVDZ level; b amide I band, primarily C=O stretch; c combination of C–N stretch and N–H bend.

Systematic patterns also occur in the data. The magnitudes of the changes within the σ-hole donor
follow the general decreasing order of XB > YB > ZB ~ TB. The bond elongations generally increase
along with a larger atom (e.g., P < As < Sb), whereas the spectroscopic changes follow an opposite
pattern, diminishing with a larger atom. While the bond stretches are roughly of the same magnitude
as observed in the HBs, the spectroscopic data are much smaller. For example, the formation of a HB
by ClH shifts its stretching frequency by 700 cm−1, and intensifies the band by a factor of 50, whereas
the FCl bond is red-shifted by only 100 cm−1, and intensifies by 10-fold.

With regard to the NMA electron donor, the perturbations also follow the XB > YB > ZB ~ TB
order. Within any given class of bond (e.g., chalcogen), all parameters, such as bond stretch, red
shift, and intensification, grow in magnitude as the atom in question becomes larger (e.g., S < Se <

Te). These perturbations are comparable to those noted as a result of HB formation. In summary, the
IR perturbations to the spectra of both electron acceptor and donor molecules within any of these
noncovalent bonds are quite similar to those expected for HBs, notwithstanding the larger changes in
the HB proton donor′s stretching frequency, which are due in part to the much lighter mass of the
bridging proton.

2.2. NMR Spectra and Atomic Charges

Tables S1 and S2 (Supplementary Materials) display the NMR isotropic chemical shielding of each
of the unperturbed monomers, and the analogous data for the optimized complexes are contained in
Table S3 (Supplementary Materials). More importantly, Table 2 lists the changes in the NMR isotropic
chemical shielding of the various relevant atoms resulting from the formation of each of the noncovalent
bonds. The topmost section of data reflects the deshielding that occurs on the bridging proton as a
result of HB formation. This deshielding varies from 7 ppm for FH up to 11 ppm for BrH and IH.
In contrast, the other bridging atoms, whether X, Y, Z, or T, all undergo an increase in their shielding.
The magnitude of this change is largest for X, then decreases in the order of Y > Z > T. For each class of
bond, the shielding increase rises dramatically along with the size of the atom. For example, the Cl, Br,
and I atoms of the XB complexes increase their shielding by 239, 929, and 2197 ppm, respectively.
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Table 2. Changes of NMR chemical shielding (ppm) caused by complexationa.

System Atoms

HB H X O Cb N
FH···NMA −6.9 −19.5 34.4 −6.3 −5.1
ClH···NMA −9.5 −1.0 20.0 −6.0 −5.4
BrH···NMA −10.6 35.8 15.4 −6.2 −5.6
IH···NMA −11.2 175.7 7.0 −6.1 −5.7

XB X F
FCl···NMA 239.3 −139.2 28.4 −5.4 −5.4
FBr···NMA 929.2 −208.8 46.5 −7.1 −7.7
FI···NMA 2196.7 −296.2 62.6 −7.8 −9.9

YB Y F
HFS···NMA 141.2 −112.0 28.1 −4.0 −4.6
HFSe···NMA 521.2 −151.9 38.8 −4.9 −6.5
HFTe···NMA 1310.8 −193.1 49.4 −7.6 −8.4

ZB Z F
H2FP···NMA 40.0 −62.2 22.0 −4.0 −4.3

H2FAs···NMA 107.6 −71.1 27.5 −4.5 −5.5
H2FSb···NMA 283.9 −80.6 35.2 −6.3 −7.2

TB T F
H3FSi···NMA 17.3 −42.5 17.0 −4.0 −4.5
H3FGe···NMA 42.5 −47.3 19.8 −4.3 −5.2
H3FSn···NMA 127.0 −53.0 29.4 −5.8 −7.6

a MP2 level, aug-cc-pVDZ basis for all atoms except 4th row I, Te, Sb, and Sn, which used all-electron
Sapporo-DKH3-DZP-2012-diffuse; b C atom bonded to O.

The F atom bound to the bridging atom suffers a loss in shielding, also in the same X > Y > Z > T
order. (The Br and I atoms of BrH and IH increase their shielding upon HB formation.) The O atom of
the NMA C=O bond raises its shielding, whereas its C and N neighbors suffer a drop. Probably owing
to its direct involvement in each noncovalent bond, the O increases are larger in magnitude than the
decreases observed in C and N. The O increases generally fall into the familiar X > Y > Z > T pattern.
While the O shielding increase diminishes with larger X atom in the XH· · ·NMA complexes, its increase
rises regularly along with larger bridging atom size in the other noncovalent bonds. In contrast, the C
and N shielding changes show lesser sensitivity to bond type or to bridging atom size. Importantly,
the general patterns on all three NMA atoms for the HBs are repeated for the other noncovalent bonds.

Certain points of consistency between the NMR shielding patterns and the changes in natural
atomic charge accompany the formation of each of these interactions, as reported in Table 3. Considering
first the NMA electron donor molecule, the O atom generally acquires additional electron density,
which is consonant with its enhanced shielding. The drops in the C and N shielding can likewise be
connected to the reduced negative charges of these atoms. The bridging atoms of the various Lewis acid
molecules acquire a larger negative charge as a result of complexation, which is consistent with their
increased shielding. On the other hand, the quantitative relationships are not correlated. For example,
while the shielding increase of the bridging atoms rises along with the size of this atom, the increased
negative charge varies in the opposite direction, that is, smallest for larger atoms. A perhaps even more
fundamental discrepancy occurs for the F atoms. Even though each such atom acquires additional
negative charge from the complexation process, its shielding drops by a large amount.
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Table 3. Changes of natural atomic charges (e) caused by complexationa

Donors Atoms

HB H X O C N
FH···NMA −0.003 −0.064 −0.035 0.020 0.025
ClH···NMA 0.038 −0.123 −0.013 0.019 0.025
BrH···NMA 0.050 −0.155 −0.005 0.020 0.029
IH···NMA 0.052 −0.168 0.006 0.020 0.031

XB X F
FCl···NMA −0.072 −0.094 0.044 0.016 0.033
FBr···NMA −0.058 −0.093 0.021 0.019 0.036
FI···NMA −0.050 −0.087 −0.001 0.022 0.040

YB Y F
HFS···NMA −0.043 −0.056 −0.002 0.016 0.023
HFSe···NMA −0.042 −0.063 −0.007 0.016 0.027
HFTe···NMA −0.013 −0.063 −0.023 0.022 0.035

ZB Z F
H2FP···NMA −0.035 −0.032 −0.020 0.013 0.016

H2FAs···NMA −0.027 −0.039 −0.019 0.014 0.020
H2FSb···NMA 0.018 −0.046 −0.036 0.021 0.029

TB T F
H3FSi···NMA −0.004 −0.025 −0.025 0.015 0.017
H3FGe···NMA −0.005 −0.030 −0.025 0.014 0.017
H3FSn···NMA −0.001 −0.038 −0.036 0.023 0.032

a MP2 level, aug-cc-pVDZ basis for all atoms except 4th row I, Te, Sb, and Sn, which used
all-electron Sapporo-DKH3-DZP-2012-diffuse.

Of course, the density changes that occur as a result of complexation are more complex than can
be fully encapsulated by a simple numerical atomic charge. The actual density shifts are shown as
a full three-dimensional map in Figure 2 where increases are shown in purple and losses in green.
The systems illustrated in Figure 2 represent the three ZB systems, but the diagrams for the XB, YB,
and TB bonds are quite similar. (The electron redistribution patterns of all systems are displayed in
Figure S1 (Supplementary Materials) at two different contour levels, ∆ρ = 0.0005 and 0.0015 au.) It is
clear that there are regions of both gain and depletion surrounding each nucleus, and the atomic charge
data represent only a broad summation of both effects. For example, while Table 3 indicates an overall
increase of electron density on the F atom, the more detailed examination in Figure 2 shows a region of
loss at the F nucleus, with areas of gain along the F–Z axis. Of course, the presence of both gain and
loss regions does not imply full cancellation, so the charge changes in Table 3 are not zero. It may be
concluded that the depletion close to the nucleus is the major factor responsible for the reduction in the
NMR shielding. The Z atom loses density on the side toward the NMA O atom, but compensates with
a gain along the Z–F bond. According to Table 3, the green area of loss predominates for Sb, and the
opposite occurs for the smaller P and As, which is consistent with the sizes of the lobes in Figure 2,
although of course it is difficult to quantify the totals from merely overall lobe size. As for the NMA
molecule, all three atoms of interest are centers of both purple and green lobes. However, it is the green
depletion lobes which are closest to the C and N nuclei which help explain their shielding reduction,
whereas the O nucleus lies within a purple density gain region, larger than the surrounding green area,
and so this results in a shielding increase.
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Figure 2. Regions of density gain (purple) and loss (green) in complexes pairing NMA with (a) H2FP,
(b) H2FAs, and (c) H2FSb. Contour shown is ±0.0015 au.

2.3. Relation to Binding Energies

One may expect some correlation between the spectroscopic aspects of these interactions and their
energetic strength. The interaction energies of each complex are displayed in Table 4 at three different
levels of theory. While the BLYP-D3/Def2TZVPP binding energies (II) are somewhat larger than the
two ab initio levels, it is gratifying that the MP2 results in column I are quite similar to the CCSD(T)
data in column III, both with the same aug-cc-pVDZ basis set.

Table 4. Interaction energies (Eint, kcal·mol−1) corrected for basis set superposition error (BSSE)
calculated at the MP2/aug-cc-pVDZ (I), BLYP-D3/Def2TZVPP (II), and CCSD(T)/aug-cc-pVDZ (III)
levels of theory.

System (I) (II) (III)

HB
FH···NMA −12.68 −14.59 −12.78
ClH···NMA −10.14 −11.27 −9.07
BrH···NMA −9.22 −11.37 −7.80
IH···NMA −7.23 −9.24 −5.38

XB
FCl···NMA −9.69 −14.88 −8.49
FBr···NMA −13.34 −16.86 −11.92
FI···NMA −15.75 −17.69 −14.40

YB
HFS···NMA −8.90 −10.32 −8.17
HFSe···NMA −11.18 −12.37 −10.21
HFTe···NMA −13.82 −13.95 −12.89

ZB
H2FP···NMA −7.40 −7.21 −7.00

H2FAs···NMA −8.65 −8.53 −8.13
H2FSb···NMA −11.40 −10.63 −10.93

TB
H3FSi···NMA −7.70 −7.11 −7.72
H3FGe···NMA −8.37 −7.53 −8.34
H3FSn···NMA −12.22 −10.20 −12.09

As is typically the case in these types of bonds, the interaction grows along with the size of the
bridging atom, whether X, Y, Z, or T. HB energies are directly related to the acidity of the proton
donor and therefore follow the pattern of HF > HCl > HBr > HI. The relationship between the
interaction energies and the frequency shifts of the various bands are exhibited in Figure 3. The data
presented exclude the HB systems due to their somewhat anomalous behavior with respect to the other
noncovalent bonds. For example, HB energy lessens as the X atom of XH grows larger, whereas XB
behaves in the opposite fashion. The green data points refer to the ∆ν band shifts of the F−A bond of
the Lewis acid (A refers to any of the bridging atoms). There is much scatter and one can conclude that
only a poor correlation occurs. Indeed, the correlation coefficient between this frequency shift and the
interaction energy is only 0.04. The two points that are furthest from any linear correlation with the
largest red shift correspond to the FCl and FBr halogen bonds. However, even if these two outliers are



Molecules 2019, 24, 3329 8 of 15

removed, the correlation remains poor, with a correlation coefficient of 0.10. The shifts of the NMA
bands are another story, as they are nearly linear functions of the energetics. The red line in Figure 3
relates to the amide I band, whose correlation coefficient with Eint is 0.90. Even better is the blue line
representing the amide II band with a correlation coefficient of 0.99. It thus appears that the frequency
shifts occurring within the electron donor molecule serve as an excellent indicator of the bond strength
in these systems.

Figure 3. Relationship between MP2/aug-cc-pVDZ interaction energy and changes in frequencies of
F–X stretch (green points), amide I (red), and amide II (blue). Broken lines indicate linear fits.

There is also a certain correspondence between the energetics and NMR data. Figure 4 shows a
nearly linear relationship with the changes in the NMR chemical shifts of the O, C, and N atoms of
the NMA electron donor molecule. The correlation coefficients are 0.94, 0.95, and 0.98, respectively.
Again, adding the HB systems to these data sets deteriorates the correlations, dropping them down
below 0.90. The shifts of the bridging X atom do not correlate well at all, as is evident from the large
fluctuations in the first column of Table 2. Thus, along with the IR shifts occurring within the electron
acceptor, the NMR chemical shifts can also act as a valuable indicator of bond strength.

Figure 4. Relationship between MP2/aug-cc-pVDZ interaction energy and changes in NMR shielding
of indicated atoms of NMA. Broken lines indicate linear fits.

2.4. Contributions to Binding Energies

It is well known that electrostatic attraction in noncovalent bonds such as these is supplemented
by orbital interactions and dispersion energy. A decomposition of the total interaction energies into
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its constituent parts was carried out and the results are reported in Table 5. There are similarities
between all of these bonds first in that electrostatics account for at least half of the total interaction.
This percentage contribution rises with the size of the bridging atom, with the exception of HBs
where the opposite trend is noted. Orbital interactions, which include internal polarization and charge
transfer, make up a bit less, approximately in the range of 31–47%, and their percentage contribution
tends to diminish with larger bridging atoms. Dispersion plays a lesser role, contributing 10% or less.
It is interesting that the dispersion′s percentage contribution follows the approximate pattern of XB <

YB < ZB ~ TB.

Table 5. EDA/BLYP-D3/ZORA/TZ2P decomposition of the interaction energy of complexes into Pauli
repulsion (EPauli), electrostatic (Eelec), orbital interaction (Eoi), and dispersion (Edisp) terms. All energies
are in kcal/mol. The relative values in percent express the contribution of each to the sum of all attractive
energy terms. Geometries are taken from MP2 optimizations.

System Eint EPauli Eelec % Eoi % Edisp %

HB
FH···NMA −14.86 21.59 −20.70 57 −13.93 38 −1.83 5
ClH···NMA −11.46 28.82 −20.22 50 −17.21 43 −2.85 7
BrH···NMA −11.21 33.58 −21.17 47 −20.34 45 −3.29 7
IH···NMA −8.87 37.65 −21.44 46 −21.53 46 −3.55 8

XB
FCl···NMA −14.07 32.53 −22.40 48 −21.91 47 −2.29 5
FBr···NMA −17.01 43.71 −31.66 52 −26.58 44 −2.48 4
FI···NMA −17.36 49.65 −37.72 56 −26.66 40 −2.63 4

YB
HFS···NMA −10.85 25.45 −18.92 52 −14.72 41 −2.66 7
HFSe···NMA −12.75 35.40 −26.27 55 −19.05 40 −2.83 6
HFTe···NMA −13.91 42.18 −32.62 58 −20.26 36 −3.21 6

ZB
H2FP···NMA −8.04 20.43 −15.78 55 −9.91 35 −2.79 10

H2FAs···NMA −8.88 26.12 −20.03 57 −11.94 34 −3.02 9
H2FSb···NMA −10.59 32.23 −25.76 60 −13.93 33 −3.13 7

TB
H3FSi···NMA −8.32 23.22 −17.73 56 −10.35 33 −3.48 11
H3FGe···NMA −7.88 25.96 −19.82 59 −10.51 31 −3.51 10
H3FSn···NMA −10.35 35.60 −28.63 62 −14.12 31 −3.20 7

Within the realm of the charge transfer, NBO offers a means of examining this phenomenon in
more detail. The first column of Table 6 displays the energetic consequence of charge transfer from
the lone pairs of the NMA O atom into the relevant σ* antibonding orbital of the Lewis acid, that is,
σ*(HX) for HB and σ*(AF) for the others. These quantities are largest for the HB systems, and then
diminish in the order of XB > YB > ZB > TB. Within each category, there is a general increasing trend
with the size of the A atom, with some exceptions. A broader view of the charge transfer sums all of
the interorbital interactions from base to acid. As seen in the next column of Table 6, these quantities
are only slightly larger but follow similar trends. Rather than consider the energies of each transfer,
one can simply evaluate the total charge transferred from base to acid. This quantity, designated as CT
in Table 6, also follows the XB > YB > ZB > TB trend, but in this case, the HB values are smaller than
those computed for XB and YB.

The strengths of these intermolecular bonds can also be measured via AIM analysis of the electron
density topology. Some of the most common indicators are reported in Table S4 (Supplementary
Materials). As is the case with the other measures described above, AIM verifies the general HB > XB >

YB > ZB > TB trend, as well as a tendency for stronger bonds to be associated with larger bridging
A atoms.
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Table 6. NBO values (kcal/mol) of E(2) for LP(O) donation to the Lewis acid σ*, orbital sum of all
E(2) between NMA and LA, and total charge transfer (CT, in me) from NMA to LA obtained at the
BLYP-D3/def2-TVZPP level.

LP(O)→σ*a Σ(base→acid) CT

HB
FH···NMA 29.85 31.22 66
ClH···NMA 31.24 33.69 84
BrH···NMA 39.14 43.25 105
IH···NMA 37.36 43.04 107

XB
FCl···NMA 23.94 27.93 167
FBr···NMA 26.75 30.63 151
FI···NMA 24.80 29.79 122

YB
HFS···NMA 13.05 16.21 86
HFSe···NMA 17.12 22.03 93
HFTe···NMA 17.65 23.28 80

ZB
H2FP···NMA 6.03 8.24 43

H2FAs···NMA 10.41 13.32 54
H2FSb···NMA 11.34 16.21 57

TB
H3FSi···NMA 5.24 10.63 41
H3FGe···NMA 7.30 12.78 41
H3FSn···NMA 9.37 19.21 56

a Sum of O lone pair transfers to σ*(H–X) for HB and σ*(A–F) for others.

3. Computational Methods

Full optimizations of isolated monomers and their complexes with NMA were performed at the
MP2/aug-cc-pVDZ level of theory [63,64] (coordinates of obtained complexes are given in Table S5).
For accurate electronic descriptions of the heavy I, Te, Sb, and Sn atoms, the aug-cc-pVDZ-PP basis
set with pseudopotentials that include relativistic effects was taken from the EMSL library [65,66].
Frequency analysis confirmed these structures as true minima. The DFT BLYP-D3/Def2TZVPP [67,68]
method was utilized in the NBO analysis (preceded by full geometry optimizations) so as to include
electron correlation. CCSD(T)/aug-cc-pVDZ [69,70] single-point calculations, using MP2 geometries,
provided a check on the MP2 energetics. Nuclear magnetic resonance (NMR) chemical shieldings
were computed via the GIAO approach at the MP2 level. To provide full flexibility to the inner-shell
electrons for purposes of NMR calculations, the all-electron Sapporo-DKH3-DZP-2012-diffuse [71]
basis set, with relativistic effects included, was used for 4th row atoms, instead of the effective core
potential of aug-cc-pVDZ-PP. Computations were carried out within the framework of the Gaussian09
suite of programs [72].

For isolated monomers, the maxima of molecular electrostatic potential (MEP) were located
and visualized using MultiWFN and WFA-SAS programs on the 0.001 au electron density isosurface
at the MP2 level [73–75]. Interaction energies of dimers were assessed as the difference in energy
between the complex and the two monomers in their distorted geometry within the complex. The basis
set superposition error (BSSE) was removed via the standard counterpoise procedure [76]. QTAIM
analysis was employed to identify and quantify specific interconnections between monomers, using
AIMAll Professional software [77]. NBO analysis (GenNBO 5.0) [78] was applied in order to measure
charge transfers between orbitals and to compare natural charges before and after complexation.
Decomposition of interaction energies was performed using the Morokuma–Ziegler EDA scheme
implemented in the ADF program at the BLYP-D3/ZORA/TZ2P level [79–81]. Electron density shifts
(EDSs) were visualized using the Chemcraft program.
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4. Summary

The calculations reveal that the various σ-hole noncovalent bonds do have certain spectroscopic
properties similar to HBs. Just as the X–H bond of the proton donor undergoes an elongation, and
its stretching frequency shifts to the red and intensifies, the same occurs for the F–A bond of the
Lewis acid. On the other hand, while each of these parameters intensifies as the halogen X atom of
the XH proton donor grows larger and the HB becomes weaker, the opposite trend of diminishing
spectroscopic change occurs for the other noncovalent bonds with the larger A atom as the bond grows
stronger. With respect to NMR chemical shielding, the HBs behave quite differently than do the others.
While the bridging H atom is deshielded by HB formation, the other bridging atoms (whether X, Y,
Z, or T) all increase their shielding. This shielding change rises quickly along with the size of the
particular atom. There is also a strong deshielding noted on the F atoms that lie directly opposite
each of these noncovalent bonds. It should be noted that the spectroscopic effects of the formation of
these noncovalent bonds upon the Lewis acid when interacting with the NMA surrogate of a peptide
bond are qualitatively similar to what was observed recently with the simpler but more powerful NH3

base [82].
The spectroscopic manifestations of HBs are much more similar to the other bonds within the

Lewis base molecule NMA. In all cases, the C=O bond of the amide is lengthened and its stretching
frequency red-shifted and intensified. The amide II band, composed of a C–N stretch and N–H bend,
shifts to higher frequency and undergoes a small band weakening. Like the overall bond strength, these
effects are heightened by enlarging the bridging A atom. The NMR parameters of all types of bonds
are very similar within the base. The shielding of the O atom directly involved in the bond rises by as
much as 65 ppm, whereas the C and N atoms of the peptide group both undergo a shielding decrease
in the range of 4–8 ppm. These changes rise in magnitude as the bridging A atom grows larger.

Both the frequency shifts of the amide I and II bands of the base as well as the shielding changes
of the three pertinent NMA atoms correlate well with the strength of the noncovalent bond. There is
thus some hope that spectroscopic measurements can serve not only as a marker for the presence of
each of these types of bonds, but also as a gauge for its strength.

Supplementary Materials: The supplementary materials are available online. Figure S1: Electron Density Shifts
calculated at the MP2. Purple indicates gain and loss is shown in green. Contours of ∆ρ = ±0.0005 au on left
and ±0.0015 au. on right, Table S1: NMR chemical shielding (ppm) of isolated monomers at MP2 level, Table S2:
NMR chemical shielding (ppm) of isolated NMA molecule at MP2/aug-cc-pVDZ level, Table S3: NMR chemical
shielding (ppm) for complexes at MP2 level, Table S4: AIM descriptors of complexes studied. Bond critical point
(BCP) properties: electron density ρ, Laplacian of electron density ∇2ρ, ellipticity ε, and total electron energy H,
were obtained at the MP2/aug-cc-pVDZ level. Data is given in atomic units, Table S5: Coordinates of complexes
optimized at MP2/aug-cc-pVDZ level.
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