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Milk oligopeptide inhibition of (α)-tocopherol fortified linoleic acid
oxidation
Haina Yuan a, Jinyan Gonga, Kun Tangb, Jinge Huangc, Gongnian Xiaoa, and Jianmin Lvd
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Key Lab for Chem&Bio Processing Technology of Farm Produces, Hangzhou, ZJ, China; bDepartment of
Endocrinology, The Affiliated Hospital of Guizhou Medical University, Guiyang, GZ, China; cDepartment of Biological
Engineering, Utah State University, Logan, UT, USA; dLaboratory Animal Research Center, Zhejiang Chinese Medical
University, Hangzhou, ZJ, China

ABSTRACT
This study investigated the effect of milk oligopeptides and (α)-tocopherol
on inhibition of linoleic acid oxidation using Fe2+-vitamin C induced linoleic
acid oxidation model through analysis of malondialdehyde, peroxide value,
and conjugated diene and triene in the model. The alteration of milk
oligopeptides maximal absorption wavelength, fluorescent feature, and
secondary structure were further investigated to elucidate the interactions
between milk oligopeptide and (α)-tocopherol that altered the inhibitory
effect of linoleic acid oxidation. Results showed that Pro-Tyr-Tyr-Ala-Lys
(PYYAK) and Ile-Pro-Ile-Gln-Tyr (IPIQY) with (α)-tocopherol significantly
inhibited the oxidation of linoleic acid and reduced the formation of mal-
ondialdehyde by 38% and 41%, respectively. Additionally, Ile-Pro-Ile-Gln-Tyr
-Val (IPIQYV) and (α)-tocopherol synergistically reduced the peroxide value
in the model by 36.8%. Milk oligopeptides exhibited a blue shift on its
maximal absorption wavelength, and their absorbance value decreased
with the increase of the (α)-tocopherol concentration. The fluorescent
intensity of milk oligopeptides was reduced with the addition of (α)-
tocopherol and such fluorescent intensity reductions resulted from the
static quenching process through the formation of milk oligopeptide-(α)-
tocopherol complex. Fourier transform infrared spectroscopy analysis
revealed that (α)-tocopherol significantly altered the secondary structure
of milk oligopeptides and the percentage of β-turn obviously increased in
milk oligopeptide-(α)-tocopherol complex. These indicated that the inhibi-
tion of linoleic acid oxidation might result from complex formed between
milk oligopeptide and (α)-tocopherol through inter-molecular interactions.
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Introduction

Linoleic acid is one of the most important essential fatty acids that play vital roles in the human
health.[1] Linoleic acid mainly exists in edible oils made of soybean, peanut, sunflower, and corn, and
it is considered a critical component in infant formula and other food products.[2] Basically, linoleic
acid consists of 18 carbons in a chain with 2 double bonds under a cis-conformation.[2]Linoleic acid
is highly sensitive to multiple environmental factors, including light, heat, and oxygen, and easily
oxidized to form oxidized products, which could result in the spoilage of the food products and
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induce potential health concern for human.[3,4] Some synthesized antioxidants, such as butylated
hydroxyanisole and tertiary butylhydroquinone, have been implemented in the linoleic acid-rich
foods to prevent the oxidation of linoleic acid. However, these synthesized antioxidants have been
paid more attention by customers on its potential health risk.[5] (α)-Tocopherol, also known as
vitamin E, is a natural antioxidant widely present in vegetable oil and it has been considered a best
antioxidant that could protect linoleic acid from degradation.[6] However, recent studies have
suggested that thermal treatment, high level of metal ions, and oil spoilage could facilitate the
oxidation of (α)-tocopherol, which could further induce the oxidation of linoleic acid in the food
products.[7]

Antioxidant peptides have gained much more attention in the field of food and nutritional
sciences. It has been reported that antioxidant peptides and their hydrolytes in milk, soybean, egg,
poultry, and seafood exhibited a high level of antioxidative capacities.[8,9] Milk oligopeptides, a major
hydrolyte group released from the casein and whey protein hydrolysis, have been extensively studied
due to their multiple functional features.[10] For example, Nielsen et al. have reported that milk
oligopeptides with bigger molecular weight possessed strong inhibitory activity on the oxidation of
the ω-3 polyunsaturated fatty acids.[11] It has also been reported that polyunsaturated fatty acids
fortified milk supplemented with oligopeptides exhibited high stability against the fatty acid
oxidation.[12-14] Some milk oligopeptides, such as Tyr-Phe-Tyr-Pro-Glue-Leu, Val-Lys-Glu-Ala-
Met-Ala-Pro-Lys, and Ala-Val-Pro-Tyr-Pro-Gln-Arg, have been isolated from the milk protein
hydrolytes.[15,16] However, the application of these isolated milk oligopeptides to prevent the lipid
oxidation has not been fully investigated to our best knowledge.

Previous studies have reported that proteins and their hydrolyzed peptides could interact with
(α)-tocopherol through non-covalent bonds (such as electrostatic and hydrophobic interactions)
in soybean oil. Such interactions could alter the tertiary conformation of oligopeptides (Leu-Gln-
His-Lys), which resulted in an improvement on prevention of the linoleic acid oxidation.[17-20]

Tironi et al. have also reported that the protein hydrolytes from chives, with the presence of (α)-
tocopherol, could decrease the conversion rate on secondary oxidation products in Rapeseed oil,
and such an inhibitory effect was not affected by temperature.[9] It has been known that the
antioxidant capacity of oligopeptides is essentially determined by its amino acid sequences and its
molecular weight.[21] However, other components in foods could also impact their antioxidant
property. For instance, a significant improvement in the antioxidant activity in foods was found
due to the synergetic effect caused by an oligopeptide (Tyr-His-Tyr) and phenolic compounds.[22]

In our previous study, we have identified the antioxidant properties of multiple milk oligopep-
tides isolated from fermented yogurt.[23] In this study, we further applied these milk oligopeptides
to the linoleic acid oxidation model with or without the presence of (α)-tocopherol. The objective
of this study was to investigate if milk oligopeptides could effectively inhibit the oxidation of
linoleic acid with (α)-tocopherol, and further to elucidate the interactions between oligopeptides
and (α)-tocopherol that could improve the stability of linoleic acid. The findings from this study
could provide vital information on quality development on infant formula and other linoleic
acid-rich food products.

Materials and methods

Chemicals and reagents

Milk oligopeptides used in the present study included Ile-Ala-Lys-Tyr-Ile (IAKYI), Pro-Tyr-Tyr-Ala-Lys
(PYYAK), Asn-Gln-Phe-Leu-Pro-Tyr-Pro-Tyr-Tyr-Ala-Lys (NQFLPYPYYAK), Ile-Pro-Ile-Gln-Tyr
(IPIQY), and Ile-Pro-Ile-Gln-Tyr-Val (IPIQYV). These oligopeptides were purchased from Zhejiang
Ontores Biotech Co. Ltd with a purity >99% (Zhejiang, China). (α)-Tocopherol, linoleic acid, and
1,1,3,3-tetraoxy ethyl propane, with a purity of 96%, 99% and 99%, respectively, were purchased from
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Sigma-Aldric (Milwaukee, WI, USA). The other reagents and chemicals were of analytical grade and
purchased from Huadong Medicine Co. Ltd. (Zhejiang, China) unless specifically noted.

Fe2+-vitamin c induced linoleic acid oxidation model

The ferrous ion-vitamin C induced linoleic acid oxidation model was adopted from the previously
published methods.[24,25] The model was further optimized in the present study in terms of the
ferrous ion concentration and oxidation duration under a simple factor experiment. Briefly, 1.0 mL
0.4 mol/L linoleic acid in dimethyl sulfoxide (DMSO) solution was well mixed with 2.0 mL 0.2 mol/L
acetic acid-sodium acetate buffer solution (pH 5.4). To optimize the concentration of the ferrous
solution, the mixture was mixed with 1.0 mL of the FeSO4 solution (20–60 mmol/L) and 1.0 mL of
16 mmol/L vitamin C solution. The resultant mixture was incorporated with 2.0 mL water and then
incubated in a 30°C water bath for 60 min under an oscillation. For the optimization of the oxidation
duration, the mixture was mixed with 1.0 mL of 40 mmol/L FeSO4 solution and 1.0 mL of 16 mmol/
L vitamin C solution. The resultant mixture was mixed with 2.0 mL of water and then incubated in
the 30°C water bath for a certain time (15–120 min) under the same oscillation. After the incubation,
the resultant mixture (7.0 mL) was stored at −20°C prior to the further analyses. Each experiment
was carried out in triplicate.

To investigate the effect of (α)-tocopherol on the linoleic acid oxidation model, the mixture (1.0 mL
0.4 mol/L linoleic acid in DMSO and 2.0 mL 0.2 mol/L acetic acid-sodium acetate buffer, pH 5.4) was
mixed with 1.0 mL of 40 mmol/L FeSO4 solution and 1.0 mL of 16 mmol/L vitamin C solution. The
resultant mixture was mixed with 1.0 mL of the (α)-tocopherol solution with different concentrations
(0–0.1 mmol/Lin DMSO) and 1.0 mL of water and then incubated in the 30°C water bath for 60 min
under the same oscillation. The resultant mixture after the incubation was stored at −20°C prior to the
further analyses. Each experiment was carried out in triplicate.

To study the effect of milk oligopeptides on the linoleic acid oxidation model, the mixture was
mixed with 1.0 mL of 40 mmol/L FeSO4 solution and 1.0 mL of 16 mmol/L vitamin C solution. The
resultant mixture was mixed with 1.0 mL of 15 mmol/L milk oligopeptide in water (IAKYI, PYYAK,
NQFLPYPYYAK, IPIQY or IPIQYV) and 1.0 mL of water, and then incubated in the 30°C water
bath for 60 min under the same oscillation. The resultant mixture after the incubation was stored at
−20°C prior to the further analyses. Each experiment was carried out in triplicate.

For the combined effect of (α)-tocopherol and milk oligopeptide on the linoleic acid oxidation,
the mixture was mixed with 1.0 mL of 40 mmol/L FeSO4 solution and 1.0 mL of 16 mmol/L vitamin
C solution. The resultant mixture was mixed with 1.0 mL of 0.046 mmol/L (α)-tocopherol solution
and 1.0 mL of 15 mmol/L milk oligopeptide (IAKYI, PYYAK, NQFLPYPYYAK, IPIQY or IPIQYV),
and then incubated in the 30°C water bath for 60 min under the same oscillation. The resultant
mixture after the incubation was stored at −20°C prior to the further analyses. Each experiment was
carried out in triplicate.

Malondialdehyde measurement

The analysis of malondialdehyde in the oxidized linoleic acid model was carried out using the thiobar-
bituric (TBA) method with minor modifications.[26] In brief, the oxidized linoleic acid mixture (7.0 mL)
was mixed with 12.0 mL of 0.5% TBA (w/v). The resultant mixture was vortexed and then boiled for 15
min. Afterward, the mixture was cooled to the room temperature and then mixed with 5.0 mL
N-butanol. Then, the resulting mixture was well vortexed and kept at the room temperature for 20
min for the phases to be separated. The N-butanol phase was collected through separatory funnel and
then mixed with 0.5 g anhydrous sodium sulfate. The mixture was centrifuged at 2,800 × g for 15 min to
collect the supernatant. The absorbance of the supernatant was measured at 532 nm on a UNICO-
2102PC UV-VIS spectrophotometer (Dayton, NJ, USA). 1,1,3,3-Tetraoxyethylpropane was used as the
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external standard to calculate the malondialdehyde content. Each measurement was carried out in
triplicate.

Peroxide value analysis

Peroxide value of the oxidized linoleic acid model was analyzed using the International Dairy
Federation Standard Method with minor modifications.[27] The oxidized linoleic acid mixture
(7.0 mL) was mixed with 5.0 mL of chloroform: methanol (2:1, v/v) and 0.3 mL of 30% ammonium
thiocyanate (w/v) solution. The resultant mixture was vortexed and then kept at the room tempera-
ture for 20 min. Subsequently, the absorbance of the mixture was measured at 500 nm on the same
spectrophotometer and marked as the peroxide value. As water (7.0 mL) instead of the oxidized
linoleic acid mixture, the absorbance of the resultant sample was measured under the same protocol
and used as the blank. Each measurement was performed in triplicate.

Measurement of conjugated diene and triene

The measurement of the conjugated diene and triene followed the published methods with minor
modifications.[28,29] Briefly, the oxidized linoleic acid mixture was extracted against 5.0 mL cyclo-
hexane solution. The mixture was kept at the room temperature for 20 min for the phases to be
separated. The upper phase (the cyclohexane phase) was collected and then further diluted using the
cyclohexane solution. The diluted solution was measured at 237 nm and 272 nm on a UNICO-
2102PC UV-VIS spectrophotometer (Dayton, NJ, USA) for conjugated diene (A1) and triene (A2),
respectively. The cyclohexane solution was used as a blank. Each measurement was performed in
triplicate. The values of the conjugated diene and triene in the linoleic acid model were calculated
using the equations below,

Conjugated Diene = A1/b × c × 115
Conjugated Triene = A2/b × c × 920
where A1 and A2 were the absorbances of the diluted solution at 237 nm and 272 nm, whereas

b and c represented the cuvette length and sample concentration. Absorbance coefficient 115 and
920 indicated the coefficient for the conjugated diene and triene, respectively.

Uv-vis spectrophotometry

The absorbance spectrum of the milk oligopeptide/(α)-tocopherol mixture was recorded using
a SpectraMax 190 Microplate Reader (SPW Industrial, Laguna Hills, CA, USA). Milk oligopeptide
(IAKYI, PYYAK, NQFLPYPYYAK, IPIQY or IPIQYV) was dissolved in 0.2 mol/L acetic acid-
sodium acetate buffer solution (pH 5.4) to a concentration of 2.5 mmol/L. The milk oligopeptide
solution was mixed with different (α)-tocopherol concentration (0, 0.05, 0.10, 0.20 and 0.30 mmol/L
in DMSO). The mixture was kept at the room temperature for 5 min and then recorded the
absorbance spectrum under a wavelength range from 270 nm to 320 nm. DMSO was used as the
blank. The measurement was conducted in triplicate.

Fluorescence spectroscopy

The tertiary structural alteration of the milk oligopeptides with the presence of (α)-tocopherol was
measured using fluorescence spectroscopy on a BioTek Synergy 4 (BioTek Instruments Inc.,
Winooski, VT, USA).[30]Each milk oligopeptide was dissolved in 0.2 mol/L acetic acid-sodium
acetate buffer solution (pH 5.4) to a concentration of 0.1 µmol/L, and further mixed with different
(α)-tocopherol concentration (0, 0.005, 0.01, 0.015, 0.02 and 0.025 nmol/L in DMSO, respectively).
The mixed solution was then kept at the room temperature for 3 min and then analyzed on
fluorescence spectroscopy at 25°C. The excitation wavelength of the mixed solution was set at 280
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nm and emission spectra were recorded from 300 nm to 500 nm with a resolution of 2.5 nm. DMSO
was used as the reference and each experiment was carried out in triplicate.

Fourier transform infrared spectroscopy (FTIR)

The milk oligopeptide solution (0.3 mol/L) and the milk oligopeptide and (α)-tocopherol mixed
solution under a molar ratio of 1:1 were freeze-dried. The freeze-dried sample (1 mg) was mixed
with 100 mg of pure KBr. The resultant mixture was ground into a fine powder and then analyzed
on a Thermo Nicolet Nexus 470 FTIR (Thermo Nicolet, Madison, WI, USA). Pure KBr powder was
used as the background. The FTIR spectra of the sample were obtained over a wave number range of
1,800 to 1,400 cm−1 with a resolution of 4 cm−1 and a wave number accuracy at 0.01 cm−1. Each
signal was scanned at 32 times and each measurement was carried out in triplicate. The FTIR
spectrum was calibrated under the amide band I (1,700–1,600 cm−1) using PeakFit Version 4.12
software (Chicago, IL, USA) and then further deconvolution to fit in Gaussian regression based on
the second derivative spectra for determination of the percentage of secondary structures.

Statistical analysis

Data were expressed as the mean ± standard deviation of triplicate tests. One-way analysis of
variance (ANOVA) was used to determine the significant differences between the means under
Tukey Test at a 0.05 significant level using Origin Pro 7.5 (OriginLabCorp., Wellesley Hills,
MA, USA).

Results and discussion

Optimization of Fe2+-vitamin c-induced linoleic acid oxidation model

In the linoleic acid oxidation model, ferrous ion (Fe2+) was a critical component to initiate the
radical chain reaction. Meanwhile, vitamin C in the model could reduce the oxidized state Fe3+ back
to ferrous ion, causing the oxidation of linoleic acid to yield malondialdehyde.[25] In the present
study, we investigated the effect of both ferrous ion concentration and oxidation duration on the
oxidation of linoleic acid in the model (Figure 1). When the oxidation duration of the linoleic acid
model was fixed at 60 min, increasing the ferrous ion from 20 mmol/L to 40 mmol/L in the model
significantly elevated the yield of malondialdehyde in the model (Figure 1a). The malondialdehyde
level in the model with the ferrous ion concentration at 60 mmol/L appeared to be as similar as that
treated with the 40 mmol/L ferrous ion concentration. Our result was consistent with the previously
published study.[25]The optimal ferrous ion concentration used in the linoleic acid oxidation model
was selected to be 40 mmol/L. Regarding the effect of oxidation duration, the oxidation model was
conducted under the ferrous ion concentration at 40 mmol/L (Figure 1b). Incubating the linoleic
acid model for 15 min and 30 min did not significantly result in the formation of malondialdehyde
(less than 1 µg). However, a dramatic increase in the malondialdehyde level was observed in the
linoleic acid oxidation model after 60 min of the oxidation duration. The extension of the oxidation
duration to 120 min still increased the yield of malondialdehyde in the model. However, the
malondialdehyde accumulation rate was not as rapid as that in the model with 60 min of the
oxidation. Therefore, the oxidation duration of the model was set at 60 min.

Effect of (α)-tocopherol, milk oligopeptide, and milk oligopeptide-(α)-tocopherol on linoleic
acid oxidation model

It was accepted that (α)-tocopherol played an important role in regulating the oxidation of linoleic
acid, and its concentration significantly determined the linoleic acid oxidation rate in the oil-rich
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foods.[7] It has been reported that the oxidation of linoleic acid could be inhibited with low
concentration of (α)-tocopherol, whereas high level of (α)-tocopherol could dramatically accelerate
the linoleic acid oxidation. This process was illustrated in the following equations.[31]

α� TOHþ LOO ! α� TOþ LOOH

α� TOþ LOO ! NRP

α� TOþ LH ! LOOþ α� TOH

LOOþ LH ! LOOþ LOOH

where α� TOH, LOO,NRP, α� TO, LH, and LOOH represent (α)-tocopherol, lipid peroxyl
radicals, nonradical products, (α)-tocopheroxyl radicals, active bisallylic methylene groups in poly-
unsaturated fatty acids and peroxidation products, respectively. When (α)-tocopherol was present in
oil in a low concentration level, (α)-tocopherol could rapidly interact with lipid peroxyl radicals to
form the nonradical products. Such reactions could further cleave the lipid radical chain reaction.[32]

However, (α)-tocopherol with high concentration in the model could result in a dramatic accumula-
tion of (α)-tocopheroxyl radicals. Meanwhile, no enough lipid peroxyl radicals were available to
interact with (α)-tocopheroxyl radicals to form the nonradical products. The extensive (α)-
tocopheroxyl radicals could further react with active bisallylic methylene groups in polyunsaturated
fatty acids. As a result, (α)-tocopheroxyl radicals were reduced back to (α)-tocopherol and lipid
peroxyl radicals and peroxidation products were formed.[32] This could enhance the oxidation of
lipids.[31] In the present study, with the increase of the (α)-tocopherol concentration from 0 to 0.023
mmol/L in Figure 2, the accumulation of malondialdehyde showed a significant reduction in the
linoleic acid oxidation system (p < .05), which indicated that (α)-tocopherol at this concentration
range reduced the oxidation of linoleic acid. However, an increase on malondialdehyde was found in
the model when the concentration of (α)-tocopherol was above 0.046 mmol/L. Therefore, the best
(α)-tocopherol level in the linoleic acid oxidation model was 0.023 mmol/L.

To better elucidate the synergetic effect of milk oligopeptide and (α)-tocopherol on regulating the
oxidation of linoleic acid in the model, individual milk oligopeptide (15 mmol/L) was introduced to
the Fe2+-vitamin C induced linoleic acid oxidation model and compared with the model treated with
15 mmol/L milk oligopeptide and 0.023 mmol/L (α)-tocopherol. Figure 3a shows the formation of
malondialdehyde in the model. It was observed that the individual milk oligopeptides, including
IAKYI, NQFLPYPYYAK, IPIQY, and IPIQYV, significantly reduced the yield of malondialdehyde
in the model compared to the control (p < .05). However, the combination of (α)-tocopherol with

Figure 2. Effect of (α)-tocopherol on inhibition of linoleic acid oxidation in Fe2+-vitamin C induced linoleic acid oxidation model.
Data are the mean ± standard deviation of triplicate tests.
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NQFLPYPYYAK or IPIQYV did not significantly improve the inhibitory effect on the linoleic acid
oxidation in the model. It should be worth noting that the model treated with (α)-tocopherol and
IAKYI even exhibited an increase in the formation of malondialdehyde in the model, indicating that
a negatively synergetic effect was established between (α)-tocopherol and IAKYI on the inhibition of
the linoleic acid oxidation. On the contrast, the incorporation of (α)-tocopherol with the milk
oligopeptide PYYAK or IPIQY further inhibited the oxidation of linoleic acid, resulting in a low
level of malondialdehyde in the model (Figure 3a). It has been reported that Tyr-His-Tyr, Tyr-Lys-Tyr,
and Tyr-Arg-Tyr could only exert a positively synergetic effect with (δ)-tocopherol rather than (α)-
tocopherol on the inhibition of the linoleic acid oxidation.[22] Valeria et al. also reported that different
synergetic effects were established between different protein hydrolyzates and tocopherol on the
inhibition of lipid oxidation, and therefore suggested that it might be the difference on the interaction
between peptides and tocopherol that caused the difference on inhibiting lipid oxidation.[9]

Figure 3b,c exhibit the peroxide value and conjugated diene and triene in the linoleic acid
oxidation model, respectively. It was found that the milk oligopeptide IPIQYV significantly inhibited
the peroxide value in the model compared to the control, whereas PYYAK and NQFLPYPYYAK
accelerated the process of the conversion from linoleic acid to its peroxides. It should be noted that
the combination of IPIQYV and (α)-tocopherol significantly inhibited the peroxide value of the
model compared to the model treated only by IPIQYV or (α)-tocopherol (Figure 3b). Additionally,
the introduction of the milk oligopeptide, including IAKYI, NQFLPYPYYAK, IPIQY, IPIQYV, and
PYYAK, lowered the formation rate of conjugated diene and triene in the model compared to the
control. Moreover, an obviously positive synergetic effect was found between these milk oligopep-
tides and (α)-tocopherol on inhibiting the release of conjugated diene and triene (Figure 3c). These
indicated that these milk oligopeptides might not play an essential role in inhibiting the formation of
hydroperoxides, the initial product of linoleic acid oxidation. Hydroperoxides could further be
converted into conjugated diene and triene through conformation and unsaturated bonds
rearrangement.[33,34] However, milk oligopeptides could exert a critical effect on inhibiting the
formation of conjugated diene and triene and the inhibitory effect was mainly depended on the
amino acid components and sequence of the oligopeptides.[10] It should be noted that the interaction
between milk oligopeptide and (α)-tocopherol could also alter the inhibitory effect of the linoleic
acid oxidation.[35] We further investigated the interaction between these oligopeptide and (α)-
tocopherol.

Interaction between milk oligopeptide and (α)-tocopherol

UV-Vis Spectrometry: UV-Vis spectrometry is widely used to evaluate the conformation alteration of
proteins and/or peptides.[36-38] Essentially, tyrosine as one of aromatic amino acids can be absorbed at the
wavelength of 280 nm. Any interaction of peptides containing tyrosine residues with other molecules
could change the conformation of the peptides structure. Such conformational alterations could result in
a shift on the maximal absorption wavelength of peptides.[37] In the present study, these milk oligopep-
tides exhibited a maximal absorption at 290 nm in UV-Vis spectra (Figure 4), and this maximal
wavelength absorption was mainly attributed to the π-π* transition of the aromatic amino acids in
these oligopeptides.[39] The increase of the (α)-tocopherol concentration in the milk oligopeptide
solution resulted in a blue shift on its maximal absorption wavelength. For example, NQFLPYPYYAK
shifted its maximal absorption wavelength from 290 nm to 287 nm after (α)-tocopherol was introduced
(Figure 4). IAKYI and IPIQYV were absorbed maximally at 289 nm and the incorporation of (α)-
tocopherol led to their maximal absorption wavelength shift to 287 nm. It was speculated that (α)-
tocopherol might interact withmilk oligopeptide to decrease the electronic excitation energy for the π-π*
transition of chromophore rings in the aromatic amino acid residues. This could further alter the
hydrogen bonds between aromatic amino acid residues (tyrosine) and solvent molecules, which caused
the maximal absorption wavelength shift of the milk oligopeptides.[38,40]
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Fluorescence Spectroscopy: Fluorescence spectroscopy is always used to reflect the interactions
between proteins/peptides and other molecules. Generally, tryptophan and tyrosine are the essential
amino acid residues in proteins/peptides that possess fluorescent property.[36] In the present study,
the milk oligopeptides only contained tyrosine residue. These milk oligopeptides exhibited the
maximal emission wavelength of 304–306 nm under a 280 nm excitation wavelength (Figure 5). (α)-
Tocopherol did not significantly alter the maximal emission wavelength of these milk oligopeptides.
However, the endogenous fluorescent intensity of the milk oligopeptides was reduced with the

a b

c d

e

Figure 4. Effect of (α)-tocopherol on alteration of maximal absorption wavelength of milk oligopeptides in UV-Vis spectra. a→
e represents the concentration of (α)-tocopherol. The concentrations are: a = 0.0 mmol/L, b = 0.05 mmol/L, c = 0.10 mmol/L, d =
0.20 mmol/L, and e = 0.30 mmol/L.

INTERNATIONAL JOURNAL OF FOOD PROPERTIES 1585



incorporation of (α)-tocopherol and the reduction of the fluorescent intensity in these oligopeptides
became stronger with the increase of the (α)-tocopherol concentration in the milk oligopeptide
solution. It has been confirmed that the fluorescent quenching consisted of static and dynamic
quenching.[36,41] In the dynamic quenching process, the collision between fluorescent substance and
quencher results in the transfer of energy and/or electrons. The static quenching results from the
formation of complex between fluorescent substance and quencher.[41,42] The Stern-Volmer formula
was used in the present study to elucidate the fluorescent quenching mechanism of the milk

a b

c
d

e

Figure 5. Effect of (α)-tocopherol on reduction of fluorescent intensity of milk oligopeptides. a→ f represents the concentration of
(α)-tocopherol. The concentrations are: a = 0.0 × 10−10 mol/L, b = 0.05 × 10−10 mol/L, c = 0.10 × 10−10 mol/L, d = 0.15 × 10−10

mol/L, e = 0,20 × 10−10 mol/L and f = 0.25 × 10−10 mol/L.
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oligopeptide with the presence of (α)-tocopherol (Figure 6). A linear curve was generated between
the ratio of each milk oligopeptide fluorescent quenching over the concentration of (α)-tocopherol
and the Stern-Volmer constant (Ksv) and quenching rate constant (Kq) are listed in Table 1. τ0
represents the average life span of fluorescent molecule without addition of (α)-tocopherol and is
general 10−8s.[43] IPIQY interacted with (α)-tocopherol obtained the significant high Ksv and Kq

values compared to other milk oligopeptides (p < .05). Also, Ksv and Kq values of PYYAK and IAKYI

a b

c d

e

Figure 6. Stern-Volmer fitting curve using milk oligopeptides and (α)-tocopherol. Stern-Volmer formula: F0=F ¼ 1þ Kqτ0 Q½ � ¼
1þ KSV Q½ �, where F0 and F represent fluorescent intensity of milk oligopeptide before and after the addition of (α)-tocopherol. Kq
and Ksv are quenching rate constant and quenching, respectively. τ0represents the average life span of fluorescent molecule
without addition of (α)-tocopherol.
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were higher than those of NQFLPYPYYAK and IPIQYV interacted to (α)-tocopherol (p < .05).
Based on Figure 3a, IPIQY and PYYAK with (α)-tocopherol exhibited the antioxidative abilities on
linoleic acid oxidation superior to other milk oligopeptides and therefore these results might be
correlated to the MDA generation in linoleic acid oxidation system. Essentially, higher values of the
Stern-Volmer constant (Ksv) were found in all milk oligopeptides interacted with (α)-tocopherol.
Meanwhile, the quenching rate constant (Kq) of these samples were much higher than the quenching
rate constant caused by the greatest collisions among biological molecules (2.0 × 1010 Lmol−1s−1).
These illustrated that the quenching mechanism between the milk oligopeptides and (α)-tocopherol
essentially resulted from the static process. It was speculated that the interaction between the milk
oligopeptide and (α)-tocopherol could result in the formation of the milk oligopeptide-(α)-
tocopherol complex, which altered the structural conformation of the milk oligopeptide and thus
decreased its endogenous fluorescent intensity.[42]

Fourier Transform Infrared Spectroscopy (FTIR): FTIR is a common approach to study the
conformational changes of secondary structure of proteins and peptides through unveiling the
driving forces of inter- and intra-molecular interactions.[43] In the present study, the FTIR spectra
of these milk oligopeptides exhibited typical amide I and II at 1600–1700 cm−1 and 1500–1600 cm−1,
respectively. The amide I and amide II were two dominant vibrational bands of peptide backbone.
The absorption of the amide I in these oligopeptides was mainly attributed to the stretching
vibration of carbonyl C = O in amino acid residues (approximately 80%), whereas the
C-N stretching vibration and the C-N-H plane bending resulted in the absorption of the amide
II.[44] The amide I band has been confirmed to be more sensitive than the amide II in terms of the
alteration of the protein secondary structure.[45] The vibration frequencies of the amide I band
(mainly C = O stretching frequency) were revealed to be closely related to each secondary structure
of protein/peptide. The amide I band was high sensitivity to slight alteration of molecular geometry
and hydrogen bonding, which determined its unique importance to analyze protein/peptide spatial
conformation changes. The second derivative and curve-fitting analysis were established to qualify
and quantify the composition of various secondary structures of α-helix, β-sheet, β-turn, and
random coil.[46] In our study, it was observed that the incorporation of (α)-tocopherol shifted the
peak of the oligopeptide amide I toward lower wavenumber by 1–4 cm−1, and the peak shape of the
amide I was altered (Figure 7). These demonstrated that the milk oligopeptides interacted with (α)-
tocopherol, altering the amide I structural conformation of the milk oligopeptides.[45] It has been
known that the secondary structures mainly consisted of α-helix, β-sheet, β-turn, and random coil,
and these secondary structures were all assembled on the amide I band in proteins and peptides.[36]

Therefore, we further investigated the percentage of each secondary structure in the amide I of these
milk oligopeptides using second derivative analysis and curve-fitting analysis (Figure 8). It was
reported that the peak at 1646–1664 cm−1, 1610–1640 cm−1 and 1682–1700 cm−1, 1664–1681 cm−1,
and 1637–1645 cm−1 represented the structure of α-helix, β-sheet, β-turn and random coil in the
amide I, respectively.[30,43,46,47]

Table 1. Fluorescent quenching constant (Ksv) and quenching rate constant (Kq) of milk oligopep-
tide-(α)-tocopherol complexes.

Complex KSV (× 1011 L mol−1) Kq(× 1019 L mol−1 s−1)

PYYAK-(α)tocopherol 8.56 ± 0.22b 8.56 ± 0.22b

NQFLPYPYYAK-(α)tocopherol 7.47 ± 0.44c 7.47 ± 0.44c

IAKYI -(α)tocopherol 8.84 ± 0.52b 8.84 ± 0.52b

IPIQY -(α)tocopherol 12.90 ± 0.55a 12.90 ± 0.55a

IPIQYV-(α)tocopherol 7.03 ± 0.54c 7.03 ± 0.54c

Data are mean ± standard deviation of triplicate test. Different letters in each column represent
significant difference in the means at a significant level of 0.05.
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The FTIR spectra in Figure 7 revealed the spatial conformation alteration of milk oligopeptides
before and after the interaction to (α)-tocopherol . The calculated percentages of each secondary
structure in the milk oligopeptides with and without the addition of (α)-tocopherol were listed in
Table 2 and were attempted to characterize the interaction behavior between milk oligopeptides and
(α)-tocopherol. It was observed that (α)-tocopherol altered the secondary structure of these milk
oligopeptides. For instance, IAKYI did not show any α-helix structure without (α)-tocopherol.
However, the interaction of IAKYI with (α)-tocopherol led to the IAKYI-(α)-tocopherol complex
with a 26.2% of the α-helix structure. The conversion from α-helix and random coil to β-sheet and β-
turn occurred to NQFLPYPYYAK after the interaction with (α)-tocopherol. It should be noted that
the milk oligopeptide-(α)-tocopherol complex increased the percentage of the β-turn structure,
indicating that the interaction between milk oligopeptide and (α)-tocopherol impacted the hydrogen
bonds of the milk oligopeptides and thus altered the structure of milk oligopeptides.[36] It has been
reported that β-turn played a vital role in the antioxidant capacity of peptides and the ratio of β-turn
to β-sheet could reflect the antioxidant feature of peptides.[48] In the present study, it was found that
IPIQY, IPIQYV, and PYYAK significantly inhibited the oxidation of linoleic acid (Figure 2a).
Additionally, IPIQY and PYYAK with the presence of (α)-tocopherol dramatically reduced the
formation rate of malondialdehyde (Figure 2a). However, IPIQYV with (α)-tocopherol synergisti-
cally inhibited the peroxide value during the linoleic acid oxidation (Figure 2c). IPIQY, IPIQYV, and
PYYAK, compared to the other oligopeptides, possessed higher percentage of β-turn and β-turn/β-
sheet value (Table 2). These indicated that the interactions between these oligopeptides and (α)-
tocopherol, such as hydrogen bonds and van der waals force, could induce an alteration on the β-
turn structure to enhance the antioxidant activity, which could further enhance the inhibitory effect
on the linoleic acid oxidation.

Figure 7. Fourier transform infrared spectrum of milk oligopeptides and milk oligopeptide-(α)-tocopherol complexes.
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Conclusion

In conclusion, milk oligopeptides were introduced to Fe2+-vitamin C-induced linoleic acid oxidation
model fortified with (α)-tocopherol. Milk oligopeptides, PYYAK and IPIQY, appeared to signifi-
cantly enhance the inhibition of the linoleic acid oxidation with (α)-tocopherol through inhibiting
the formation of malondialdehyde. IPIQYV coupled with (α)-tocopherol reduced the peroxide value
of the linoleic acid oxidation model. The increase of the (α)-tocopherol concentration altered the

a b

c d

e f

g h

i j

Figure 8. Second derivative and curve-fitting analysis of secondary structure of milk oligopeptide and milk oligopeptide-(α)-
tocopherol complex using PeakFit 4.12 software.
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maximal absorption wavelength of these milk oligopeptides. Fluorescence spectroscopy analysis
illustrated that the endogenous fluorescent intensity reduction of milk oligopeptides resulted from
the static quenching process through the inter-molecular interactions between milk oligopeptides
and (α)-tocopherol. Fourier Transform Infrared Spectroscopy analysis indicated that the β-turn
secondary structure increased in milk oligopeptides with the addition of (α)-tocopherol.
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