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II 

I used incubation baskets containing viable eggs and spawning substrate to 

estimate the survival to emergence and time of emergence of kokanee salmon 

Oncorhynchus nerka at depths to 20 m in Flaming Gorge Reservoir, Utah­

Wyoming . Traps on the incubation baskets captured fry emerging from a known 

quantity of eggs. Water drawn into a syringe from an intragravel pipe buried near 

each incubation basket was used to determine intragravel dissolved oxygen 

concentrations throughout the intragravel period. Water from control baskets without 

eggs did not have significantly greater dissolved oxygen concentrations than adjacent 

water. A jar associated with each incubation basket collected sediment to determine 

absolute and organic sedimentation during the study. Temperatures at the substrate-
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water interface were used to describe degree-days accumulated before emergence. 

Survival to emergence ranged from zero to 66% and was most significantly related 

to mean intragravel dissolved oxygen concentrations. Survival to emergence, mean 

intragravel dissolved oxygen concentrations , and organic sedimentation decreased 

with depth. 

(71 pages) 
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CHAPTER 1 

INTRODUCTION 

Various physical factors of intragravel waters have been identified as 

influencing the development and survival of incubating salmonid embryos. Among 

these factors, intragravel dissolved oxygen concentrations, water temperature, and 

quantities of fine sediments have been repeatedly reported as important determinants 

of salmonid spawning success in lotic environments. During the intragravel period , 

dissolved oxygen concentrations and water temperatures may act independently or in 

combination to influence metabolic rates and exchange of wastes of salmonids 

developing in streams. Fine sediments in the intragravel matrix can affect rates of 

exchange between stream surface waters and the intragravel environment , altering 

dissolved oxygen concentrations in redds. Accumulations of fines on redds can 

impede intragravel water exchange and reduce the ability of salmonid fry to emerge 

from redds. The influence of water temperatures and dissolved oxygen concentrations 

on the condition of emerging fry (i.e., length , weight , and fat reserves) can affect the 

competitive abilities of salmonids during early life stages, ultimately affecting 

population recruitment. 

Despite widespread distribution of shoreslope-spawning salmonid populations 

in lakes and reservoirs throughout North America, the influence of dissolved oxygen 

concentration, water temperature, and sediment deposition on the survival and 

development of salmonid embryos incubating in lacustrine waters has not been 
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defined. The reduced water velocities of lentic waters likely reduces exchange of 

intragravel flows and dissolved oxygen concentrations relative to lotic waters. 

Stratification of the water column within the range of spawning depths in lakes and 

reservoirs can result in dissolved oxygen and water temperature variations associated 

with depth that do not occur in streams. Knowledge of the relationship of salmonid 

survival to emergence and time of emergence relative to depth could influence 

management practices in reservoirs where water levels fluctuate during the period 

prior to emergence. 

My research evaluated the influence of several factors identified as important 

to salmonid reproductive success in streams on the survival of salmonids spawned in 

lentic waters. Additionally , I considered the dimension of water depths to 20 m not 

associated with studies in lotic environs. Site-specific methods were developed to 

measure the influence of intragravel dissolved oxygen concentrations , temperatures at 

the substrate-water interface, and sediment accumulations on the survival to 

emergence and time of emergence of shoreline-spawned kokanees in Flaming Gorge 

Reservoir, Utah-Wyoming. I evaluated the validity of these methods and discussed 

the implications of the results relative to management of salmonid populations in lakes 

and reservoirs. 



CHAPTER 2 

EVALUATION OF A METHOD FOR MEASURING INTRAGRA VEL 

DISSOLVED OXYGEN CONCENTRATIONS AND SURVIVAL 

TO EMERGENCE IN SHORE-SPAWNED SALMONIDS 1 

3 

Abstract.--I describe an incubation basket and a modified intragravel water sampling 

device used to quantify salmonid survival to emergence relative to dissolved oxygen 

concentrations in deep lacustrine habitats. Incubation baskets containing viable 

kokanee Oncorhynchus nerka eggs and shale substrate were set by divers in 2-20-m­

deep spawning habitat in Flaming Gorge Reservoir , Utah-Wyoming . Water drawn 

into a syringe from an intragravel pipe buried near each incubation basket was used to 

determine intragravel dissolved oxygen concentrations throughout the incubation 

period . A trap on each incubation basket captured emergent fry in a holding bag. 

The bags were exchanged weekly to determine survival to emergence and time of 

emergence. Water in control baskets without eggs did not have significantly greater 

dissolved oxygen concentrations than adjacent water. 

1The contents of this chapter were previously published as: Jeric, R. J., T. 
Modde, and J. M. Godfrey. 1995. Evaluation of a method for measuring intragravel 
dissolved oxygen concentrations and survival to emergence in shore-spawned 
salmonids. North American Journal of Fisheries Management 15: 185-192. 
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Introduction 

Intragravel dissolved oxygen concentrations influence survival of salmonids 

incubating in lotic waters (Wickett 1954; Coble 1961; Phillips and Campbell 1962; 

Bianchi 1963; Koski 1966, 1975; McNeil 1966; Sowden and Power 1985), but lack of 

adequate means of measuring intragravel dissolved oxygen in deep lentic environments 

has prevented evaluation of this relationship for lacustrine spawners. Previous 

attempts to relate intragravel survival of shore-spawned salmonids to dissolved oxygen 

concentrations were marginal or unsuccessful, and indicated need for a site-specific 

approach to measure associated variables. Dissolved oxygen concentrations sampled 

from the water column above kokanee Oncorhynchus nerka spawning habitat in Banks 

Lake, Washington, were at or near saturation throughout incubation and could not be 

used to detect differences in survival of alevins (Stober et al. 1979). Hassemer (1984) 

found no relation between survival of kokanee embryos and dissolved oxygen 

concentrations of intragravel water sampled through piezometers driven into the 

substrate at 1.5 and 6.0 m depths in Coeur d'Alene Lake , Idaho. Beattie et al. (1986) 

determined that groundwater high in dissolved oxygen flowing through shoreline redds 

of kokanees in Flathead Lake, Montana, increased egg survival relative to areas 

lacking groundwater discharge. I describe a method for measuring salmonid survival 

from egg-deposition to emergence relative to site-specific intragravel dissolved oxygen 

concentrations in deep water, without disrupting pre-emergent fish. 
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Methods 

To monitor in situ survival to emergence and time of emergence, I adapted 

incubation baskets of Maret et al. (1993) by eliminating iron framing that might alter 

dissolved oxygen concentrations. The incubation basket frame was constructed from a 

24-cm-long piece of 21-cm-diameter, schedule 80 polyvinyl chloride (PVC) pipe. Six 

equally spaced panels (20 x 9 cm) were removed with an electric jigsaw , leaving a 2-

cm-wide frame (Figure 2-lA). I glued a rectangle (64 x 23 cm) of rigid polyethylene 

net (2-mm square mesh) inside the frame with PVC adhesive, aligning the seam along 

a vertical section of frame. To form a bottom for the incubation basket, I centered a 

piece (about 30 x 30 cm) of polyethylene net on a 17-cm diameter wood disk (2-cm 

thick) , and pressed a 19.5-cm inside diameter section of PVC pipe (5-cm wide) over 

the net and around the disk. I heated the area of net between the disk and PVC pipe 

with an electric heat-gun , to shape vertical sides around the disk . Excess net 

overlapping the disk was trimmed , leaving a molded mesh bottom with 2-cm vertical 

sides . The bottom was fitted inside the base of the net-lined frame with sides turned 

upward. I fastened the bottom to the frame using a 1.5-cm-wide piece of PVC pipe 

(21-cm diameter) from which a section was cut to yield a band of 59-cm outside 

circumference. The band fit tightly inside the mesh bottom and was attached to the 

base of the incubation basket frame with seven equally spaced aluminum rivets. A 

twine harness was tied to the top of the frame. 
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Incubation baskets were filled with fractured shale substrate sorted from 

kokanee spawning habitat in Flaming Gorge Reservoir , Utah-Wyoming. The shale 

was rinsed under water in a plastic crate with 2-cm2 openings to remove shale 

fragments and organic debris. Pieces longer than about 6 cm were removed and the 

remaining substrate was used in the incubation baskets. This sorting process resulted 

in a substrate size-composition similar to the spawning habitat used by kokanees 

observed at the study site. A three-stem funnel (each stem 2.5-cm diameter) was 

centered inside a half-filled incubation basket before filling the remainder with shale. 

The incubation basket was placed in 15-cm-deep water and 50 kokanee eggs (4-26 h 

after fertilization) were poured into the funnel , about one-third through each stem . 

The eggs were fertilized with sperm from kokanees collected in Flaming Gorge 

Reservoir by the Wyoming Game and Fish Department in 1990. Dead eggs were 

removed , and mortality for the pool of eggs was less than 1 % during the handling 

period. After gently removing the funnel , a 2-mm-mesh knotless-nylon cover was 

fastened by an elastic band to the top of the incubation basket (Figure 2-1 A) . The 

incubation basket was placed in a water-filled plastic bag that was sealed to minimize 

disruption of eggs during transport. 

The incubation basket was taken by scuba divers to an incubation site that had 

been prepared by burying 22 cm of a 30-cm long PVC pipe (30-cm outside diameter) 

vertically into the kokanee spawning habitat. After tearing away the plastic bag , 

divers lowered the incubation basket by the harness into the pipe. The pipe was 
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extracted, surrounding the incubation basket with substrate (Figure 2-18). Prior to 

emergence of fry, divers replaced the mesh cover on the incubation basket with an 

emergence trap made of 2-mm-mesh knotless-nylon cloth and a funnel cut from a 

plastic centrifuge tube (14-cm length of 2.7-cm diameter with tapered end cut to a 1-

cm diameter opening; Figure 2-lA). A mesh cover was used prior to the emergence 

trap to eliminate intrusion of naturally spawned eggs while allowing an even 

distribution of sediments entering the incubation basket, and to prevent spawning 

kokanees or angler gear from becoming entangled in the traps. The holding bag on 

the emergence trap was exchanged weekly, and captured fry were counted to 

determine survival to emergence and time of emergence. 

[ntragravel water samples were drawn from a horizontal intragravel pipe 

modified from Hoffman (1986; Figure 2- lC). The outer pipe (250-mm length of 60-

mm outside diameter 0.12 x 0.08-mm-mesh polypropylene filtration tube) had PVC 

end-caps (61-mm inside diameter) glued to each end . An inner pipe (254-mm length 

of 12.7-mm outside diameter PVC threaded nipple) was drilled with three equally 

spaced holes (3.2-mm diameter) circumferentially offset 120°. A threaded end-cap 

(12 .7-mm inside diameter) on one end of the inner pipe was sealed with glue to a hole 

(22-mm diameter) in one outer end-cap. The other end of the inner pipe was threaded 

into a 90° polypropylene elbow (12. 7-mm inside diameter threaded compression 

fitting) through a hole (22-mm diameter) in the outer end-cap. The elbow was sealed 

to the end -cap with silicone caulk. Water from within the pipe was drawn through 
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flexible tubing (about 50-cm length of 10-mm outside diameter x 2-mm wall) 

connected to the compression fitting. Foam pipe insulation (19-mm inside diameter) 

buoying the tubing was held by a pinch-clamp, which was opened during sampling. 

The intragravel pipe was buried parallel to the shoreline, 12 cm deep in the substrate, 

and about 4 cm from the shoreward-side of the incubation basket (Figure 2-1 B). 

Water was drawn from the intragravel pipe by scuba divers using a large 

syringe similar in volume (700 mL) to the filtration tubing. The syringe cylinder 

(Figure 2-2) was made from acrylic tubing (220-mm length of 70-mm outside 

diameter x 3-mm wall) squared at one end and beveled 60° at the other end. The 

cylinder face (75-mm diameter) was made from flat acrylic (10-mm thick) that was 

counter-sunk (5 mm deep to 63-mm diameter) to fit into the square end of the 

cylinder. A 3-mm diameter hole through the center of the cylinder face was counter­

bored (5 mm deep to 6.5 mm-diameter) to hold a nipple (13-mm length of 6-mm 

outside diameter, 1.5-mm-wall acrylic tubing). The plunger plate (63-mm diameter) 

was made from 17-mm-thick flat acrylic with two channels (5 mm wide x 4 mm deep, 

separated by 3 mm) that held rubber piston seals (64-mm outside diameter x 55-mm 

inside diameter x 4.8-mm wide). The seals were set antagonistically so that as one 

seal evacuated, the other filled the syringe. A counter-bore (22-mm diameter x 7-mm 

deep) in the plunger plate centered an acrylic rod (21-mm diameter x 240-mm long) 

held by a bolt recessed in the opposite side of the plate. A threaded knob on the other 

end of the rod was used to pull the plunger through the cylinder. A removable guide-
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plate (75-mm diameter) made from 10-mm-thick flat acrylic was counter-sunk (5 mm 

deep to 63-mm diameter) to fit into the beveled end of the cylinder. A hole (22-mm 

diameter) centered in the guide plate held the plunger plate square to the cylinder 

wall, and two holes (5-mm diameter) allowed water to evacuate from the rear of the 

cylinder as the plunger was drawn. 

To eliminate air from the syringe, the plunger was inserted into the cylinder 

under water. Before connecting the syringe to the hose of the intragravel pipe, the 

plunger was depressed flush to the face plate, purging water from the cylinder. The 

plunger was retracted to fill the syringe in 40-45 s (about 1 Umin). At the surface the 

water sample was passed through latex tubing from the syringe nipple to a 300-mL 

BOD bottle, and fixed for dissolved oxygen determination by the Winkler Method 

using the azide modification for nitrate interference (APHA et al. 1985). 

The equipment described was lightweight and durable. Materials for 58 

incubation baskets cost US$278 (1990) , and time of construction was 81 person-h. 

Materials for 50 incubation basket covers, 50 emergence traps, and 100 holding bags 

cost $216, and labor by a tailor was $296. Materials for the intragravel pipes cost 

$6.20 each, and 36 were built in about 18 person-h. Materials and machining of the 

acrylic syringe parts were about $42 each. Throughout two field-seasons the 

incubation baskets and intragravel pipes remained under water for more than 400 d 

with no apparent deterioration. The incubation baskets and intragravel pipes were 

easily cleaned with water from a pressure-sprayer. The emergence traps were cleaned 
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of algal growth in a washing-machine with a dilute bleach solution. The acrylic 

syringes are brittle and must be handled carefully, especially during subfreezing 

temperatures. All field work was completed by two scuba divers, except ice-diving 

and incubation basket installation, which required two additional people. 

Field Evaluation 

To test whether intragravel dissolved oxygen samples from the intragravel pipe 

represented water within the incubation basket, three independent control baskets were 

buried at 3-5-m depths within kokanee spawning habitat. Each control basket, 

containing an intragravel pipe and sorted substrate (but no kokanee eggs), was buried 

with an associated intragravel pipe as described for the other incubation basket (Figure 

2-1 B). The three control baskets and adjacent intragravel pipes were sampled six 

times during the incubation period. Repeated measures analysis determined no 

difference in dissolved oxygen concentrations between samples taken within and 

adjacent to the control baskets (SYSTAT, Inc. 1989; Table A-1 in the appendix). 

Dissolved oxygen concentrations within the intragravel pipes of the control baskets 

were highly correlated with the dissolved oxygen concentrations sampled from the 

adjacent intragravel pipes (Figure 2-3). 

Dissolved oxygen concentrations of samples (each equal to the volume of the 

filtration-tube) from a single intragravel pipe varied 0.5 mg/Lor less over four 

consecutive draws (6.1, 6.6, 6.5, and 6.6 mg/L), indicating water within the filtration 
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tube represented surrounding intragravel water. The intragravel pipes were set 

horizontally to sample the width of the redd , and the off-set holes of the inner pipe 

drew water radially about the pipe. Dissolved oxygen sampled from the substrate­

water interface above intragravel pipes was consistently higher than water from the 

associated intragravel pipes. During a 6-week period, three anoxic samples were 

drawn from an intragravel pipe while the associated substrate-water interface dissolved 

oxygen concentrations ranged from 12.2 to 14.5 mg/L, indicating that sampling 

caused no mixing of intragravel and water-column waters. These anoxic samples also 

indicated that potential residual air or water contamination in the syringe was not a 

concern for the volume of water sampled. 

Discussion 

The incubation baskets and intragravel pipes have been used to identify 

positive relationships between salmonid survival to emergence and dissolved oxygen 

concentrations at 2-20-m depths. The incubation baskets may be removed through 

time to monitor embryonic survival and development relative to dissolved oxygen 

concentrations, and the holding bags on the emergence traps retain live fry for 

measuring length, weight, and condition factor. Use of substrate within the 

incubation baskets seemed to limit fungal growth often encountered among eggs in 

incubation boxes (Harshbarger and Porter 1979), and more closely simulates natural 

conditions. However, sorting of substrate sizes and depth of burial of eggs were 
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based on qualitative observations by divers, and may have affected dissolved oxygen 

concentrations and survival to emergence relative to natural conditions. 

The water sampling method was simple and allowed scuba divers to collect 

samples under ice. The large volume of water drawn from intragravel pipes was 

sufficient for analyses of other chemical constituents such as pH and CO2 • By burying 

the PVC pipe sleeves and intragravel pipes before preparing the incubation baskets, 

intragravel waters and organics at the incubation sites were stabilized. Incubation site 

preparation enhanced experimental design by allowing installation of 45 incubation 

baskets in a 22-h period, and likely minimized bias in mortality by reducing the 

handling period of eggs. 
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Abstract. --Incubation baskets containing viable kokanee Oncorhynchus nerka eggs and 

shale substrate were set by divers in 2-20-m-deep shoreslope-spawning habitat in 

Flaming Gorge Reservoir, Utah-Wyoming. A trap on each incubation basket captured 

emergent fry to determine survival to emergence and time of emergence. Water from 

an intragravel pipe buried adjacent to each incubation basket was used to determine 

intragravel dissolved oxygen concentrations throughout the incubation period . A jar 

associated with each incubation basket collected sediment to determine absolute and 

organic sedimentation during the study . Temperatures at the substrate -water interface 

were used to describe degree -days accumulated before emergence. Survival to 

emergence ranged from O to 66 % and was most significantly related to mean 

intragra vel dissolved oxygen concentrations. Survival to emergence , mean intragravel 

dissolved oxygen concentrations , and organic sedimentation each decreased with 

depth. 

Introduction 

Dissolved oxygen concentrations in waters surrounding incubating salmonid 

embryos can be an important factor influencing their survival, development, time of 
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emergence, and post-emergent competitive abilities. Positive relations between 

intragravel dissolved oxygen concentrations and salmonid embryo survival have been 

determined in numerous stream and laboratory studies (e.g ., Wickett 1954; Alderdice 

et al. 1958; Garside 1959, 1966; Coble 1961; Phillips and Campbell 1962; Silver et 

al. 1963; Shumway et al. 1964; Mason 1969; Wells and McNeil 1970; Koski 1975; 

Hamor and Garside 1976; Sowden and Power 1985). Time of emergence of 

salmonids incubated in laboratory streams varies in response to decreasing dissolved 

oxygen concentrations . Development of salmonid embryos may decrease directly with 

decreasing dissolved oxygen concentrations (Garside 1959, 1966; Silver et al. 1963; 

Shumway et al. 1964; Brannon 1965; Hamor and Garside 1976), but reduced oxygen 

availability at critical stages of development may induce hatching or hasten emergence 

(Alderdice et al. 1958; Barns 1969). Reduced oxygen availability throughout 

incubation may decrease the length and competitive abilities of emergent fry , reducing 

subsequent growth and survival (Mason 1969). 

Salmonid survival to emergence , developmental rates , and emergence timing 

are influenced by water temperatures during the incubation period. Earlier times of 

emergence were associated with increased water temperatures both in situ (Holtby 

1988; Murray et al. 1989) and in laboratory streams (Garside 1966; Hamor and 

Garside 1976). Relative to cooler waters, reduced survival to emergence , timing of 

emergence, and size at hatching were observed for salmonids incubated in controlled 

lotic water temperatures z l0°C (Heming 1982; Murray et al. 1989). The effect of 



temperature on emergence timing can influence competition among salmonids by 

altering feeding and swimming abilities (Thomas et al. 1969). Earlier emerging 

salmonids may assert territorial advantages over later emerging fish (Mason and 

Chapman 1965). 
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Accumulation of fines in redds can alter the intragravel environment of the 

redd, reducing survival to emergence of salmonids (Ringler and Hall 1975; Chapman 

1988). Decreasing survival with increasing fine accumulations in salmonid redds can 

result from reduced intragravel water flow, which decreases dissolved oxygen 

available to incubating embryos (Phillips et al. 1975; Haus le and Coble 1976). 

Bianchi (1963) found that increased sedimentation reduced the apparent water velocity 

and dissolved oxygen concentrations in salmonid redds, resulting in greater mortality 

of eggs. The water exchange rate can be a significant factor affecting the 

concentration of oxygen supplied to incubating salmonids (Hamor and Garside 1976). 

Despite numerous studies relating timing and survival to emergence to 

dissolved oxygen concentration, water temperature, and sedimentation in lotic 

systems, parallel investigations in lentic systems are scant. Hassemer and Rieman 

(1981) suggested that shoreslope-spawning kokanees in Coeur d'Alene Lake, Idaho, 

used angular substrate, which allowed excellent water exchange, presumably 

increasing oxygen available to eggs. Sly (1988) used intragravel dissolved oxygen 

concentrations measured from 2.0-6.0-m depths to distinguish between good and 

degraded lake trout Salvelinus namaycush spawning habitat among several lakes in 
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southern Ontario, and found that low dissolved oxygen concentrations occurred in 

gravel with high sediment deposition. Water column dissolved oxygen concentrations 

sampled from kokanee spawning grounds in Banks Lake, Washington, were at, or 

near , saturation throughout incubation and could not be used to detect differences in 

survival of embryos (Stober et al. 1979). Hassemer (1984) found no relationship 

between survival of kokanee embryos and dissolved oxygen concentrations of 

intragravel water sampled at 1.5 and 6.0-m depth in Coeur d'Alene Lake. 

Relative to lotic systems, the reduced water current, thickness of ice-cover, 

and differences in pressure associated with depth of lentic waters could affect 

dissolved oxygen concentrations available to salmonid embryos incubating along 

shoreslopes. Lake or reservoir regulation may influence recruitment of shoreslope­

spawning salmonids by altering the intragravel condition of redds within and below 

the range of water-level fluctuations (Fraley and Decker -Hess, 1987). Time of 

emergence of kokanees from several sites in Flathead Lake, Montana , was 

synchronous with minimum water-column dissolved oxygen concentrations during egg 

incubation (Woessner and Brick 1985). 

In this study , I measured the in situ survival rate and emergence timing of 

kokanee embryos incubating in Flaming Gorge Reservoir, Utah-Wyoming. I then 

examined the relationship of survival and emergence to intragravel dissolved oxygen 

concentrations, depths, temperatures, and sedimentation rates observed on the 

spawning grounds during incubation in 1991-92. 



22 

Study Area 

Flaming Gorge Reservoir is a large ( 145 km long, 17,000 ha surface area), 

high elevation ( 1841 m at full pool) , complex reservoir in northeast Utah and 

southwest Wyoming (Schmidt and Brayton 1981). The long-axis of the reservoir is 

oriented primarily north-south. This study occurred along the northeastern slope of an 

east-shore bay , located south of Wildhorse Draw (Figure 3-1). Prevailing west winds 

create frequent wave activity along a shale talus-slope that extends to about 20-m 

depth near the opening of the bay. Spawning by kokanees in this bay peaked in late 

October in 1991. These kokanees used unconsolidated , angular shale substrate ( < 10-

cm long) along steep (21-40°) slopes , and distributed eggs evenly among 1.5-15 -m 

water depths (Gipson and Hubert 1993). 

Methods 

Survival from egg fertilization to emergence was determined using incubation 

baskets containing viable kokanee eggs (4-26 h after fertilization) and sorted 

spawning-habitat substrate. The eggs were fertilized from kokanees collected in 

Flaming Gorge Reservoir by the Wyoming Game and Fish Department in 1991. 

Thirty incubation baskets, each containing 50 eggs covered by a 12-cm deep layer of 

sorted substrate, were buried within the study area by divers on November 7 and 8, 

1991. Three baskets were distributed within each 2-m depth interval, from 1-21-m, 

along a 25-m length of shore. 
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Nylon mesh covers (1-mm bar) were placed on top of the incubation baskets to 

prevent intrusion of naturally spawned eggs, while allowing fine sediments to enter the 

basket. On March 28 , 1992, the mesh covers were replaced with emergence traps to 

capture emergent fry. The holding bag on each emergence trap was exchanged every 

7 d from April 25 to May 30, 1992, and captured fry were counted to determine 

survival to emergence. On May 30 , all incubation baskets were removed to count the 

live fry that remained. 

A horizontal intragravel pipe buried adjacent to each incubation basket was 

used to sample dissolved oxygen concentrations of intragravel water associated with 

each incubation basket. The pipes were centered at the depth of the eggs in the 

incubation basket. lntragravel dissolved oxygen concentrations were sampled every 

28 d , beginning November 9, 1991. Extreme weather conditions altered this sampling 

schedule on January 11 and February 2, 1992. Dissolved oxygen concentrations were 

measured using the Winkler titration method with azide modification for nitrate 

interference (APHA et al. 1985). A detailed description of the construction , 

installation, and use of the incubation baskets and emergence traps , and extraction of 

intragravel water samples from the horizontal pipes can be found in Jeric et al. (1995). 

Sediment deposition on redds during the incubation period was measured 

using sediment traps. Sediment was collected into 1-L polyethylene jars with 5.4-

cm diameter openings. A jar was mounted upright on a stainless-steel rod driven 

into the substrate about 15 cm down-slope from each incubation basket, so that the 
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top of the jar was at the same depth as the top of the incubation basket. The jars 

were installed on December 7, 1991 and sediment samples were collected for three 

periods on February 2, March 28, and May 23, 1992. Solids from each jar were 

aspirated onto precombusted 0.45-micron glass-fiber (Whatman GF/C) filters, dried 

at 103°C for 24 h, and weighed to 0.1 mg. The dried samples and filters were 

combusted for 45 min at 550°C in a muffle furnace and reweighed to determine the 

organic weight. 

Thermometers bound to stakes were set at the substrate-water interface every 

2-m depth, from 2-20-m deep, along the midline of the study area. Divers recorded 

temperatures at the substrate-water interface from each thermometer on each sample 

date. Degree-days were calculated at each depth by linearly interpolating 

temperatures between sample intervals. 

Results 

Three of the 30 incubation baskets originally installed (2.1, 2.4 , and 18.0-

m-depth) were dislocated by kokanee spawning activities. Data associated with 

these baskets are not included in the analyses . 

Time of Emergence 

Emergent fry were first captured the week ending May 2, and peak 

emergence occurred the week ending May 9 (Figure 3-2). Four of the 398 total fry 
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Figure 3-2.--Number of emergent fry captured weekly from all incubation 
baskets, Flaming Gorge Reservoir, 1992. Remnants (Rem) were live fry remaining 
in the incubation baskets on May 30. 
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captured (about 1 % ) had not emerged from the incubation baskets on May 30. First 

emergence of fry occurred at temperatures between 6. 8 and 9. 6°C, at 681 and 739 

degree-days, respectively (Table 3-1). Peak emergence occurred between 714 and 

842 degree-days at temperatures ranging from 6.8 to 11. 1°C. Final emergence 

occurred between 970 and 1056 degree-days, and the greatest temperature at which 

emergence occurred ranged from 12.8 to 13.5°C. 

Survival to Emergence 

Survival to emergence ranged from zero to 66% (Table 3-2) and was inversely 

related to depth (r2 = 0.33, P < 0.0005; Figure 3-3). Mean intragravel dissolved 

oxygen concentrations were inversely related to depth (Table 3-3; r2 = 0.78 , P 

<0.0005; Figure 3-4). Survival to emergence was directly related to mean 

intragravel dissolved oxygen concentrations (P < 0.0005, r2 = 0.39; Figure 3-5) , 

and minimum intragravel dissolved oxygen during the incubation period (r2 = 0.32, 

P < 0.002). 

The total dry weight of sediments deposited increased with depth during 

periods 1 and 2 (test of slope = 0; P < 0.0005) but decreased with depth during 

period 3 (P <0.01) when sedimentation was greatest (Table 3-4; Figure 3-6). The 

proportion of organic sediments deposited decreased with depth during each period 

(P < 0.0005 for periods 1 and 2, P < 0.05 for period 3). The log of the mean 

percent organic sediment (for all periods combined) decreased with depth (r2 = 

0.89, P < 0.0005; Figure 3-7). 
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Table 3-1.--Substrate-water interface temperatures (0 C), degree-days by sampling 
interval , and cumulative degree-days by depth, Flaming Gorge Reservoir, 1991-92. 
Column headings refer to calendar date (top) and days after incubation basket 
installation (bottom). 

Substrate-water interface temperature 
Depth 11/09 12/07 01/11 02/02 02/29 03/28 04/25 05/02 05/09 05/16 05/23 05/30 
(m) 2 30 65 86 114 142 170 177 184 191 198 205 

2 9.0 5.5 0.7 0.8 1.8 6.3 7.0 9.6 10.9 13.3 14.3 15.5 
4 8.7 5.2 0.8 1.0 1.8 5.8 6.8 9.3 10.9 13 .1 13.6 15.4 
6 8.8 5.5 1.5 1.5 2.3 3.9 6.7 9.3 11.1 12.8 13.5 14.8 
8 8.8 5.5 1.7 2.0 2.1 3.7 6.9 8.6 10.6 12.8 13.2 13.0 

IO 8.8 5.5 2.2 2.8 2.5 3.0 6.7 8.6 10.0 12.5 12.1 12.9 
12 8.9 5.5 2.9 2.9 2.7 3.2 6.7 8.6 8.2 11.3 9.7 12.5 
14 8.8 5.5 2.8 2.7 2.8 3.3 6.6 7.8 7.9 8.5 8.8 10.9 
16 8.8 5.5 2.9 2.8 2.8 3.0 6.3 7.2 7.7 8.1 8.2 8.0 
18 9.0 5.5 3.2 2.8 3.5 3.2 5.9 7.0 7.5 7.8 8.1 7.4 
20 9.0 5.5 3.1 2.9 3.1 3.2 5.5 6.8 6.5 7.2 7.9 6.8 

Degree-days by sampling period 
2 18 203 109 16 36 113 186 58 72 85 97 104 
4 17 195 105 19 39 106 176 56 71 84 94 102 
6 18 200 123 32 53 87 148 56 71 84 92 99 
8 18 200 126 39 57 81 148 54 67 82 91 92 

10 18 200 135 53 74 77 136 54 65 79 86 88 
12 18 202 147 61 78 83 139 54 59 68 74 78 
14 18 200 145 58 77 85 139 50 55 57 61 69 
16 18 200 147 60 78 81 130 47 52 55 57 57 
18 18 203 152 63 88 94 127 45 51 54 56 54 
20 18 203 151 63 84 88 122 43 47 48 53 52 

Cumulative degree-days 
2 18 221 330 345 382 495 681 739 811 896 992 1097 
4 17 212 317 336 375 482 658 714 785 869 962 1064 
6 18 218 340 372 425 512 660 716 788 871 963 1062 
8 18 218 344 383 440 521 670 724 791 873 964 1056 

10 18 218 353 405 479 556 692 746 811 890 976 1063 
12 18 219 366 427 506 588 727 781 839 908 981 1059 
14 18 218 363 421 498 583 722 772 827 885 945 1014 
16 18 218 365 425 503 584 715 762 814 869 926 983 
18 18 221 373 436 525 618 746 791 842 895 951 1005 
20 18 221 372 435 519 607 729 772 818 866 919 970 
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Table 3-2.--The emergence timing and survival rates of kokanee fry captured 
weekly from incubation baskets in Flaming Gorge Reservoir, 1992. Fifty eggs were 
placed in each incubation basket on November 7 and 8, 1991. Remnants are live fry 
remaining in incubation baskets on 5/30. 

Depth Date Rem- - Survival -
(m) 4/2 5 5/02 5109 5/16 5/23 5/30 nants Sum % 
2.5 0 7 18 0 0 0 26 52 
3.9 0 2 26 1 0 0 0 29 58 
3.9 0 2 28 0 0 0 0 30 60 
4.0 0 1 6 0 0 0 0 7 14 
4.6 0 0 16 0 0 0 0 16 32 
6.0 0 0 19 14 0 0 0 33 66 
6.7 0 0 6 19 1 0 0 26 52 
7.2 0 0 12 8 0 0 0 20 40 
7.3 0 0 17 0 0 0 0 17 34 
8.3 0 0 4 7 0 0 0 11 22 
8.7 0 0 8 21 3 1 0 33 66 
9 .2 0 0 0 0 0 0 0 0 0 

10.9 0 0 2 8 2 0 0 12 24 
11.6 0 0 3 10 0 0 0 13 26 
12. l 0 0 0 0 0 1 0 2 
12.5 0 0 0 0 14 0 0 14 28 
12.9 0 0 6 16 2 0 0 24 48 
13.3 0 0 1 20 0 0 0 21 42 
14.3 0 0 0 0 0 0 0 0 0 
14.4 0 0 2 2 5 0 0 9 18 
16. 1 0 0 0 1 4 3 2 10 20 
16.5 0 0 0 7 9 1 0 17 34 
17.4 0 0 0 0 11 2 2 15 30 
18.1 0 0 0 0 0 0 0 0 0 
18.6 0 0 0 0 0 0 0 0 0 
19.1 0 0 0 0 0 0 0 0 0 
19.4 0 1 6 3 3 0 14 28 

Sum: 0 13 175 141 54 11 4 398 
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Table 3-3.--Dissolved oxygen concentrations (mg/L) of water samples collected 
from intragravel dissolved oxygen pipes on eight dates, Flaming Gorge Reservoir , 
1991-92. SD is standard deviation. 

Depth Date 
(m) 11/9 12/7 1/11 2/02 2/29 3/28 4/25 5/23 Mean SD 
2.5 7.0 7.3 4.8 8.3 9.6 10.9 8.2 6.9 7.9 1.8 
3.9 7.5 6.0 7.7 7.5 8.2 10.4 8.4 7.3 7.9 1.2 
3.9 7.1 5.8 8.7 8.4 8.3 10.8 8.0 7.3 8.1 1.4 
4.0 6.2 6.0 8.1 8.6 8.4 10.4 8.7 8.0 8.1 1.4 
4.6 6.7 7.1 7.4 8.0 7.5 11.1 8.2 8.4 8.1 1.4 
6.0 6.3 6.5 7.9 7.6 7.2 9.7 6.7 5.9 7.2 1.2 
6.7 7.5 5.6 7.9 7.6 7.6 9.7 6.2 6.2 7.3 1.3 
7.2 5.9 6.9 7.0 6.7 6.5 8.9 8.3 6.2 7.1 1.0 
7.3 5.8 6.2 6.6 5.3 5.8 7.9 6.9 6.1 6.3 0.8 
8.3 4.9 1.8 5.8 5.9 5.2 6.6 6.2 5.7 5.3 1.5 
8.7 6.4 6.3 7.9 7.6 7.3 8.4 7.9 5.7 7.2 1.0 
9.2 6.6 5.7 6.0 6.1 7.3 7.5 5.8 6.7 6.5 0.7 
10.9 7.0 7.0 7.1 6.0 6.8 8.2 8.5 8.0 7.3 0.8 
11.6 7.2 5.7 3.7 4.7 6.5 5.8 5.8 7.1 5.8 1.2 
12.1 7.0 7.4 6.7 5.8 5.2 8.0 7.4 7.3 6.9 0.9 
12.5 7.8 6.5 4.6 3.4 4.2 3.5 5.0 3.6 4.8 1.6 
12.9 7.9 6.5 5.3 6.6 5.2 8.2 8.1 7.1 6.9 1.2 
13.3 7.1 7.1 6.7 6.0 5.3 8.4 8.0 7.4 7.0 1.0 
14.3 7.2 7.4 3.0 1.2 2.4 3.1 4.6 5.5 4.3 2.3 
14.4 5.9 6.7 5.3 5.0 5.0 6.0 6.6 6.2 5.8 0.7 
16.1 6.9 6.9 3.2 2.7 2.4 2.1 3.3 2.6 3.8 2.0 
16.5 6.8 7.1 3.3 4.1 2.2 4.4 5.6 5.7 4.9 1.7 
17.4 7.7 6.9 3.6 4.3 3.3 3.9 3.9 2.8 4.6 1.8 
18.1 7.7 7.3 7.5 1.5 1.3 2.6 1.2 1.5 3.8 3.1 
18.6 6.2 6.4 2.4 1.6 1.3 0.3 1.0 1.0 2.5 2.4 
19.1 7.7 7.5 1.1 1.1 0.9 0.4 1.2 0.9 2.6 3.1 
19.4 3.0 3.7 1.8 3.8 4.7 5.2 4.6 3.4 3.8 1.1 
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Table 3-4.--Total dry (Total) and organic (Org) weight in grams, and percent 
organic ( % Org) content of sediment samples collected for periods 1, 2, and 3 
(November 9 to February 2, February 2 to March 28, and March 28 to May 23, 
respectively), Flaming Gorge Reservoir, 1991-92. 

Depth -- Period 1 -- -- Period 2 -- -- Period 3 --
(m) Total Org % Org Total Org % Org Total Org % Org 

2.5 0.867 0.071 8.2 0.199 0.035 17.6 4.441 0.329 7.4 
3.9 0.779 0.062 7.9 0.174 0.027 15.6 3. 199 0.211 6.6 
3.9 0 .634 0.053 8.4 0.199 0.032 16.2 3.070 0.237 7.7 
4.0 0 .751 0.072 9.6 0.226 0.038 17.0 3.145 0.282 9 .0 
4.6 0 .694 0.053 7.6 0. 184 0.031 16.6 2.875 0. 183 6 .4 
6.0 0.575 0.041 7. 1 0. 176 0.025 14.1 2.042 0.129 6.3 
6 .7 0.689 0.050 7.3 0.235 0.026 10.9 2.253 0. 151 6 .7 
7.2 0 .757 0.047 6.2 0.164 0.021 13.0 2.352 0. 150 6.4 
7.3 0.766 0.047 6. 1 0.215 0.024 11.1 2.157 0. 135 6.3 
8.3 0.883 0.065 7.4 0. 182 0.020 10.9 2.154 0. 143 6.6 
8.7 0.829 0.057 6.9 0.204 0.018 9.0 2.102 0. 134 6.4 
9.2 0.731 0.046 6.3 0.213 0.020 9.3 1.902 0.133 7.0 

10.9 0.962 0.062 6.4 0.266 0.021 7.9 2.022 0. 117 5.8 
11.6 1.083 0.072 6.7 0.224 0.020 8.8 2.208 0.132 6.0 
12. 1 1.569 0.099 6.3 0.439 0.032 7.2 3.427 0. 196 5.7 
12.5 t.033 0.056 5.5 0.247 0.020 8. 1 1.846 0. 121 6.6 
l2.9 0.591 0.031 5.2 0. 144 0.013 8.7 1.387 0.096 7.0 
13.3 1.008 0.061 6.1 0.282 0.022 7.9 1.831 0.110 6.0 
14.3 1.480 0.084 5.7 0.400 0.029 7.3 2.788 0. 162 5.8 
14.4 0 .821 0.047 5.7 0.308 0.022 7.3 1.707 0. 102 6.0 
16. 1 1.553 0.105 6.8 0.554 0.040 7.1 2.805 0. 165 5.9 
16.5 1.222 0.063 5. 1 0.438 0.027 6. 1 1.744 0.107 6.2 
17.4 0.775 0.045 5.9 0.247 0.019 7.6 1.461 0.092 6.3 
18. 1 0.966 0.050 5.2 0.788 0.045 5.7 1.880 0.124 6.6 
18.6 1.458 0.074 5. 1 0.752 0.041 5.4 2.463 0. 135 5.5 
19.1 1.353 0.071 5.2 0.824 0.046 5.6 2.518 0. 147 5.8 
19.4 1.227 0.073 6.0 0.882 0.052 5.9 2.298 0.138 6.0 
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Figure 3-6.--Total dry (g/cm 2
) and proportion organic sediment deposition by depth 

for periods 1, 2 , and 3 (November 9-February 2, February 2-March 28, and March 
28-May 23, respectively) , Flaming Gorge Reservoir, 1991-92. 
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sediment to depth . The regression equation is: Log (mean percent organic sediment) 
= -0.017 x (Depth) + 1.063, r = 0.89, N = 27. 
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Due to the relation of several habitat variables to depth, I examined the 

associations of the variables to each other in a correlation matrix (Table 3-5). I 

included the coefficient of variation (CV) of each variable, except depth, resulting 

in nine independent variables. The CV scales variation relative to the mean and 

incorporates measures of temporal habitat variability into the analyses. Nineteen of 

36 associations in the correlation matrix were significant (P < 0.05). Survival to 

emergence versus these habitat variables was examined using step-wise multiple 

regression analysis (SAS Institute, Inc. 1982). A single independent variable, mean 

intragravel dissolved oxygen , produced the most significant regression model (r = 

0.39). A principal components analysis (NCSS 1993) using normalized 

independent variables generated three factors. A second step-wise regression using 

these three factors explained less variation (R2 = 0.38) in survival to emergence 

than mean intragravel dissolved oxygen alone. 

Discussion 

Time of emergence generally proceeded from shallow to deep water , following 

trends in water temperature during the period of emergence (Table 3-2). 

Throughout emergence, temperatures at the substrate-water interface decreased with 

depth, but cumulative degree-days did not decrease with depth until May 23 (Table 

3-1). Due to inverse thermal stratification of the water column during the period of 

ice-cover, deep incubating kokanees accumulated more degree-days than those in 
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Table 3-5.--Correlation matrix of habitat variables associated with kokanee survival 
to emergence, Flaming Gorge Reservoir, 1991-92. Pearson correlation coefficients are 
listed (top) and P-values (bottom). CV is coefficient of variation of the mean, IGDO is 
intragravel dissolved oxygen, and Org is organic. Sediment related variables are 
indicated. 

Sediment 

CV Log CV CV CV Log 

Mean Mean Mean Mean (Mean Mean Mean (Mean 

IGDO IGDO Dry Org % Org) Dry Org % Org) 

Depth -0.894 0.554 0.049 -0.394 -0.918 0.094 -0.925 -0.913 

0.001 0.003 0.807 0.042 0 .001 0.641 0.001 0.001 

Mean -0.526 -0.235 0. 195 0.779 -0.012 0.825 0.760 
IGDO 0.005 0.237 0.330 0.001 0.954 0.001 0.001 

CV Mean 0.196 -0.043 -0.463 -0.366 -0.502 -0.421 
IGDO 0.327 0.831 0.015 0.061 0.008 0.029 

Mean Dry 0.841 0.074 -0.310 -0.109 -0.081 
Sediment 0.001 0.715 0.116 0.587 0.689 

Mean Org 0.565 -0.401 0.353 0.324 
Sediment 0.002 0.038 0.071 0.100 

Log (Mean% -0.297 0.883 0.898 
Org Sediment) 0.133 0.001 0.001 

CV Mean Dry -0.080 -0.208 
Sediment 0 .691 0.298 

CV Mean Org 0.881 
Sediment 0.001 
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shallow waters until about May 9. However, kokanees incubating in shallow waters 

were exposed to higher levels of dissolved oxygen. Despite the potential for 

differences in developmental rates of salmonid embryos associated with differences 

in dissolved oxygen and temperature before hatching (Alderdice 1958; Garside 

1959, 1966; Brannon 1965; Hamor and Garside 1976; Burgner 1991), time of 

emergence seemed to be determined by water temperatures during the period prior 

to emergence. 

Kokanee survival to emergence was related to depth and several of the 

habitat variables measured. Survival to emergence, mean intragravel dissolved 

oxygen , and organic sedimentation decreased with depth. Although mean 

intragravel dissolved oxygen explained the greatest amount of variation in survival , 

depth accounted for significant variation in the habitat variables. The study area was 

fairly homogeneous in slope and substrate composition , as indicated by the strong 

associations of most independent variables with depth. Gravel size in the incubation 

baskets was uniform to minimize bias associated with differences in substrate 

composition. Differences in survival by depth probably resulted from differences in 

associated habitat variables , and not from differences in pressure. 

The position of the sediment jars above the substrate collected primarily 

particles falling from the water column, and not down-slope movement of 

sediments. While trends in dry sediment deposition at depth varied among periods, 

percent organic sedimentation decreased with depth in each period. Wave activity 
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suspending and concentrating organic materials near shore could potentially account 

for the greater organic sedimentation collected in shallow waters. However , percent 

organic sedimentation was highest during the period of ice-cover when turbulence 

was minimal. 

The trends in organic sedimentation likely resulted from photosynthetic 

activity occurring throughout the incubation period. The second sediment collection 

period (February 2 to March 28; roughly concurrent with ice-cover) contained 67% 

of the maximum dissolved oxygen samples measured by site. At depths less than 

about 4 m, high concentrations of phytoplankton limited diver visibility under the 

ice to about 1-2 m on February 29. Visibility below this depth appeared limited 

only by light. Divers also observed bubbles (presumably oxygen at saturation) 

released by periphyton to about 2-m depth. Sufficient light penetrated reservoir ice 

(46-cm thick with negligible snow-cover) for photosynthesis to occur in shallow 

water . Snow melting into the bay and decomposition of kokanee carcasses in the 

study site could have provided nutrients adequate for growth of periphyton and 

phytoplankton (Richey et al. 1975; Minshall et al. 1991). 

During kokanee incubation in Flaming Gorge Reservoir , net primary 

production may exceed net consumption of organic sediments, resulting in an 

adequate supply of oxygen available for egg survival. The amount of organic matter 

in aquatic sediment is not necessarily an indication of availability to reducers 

(Hargrave 1972) and hence not a good indication of potential oxygen reduction. 
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Under-ice circulation in the bay and die! water temperature fluctuations directly 

below the ice on sunny days (Kenney 1991) may enhance exchange of intragravel 

waters during the period of ice-cover. Natural convection (O'Brien et al. 1978; 

Johnson 1980) and fin movement by alevins (Barns 1969; Fast et al. 1982) may 

provide additional transport of dissolved oxygen to salmonids incubating under 

conditions of low water exchange. Prior studies in lotic waters examined effects of 

the quantitative composition of sediment (i.e., particle size-distributions, inorganic 

sediment) on the dissolved oxygen supply, survival to emergence, and time of 

emergence of incubating salmonids (Wickett 1954; Cordone and Kelley 1961; 

Bianchi 1963; Phillips et al. 1975; Ringler and Hall 1975; Hausle and Coble 1976; 

Meehan and Swantson 1977; Woods 1980; Tappe! and Bjornn 1983; MacCrimmon 

and Gots 1986). These results indicated that the qualitative composition of sediment 

(i.e., percent organics) may influence the supply of dissolved oxygen to salmonids 

incubating in lacustrine habitats. 

Prevailing west winds creating frequent waves along the shore of the study 

site may have increased exchange of shallower intragravel waters, providing a stable 

supply of dissolved oxygen to kokanee embryos. While mean intragravel dissolved 

oxygen was negatively correlated with depth , the CV of mean intragravel dissolved 

oxygen was positively correlated with depth, indicating greater temporal stability of 

dissolved oxygen in shallow waters. A stable supply of dissolved oxygen could have 

enhanced development and survival of shallower incubating kokanees. Lower 



concentrations and greater variability in intragravel dissolved oxygen with depth 

may have contributed to the reduced survival to emergence observed. This 

supposition contrasts with Sly (1988), who suggested that increased wave activity 

increased organics in-filling substrate interstices, contributing to greater variability 

of dissolved oxygen within lake trout spawning substrates in Lake Ontario. 
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Developing salmonid embryos appear to exhibit greater tolerance to reduced 

dissolved oxygen concentrations and water flows at lower temperatures (Garside 

1959; Silver et al. 1963; Hamor and Garside 1976; Chapman 1988). The low 

temperatures and concurrently high dissolved oxygen concentrations observed under 

the ice of Flaming Gorge Reservoir may reduce potential metabolic stresses 

encountered by incubating kokanees. During the ice-free periods, water 

temperatures and, presumably, metabolic demands of kokanee embryos are greatest. 

Wave activity may contribute to increased exchange of intragravel waters, increasing 

dissolved oxygen available to kokanee embryos. Developing sockeye salmon 

embryos from shore-spawning populations in Iliamna Lake, Alaska, are dependent 

upon wind-driven circulation for intragravel water exchange, and hatching occurs 

before ice-cover forms (Burgner 1991). 

Consistency among several regression models supported the assumption of 

linear relationships within the range of variables measured. The depth at which 

predicted survival to emergence equaled zero was 23.9 m (Figure 3-3). The 

concentration of mean intragravel dissolved oxygen at which predicted survival to 
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emergence equaled zero was 2.2 mg/L (Figure 3-5). The predicted mean intragravel 

dissolved oxygen concentration at 23.9 m (the derived depth at which predicted 

survival was zero) was 2.3 mg/L (Figure 3-4), close to the predicted concentration 

at which no survival would occur. 

These results provide novel information relevant to the ecology and 

management of shoreline-spawned salmonids. While shore-spawning by kokanees 

has been observed at depths near 20 m (Hassemer 1984; Gipson and Hubert 1993), 

estimates of survival to emergence relative to water depth have not been previously 

reported. In this study, in situ survival to emergence of 28 % was observed from an 

incubation basket exceeding 19-m depth. Survival to hatching of 85 % was 

observed for salmonids reared in aquaria at mean dissolved oxygen concentrations of 

2.6 mg/L, with complete mortality occurring when dissolved oxygen was reduced to 

1.6 mg/L after hatching (Silver et al. 1963). Survival to emergence in this study 

occurred under an instantaneous dissolved oxygen concentration of 1. 8 mg/L, a 

mean dissolved oxygen concentration of 3.8 mg/L, and a maximum (for the 

incubation period) dissolved oxygen concentration of 5.2 mg/L. Survival rates for 

incubating kokanees have not previously been reported for water temperatures less 

than 1. 7-2.0°C (Combs 1965; Murray and McPhail 1988; Beacham and Murray 

1989). The lower initial temperature for "normal development" of sockeye salmon 

incubating in streams was reported as ranging from 4.4-5.8°C, with mortality of 

80 % when incubated at a constant 2°C (Combs 1965). Although substrate-water 



interface temperatures measured during my study were interim values that varied 

widely throughout the intragravel developmental period, kokanee survival to 

emergence of 52 % was observed from a site with an instantaneous substrate-water 

interface temperature minimum of 0. 7°C. 
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Interior-spawning kokanee and sockeye populations may be better adapted to 

tolerate low mean incubation temperatures than coastal-spawning populations 

(Murray et al. 1989). Emergence of kokanees in my study occurred over a wide 

range of instantaneous temperatures ( 6. 8-13. 5°C) and developmental periods ( 681-

1056 degree-days). However, mean temperatures at 50% emergence varied less 

than one degree, ranging from 5.3 to 6. l°C. Notwithstanding differences in 

dissolved oxygen, 50% emergence of kokanees in my investigation would have 

occurred from 122 to 136 days after fertilization, based on the relationship using 

mean water temperatures developed by Murray et al. (1989) for lotic-spawned 

interior kokanee populations. The days to 50% emergence derived from Murray et 

al. ( 1989) were less than the range observed for kokanees in Flaming Gorge 

Reservoir (184-198 days). These results support the contention that developmental 

times are considerably longer for kokanees in lakes or reservoirs versus streams 

(Murray et al. 1989). 

These results indicated that several factors that varied with depth were 

critical to survival to emergence of kokanees in Flaming Gorge Reservoir. 

Investigations of the intragravel success of shore-spawning salmonids should 
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consider differences in intragravel dissolved oxygen concentrations, water 

temperatures, and rates of organic sedimentation that may occur with depth. The 

relation of survival to emergence to depth indicates that the distribution of spawning 

by depth may also be important to population recruitment in impoundments where 

water levels vary during the intragravel period. 
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Researchers have recommended that studies of salmonid survival to 

emergence in streams focus on conditions within the egg pocket of redds (Chapman 

1988; Young et al. 1989; 1990). King and Thurow (1991) suggested intragravel 

pipes be placed in the egg pocket to accurately measure dissolved oxygen 

concentrations within artificial redds used in streams. Structures typically associated 

with redds in streams (e.g., pit, tailspill) by definition require orientation to current 

(Burner 1951; Grost and Hubert 1990; Thurow and King 1994) and cannot be 

applied directly to redds of lacustrine spawners. Distinct redds or egg pockets are 

not necessarily established by shoreslope spawners. Individual redds were seldom 

apparent within the spawning habitat observed in Flaming Gorge Reservoir, due to 

successive kokanee spawning activity that resulted in movement of substrate down 

slopes. Hassemer and Rieman (1981) described deep, shoreslope spawning by 

kokanees in Lake Coeur d'Alene, Idaho, as "broadcasted" over large substrate , 

rather than confined to a redd. When using incubation baskets to measure survival 

to emergence of shore-spawned salmonids relative to intragravel conditions, a focus 

on egg-density and substrate composition representative of the spawning habitat may 

be more critical than attention to individual egg pockets. 

Shore-spawning is common for salmonids, but factors such as depth of 

spawning , water-level fluctuations, reservoir ice-cover, and highly variable egg 
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deposition complicate direct assessment of total fry production for these populations 

compared to tributary-spawning stocks. Alternative methods that multiply estimates 

of survival to emergence , female spawner abundance, and fecundity provide a more 

feasible estimate of fry recruitment for lacustrine spawning populations. Estimates 

of fecundity and spawner abundance are frequently available, but survival to 

emergence estimates are rare. The method described here will allow more frequent 

measurement of survival to emergence and emergence timing than has been 

previously possible for shore-spawned salmonids. 

As a forage and sport fish , often with self-sustaining populations, kokanees 

are a valuable component of many lakes and reservoirs in the western United States 

(Wydoski and Bennett 1981). Water-level fluctuations during incubation may 

increase egg mortality and reduce kokanee recruitment. Models predicting mortality 

of kokanees have been established for several reservoirs and lakes where irrigation 

or hydroelectric demands alter water levels during incubation (Stober et al. 1979; 

Stober and Tyler 1982; Fraley et al. 1986, 1989; Fraley and Decker-Hess 1987). 

Knowledge of survival at depth and time of emergence of shoreslope-spawned 

kokanees may help reservoir managers more accurately predict mortality under 

various drawdown regimes. Because the spawning kokanees observed distributed 

redds regularly with depth along the shoreslope of Flaming Gorge Reservoir, 

findings of greater survival in shallow waters indicated that reducing reservoir water 

levels during incubation would have reduced the number of emerging kokanees. 
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Table A-1.--Repeated measures analysis of variance of differences in intragravel 
dissolved oxygen concentrations within and adjacent to control baskets. 

Source 

Hypothesis 
Error 

Sum of 
Squares 

3.004 
7.688 

Degrees of 
Freedom 

1 
4 

Mean 
Squares 

3.004 
1.922 

F-statistic 

1.563 
P-value 

0.279 
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