
GPU-ACCELERATED DEMODULATION FOR A SATELLITE GROUND STATION

by

Emily Clark Young

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Electrical Engineering

Approved:

Jacob Gunther, Ph.D. Todd Moon, Ph.D.
Major Professor Committee Member

Reyhan Baktur, Ph.D. Richard S. Inouye, Ph.D.
Committee Member Vice Provost for Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2019

ii

ABSTRACT

GPU-Accelerated Demodulation for a Satellite Ground Station

by

Emily Clark Young, Master of Science

Utah State University, 2019

Major Professor: Jacob Gunther, Ph.D.
Department: Electrical and Computer Engineering

One consequence of the increasing number of small satellite missions is an increasing de-

mand for high data rate downlinks. As the satellites transmit at high data rates, ground-side

receivers need to demodulate the transmitted data as quickly as possible. While application

specific hardware can be designed, software defined radio solutions for ground stations are

attractive for their flexibility, adaptability, and portability.

Another industry trend is the increasing use of Graphics Processing Units (GPUs)

in general-purpose processing. By performing many operations simultaneously, GPUs are

capable of accelerating processing when given a problem that can be implemented in a

parallel manner. Furthermore, once a parallel algorithm is implemented, further speedups

are possible by increasing hardware resources without need for any revision in the algorithm.

This project combines the above ideas by implementing a software defined radio algo-

rithm to quickly demodulate high-speed data on a GPU. It demonstrates the viability of

the GPU in software defined radio applications and particularly in the area of fast demod-

ulation.

(84 pages)

iii

PUBLIC ABSTRACT

GPU-Accelerated Demodulation for a Satellite Ground Station

Emily Clark Young

One consequence of the increasing number of small satellite missions is an increasing de-

mand for high data rate downlinks. As the satellites transmit at high data rates, ground-side

receivers need to demodulate the transmitted data as quickly as possible. While application

specific hardware can be designed, software defined radio solutions for ground stations are

attractive for their flexibility, adaptability, and portability.

Another industry trend is the increasing use of Graphics Processing Units (GPUs)

in general-purpose processing. By performing many operations simultaneously, GPUs are

capable of accelerating processing when given a problem that can be implemented in a

parallel manner. Furthermore, once a parallel algorithm is implemented, further speedups

are possible by increasing hardware resources without need for any revision in the algorithm.

This project combines the above ideas by implementing a software defined radio algo-

rithm to quickly demodulate high-speed data on a GPU. It demonstrates the viability of

the GPU in software defined radio applications and particularly in the area of fast demod-

ulation.

iv

To my late great-grandmother, Joye S. Peterson, a real-life “Rosie the Riveter;” you
have always been my hero.

v

ACKNOWLEDGMENTS

I would like to express my thanks to a few of the teachers and educators who have been

influential in my life: to Dr. Gunther, for his guidance and encouragement which made this

project possible; to Mr. Rippon, my 8th grade Geometry teacher, for enabling me to see

what I was capable of; and to Dr. Moon, who first introduced me to communications,

information theory, and signal processing, and has been an excellent teacher.

I am also deeply grateful for the continual love and support of my parents, in-laws, and

most of all my husband Caleb, who is also my best friend.

Emily Young

vi

CONTENTS

Page

ABSTRACT . ii

PUBLIC ABSTRACT . iii

ACKNOWLEDGMENTS . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

ACRONYMS . x

1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Thesis overview . 3

2 REVIEW OF LITERATURE . 4
2.1 Synchronization in communications systems 4

2.1.1 Timing and phase synchronization 4
2.1.2 Carrier frequency offset . 9

2.2 Software defined radio . 12
2.3 Implementations of software defined radio 13

3 RESEARCH AND DESIGN METHODS . 15
3.1 Signal model . 15
3.2 Timing and phase correction by complex kurtosis 16

3.2.1 Timing offset correction . 17
3.2.2 Phase offset correction . 18

3.3 Phase offset correction by “min/max” equalization method 19
3.4 Carrier frequency offset correction by spectral estimation 21
3.5 System verification . 22

4 CUDA IMPLEMENTATION AND METHODS . 23
4.1 GPU Architecture . 23
4.2 Indexing . 23
4.3 Parallel Reduction . 25
4.4 Methods of convolution . 28

4.4.1 Inner-product Convolution . 29
4.4.2 Multi-threaded convolution . 29
4.4.3 Fast Convolution . 31
4.4.4 Conclusions . 31

vii

5 RESULTS . 33
5.1 Optimal synchronization parameters . 33
5.2 Comparison of phase synchronization methods 35
5.3 CUDA Optimizations . 37

5.3.1 Symbol block size . 37
5.4 Timing tests . 38

6 CONCLUSION . 41
6.1 Future work . 42

REFERENCES . 44

APPENDICES . 50
A CODE LISTINGS . 51

A.1 C Functions . 51
A.2 GPU Functions . 58

B System Diagrams . 70

viii

LIST OF TABLES

Table Page

4.1 Run times for inner-product convolution method 29

4.2 Run times for multi-threaded convolution method 31

4.3 Run times for fast convolution method . 31

5.1 GPU execution time for phase correction with 100 tests 36

5.2 Average runtime in milliseconds by packet length. 37

5.3 Data rates in Mbps based on block and grid size. 38

5.4 Code Timing Tests . 39

5.5 Demodulation runtime for 500-symbol packets of data. 40

ix

LIST OF FIGURES

Figure Page

2.1 QPSK constellation with sample timing offset. 5

2.2 QPSK constellation with phase offset. 6

2.3 Received QPSK constellation with carrier frequency offset. 9

2.4 Spectrum of the transmitted signal in the passband. 10

2.5 Spectrum of demixed signal with a frequency offset. 10

2.6 Spectrum of signal at baseband after CFO correction. 11

3.1 Simulation of modulated signal . 16

3.2 Kurtosis as a function of timing offset. 18

3.3 Box fitted around received symbols. 19

3.4 Box fitted around rotated symbols. 20

3.5 Spectrum of (y[n])4 . 22

4.1 CUDA Memory hierarchy . 24

4.2 Parallel reduction for a single block . 26

5.1 Receiver BER by number of matched filters 34

5.2 Receiver BER by number of phase points tested. 35

5.3 Receiver BER by method of phase correction 36

B.1 Full System Diagram . 71

B.2 Timing Correction System Diagram . 72

B.3 Carrier Frequency Offset Correction Diagram 73

B.4 Phase Correction System Diagram . 74

x

ACRONYMS

ASIC application-specific integrated circuit

BER bit error rate

CFO carrier frequency offset

CPU central processing unit

DC direct current

DICE Dynamic Ionospheric CubeSat Experiment

FFT fast Fourier transform

FPGA field programmable gate array

GMSK Gaussian minimum shift keying

GNSS global navigation satellite system

GPS global positioning system

GPU graphics processing unit

LDPC low-density parity-check

OFDM orthogonal frequency division multiplexing

QPSK quadrature phase shift keying

PLL phase locked loop

SDR software defined radio

SNR signal to noise ratio

TED timing error detector

UAV unmanned aerial vehicle

CHAPTER 1

INTRODUCTION

1.1 Motivation

In October 2011, the Dynamic Ionospheric CubeSat Experiment (DICE) project was

launched into space. DICE consisted of two 1.5U CubeSats, each equipped with the in-

strumentation to measure plasma density, electric field, and magnetic field. Previous to

the launch of DICE, CubeSat missions relied primarily on transmission over amateur radio

bands, and downlink speeds were relatively low. Between the limited overpass time of the

satellite and the large amount of data that needed to be transmitted to the earth, the DICE

mission required a higher than average downlink rate – on the order of megabits per second.

A satellite radio was developed that could transmit at the high data rates, and the satellite

was licensed to operate on a governmental frequency. From the satellite side, the problem

of fast data transmission was solved [1].

However, on the earth side, the downlink rate was too high to be demodulated in real

time on a PC, and the data was instead recorded and demodulated at a later time [2].

This gave rise to the need for ground station demodulation that is fast, portable, and

flexible. Previously available solutions only needed to handle data rates on the order of

kilobits per second, but as small satellites grow in usage there will be an increased need

to demodulate larger quantities of data in a limited amount of time. A review of recently

launched CubeSats [3] indicates that this is the case: early satellites transmitted in the

kilobits per second range, while more recently launched satellites may transmit megabits

per second.

While the increase in CubeSat missions necessitates the ability to handle more and more

data, it also necessitates flexible and complex communications systems. Software defined

radio (SDR) is a compelling option with significant benefits. SDRs are versatile enough to

2

handle any modulation scheme without requiring custom hardware for each scheme. They

are potentially less expensive than a hardware radio, since most or all of the modulation

and demodulation can be done on any processor. They can be updated remotely to ac-

commodate additional standards, which could be especially beneficial for spacecraft radio

systems. Furthermore, changes and updates don’t require any hardware rework and no lead

time to implementation.

Although there exist many compelling reasons for using software defined radios, they

are still subject to specific challenges. One such challenge, particularly relevant in the

CubeSat case presented above, is data rate. Custom hardware can be made to operate

at very high speeds, while software applications have some intrinsic overhead that slows

processing. To counteract the slower processing speeds, software has to be optimized for the

hardware it is developed on, but complex designs can make this task difficult. One possible

approach is the use of Graphical Processing Units (GPUs) for software radio applications.

GPUs can offer substantial speedups compared to CPUs, provided that the algorithm can

be implemented in a parallel manner due to the inherent parallel architecture of the GPU:

while a CPU may be able to execute a few software threads at once, a GPU can execute

thousands. Furthermore, once a parallel algorithm has been designed, further speedups

may be achieved by simply increasing the hardware resources, without necessarily having

to change the algorithm.

The GPU approach has some significant limitations. GPUs typically consume a sub-

stantial amount of power. Commercially available embedded GPUs could easily use 10 W

of power; in contrast, an FPGA used for the same application may operate on less than 0.5

W. As a result, it would be difficult to produce a small, deliverable product using a GPU

when the same functionality can be implemented on an FPGA or an ASIC with much lower

power usage.

That said, in the right setting GPUs are still a powerful and useful computational tool.

Power consumption is much less of a concern for a ground station application than for a

satellite or mobile communication system. When programmed using a C-extended language

3

such as OpenCL or CUDA, floating point computations are generally trivial to implement.

This effectively eliminates the problem of fixed point quantization noise. In contrast, an

FPGA must explicitly allocate hardware resources to handle floating point operations.

As GPUs are seeing further improvement and development, it is worth studying their

effectiveness in a variety of engineering applications. This project aims to demonstrate the

viability of using GPUs in software radio applications, specifically in performing demodu-

lation.

1.2 Thesis overview

The rest of this paper is organized as follows: Chapter 2 presents a review of the liter-

ature surrounding time, phase, and frequency synchronization, which is the main challenge

in demodulation. It further considers the literature regarding software defined radio, es-

pecially in satellite applications, and discusses the hardware platforms used to implement

software defined radios. Chapter 3 outlines the signal model and algorithmic approach used

in this project. Chapter 4 discusses the implementation of the algorithm on the GPU, as

well as some methods uniquely suited to the GPU architecture. Results are presented in

Chapter 5. Chapter 6 provides conclusions and suggestions for further work.

CHAPTER 2

REVIEW OF LITERATURE

2.1 Synchronization in communications systems

Communications systems are subject to many non-ideal channel effects. These include

sample timing offset, phase offset, and carrier frequency offset. Here, a brief study is made

of the many synchronization methods available for use in a digital communications system.

2.1.1 Timing and phase synchronization

Timing and phase synchronization are common issues in receiver systems. Sample

timing offset occurs when the incoming signal is not sampled at the optimal symbol time.

This has the effect of “scattering” the symbol constellation points, moving them closer to

the symbol decision boundaries and increasing the risk of decision error. This scattering

effect is illustrated in Figure 2.1. Figure 2.1a shows the effect of a large, uncorrected

timing offset, with the received symbols appearing to spread out from their correct values.

Conversely, Figure 2.1b shows the received symbols with a corrected sample timing offset,

and the received symbols are closely clustered around their intended values. Both figures

represent received constellations in the presence of very little noise, so that the spreading

effect is due to the sample timing offset. At lower SNR levels, the timing offset spread will

result in higher bit error rates since small noise levels will be sufficient to “push” symbols

into incorrect decision regions.

5

−1.4−1.2 −1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

I

Q

(a) Received QPSK constellation with sample tim-
ing offset.

−1.4−1.2 −1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

I

Q

(b) Received QPSK constellation with corrected
sample timing offset.

Fig. 2.1: QPSK constellation with sample timing offset.

Phase offsets are rotations on the incoming data which can incorrectly project symbols

into the wrong decision regions. This is demonstrated in Figure 2.2: the symbols are

received with a 45 degree phase offset, and are rotated to move the constellation points

to the correct place. Pre-rotation, the symbol clusters may lie on or near decision region

boundaries, as shown here. Then, even very small amounts of noise can cause symbols to

be projected into the wrong decision regions.

6

−1.4−1.2 −1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

I

Q

pre-rotation
post-rotation
expected

Fig. 2.2: QPSK constellation with phase offset.

One of the earliest and still frequently used approaches to timing and phase correction

is the use of Phase Locked Loops (PLLs). PLLs use an error detector, loop filter, and

an oscillator in a feedback configuration to detect and track phase and frequency in an

incoming signal. The error detector signals that a timing or phase correction is needed.

An interpolation scheme is used to adjust the sample time or rotate the symbols based

on the error signal. The system operates continually to compensate for the detected error

signal [4, Appendix C].

The PLL recovery approach has been well studied. For phase recovery, PLLs may use

one of several different timing error detectors (TEDs) have been introduced, adapted, and

extended over the years. These include the Gardner TED [5], the zero-crossing TED [6],

the maximum likelihood TED [7], and the Mueller and Müller TED [8].

7

A simple interpolation scheme introduced by Farrow [9] is frequently used in demod-

ulation systems. More recently, various timing recovery interpolation schemes have been

introduced, such as the trigonometric polynomial interpolation in [10]. An optimal interpo-

lation filter is described in [11]. Interpolation is also sometimes performed using a multirate

filtering approach as in [12].

PLL-based implementations are often used in demodulating continuous data streams.

It takes some nonzero amount of time for the system to lock onto the signal and for the phase

error to diminish [4, p 730]. Due to the acquisition time, PLLs are not a good approach

in packetized burst communications. In a burst-mode system the PLL would have to lock

onto the signal for each packet, and some symbols at the beginning of each packet would

inevitably be lost.

Burst mode communications can be split into two categories: “data aided” and “non-

data aided.” In the data aided case, packets are sent with a known preamble which is used

to recover the symbol timing. Data aided algorithms generally outperform non-data aided

algorithms at the expense of wasted bandwidth.

Data aided timing and phase recovery algorithms are plentiful in the literature. The

authors of [13] demonstrate the usage of a known preamble to recover timing by selecting

the timing that maximizes the correlation of the pilot data with the input signal. It essen-

tially performs a filtering operation, with the filter being formed from the pilot data. The

algorithm presented in [14] is able to recover the timing and phase simultaneously with a

shorter preamble than other techniques. In [15], the authors propose a maximum-likelihood

algorithm which estimates the carrier frequency offset, corrects for it, and then calculates

the timing and phase offset using closed form expressions, which are based on an optimized

preamble. The optimized preamble allows for a less complex receiver system. In [16], an

FFT is performed on the preamble data of a GMSK signal. The timing is estimated from

the FFT phase at a certain frequency and the carrier frequency estimate is obtained from

the DC portion of the FFT. The estimated parameters are used during the preamble period

to compensate for the offsets, following which the phase offset is coarsely estimated.

8

Although the performance of data-aided synchronization algorithms are generally supe-

rior, there are important motivations for using blind synchronization. Sending a preamble

in each packet adds overhead and reduces overall data throughput. Blind synchronization

is thus motivated in part by interest in high speed data transmission.

One of the earliest and most commonly used blind estimators is introduced by Oerder

and Meyr in [17]. The timing offset estimation is performed by computing the spectral

component from the squared input signal. It requires that the signal be upsampled by

a factor of 4. The estimator in [18] also uses an upsampling factor of 4 but maximizes

the log-likelihood function to find the timing offset. The authors claim that it is similar

in complexity to the Oerder-Meyr estimator [17], but performs with higher accuracy. A

similar method is mentioned in [19] that uses an absolute value operation on the data as

part of the estimation. The estimation algorithm in [20] uses only two samples per symbol

and has similar performance to the conventional Oerder-Meyr. It does not claim to be the

optimal solution in terms of accuracy, but it performs reasonably well with fewer samples

per symbol than the other estimators [17–19] and does not require any expensive nonlinear

computations.

A blind estimation algorithm for space-time block code systems is described in [21].

It finds the beginning of a block by measuring the correlation of multiple samples and

finding the maximum correlation. The synchronization parameters are estimated using

second order statistics. The algorithm requires the system to have two receiving antennas.

The paper suggests that the algorithm is an effective synchronization scheme for space-time

block codes which may be useful in areas such as software defined and cognitive radios.

In [22], the timing and carrier frequency offsets are extracted from the cyclic correlation

of the input data, made possible because of the cyclostationarity of OFDM recieved signals.

Both parameters are derived from the phase of the cyclic correlation, which is not affected

by the impulse response of the transmitting channel. Therefore it is not necessary to know

anything about the channel to recover the timing and carrier frequency using the proposed

estimator.

9

The non-data aided class of algorithms described by Moeneclaey and Bastele [23] builds

off of the Mueller and Müller [8] and Gardner [5] error detectors in a feedback configuration,

and only requires one sample per symbol. The approach is modified for a feedforward

configuration in [24].

2.1.2 Carrier frequency offset

Carrier frequency offset (CFO) is a nonideality that occurs at the demixing step in the

receiver. If the receiver demixes with a frequency that is not perfectly matched to the signal

carrier, the signal is not completely brought to baseband. This occurs either because the

transmitter and receiver oscillators are not exactly the same, or due to a Doppler frequency

shift [25]. In either case, the result is a “spinning” effect on the symbols and the system

performance is degraded. This effect is demonstrated in Figure 2.3. A QPSK signal was

transmitted, but received with a carrier frequency offset such that the symbols don’t seem

to cluster together at all.

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

I

Q

Fig. 2.3: Received QPSK constellation with carrier frequency offset.

10

Furthermore, OFDM signals rely on the division of a frequency band into orthogonal

“subchannels” [26]. The presence of an uncorrected frequency offset can therefore cause

co-channel interference.

The de-mixing frequency, fr, is equal to the carrier frequency fc plus an offset v. In

this scenario the de-mixed signal, r[n], is equal to the transmitted signal multiplied by a

complex exponential

r[n] = s[n]ej2πνn

Figure 2.4 shows the magnitude spectrum of the transmitted signal at its carrier frequency.

Figure 2.5 shows the magnitude spectrum of the signal after de-mixing. Figure 2.6 shows

the magnitude spectrum of the signal at baseband.

+fr−fr

Fig. 2.4: Spectrum of the transmitted signal in the passband.

+ν−ν

Fig. 2.5: Spectrum of demixed signal with a frequency offset.

11

Fig. 2.6: Spectrum of signal at baseband after CFO correction.

In the continuous data stream case, as long as the offset is not too large, and the noise

bandwidth parameter is chosen appropriately, the frequency offset can often be corrected

by the PLL at the same time as the phase correction.

Several of the burst mode synchronization algorithms mentioned in the previous section

perform timing and carrier frequency correction simultaneously. For example, the cyclic

correlation method in [22] estimates the timing and carrier frequency offsets jointly. Carrier

frequency correction was also described in the data-aided methods in [15] and [16].

Other papers describe algorithms specifically used for frequency offset correction. Sev-

eral are reviewed in [27], and mentioned here. The Rife-Boornstyn estimator [28] is a

maximum likelihood method which performs a coarse and then a fine search for the fre-

quency offset. The well known Luise-Regiannini estimator [29] is a maximum likelihood

based strategy that maximizes the autocorrelation with respect to the frequency mismatch.

The Tretter [30] and Kay [31] estimators are least-squares methods that perform similarly to

the optimal maximum likelihood estimators at high SNR, but perform poorly at low SNR.

However, they are both linear algorithms with lower complexity than the Rife-Boornstyn

estimator mentioned previously. Morelli and Mengali [32] present three estimation schemes

based on known training data. More recently, the authors of [33] proposed two non-data

aided methods to estimate frequency based on irregular symbol repetition. They claim to

perform well at low SNR levels with a short burst duration.

In summary, the problem of timing, phase, and carrier frequency offset estimation and

correction is well explored for both continuous and burst communications. The methods

12

differ in terms of performance and complexity and an approach must be carefully selected

to match the constraints of a given problem.

2.2 Software defined radio

Software defined radio has seen considerable growth in the past twenty years or so, as

improvements in processor capabilities have made it an increasingly viable option. Since

their inception in the early 1990s, much work has been done to explore a wide range of

software radio capabilities in many applications. For example, a software-defined radio

based emergency vehicle alert system is presented in [34], software radio platforms for

smart homes are evaluated in [35], and a software-based GPS receiver is described in [36].

Software defined radios are used in [37] as cognitive relays, which would be implemented on

UAVs for ground stations to combat interference in satellite downlinks.

Software defined radio is a particularly attractive option in satellite systems, given their

heavy reliance on reliable communication systems. Beginning in the mid-1900s, scientists

envisioned a network of man-made communication satellites that would enable worldwide

broadcast services [38]. Over the past several decades the space industry has largely been

driven by communications-related interests, leading to the advent of global navigation (such

as GPS), reliable long-distance and mobile communications, improved weather forecasting

and more [39].

The need for advanced communications systems is not strictly limited to communications-

based applications. Scientific satellite missions may employ cameras or sensors to collect

data, which then needs to be relayed to an earth-side receiver. In fact, the telecommuni-

cations subsystem of a satellite is arguably one of the most important subsystems, since

without a way to transmit or receive information, a satellite is essentially useless. The

problem has continued to grow more complex as more small satellite missions are launched.

Increased regulatory requirements, limited bandwidth, security measures, and sophisticated

communications protocols drive the need for flexible, cost-effective communications solu-

tions [40]. This is especially true for satellite “swarm” missions, where several satellites are

sent into orbit to operate cooperatively and may communicate with each other as well as

13

with ground stations. Software radio systems can be programmed to handle a variety of

modulation schemes, operate on a variety of transmission bands, and implement complex

protocols. Software radios can also be updated remotely, allowing the satellite communica-

tions system to use new protocols or modulation schemes as needed.

The appeal of software defined radios on satellites is evident from its treatment in the

literature. Examples include [40–42]. Software radios are also being explored for satellite

ground station solutions. One such system was developed and tested in [43] as an alternative

to dedicated hardware components for a GNSS-R system. The authors of [44] outline a

software radio solution for ground stations that uses commercial off-the-shelf components. A

similar system is implemented in [45] which cancels interference using a maximum likelihood

algorithm, estimates Doppler shift, and addresses co-channel interference.

2.3 Implementations of software defined radio

Intrinsic in the design of a software radio system is the choice of hardware platform.

Relevant considerations in that choice include power usage, speed, development cost, and

flexibility. The systems in [34] and [36] are implemented using GNU Radio, which suggests

implementation on a traditional processor. The authors of [46] present an approach to

designing satellite payloads on an FPGA with a goal of flexibility and reconfigureability. A

specific architecture for a satellite software defined radio is given in [47] for implementation

on an FPGA. The architecture in [41] pairs an FPGA System on Chip (SoC) with a dual-

core ARM processor. The contribution of [48] is a model-based software radio design for an

FPGA, in which a complete communications system is implemented.

Of particular interest in this study is the usage of graphics processing units in software-

defined radio. While FPGA and CPU based processing is widely used and sometimes

preferred, the capabilities of GPU platforms have seen considerable progress in recent years

and is therefore worth studying. Some publications that use GPUs for all or part of the

signal processing are noted here.

The computationally expensive correlation process of the GNSS protocol is imple-

mented in [49] using a GPU platform. Notable speedups were achieved with this implemen-

14

tation. A complete software-defined transceiver was implemented on a GPU in [50] which

achieves near-maximum-likelihood detection and corrects interference using equalization

techniques. The receiver implemented in [51] estimates relevant parameters by simultane-

ously correlating all possible combinations of sidelink synchronization signal sequences. A

GPU-based software defined radio was also implemented in [52] and a study performed to

evaluate the load placed on the CPU. A high-throughput OFDM system was implemented

on a GPU in [13] and substantial speedups were observed.

Error correction can also be performed on GPUs; [53,54] and [55] each perform LDPC

with decoding with GPU-specific optimizations. Similarly, [56] uses a “divide-and-conquer”

approach to perform Hamming distance calculations on each trellis in parallel.

CHAPTER 3

RESEARCH AND DESIGN METHODS

The bulk of the algorithm to be implemented in this project is based on the model

introduced by [57]. It presents a method of timing and phase synchronization for a burst

transmission system by using statistical measures on a block of signal data. The method is

a low complexity approach that is easily adapted to run in parallel.

The proposed system is a realization of a software defined radio on a GPU platform

using burst-mode synchronization techniques.

3.1 Signal model

It is assumed that the signal contains no training or pilot data, and the system processes

the symbols in blocks or packets rather than as an infinitely long incoming sequence. The

bit data for the simulation is generated randomly, differentially encoded, and modulated

with a QPSK modulation scheme. Timing offset is simulated on the transmitter side by

using a pulse-shaping filter with a random timing offset. Once the baseband signal s(t)

has been generated, it is mixed to a carrier frequency fc. Frequency offset is simulated by

adding a randomly chosen offset, ν, to the transmitted frequency. The receiver demixes the

signal at the frequency fr = fc + ν. A phase offset term φ between −π/4 and π/4 is chosen

at random and added to the argument of the demixing sine and cosine waves as shown in

(3.1) and (3.2);

Ir(t) = r(t) cos(2πfrt+ φ); (3.1)

Qr(t) = r(t) sin(2πfrt+ φ). (3.2)

The baseband signal simulation is summarized by the diagram in Figure 3.1.

16

���

↑

↑ �(�� + �)

�(�� + �)

cos(2� �)�
�

sin(2�)�
�

Σ

�

�

���� �(�)
Σ

�(�)

cos(2� � + �)�
�

sin(2� � + �)�
�

�(�)

(�)�
�

(�)�
�

���

���

Fig. 3.1: Simulation of modulated signal

The effect of the channel is modeled by adding white Gaussian noise n(t) to the trans-

mitting signal.

r(t) = s(t) + n(t)

The noise is generated by the Box-Muller Transform [58]. The Box-Muller Transformation

takes two independent samples, U1 and U2 of a uniform distribution, U ∼ (0, 1). The

uniform samples are provided by the rand() function in C. Then, two normally distributed

samples, Z1 and Z2 are found by the following equations:

Z1 =
√
−2 ∗ lnU1 cos 2πU2

Z2 =
√
−2 ∗ lnU1 sin 2πU2

The samples Z1 and Z2 are scaled by σn. All of the noise samples are generated by this

process, resulting in n(t) ∼ N (0, σ2n).

Once the signal is modulated down to baseband and the in-phase and quadrature-

phase portions of the signal have been extracted, the system performs timing, phase, and

frequency corrections to the signal.

3.2 Timing and phase correction by complex kurtosis

Because of its parallel nature, a feedback or feed-forward structure such as a PLL is

not an effective way to solve the timing offset or phase offset problems in a GPU implemen-

17

tation of a demodulator. Therefore, a statistical method is employed which is much more

effective to implement in parallel. This system assumes that no training data is available

and processes the data in blocks, rather than as an infinitely long incoming sequence.

The complex kurtosis is a second-order statistic that can be interpreted as a measure

of the “Gaussian-ness” of a sequence [59]. The complex kurtosis is given by

Kc(y) = E{y4} − 2(E{|y|2})2 − |E{y2}|2. (3.3)

If y is a real variable, the kurtosis reduces to

Kr(y) = E{y4} − 3(E{y2})2. (3.4)

A kurtosis of 0 indicates a perfectly Gaussian distribution. By extension, a kurtosis far

away from zero indicates a relatively non-Gaussian distribution.

3.2.1 Timing offset correction

Doing the matched filtering of the signal at a timing offset results in inter-symbol

interference; effectively, it mixes together multiple symbols. By the central limit theorem

[60, p. 390], when independent identically distributed variables are mixed the result tends

toward a Gaussian distribution. Using the kurtosis as a measure of Gaussian-ness, it follows

that the timing delay which results in the least Gaussian sequence is the delay that minimizes

the timing error [57]. The timing problem is solved in this system by creating a bank of

matched filters with various timing delays. The complex kurtosis is calculated on the

sequence filtered by each of the matched filters. The minimum of these kurtoses values

corresponds with the matched filter with the timing offset closest to the signal timing

offset. The plot in Figure 3.2 shows the complex kurtosis of the sequence as a function of

the timing offset.

18

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1.1

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

Sampling Phase τ

C
om

p
le

x
k
u

rt
o
si

s

Minimum kurtosis value

Fig. 3.2: Kurtosis as a function of timing offset.

3.2.2 Phase offset correction

Kurtosis-based phase offset correction uses a similar procedure to the timing offset

correction. The downsampled, filtered symbols are rotated by an angle {θ|θ1, θ2, ...θnp} by

multiplying the symbols by the rotation matrix R.

R =

cos θ − sin θ

sin θ cos θ

The phase resolution np defines the number of test phases used. The test phases are equally

spaced between −π/4 and π/4. For each rotation, the real kurtosis is calculated on both

the in-phase and quadrature-phase branches, then summed together. The rotation angle

which results in a minimum kurtosis is taken to be the best correction. This method results

19

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

I

Q

Fig. 3.3: Box fitted around received symbols.

in a π/2 phase ambiguity which is easily resolved by use of differential encoding.

3.3 Phase offset correction by “min/max” equalization method

A second phase correction method, the “min/max” method, was also implemented.

The method is based on the idea of fitting a square box around the outside of the symbol

constellation such that the box contains all of the symbols in the constellation [61]. The

symbols are then rotated in such a way as to minimize the length of the sides of the square

box. When a phase offset exists the symbols can take on more extreme values in the x- and

y- directions, thus increasing the size of the box. Figures 3.3 and 3.4 illustrate this idea.

Note that the fitted box in Figure 3.3 is larger than the fitted box in Figure 3.4 due to

the phase offset. When the symbols are correctly located, the box size is minimized. As in

the kurtosis method, the symbols are rotated by several different test phases. For each test

phase, the symbols are rotated and then projected onto the y-axis. The maximum value of

20

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

I

Q

Fig. 3.4: Box fitted around rotated symbols.

21

the projected symbols is found and saved. This is the “max” value. After completing the

test phases, the “max” values are compared. The rotation which yields the smallest “max”

value – or the “minimum of the maxes” – is taken to be the best rotation to correct the

phase offset.

3.4 Carrier frequency offset correction by spectral estimation

The spectrum of the fourth power of the matched filtered, timing-corrected signal

contains a peak at the frequency bin νT [57], where ν is the frequency offset and T is the

symbol period. The system assumes that the frequency offset is within ±5% of the demixing

frequency. This limits the search to frequencies within ±.05/T . An FFT is used to estimate

the spectrum with an FFT length that is the smallest power of 2 larger than the length of

the filtered signal. The actual frequency offset is calculated by

ν = arg max(|F{y4}|) ·N/(4 · nfft) (3.5)

where y is the matched filtered signal, N is the upsampling factor, and nfft is the length of

the FFT. The offset is corrected by multiplying y by e−j2πνT/N . Figure 3.5 shows the spec-

trum of the fourth power of the signal before and after carrier frequency offset correction.

22

−5 −4 −3 −2 −1 0 1 2 3 4 5

·10−2

Spectrum before CFO correction
Spectrum after CFO correction

Fig. 3.5: Spectrum of (y[n])4

3.5 System verification

The system was verified in the following ways:

• The proposed algorithm was first simulated in MATLAB, then implemented in C,

then implemented on the GPU. Timing, phase, and frequency offset correction were

verified separately and jointly.

• The noise level was verified by running a noiseless signal through the system, running

a purely noisy signal through the system, and comparing the variances of the system

outputs. This experiment yielded measurements very close to the specified SNR.

• Many iterations of the demodulator function were run to produce a bit error rate plot.

A complete system diagram is shown in Appendix B.

CHAPTER 4

CUDA IMPLEMENTATION AND METHODS

4.1 GPU Architecture

Graphics processing units (GPUs) can provide significant speedups over sequential CPU

computing if the algorithm can be parallelized. The parallel behavior is achieved using a

Single Instruction Multiple Data (SIMD) behavior. The work is divided such that a single

instruction is executed by many processing cores, and each operates on different data.

CUDA provides a useful abstraction for dividing up work into “threads,” the individual

units of work, and “blocks,” or groups of threads with some shared resources. The exact

configuration of threads and blocks is determined by the user at the launch of the kernel.

Figure 4.1 [62] shows CUDA’s memory hierarchy. Each thread has access to its own local

and register memory, shared memory can be accessed by any thread in a block, and global

memory can be accessed by any thread in any block. Memory access is an important

consideration in GPU programming. Memory copies between the host and the device are

computationally expensive, so the best programming strategy is to put the data on the

device and leave it there for as long as possible. It is worthwhile to use the device to

perform operations which may be more efficient on the host, because copying back and

forth is time consuming. Memory considerations also come into play within the kernels

themselves. Local and shared memory access is relatively fast, while global memory access

tends to be slow. It is therefore ideal to reduce global memory reads whenever possible and

to use shared memory instead.

4.2 Indexing

Blocks and grids are numbered as shown in Figure 4.1. Within each kernel, CUDA

provides built-in variables for the block and grid dimensions, as well as the location of each

24

Fig. 4.1: CUDA Memory hierarchy

25

thread within the block and grid.

gridDim Blocks per grid

blockIdx Index of the block

blockDim Threads per block

threadIdx Index of the thread

This indexing is the mechanism by which each thread can do separate, independent

work. The indexing is usually calculated as follows:

int t i d = blockIdx . x ∗ blockDim . x + threadIdx . x ;

The thread can then use this “thread index” to read and write data at locations unique

from any other thread.

The block size and grid size are defined by the user when the kernel is invoked. The

number of threads per block is typically a multiple of 32, and the number of blocks per grid

is usually defined as follows [62]:

int blksPerGrid = (N + threadsPerBlk − 1) / threadsPerBlk ;

where N is the length of the array.

4.3 Parallel Reduction

Reduction algorithms are often useful in parallel computing [63]. In this project, re-

duction is used to find the sum, the minimum, or the maximum of an array. The reduction

algorithm is implemented by launching a kernel and allowing the blocks to store initial re-

sults in shared memory. Then half of the threads remain idle while the other half computes

results for the values in shared memory. This method is repeated until there is one final

result per block, and a single thread writes its result to global memory. The diagram in

Figure 4.2 demonstrates this process.

26

Fig. 4.2: Parallel reduction for a single block

The result is an array in global memory with the intermediate results from each block.

Reduction could be performed on this final intermediate array using a single block, or the

memory could be copied to the CPU and the final result could be found sequentially. The

following example demonstrates the difference between sequential programming and parallel

reduction.

27

Finding the maximum sequentially:

f loat max = −1e10 ; int ind = −1;

for (int i =0; i<l en ; i ++){

i f (data [i] > max){

max = data [i] ;

ind = i ;

}

}

Finding the maximum using parallel reduction:

1. The kernel is launched. Each thread computes a preliminary “local” result and stores

it in shared memory.

int t i d = blockIdx . x ∗ blockDim . x + threadIdx . x ;

int cacheIdx = threadIdx . x ; // l o c . o f thread in b l o c k

f loat max = −1e10 ; int ind = −1;

while (t i d < l en){

i f (data [t i d] > max){

max = data [t i d] ; // current maximum

ind = t i d ; // l o c a t i o n o f curren t maximum

}

t i d += step ;

}

maxCache [cacheIdx] = max ;

indCache [cacheIdx] = ind ;

sync th r ead s () ;

2. Each block now has a shared array filled with local results. Half of the threads in

each block perform the next computation and store their results back into the shared

memory, while the other half of the threads remain idle. Thus, the problem is reduced

28

by half in each block. This step is repeated until there is only one active thread in

the block.

int i = blockDim . x /2 ;

while (i != 0){

i f (cacheIdx < i){

// bottom 1/2 o f the t h r e a d s perform the r e d u c t i o n

i f (maxCache [cacheIdx + i] > maxCache [cacheIdx]) {

maxCache [cacheIdx] = maxCache [cacheIdx + i] ;

indCache [cacheIdx] = indCache [cacheIdx + i] ;

}

}

sync th r ead s () ;

i /= 2 ;

}

sync th r ead s () ;

3. A single thread holds the intermediate result for its block. This thread writes its

result to global memory.

i f (cacheIdx == 0){

maxArr [b lockIdx . x] = maxCache [0] ;

indArr [b lockIdx . x] = indCache [0] ;

}

4. The return array holds threadsPerBlock intermediate results. The final result can be

found by looping through the data on the CPU, or by running the reduction function

again with only one block.

4.4 Methods of convolution

29

This project explored various methods of performing filtering in parallel. Three meth-

ods are compared: traditional or “inner product” convolution, multi-threaded convolu-

tion [2], and fast convolution using cuFFT [64]. The convolution methods were timed using

arbitrary test data and a 121-point filter. All experiments were executed on an Nvidia

GeForce GTX 1070 graphics card.

4.4.1 Inner-product Convolution

Equation (4.1) represents linear convolution of an FIR filter.

y[n] =

N−1∑
k=0

h[k]x[n− k] (4.1)

The “inner product” convolution method is performed in parallel with each thread comput-

ing a single output and looping through all filter values. It is based on a view of the output

as a sum of inner-products between the input samples and the filter. In other words, each

thread computes y[n] from (4.1), where n is determined by the thread index. The GPU

execution times of the inner-product convolution are shown in Table 4.1.

Block size Grid size Min time [µs] Mean time [µs] Max time [µs]

32 82 11.136 11.319 12.256

64 41 10.849 11.094 11.904

128 21 10.656 10.891 11.968

256 11 11.744 11.902 12.832

512 6 12.288 12.827 13.921

1024 3 18.848 18.942 19.488

Table 4.1: Run times for inner-product convolution method

4.4.2 Multi-threaded convolution

The “multi-threaded” convolution method is based on a view of the output points as

a linear combination of the filter values. As each input sample comes in, it is multiplied by

30

each of the filter points and accumulated separately. The input samples do not need to be

stored in memory, as each accumulator uses each input sample simultaneously and then it

is no longer needed. When the accumulator has an output point ready, it writes its result

to the output array and resets. Each accumulator in a block takes the same input value and

multiplies it by a different filter value. Each block overlaps by N , where N is the length of

the filter, to prevent a transient response at the beginning of each block. A snippet of the

code is shown below.

int l = threadIdx . x ; // accumulator i d x

int i = 0 ; // current time i d x

while (t i d < end){

m = (l−i+N)%N;

// c i r c u l a r index : current f i l t e r i d x f o r t h i s thread

i f (t i d < dataLen && t i d >=s t r) // i f t i d i s in the v a l i d range

x = dataArr [t i d] ; // read new input

else

x = 0 . 0 ;

acc += f i l t [m]∗ x ; // m u l t i p l y and accumulate

i f (m == 0){ // r e s u l t i s ready

i f (t id>= s t r && t i d < s igLen){

convArr [t i d] = acc ; // w r i t e to output array

acc = 0 . 0 ; // r e s e t accumulator

}

}

i = (i+1+N)%N;

t i d++;

}

The algorithm depends on having a block size greater than the length of the filter. In this

case, the filter is 121 points long, so blocks with fewer than 128 threads result in errors.

31

The timing results for the multi-threaded method are shown in Table 4.2.

Block size Grid size Min time [µs] Mean time [µs] Max time [µs]

128 21 42.464 42.702 43.872

256 11 63.585 63.798 64.865

512 6 116.74 116.92 117.73

1024 3 323.68 324.11 325.00

Table 4.2: Run times for multi-threaded convolution method

4.4.3 Fast Convolution

Fast convolution is implemented using the cuFFT API. The program takes the FFT

of both the filter and the data array, multiplies them element-wise, and takes the inverse

FFT. Timing results for fast convolution are shown in Table 4.3.

Block size Grid size Min time [ms] Mean time [ms] Max time [ms]

32 82 26.9 31.6 56.5

64 41 27.2 30.2 41.4

128 21 27.0 31.9 46.8

256 11 26.7 30.9 52.9

512 6 26.9 30.9 58.9

1024 3 27.1 31.9 46.2

Table 4.3: Run times for fast convolution method

4.4.4 Conclusions

From the results in the previous sections, it appears that the inner-product form of

convolution generally runs the fastest, with an average execution time of 10.891 µs for a

block and grid size of 128 and 21, respectively. The multi-threaded convolution execution

time for the same block and grid size is 42.702 µs on average. The fast convolution method

32

execution speeds are roughly constant across block and grid size.

CHAPTER 5

RESULTS

All tests were performed using an Nvidia GeForce GTX 1070 graphics card.

5.1 Optimal synchronization parameters

By nature of the approach used to perform the timing and phase correction, the per-

formance may be affected by the specific parameters chosen to run the algorithm. In the

timing correction case, the system generates a bank of matched filters and selects the filter

which results in the best timing correction. In running the simulation, it was necessary to

determine how many matched filters were needed to effectively resolve the sample timing

offset without slowing down the system. The more filters used, the better on average the

system will be able to find the correct timing offset. In order to determine the appropriate

number of matched filters for the receiver, bit error rate tests were run for several different

values and compared. The plot in Figure 5.1 shows the results of these tests.

34

0 2 4 6 8 10 12 14
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/No (dB)

B
E

R

5
9
15

Fig. 5.1: Receiver BER by number of matched filters

A large number of matched filters used does not seem to make a substantial improve-

ment to the performance. However, additional filters require additional computation, so it

is desirable to choose the minimum number of filters that give an acceptable performance.

Five matched filters were selected as the default value.

Similarly, in the phase correction case, multiple different phase rotations are tested and

the best is selected. The number of test phases corresponds with the ability of the receiver

to resolve the phase. The results of the bit error rate tests are shown in Figure 5.2. In the

figure, ‘np’ indicates the number of test phases used in the phase correction.

35

0 2 4 6 8 10 12 14
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/No (dB)

B
E

R

np=5
np=9
np=15

Fig. 5.2: Receiver BER by number of phase points tested.

Unlike the timing synchronization subsystem, the phase correction subsystem does

improve with more test points.

5.2 Comparison of phase synchronization methods

Two methods were implemented for phase offset correction: the kurtosis method and

the “min/max” method, both described in Chapter 3. The min/max method is an ad hoc

method developed for this project. The methods are compared based on their accuracy

and their runtime. Figure 5.3 compares the two phase correction methods based on their

accuracy. The results indicate that the kurtosis method does a much better job of correcting

phase offset in terms of bit error rate, even with fewer phase test points.

36

0 1 2 3 4 5 6 7 8 9 10 11 12 13
10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0

B
E

R

kurtosis, np=5

min/max, np=5

min/max, np=9

Fig. 5.3: Receiver BER by method of phase correction

Another important consideration in the choice of method is the time it takes to run.

Table 5.1 shows the results of repeated GPU timing tests with each phase correction method.

Method Min time [ms] Avg time [ms] Max time [ms]

Kurtosis 0.2370 0.8073 0.9303

Min/max 0.1102 0.4136 0.4745

Table 5.1: GPU execution time for phase correction with 100 tests

The min/max method runs significantly faster than the kurtosis method on average

due to the higher complexity computations used to compute the kurtosis.

Based on these results, it can be concluded that the kurtosis method is a more robust

method of phase correction, but has a higher level of complexity. Since the min/max method

37

relies on the most extreme (or “noisiest”) received point, it makes sense that its performance

is heavily affected by noise.

On the other hand, the kurtosis method requires computing the expected value of the

second and fourth powers of the data sequence, as in Equation (3.4). Power operations

are computationally expensive, which accounts for the longer runtime of the kurtosis-based

phase correction.

5.3 CUDA Optimizations

The purpose of this implementation is to demonstrate the viability of GPU processing

in performing receiver-side processing in a communications system. That viability is largely

measured in terms of speed and data rate. Thus, it is beneficial to consider what measures

can be taken to minimize the runtime of the demodulator and thereby increase the data

rate. A few of these measures are considered here.

5.3.1 Symbol block size

The best symbol packet length was investigated in terms of runtime and performance.

In Table 5.2, the demodulator runtime is compared for different symbol packet lengths.

of symbols Time/packet Time/symbol

10 0.838790 0.083879

25 0.955798 0.038232

50 1.148694 0.022974

100 1.520406 0.015204

250 2.681757 0.010727

500 4.633450 0.009267

1000 8.337942 0.008338

Table 5.2: Average runtime in milliseconds by packet length.

38

In general, it was found that the longer symbol packet lengths had lower processing

times per symbol and therefore higher data rates. However, they also tended to have some

minor increases in error rates. For most experiments, a packet length of 500 symbols was

used.

Table 5.3 compares the data rates of the demodulator based on the number of threads

per block. The number of blocks per grid is calculated based on the block size as shown in

4.2.

Threads/blk Blks/grid Min Mean Max

32 32 1.5764 1.6350 1.6875

256 4 1.3712 1.6081 1.6638

Table 5.3: Data rates in Mbps based on block and grid size.

5.4 Timing tests

A general breakdown of the runtime of each function in the demodulator is shown in

Table 5.4. This experiment was performed with 500 symbols per packet and 64 threads per

block.

39

Code snippet GPU time (ms)

Entire demodulation .720096

Timing corr. block .291920

Convolution (inner product) .019817

Downsampling .003072

Complex Kurtosis .015360

Find min location .005120

CFO correction block .102400

FFT execution .037313

Compute cmplx mag. .003152

Finding max location .048147

Phase offs. corr. block .257184

Rotation .004678

Real Kurtosis .052266

Table 5.4: Code Timing Tests

The complex kurtosis calculation and the filtering were consistently the most com-

putationally expensive functions in the receiver. Alternative convolution approaches were

explored in 4.4.

Table 5.5 shows the results of timing tests on the two different demodulation imple-

mentations. The C code was compiled with standard GCC optimization flags.

Each implementation was run 100 times and the minimum, maximum, and average

runtimes are presented in the table.

40

Impl. Min Time [ms] Mean Time [ms] Max Time [ms]

C 10.9630 12.3832 32.6510

CUDA 0.5580 0.5832 0.6260

Table 5.5: Demodulation runtime for 500-symbol packets of data.

The CUDA implementation offers speedups of around an average of 20 times over the

C implementation. The average data rate for the C implementation is 80 kbps and the

average data rate for the CUDA implementation is 1.7 Mbps.

CHAPTER 6

CONCLUSION

In Chapter 2, the relevant literature was examined, and a few trends were noted.

First, there is always a need for faster and more reliable communications systems. A

growing demand for data drives the search for techniques that enable higher and higher data

rates, while still balancing the need for high performance and low computational complexity.

While continuous data stream transmission is still used, there are plenty of applications more

suited to packetized transmission. Synchronization in packet-based communications system

requires different approaches compared to the traditional PLL-based methods. Commonly,

packets are sent with known symbols – pilot data – from which the receiver is able to learn

what timing and phase corrections to apply to an incoming signal. However, this data-

aided approach wastes valuable bandwidth by sending known symbols with every packet.

To increase data rates, blind synchronization techniques are utilized to perform timing and

phase recovery, but these techniques often come at the cost of lower performance.

Second, the space industry in particular is looking to transmit data at high rates as

small satellite missions increase. Satellites may be gathering large amounts of scientific

data and may only have brief contact with ground stations, thus driving a need for fast

transmission. With high transmission rates, fast demodulation is desired on the ground

station side to process the data in real time.

Third, software defined radio is an attractive option for satellites and ground stations

alike. In the past few decades the idea of the software defined radio has become much

more realistic as processors have become faster, cheaper, and more lightweight. Software

radios are beneficial for their flexibility, easy maintenance, replicability, and reasonably low

cost. Furthermore, they are well suited to changing protocols and complex modulation

schemes. Their development time is low, as updates can be pushed to multiple units in

different locations simultaneously. In a well designed system there is no need to replace any

42

hardware to accommodate a different protocol.

Finally, GPUs have become an attractive option for high speed computing in a wide

variety of disciplines. No longer used only for graphical rendering, GPUs are seeing consid-

erable growth in scientific fields.

All these factors are combined together in this paper to present a GPU-based demod-

ulation scheme for a ground station software defined radio. The algorithm presented in

Chapter 3 and introduced in [57] is by no means optimal, but it is fairly low complexity and

can be implemented in a parallel environment. Some of the techniques used for doing so are

discussed in Chapter 4. Results of experiments performed with the system are described in

Chapter 5.

These results demonstrate that not only is the GPU a viable platform for communica-

tions system functions, but their potential has yet to be fully explored. A comparison of the

algorithm run on a CPU versus a GPU shows a notable improvement in data rate simply

by adapting the algorithm to the GPU. One of the compelling features of a GPU is how

simple it is to increase the speed. If, as was shown here, it is possible to demodulate 2 Mbps

on a single data stream, then that data rate can be easily increased by simply boosting the

hardware resources and running the program on multiple data streams in parallel. The data

rate is increased without any significant change to the algorithm.

What’s more, the system presented here makes no claim of optimality, and yet still

achieves substantial speedups. It is not difficult to imagine that with more work and

optimization, the GPU could be a powerful choice for a software defined radio.

6.1 Future work

The potential for GPUs in communications applications is rich and diverse. The system

implemented in this paper assumes an Additive White Gaussian Noise channel. In the

case of a multi-path or frequency selective fading channel, some equalization algorithm

would need to be applied. A study could be made on the efficacy of such an approach

to equalization. Further, there has already been some work on error correction codes on

43

GPUs [53–56]. More work could be done on implementing such codes and optimizing them

for the GPU setting.

44

REFERENCES

[1] C. S. Fish, C. M. Swenson, G. Crowley, A. Barjatya, T. Neilsen, J. Gunther,
I. Azeem, M. Pilinski, R. Wilder, D. Allen, M. Anderson, B. Bingham, K. Bradford,
S. Burr, R. Burt, B. Byers, J. Cook, K. Davis, C. Frazier, S. Grover, G. Hansen,
S. Jensen, R. LeBaron, J. Martineau, J. Miller, J. Nelsen, W. Nelson, P. Patterson,
E. Stromberg, J. Tran, S. Wassom, C. Weston, M. Whiteley, Q. Young, J. Petersen,
S. Schaire, C. R. Davis, M. Bokaie, R. Fullmer, R. Baktur, J. Sojka, and M. Cousins,
“Design, development, implementation, and on-orbit performance of the dynamic
ionosphere cubesat experiment mission,” Space Science Reviews, vol. 181, no. 1, pp.
61–120, May 2014. [Online]. Available: https://doi.org/10.1007/s11214-014-0034-x

[2] J. Gunther, H. Gunther, and T. Moon, “GPU acceleration of DSP for communication
receivers,” Proceedings of the GNU Radio Conference, vol. 2, no. 1, p. 9, 2017.
[Online]. Available: https://pubs.gnuradio.org/index.php/grcon/article/view/39

[3] B. Klofas, “Cubesat communication systems: 2003 - 2018,” https://www.klofas.com/
comm-table/, Nov 2018.

[4] M. Rice, Digital Communications: A Discrete-time Approach. Pearson/Prentice Hall,
2009. [Online]. Available: https://books.google.com/books?id=EB3r7JtXlWwC

[5] F. Gardner, “A BPSK/QPSK timing-error detector for sampled receivers,” IEEE
Transactions on Communications, vol. 34, no. 5, pp. 423–429, May 1986.

[6] U. Mengali, Synchronization Techniques for Digital Receivers, ser. Applications
of Communications Theory. Springer US, 1997. [Online]. Available: https:
//books.google.com/books?id=89Gscsw7PvoC

[7] F. Gardner, Demodulator Reference Recovery Techniques Suited for Digital
Implementation. Gardner Research Comp., 1988. [Online]. Available: https:
//books.google.com/books?id=BqQ NQAACAAJ

[8] K. Mueller and M. Muller, “Timing recovery in digital synchronous data receivers,”
IEEE Transactions on Communications, vol. 24, no. 5, pp. 516–531, May 1976.

[9] C. W. Farrow, “A continuously variable digital delay element,” in 1988., IEEE Inter-
national Symposium on Circuits and Systems, June 1988, pp. 2641–2645 vol.3.

[10] D. Fu and A. N. Willson, “Trigonometric polynomial interpolation for timing recovery,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 2, pp. 338–
349, Feb 2005.

[11] D. Kim, M. J. Narasimba, and D. C. Coc, “Design of optimal interpolation filter for
symbol timing recovery,” IEEE Transactions on Communications, vol. 45, no. 7, pp.
877–884, July 1997.

https://doi.org/10.1007/s11214-014-0034-x
https://pubs.gnuradio.org/index.php/grcon/article/view/39
https://www.klofas.com/comm-table/
https://www.klofas.com/comm-table/
https://books.google.com/books?id=EB3r7JtXlWwC
https://books.google.com/books?id=89Gscsw7PvoC
https://books.google.com/books?id=89Gscsw7PvoC
https://books.google.com/books?id=BqQ_NQAACAAJ
https://books.google.com/books?id=BqQ_NQAACAAJ

45

[12] f. j. harris and M. Rice, “Multirate digital filters for symbol timing synchronization in
software defined radios,” IEEE Journal on Selected Areas in Communications, vol. 19,
no. 12, pp. 2346–2357, Dec 2001.

[13] X. Ma, H. Zhao, G. Li, and Y. Zhao, “Implementation of a high-throughput OFDM
system using graphics processing units,” in 2013 15th IEEE International Conference
on Communication Technology, Nov 2013, pp. 639–644.

[14] Q. Zhao and G. L. Stuber, “Robust time and phase synchronization for continuous
phase modulation,” IEEE Transactions on Communications, vol. 54, no. 10, pp. 1857–
1869, Oct 2006.

[15] E. Hosseini and E. Perrins, “Timing, carrier, and frame synchronization of burst-
mode CPM,” IEEE Transactions on Communications, vol. 61, no. 12, pp. 5125–5138,
December 2013.

[16] Y.-L. Huang, K.-D. Fan, and C.-C. Huang, “A fully digital noncoherent and coherent
GMSK receiver architecture with joint symbol timing error and frequency offset esti-
mation,” IEEE Transactions on Vehicular Technology, vol. 49, no. 3, pp. 863–874, May
2000.

[17] M. Oerder and H. Meyr, “Digital filter and square timing recovery,” IEEE Transactions
on Communications, vol. 36, no. 5, pp. 605–612, May 1988.

[18] M. Morelli, A. N. D’Andrea, and U. Mengali, “Feedforward ML-based timing estima-
tion with PSK signals,” IEEE Communications Letters, vol. 1, no. 3, pp. 80–82, May
1997.

[19] E. Panayirci and E. K. Bar-Ness, “A new approach for evaluating the performance
of a symbol timing recovery system employing a general type of nonlinearity,” IEEE
Transactions on Communications, vol. 44, no. 1, pp. 29–33, Jan 1996.

[20] S. J. Lee, “A new non-data-aided feedforward symbol timing estimator using two sam-
ples per symbol,” IEEE Communications Letters, vol. 6, no. 5, pp. 205–207, May 2002.

[21] M. Marey, O. A. Dobre, and B. Liao, “Second-order statistics-based blind synchroniza-
tion algorithm for two receive-antenna orthogonal STBC systems,” IEEE Communi-
cations Letters, vol. 18, no. 7, pp. 1115–1118, July 2014.

[22] B. Park, H. Cheon, E. Ko, C. Kang, and D. Hong, “A blind OFDM synchronization
algorithm based on cyclic correlation,” IEEE Signal Processing Letters, vol. 11, no. 2,
pp. 83–85, Feb 2004.

[23] M. Moeneclaey and T. Batsele, “Carrier-independent nda symbol synchronization for
m-psk, operating at only one sample per symbol,” in [Proceedings] GLOBECOM ’90:
IEEE Global Telecommunications Conference and Exhibition, Dec 1990, pp. 594–598
vol.1.

[24] M. Flohberger, W. Gappmair, and S. Cioni, “Two iterative algorithms for blind symbol
timing estimation of m-psk signals,” in 2009 International Workshop on Satellite and
Space Communications, Sep. 2009, pp. 8–12.

46

[25] F. Xiong and M. Andro, “The effect of doppler frequency shift, frequency offset of the
local oscillators, and phase noise on the performance of coherent OFDM receivers,”
NASA, Tech. Rep., Apr 2001.

[26] L. Cimini, “Analysis and simulation of a digital mobile channel using orthogonal fre-
quency division multiplexing,” IEEE Transactions on Communications, vol. 33, no. 7,
pp. 665–675, Jul 1985.

[27] M. Morelli and U. Mengali, “Feedforward frequency estimation for psk: A
tutorial review,” European Transactions on Telecommunications, vol. 9, no. 2, pp.
103–116, 1998. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/
ett.4460090203

[28] D. Rife and R. Boorstyn, “Single tone parameter estimation from discrete-time obser-
vations,” IEEE Transactions on Information Theory, vol. 20, no. 5, pp. 591–598, Sep.
1974.

[29] M. Luise and R. Reggiannini, “Carrier frequency recovery in all-digital modems for
burst-mode transmissions,” IEEE Transactions on Communications, vol. 43, no. 2/3/4,
pp. 1169–1178, Feb 1995.

[30] S. Tretter, “Estimating the frequency of a noisy sinusoid by linear regression (cor-
resp.),” IEEE Transactions on Information Theory, vol. 31, no. 6, pp. 832–835, Novem-
ber 1985.

[31] S. Kay, “A fast and accurate single frequency estimator,” IEEE Transactions on Acous-
tics, Speech, and Signal Processing, vol. 37, no. 12, pp. 1987–1990, Dec 1989.

[32] M. Morelli and U. Mengali, “Carrier-frequency estimation for transmissions over selec-
tive channels,” IEEE Transactions on Communications, vol. 48, no. 9, pp. 1580–1589,
Sep. 2000.

[33] A. Yilmaz, M. Kesal, and F. A. Onat, “Frequency estimation for burst communication
based on irregular repetition of data symbols,” in MILCOM 2018 - 2018 IEEE Military
Communications Conference (MILCOM), Oct 2018, pp. 1–9.

[34] C. Bosquez, R. Moreira, and A. De La Cruz, “Alert system for emergency vehicles
using software-defined radio,” in 2017 IEEE International Conference on Microwaves,
Antennas, Communications and Electronic Systems (COMCAS), Nov 2017, pp. 1–5.

[35] I. Vitas, D. imuni, and P. Kneevi, “Evaluation of software defined radio systems for
smart home environments,” in 2015 38th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), May 2015, pp.
562–565.

[36] Y. Pei, H. Chen, and B. Pei, “Implementation of GPS software receiver based on GNU
radio,” in 2018 Cross Strait Quad-Regional Radio Science and Wireless Technology
Conference (CSQRWC), July 2018, pp. 1–3.

https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.4460090203
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.4460090203

47

[37] N. Hosseini and D. W. Matolak, “Software defined radios as cognitive relays for satellite
ground stations incurring terrestrial interference,” in 2017 Cognitive Communications
for Aerospace Applications Workshop (CCAA), June 2017, pp. 1–4.

[38] A. C. Clarke, “Extra-terrestrial relays: Can rocket stations give world-wide
radio coverage?” in Communication Satellite Systems Technology, ser. Progress
in Astronautics and Rocketry, R. B. Marsten, Ed. Elsevier, 1966, vol. 19,
pp. 3 – 6. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
B9781483227160500062

[39] R. E. Sheriff and A. R. L. Tatnall, Telecommunications. John Wiley & Sons, Ltd,
2011, ch. 12, pp. 395–437. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/9781119971009.ch12

[40] M. R. Maheshwarappa and C. P. Bridges, “Software defined radios for small satellites,”
in 2014 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), July 2014,
pp. 172–179.

[41] M. R. Maheshwarappa, M. Bowyer, and C. P. Bridges, “Software defined radio (SDR)
architecture to support multi-satellite communications,” in 2015 IEEE Aerospace Con-
ference, March 2015, pp. 1–10.

[42] P. Angeletti, M. Lisi, and P. Tognolatti, “Software defined radio: A key technology
for flexibility and reconfigurability in space applications,” in 2014 IEEE Metrology for
Aerospace (MetroAeroSpace), May 2014, pp. 399–403.

[43] T. Hobiger, R. Haas, and J. Strandberg, “Ground-based GNSS-R solutions by means
of software defined radio,” in 2016 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), July 2016, pp. 5635–5637.

[44] V. Dascal, P. Dolea, O. Cristea, and T. Palade, “Low-cost SDR-based ground receiv-
ing station for LEO satellite operations,” in 2013 11th International Conference on
Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS),
vol. 02, Oct 2013, pp. 627–630.

[45] J.-J. M. Jyh-Ching Juang, Chiu-Teng Tsai, Small Satellites for Earth Observation.
Springer, Dordrecht, 2008, ch. A Software-Defined Radio Approach for the Implemen-
tation of Ground Station Receivers.

[46] B. Paillassa and C. Morlet, “Flexible satellites: software radio in the sky,” in 10th
International Conference on Telecommunications, 2003. ICT 2003., vol. 2, Feb 2003,
pp. 1596–1600 vol.2.

[47] F. Iacomacci, C. Morlet, F. Autelitano, G. C. Cardarilli, M. Re, E. Petrongari, G. Bogo,
and M. Franceschelli, “A software defined radio architecture for a regenerative onboard
processor,” in 2008 NASA/ESA Conference on Adaptive Hardware and Systems, June
2008, pp. 164–171.

[48] X. Cai, M. Zhou, and X. Huang, “Model-based design for software defined radio on an
FPGA,” IEEE Access, vol. 5, pp. 8276–8283, 2017.

http://www.sciencedirect.com/science/article/pii/B9781483227160500062
http://www.sciencedirect.com/science/article/pii/B9781483227160500062
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119971009.ch12
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119971009.ch12

48

[49] L. Xu, N. I. Ziedan, X. Niu, and W. Guo, “Correlation acceleration in GNSS software
receivers using a CUDA-enabled GPU,” GPS Solutions, vol. 21, no. 1, pp. 225–236,
Jan 2017. [Online]. Available: https://doi.org/10.1007/s10291-016-0516-2

[50] R. Muzammil, M. S. Beg, M. M. Jamali, and M. W. Majid, “Design and testing of
a software defined radio based transceiver on a graphics processing unit,” in 2012
Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and
Computers (ASILOMAR), Nov 2012, pp. 1107–1110.

[51] M. Lai and T. Chiueh, “Implementation of a C-V2X receiver on an over-the-air
software-defined-radio platform with OpenCL,” in 2018 New Generation of CAS (NG-
CAS), Nov 2018, pp. 170–173.

[52] L. Stolz, M. Ihmig, and W. Stechele, “An evaluation on using GPU coprocessing for
software radios on a low-cost platform,” in Proceedings of the 2012 Conference on
Design and Architectures for Signal and Image Processing, Oct 2012, pp. 1–8.

[53] C. H. Chan and F. C. M. Lau, “Parallel decoding of LDPC convolutional codes using
OpenMP and GPU,” in 2012 IEEE Symposium on Computers and Communications
(ISCC), July 2012, pp. 000 225–000 227.

[54] S. Keskin and T. Kocak, “GPU-based gigabit LDPC decoder,” IEEE Communications
Letters, vol. 21, no. 8, pp. 1703–1706, Aug 2017.

[55] G. Wang, M. Wu, B. Yin, and J. R. Cavallaro, “High throughput low latency LDPC
decoding on GPU for SDR systems,” in 2013 IEEE Global Conference on Signal and
Information Processing, Dec 2013, pp. 1258–1261.

[56] C. Lin, W. Liu, W. Yeh, L. Chang, W. W. Hwu, S. Chen, and P. Hsiung, “A tiling-
scheme viterbi decoder in software defined radio for GPUs,” in 2011 7th International
Conference on Wireless Communications, Networking and Mobile Computing, Sep.
2011, pp. 1–4.

[57] J. Gunther and T. Moon, “Burst mode synchronization of QPSK on AWGN channels
using kurtosis,” IEEE Transactions on Communications, vol. 57, no. 8, pp. 2453–2462,
Aug 2009.

[58] G. E. P. Box and M. E. Muller, “A note on the generation of random normal
deviates,” Ann. Math. Statist., vol. 29, no. 2, pp. 610–611, 06 1958. [Online]. Available:
https://doi.org/10.1214/aoms/1177706645

[59] A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component Analysis. John
Wiley & Sons, 2001.

[60] J. J. Shynk, Probability, random variables, and random processes: theory and signal
processing applications. Wiley-Blackwell, 2013.

[61] Z. Ding and Y. Li, Blind equalization and identification. Marcel Dekker, 2001.

[62] NVIDIA Corporation, “NVIDIA CUDA C programming guide,” 2018, version 9.2.

https://doi.org/10.1007/s10291-016-0516-2
https://doi.org/10.1214/aoms/1177706645

49

[63] J. Sanders and E. Kandrot, CUDA by example: an introduction to general-purpose
GPU programming. Addison-Wesley/Pearson Education, 2011.

[64] NVIDIA Corporation, “cuFFT Library User’s Guide,” 2018, version 9.2.

50

APPENDICES

APPENDIX A

CODE LISTINGS

A.1 C Functions

functions.h

#ifndef FUNCTIONS H

#define FUNCTIONS H

#include <s t d l i b . h>

#include <math . h>

#include <a s s e r t . h>

#include <s t r i n g . h>

#include <s t d i o . h>

#include <time . h>

#define PI 3.14159265358979

typedef struct{

f loat re ;

f loat im ;

}complx ;

void d i f f e n c (int ∗ i nb i t s , int ∗delta , int nb i t s) ;

// Performs d i f f e r e n t i a l encod ing

// i n b i t s : p o i n t e r to an array o f i npu t b i t s

// d e l t a : p o i n t e r to ou tpu t array o f d i f f e r e n t i a l l y encoded b i t s

// n b i t s : number o f b i t s in t h e a r ray s

void d i f f d e c (int ∗ outb i t s , int ∗delta , int nb i t s) ;

// Performs d i f f e r e n t i a l decod ing

// o u t b i t s : p o i n t e r to ou tpu t array o f b i t s

// d e l t a : p o i n t e r to i npu t array o f demodulated b i t s

// n b i t s : number o f b i t s in t h e a r ray s

void bits2sym (complx ∗syms , int ∗ b i t s , int nsym , int bps , complx ∗ l u t) ;

// Conver t s an array o f b i t s i n t o complex QPSK symbo l s . r e a l i s t i c a l l y , t h i s i s on l y c o r r e c t f o r qpsk

// syms : complex array o f ou tpu t symbo l s (u se s complx s t r u c t)

// b i t s : i npu t array o f (d i f f e r e n t i a l l y encoded) b i t s

//nsym : number o f symbo l s (s hou l d be number o f b i t s / b i t s per symbol)

// bps : b i t s per symbol (e q u a l s 2 f o r qpsk)

// l u t : complex array c on t a i n i n g t h e l ookup t a b l e f o r t h e c o n s t e l l a t i o n

void s r rcDe lay (f loat ∗p , f loat alpha , f loat N, int Lp , f loat Ts , f loat tau , int rev) ;

// Crea te s a square roo t r a i s e d co s i n e p u l s e shap ing f i l t e r w i th a t ime de l a y

52

//p : p o i n t e r to t h e ou tpu t array (t h e p u l s e)

// a l pha : e x c e s s bandwidth parameter

//N : upsampl ing f a c t o r

//Lp : p u l s e t r un c a t i o n l e n g t h

//Ts : sample p e r i od

// tau : t ime de l a y

// rev : r e v e r s a l f l a g −− i f r ev == 1 , t h e ou tpu t array i s t h e f l i p p e d v e r s i o n

void conv (f loat ∗ retArr , f loat ∗ f i l t e r , f loat ∗dataArr , int f i l t L en , int dataLen) ;

// Performs l i n e a r c on v o l u t i o n

// re tArr : p o i n t e r to t h e r e t u rn array

// f i l t e r : p o i n t e r to t h e i npu t f i l t e r array

// dataArr : p o i n t e r to t h e i npu t data array

// f i l t L e n : l e n g t h o f t h e f i l t e r

// dataLen : l e n g t h o f t h e data array (# o f data p o i n t s)

void dec i s i onB lk (int ∗ b i t s , f loat ∗ isyms , f loat ∗qsyms , complx ∗ lut , int nsym , int bps) ;

//Outputs hard d e c i s i o n s on demodulated symbo l s (i n v e r s e o f b i t s 2 sym)

// b i t s : p o i n t e r to t h e ou tpu t array o f d e c i d ed b i t s

// isyms : p o i n t e r to t h e array o f t h e in−phase po r t i on o f t h e symbo l s (i npu t)

// qsyms : p o i n t e r to t h e array o f t h e quad−phase po r t i on o f t h e symbo l s (i npu t)

// l u t : complex array c on t a i n i n g t h e l ookup t a b l e f o r t h e c o n s t e l l a t i o n

//nsym : number o f i npu t symbo l s

// bps : number o f b i t s per symbol (bu t r e a l l y , i t on l y works f o r qpsk)

void boxmuller (f loat ∗noise , int len , f loat mean , f loat var) ;

// Generates gau s s i an d i s t r i b u t e d no i s e by t h e Box−Mul l e r method

// no i s e : p o i n t e r to r e t u rn array o f no i s e data

// l en : l e n g t h o f no i s e array

//mean : mean o f t h e g ene ra t ed no i s e

// var : v a r i ance o f t h e g ene ra t ed no i s e

f loat dstCmplx (f loat srcReal , f loat srcImag , f loat dstReal , f loat dstImag) ;

// Ca l c u l a t e s t h e d i s t a n c e between two complex numbers

// s r cRea l : r e a l p o r t i on o f t h e s t a r t i n g po i n t

// srcImag : imaginary po r t i on o f t h e s t a r t i n g po i n t

// d s tRea l : r e a l p o r t i on o f t h e ending po i n t

// dstImag : imaginary po r t i on o f t h e ending po i n t

// r e t u rn s t h e d i s t a n c e (a f l o a t)

f loat absCmplx2 (f loat numReal , f loat numImag) ;

// Ca l c u l a t e s t h e squared magnitude o f a complex number

//numReal : r e a l p o r t i on o f t h e i npu t complex number

//numImag : imag po r t i on o f t h e i npu t complex number

// r e t u rn s t h e squared magnitude (a f l o a t)

f loat absCmplx (f loat numReal , f loat numImag) ;

// Ca l c u l a t e s t h e magnitude o f a complex number

//numReal : r e a l p o r t i on o f t h e i npu t complex number

//numImag : imag po r t i on o f t h e i npu t complex number

// r e t u rn s t h e magnitude (a f l o a t)

f loat kurtCmplx (f loat ∗datReal , f loat ∗datImag , int l en) ;

//Computes t h e complex k u r t o s i s o f an inpu t sequence

// da tRea l : p o i n t e r to t h e r e a l p o r t i on o f t h e i npu t data

53

// datImag : p o i n t e r to t h e imaginary po r t i on o f t h e i npu t data

// l en : l e n g t h o f t h e i npu t data

// r e t u rn s t h e complex k u r t o s i s (a f l o a t)

f loat kurtReal (f loat ∗data , int l en) ;

//Computes t h e k u r t o s i s f o r a zero−mean , r e a l v a l u ed sequence

// data : p o i n t e r to t h e inpu t array o f data

// l en : l e n g t h o f t h e i npu t data

f loat deg2rad (f loat angle) ;

// Conver t s an ang l e in d e g r e e s to an ang l e in rad i an s

// ang l e : i npu t ang l e in d e g r e e s

// r e t u rn s t h e ang l e in rad i an s (a f l o a t)

f loat rad2deg (f loat phase) ;

// Conver t s an ang l e in rad i an s to an ang l e in d e g r e e s

// phase : i npu t ang l e in rad i an s

// r e t u rn s t h e ang l e in d e g r e e s (a f l o a t)

f loat getPower (f loat ∗data , int l en) ;

//Computes t h e RMS power o f an inpu t sequence

// data : p o i n t e r to t h e inpu t data

// l en : l e n g t h o f t h e i npu t data

// r e t u rn s t h e RMS power (a f l o a t)

complx cmpSq(f loat numReal , f loat numImag) ;

//Computes t h e square o f a complex number

//numReal : r e a l p o r t i on o f t h e i npu t complex number

//numImag : imag po r t i on o f t h e i npu t complex number

// r e t u rn s a complex number e qua l t o (numReal + j ∗numImag)ˆ2 (a complx)

complx cmpAdd(complx num1 , complx num2) ;

//Computes t h e sum o f two complex numbers

//num1 : complex number to be added

//num2 : complex number to be added

// r e t u rn s t h e complex sum o f t h e two i n pu t s (a complx)

f loat r and f l o a t () ;

// Returns a random , un i f o rm ly d i s t r i b u t e d number between 0 and 1

#endif

54

functions.c

#include ” func t i on s . h”

void d i f f e n c (int ∗ i nb i t s , int ∗delta , int nb i t s){

int dprev [2]={0 ,0} ;

int i ;

for (i =0; i<nbits −1; i+=2){

i f (i n b i t s [i] == 0 && i nb i t s [i +1] == 0){

de l t a [i] = dprev [0] ;

d e l t a [i +1] = dprev [1] ;

} else i f (i n b i t s [i] == 0 && i nb i t s [i +1] == 1){

de l t a [i] = dprev [1] ;

d e l t a [i +1] = 1−dprev [0] ;

} else i f (i n b i t s [i] == 1 && i nb i t s [i +1] == 0){

de l t a [i] = 1−dprev [1] ;

d e l t a [i +1]=dprev [0] ;

} else i f (i n b i t s [i] == 1 && i nb i t s [i +1] == 1){

de l t a [i] = 1−dprev [0] ;

d e l t a [i+1]=1−dprev [1] ;

}

dprev [0] = de l t a [i] ;

dprev [1] = de l t a [i +1] ;

}

}

void d i f f d e c (int ∗ b i t s , int ∗delta , int nb i t s){

int dprev [2]={0 ,0} ;

for (int i =0; i<nbits −1; i+=2){

i f (dprev [0] == 0 && dprev [1] == 0){

b i t s [i] = de l t a [i] ;

b i t s [i +1] = de l t a [i +1] ;

} else i f (dprev [0] == 0 && dprev [1] == 1){

b i t s [i] = 1−de l t a [i +1] ;

b i t s [i +1] = de l t a [i] ;

} else i f (dprev [0] == 1 && dprev [1] == 0){

b i t s [i] = de l t a [i +1] ;

b i t s [i +1] = 1−de l t a [i] ;

} else i f (dprev [0] == 1 && dprev [1] == 1){

b i t s [i] = 1−de l t a [i] ;

b i t s [i +1] = 1−de l t a [i +1] ;

}

dprev [0] = de l t a [i] ;

dprev [1] = de l t a [i +1] ;

}

}

void bits2sym (complx ∗syms , int ∗ b i t s , int nsym , int bps , complx ∗ l u t){

int ind ;

for (int i =0; i<nsym ; i++){

ind = b i t s [i ∗2]∗2 + b i t s [i ∗2+1];

syms [i] = lu t [ind] ;

}

}

55

void s r rcDe lay (f loat ∗p , f loat alpha , f loat N, int Lp , f loat Ts , f loat tau , int rev){

int i , l en = 2∗Lp∗N+1;

f loat ∗n ;

n = (f loat ∗) c a l l o c (len , s izeof (f loat)) ;

for (i =0; i<l en ; i++){

n [i] = i − Lp∗N − tau ;

}

for (i =0; i<l en ; i++){

i f (n [i]∗Ts/N == 0){

p [i] = (1+alpha ∗(4/PI − 1)) ;

} else i f (n [i]∗Ts/N == Ts/(4∗ alpha) | | n [i]∗Ts/N == −Ts/(4∗ alpha)){

p [i] = alpha ∗((1+2/PI)∗ s i n (PI /(4∗ alpha))+(1−2/PI)∗ (cos (PI /(4∗ alpha)))) / sq r t (2) ;

}

else {

p [i] = (s i n (PI∗(1−alpha)∗n [i] /N) + (4∗ alpha∗n [i] /N)∗ cos (PI∗(1+alpha)∗n [i] /N))

/ ((n [i]∗PI/N)∗(1−pow((4∗ alpha∗n [i] /N) , 2))) ;

}

p [i] = p [i] / sq r t (N) ;

}

i f (rev == 1){

memcpy(n , p , s izeof (f loat)∗ l en) ;

for (int i =0; i<l en ; i++){

p [i] = n [len−1− i] ;

}

}

f r e e (n) ;

}

void conv (f loat ∗ retArr , f loat ∗ f i l t e r , f loat ∗dataArr , int f i l t L en , int dataLen){

int convLen = dataLen+f i l tL en −1;

f loat ∗ bu f f ;

bu f f = (f loat ∗) c a l l o c (convLen , s izeof (f loat)) ;

memcpy(buff , dataArr , s izeof (f loat)∗ dataLen) ;

double mac ;

for (int n=0; n<convLen ; n++){

mac = 0 . 0 ;

for (int m=0; m<f i l t L e n ; m++){

mac+=(double) f i l t e r [m]∗ (double) bu f f [(n−m+convLen)%convLen] ;

}

retArr [n] = (double)mac ;

}

f r e e (bu f f) ;

}

void dec i s i onB lk (int ∗ b i t s , f loat ∗ isyms , f loat ∗qsyms , complx ∗ lut , int nsym , int bps){

f loat dst , min ;

int bin [2] ;

int ind ;

int k = 0 ;

for (int i =0; i<nsym ; i++){

min = 1e3 ; ind = −1;

for (int j =0; j <4; j++){

dst = dstCmplx (isyms [i] , qsyms [i] , l u t [j] . re , l u t [j] . im) ;

a s s e r t (dst >=0);

i f (dst < min){

56

min = dst ;

ind = j ;

}

}

switch (ind){

case 0 : b i t s [k] = 0 ; b i t s [k+1] = 0 ; break ;

case 1 : b i t s [k] = 0 ; b i t s [k+1] = 1 ; break ;

case 2 : b i t s [k] = 1 ; b i t s [k+1] = 0 ; break ;

case 3 : b i t s [k] = 1 ; b i t s [k+1] = 1 ; break ;

default : b i t s [k] = −1; b i t s [k+1] = −1; break ;

}

k+=2;

}

}

void boxmuller (f loat ∗noise , int len , f loat mean , f loat var){

f loat u1 , u2 , z1 , z2 ;

f loat nstd = sq r t (var) ;

a s s e r t (l en%2 == 0) ;

for (int i =0; i<l en /2 ; i++){

u1 = rand f l o a t () ;

u2 = rand f l o a t () ;

z1 = sq r t (−2∗ l og (u1))∗ cos (2∗PI∗u2) ;

z2 = sq r t (−2∗ l og (u1))∗ s i n (2∗PI∗u2) ;

no i s e [i ∗2] = (z1 + mean)∗ nstd ;

no i s e [i ∗2+1]=(z2 + mean)∗ nstd ;

}

}

f loat dstCmplx (f loat srcReal , f loat srcImag , f loat dstReal , f loat dstImag){

f loat d i s tance ;

d i s t ance = sq r t ((srcReal−dstReal)∗ (srcReal−dstReal) + (srcImag−dstImag)∗ (srcImag−dstImag)) ;

return d i s tance ;

}

f loat absCmplx2 (f loat numReal , f loat numImag){ // squared magnitude o f complex #

return numReal∗numReal + numImag∗numImag ;

}

f loat absCmplx (f loat numReal , f loat numImag){ //magnitude o f complex #

return sq r t (numReal∗numReal + numImag∗numImag) ;

}

f loat kurtCmplx (f loat ∗datReal , f loat ∗datImag , int l en){

f loat ym2 sum , ym4 sum , ym2 ;

f loat eym4 , eym2 , ey2m , k ;

f loat s c a l e = 1/(f loat) l en ;

complx y2 , y2 sum , ey2m2 ;

ym2 = 0 ; // | y |ˆ2

ym2 sum = 0 ; //sum (| y |ˆ2)

ym4 sum = 0 ; //sum (| y |ˆ4)

y2 . re = 0 ; y2 . im = 0 ; //yˆ2

y2 sum . re = 0 ; y2 sum . im = 0 ; //sum(y ˆ2)

for (int i =0; i<l en ; i++){

57

ym2 = absCmplx2 (datReal [i] , datImag [i]) ; // | y |ˆ2

ym2 sum += ym2 ; // accumula te | y |ˆ2

ym4 sum += (ym2∗ym2) ; // accumula te | y |ˆ4

y2 = cmpSq(datReal [i] , datImag [i]) ; //yˆ2

y2 sum = cmpAdd(y2 sum , y2) ; // accumula te yˆ2

}

eym4 = s c a l e ∗ym4 sum ; //E{| y |ˆ4}

eym2 = s c a l e ∗ym2 sum ; //E{| y |ˆ2}

ey2m2 . re = s c a l e ∗y2 sum . re ; //E{yˆ2}

ey2m2 . im = s c a l e ∗y2 sum . im ;

ey2m = absCmplx2 (ey2m2 . re , ey2m2 . im) ; // |E{y ˆ2}|ˆ2

k = eym4 − 2∗(eym2∗eym2) − ey2m ; //E{| y |ˆ4} − 2(E{| y |ˆ2})ˆ2 − |E{y ˆ2}|ˆ2

return k ;

}

f loat kurtReal (f loat ∗data , int l en){

f loat s c a l e = 1/(f loat) l en ;

f loat y2 , y2 sum , y4 sum ;

f loat k ;

y2 sum = 0 ; y4 sum = 0 ;

for (int i =0; i<l en ; i++){

y2 = data [i]∗ data [i] ;

y2 sum += y2 ;

y4 sum += y2∗y2 ;

}

y2 sum = y2 sum ∗ s c a l e ;

k = s c a l e ∗y4 sum − 3∗(y2 sum∗y2 sum) ;

return k ;

}

f loat deg2rad (f loat angle){

return angle ∗PI /180 . 0 ;

}

f loat rad2deg (f loat phase){

return phase ∗180.0/PI ;

}

f loat getPower (f loat ∗data , int l en){

f loat pow = 0 ;

for (int i =0; i<l en ; i++){

pow += data [i]∗ data [i] ;

}

return sq r t (pow/ len) ;

}

complx cmpSq(f loat numReal , f loat numImag){ // square o f complex #

complx retVal ;

re tVal . re = numReal∗numReal − numImag∗numImag ;

retVal . im = 2∗numReal∗numImag ;

return retVal ;

}

complx cmpAdd(complx num1 , complx num2){ // a d d i t i o n o f complex #s

58

complx retVal ;

re tVal . re = num1 . re+num2 . re ;

re tVal . im = num1 . im+num2 . im ;

return retVal ;

}

f loat r and f l o a t (){

return (f loat) rand ()/RANDMAX;

}

A.2 GPU Functions

gpu.h

#ifndef GPU H

#define GPU H

#include <s t d i o . h>

#include <s t d l i b . h>

#include <time . h>

#include <a s s e r t . h>

#include ” c u f f t . h”

typedef struct{

int T; // sample p e r i od

int N; // upsampl ing f a c t o r

int nsym ; //# o f symbo l s (needed ?)

int bps ; // b i t s per symbol

f loat f c ; // c a r r i e r f r e qu ency

f loat alpha ; // e x c e s s bandwidth

int Lp ; // pu l s e t r un c a t i o n l e n g t h

int s igLen ; // l e n g t h o f s i g n a l

f loat pow ; // s i g n a l power

} s igna lHdr ;

g l o b a l void dev convMult (f loat ∗convArr , f loat ∗ f i l t e r , f loat ∗dataArr , int f i l t L en , int dataLen , int s igLen) ;

// Performs mul t i−t h r eaded c on vo l u t i o n

// f i l t e r : p o i n t e r to t h e f i l t e r array

// dataArr : p o i n t e r to t h e data array

// f i l t L e n : l e n g t h o f t h e f i l t e r

// dataLen : l e n g t h o f t h e data array

// s i gLen : l e n g t h o f t h e r e t u rn array (= to f i l t L e n + dataLen − 1)

g l o b a l void dev conv (f loat ∗convArr , f loat ∗ f i l t e r , f loat ∗dataArr , int f i l t L en , int dataLen , int s igLen) ;

// Performs ” inner produc t ” c on v o l u t i o n

// convArr : p o i n t e r to t h e r e t u rn array .

// ho l d s t h e r e s u l t s o f t h e c on v o l u t i o n

// f i l t e r : p o i n t e r to t h e f i l t e r array

// dataArr : p o i n t e r to t h e data array

// f i l t L e n : l e n g t h o f t h e f i l t e r

// dataLen : l e n g t h o f t h e data array

// s i gLen : l e n g t h o f t h e r e t u rn array (= to f i l t L e n + dataLen − 1)

59

g l o b a l void dev sr rcDe lay (f loat ∗pulse , f loat alpha , f loat N, int Lp , f loat Ts , f loat tau , int rev) ;

// Generates a square roo t r a i s e d co s i n e p u l s e w i th a t iming d e l a y

// pu l s e : p o i n t e r to t h e r e t u rn array

// a lpha : e x c e s s bandwidth parameter

//N : upsampl ing f a c t o r

//Lp : t r un c a t i o n l e n g t h

//Ts : sample p e r i od

// tau : t ime de l a y parameter

// rev : ” r e v e r s a l ” f l a g : i f 1 , t h e p u l s e array i s r e v e r s e d

g l o b a l void dev cmplxPow4 (f loat ∗data , f loat ∗yr , f loat ∗yi , int l en) ;

// Ca l c u l a t e s t h e complex 4 th power o f t h e re /im inpu t a ra ry s

// data : p o i n t e r to t h e r e t u rn array . The r e a l / imaginary ou t pu t s are i n t e r l e a v e d .

// Shou ld be a l l o c a t e d in main wi th 2∗ l e n ∗ s i z e o f (f l o a t) b y t e s

// yr : p o i n t e r to i npu t array c on t a i n i n g t h e ’ r e a l ’ p o r t i on o f t h e data

// y i : p o i n t e r to i npu t array c on t a i n i n g t h e ’ imaginary ’ p o r t i on o f t h e data

// l en : number o f complex p a i r s

g l o b a l void dev magComplx (f loat ∗mag , cufftComplex ∗data , int l en) ;

//Computes t h e complex magnitude o f t h e i npu t data array

//mag : p o i n t e r to t h e ou tpu t magnitude array

// data : p o i n t e r to t h e inpu t array o f complex data

// l en : number o f complex p o i n t s in t h e inpu t array

g l o b a l void dev in i tAr r (f loat ∗data , int l en) ;

// I n i t i a l i z e s t h e e l emen t s o f da ta to 0

// data : p o i n t e r to array which i s to be i n i t i a l i z e d to 0

// l en : number o f p o i n t s in t h e array

g l o b a l void dev in i tAr r (cufftComplex ∗data , int l en) ;

// I n i t i a l i z e s t h e complex e l emen t s o f da ta to 0

// data : p o i n t e r to array which i s to be i n i t i a l i z e d to 0

// l en : number o f complex p o i n t s in t h e array

g l o b a l void dev demix (f loat ∗sbb , f loat ∗spb , int sigLen , int inPhase , f loat arg , f loat ph o f f) ;

// Performs the de−mixing s t e p on the r e c e i v e d s i g n a l

// sbb : p o i n t e r to t h e r e t u rn array (s i g n a l a t baseband)

// spb : p o i n t e r to t h e inpu t array (s i g n a l a t passband)

// s i gLen : number o f p o i n t s in t h e s i g n a l

// inPhase : f l a g f o r in−phase /quad−phase . 1 : in−phase po r t i on ; 0 : quad−phase po r t i on

// arg : argument o f t h e s i n / cos (c a l c u l a t e in main to avo id computat ion in k e r n e l)

// p h o f f : phase o f f s e t

g l o b a l void dev downsample (f loat ∗syms , f loat ∗upsamp , int len , int o f f s , int N) ;

// Performs the downsampling s t e p on the f i l t e r e d s i g n a l

// syms : p o i n t e r to t h e r e t u rn array o f symbo l s

//upsamp : p o i n t e r to i npu t array o f upsampled data

// l en : number o f ou tpu t symbo l s

// o f f s : number o f t r a n s i e n t p o i n t s a t t h e b e g i nn in g (to be t o s s e d)

g l o b a l void dev c fo (f loat ∗ ups i t , f loat ∗ups qt , f loat ∗ I , f loat ∗Q, f loat arg , int l en) ;

//De−mixes t h e c a r r i e r f r e qu ency o f f s e t (r o t a t i o n by a f r e qu ency term)

// u p s i t : p o i n t e r to r e tu rned upsampled in−phase data array

// u p s q t : p o i n t e r to re turned , upsampled quad−phase data array

60

// I : p o i n t e r to t h e in−phase po r t i on o f t h e f i l t e r e d s i g n a l

//Q : p o i n t e r to t h e quad−phase po r t i on o f t h e f i l t e r e d s i g n a l

// arg : argument o f t h e s i n / cos (c a l c u l a t e in main to avo id computat ion in k e r n e l)

// l en : l e n g t h o f t h e i npu t s i g n a l

g l o b a l void dev ro ta t e (f loat ∗xr , f loat ∗yr , f loat ∗ I , f loat ∗Q, f loat phi , int l en) ;

// Performs the r o t a t i o n o f t h e symbo l s by an ang l e

// xr : p o i n t e r to t h e re turned , r o t a t e d in−phase data array

// yr : p o i n t e r to t h e re turned , r o t a t e d quad−phase data array

// I : p o i n t e r to t h e in−phase po r t i on o f t h e i npu t symbo l s

//Q : p o i n t e r to t h e quad−phase po r t i on o f t h e i npu t symbo l s

// ph i : ang l e by which t h e array i s r o t a t e d

// l en : l e n g t h o f t h e i npu t s i g n a l

g l o b a l void dev getMin (f loat ∗minArr , int ∗ indArr , f loat ∗array , int l en) ;

// Finds t h e l o c a l minimum o f an array . Reduct ion i s per formed us ing shared memory ,

// so i t s hou l d be run tw i c e (t h e second time , b l o c k s per g r i d shou l d be = 1)

//minArr : p o i n t e r to t h e r e t u rned array o f l o c a l minimums

// indArr : p o i n t e r to t h e r e tu rned array o f t h e i nd e x e s o f t h e l o c a l minimums

// array : p o i n t e r to t h e inpu t array to be s earched

// l en : l e n g t h o f t h e i npu t array

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Usage Example−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//

// dev getMin<<<b locksPerGr id , threadsPerB lk>>>(dev minArr , dev idxArr , dev dataArr , n f i l t) ;

// dev getMin <<<1, threadsPerB lk>>>(dev min , d e v i d x , dev minArr , b l o c k sPerGr id) ;

// then , d e v i d x h o l d s t h e [l o c a t i o n in indArr] o f t h e [l o c a t i o n o f t h e minimum va l u e in t h e inpu t]

// So : [minimum , ind] = min (dev da taArr) −−> ind = dev i d xAr r [d e v i d x]

// minimum = dev da taArr [ind]

g l o b a l void dev getMax (f loat ∗maxArr , int ∗ indArr , f loat ∗array , int l en) ;

// Finds t h e l o c a l maximum o f an inpu t array . Works in t h e same way as t h e getMin f un c t i o n .

//maxArr : p o i n t e r to t h e r e tu rned array o f l o c a l maximums

// indArr : p o i n t e r to t h e r e tu rned array o f t h e i nd e x e s o f t h e l o c a l maximums

// array : p o i n t e r to t h e inpu t array to be s earched

// l en : l e n g t h o f t h e i npu t array

g l o b a l void dev getSum (f loat ∗ r e su l t , f loat ∗data , int nsym) ;

// Finds t h e l o c a l (p a r t i a l) sums o f an inpu t array

// r e s u l t : p o i n t e r to t h e r e tu rned array o f l o c a l sums

// data : p o i n t e r to t h e inpu t data array to be summed

//nsym : number o f p o i n t s in t h e inpu t array

//Usual usage : i f b l o c k s per g r i d i s 1 , then ∗ r e s u l t i s a s i n g l e number .

g l o b a l void dev cmplxKSums (f loat ∗ym4Arr , f loat ∗ym2Arr , f loat ∗y2rArr , f loat ∗y2iArr , f loat ∗ r ea l ,

f loat ∗ imag , int nsym) ;

//Computes t h e ’ i n t e rmed i a t e ’ sums f o r t h e v a l u e s used in t he complex k u r t o s i s .

// Operates on a complex i npu t array ; so y = a + j b

//ym4Arr : p o i n t e r to t h e ou tpu t array f o r | y |ˆ4

//ym2Arr : p o i n t e r to t h e ou tpu t array f o r | y |ˆ2

// y2rArr : p o i n t e r to t h e r e a l p o r t i on o f t h e ou tpu t array f o r yˆ2

// y2iArr : p o i n t e r to t h e imag po r t i on o f t h e ou tpu t array f o r yˆ2

// r e a l : p o i n t e r to t h e r e a l p o r t i on o f t h e i npu t

// imag : p o i n t e r to t h e imag po r t i on o f t h e i npu t

//nsym : number o f complex symbo l s (aka l e n g t h o f t h e i npu t a r ray s)

//Usage : c a l c u l a t e , then send each ’ i n t e rmed i a t e sum ’ array through th e getSum f un c t i o n

61

g l o b a l void dev cmplxKurt (f loat ∗kurt , f loat ∗ym4 , f loat ∗ym2 , f loat ∗y2r , f loat ∗y2i , int nsym) ;

//Computes t h e complex k u r t o s i s g i v en th e sum o f t h e v a l u e s used in t he k u r t o s i s

// ku r t : p o i n t e r to t h e ou tpu t (t h e c a l c u l a t e d k u r t o s i s) which i s e qua l t o a s i n g l e f l o a t v a l u e

//ym4 : p o i n t e r to t h e sum o f | y |ˆ4

//ym2 : p o i n t e r to t h e sum o f | y |ˆ2

// y2r : p o i n t e r to t h e r e a l p o r t i on o f t h e sum o f yˆ2

// y2 i : p o i n t e r to t h e imag po r t i on o f t h e sum o f yˆ2

//nsym : number o f symbo l s in t h e o r i g i n a l array f o r which t h e k u r t o s i s i s c a l c u l a t e d

// (used f o r f i n d i n g e xp e c t e d v a l u e s)

g l o b a l void dev mult (f loat ∗ res , f loat ∗m1, f loat ∗m2, int l en) ;

// Mu l t i p l i e s t h e e l emen t s o f two ar ray s and r e t u rn s t h e i r b i t−wise produc t

// r e s : p o i n t e r to t h e r e t u rn array (r e s u l t s)

//m1 : p o i n t e r to t h e f i r s t array to be mu l t i p l i e d

//m2 : p o i n t e r to t h e second array to be mu l t i p l i e d

// l en : l e n g t h o f t h e i npu t a r ray s

g l o b a l void dev multCmplx (cuComplex ∗ r e su l t , cuComplex ∗m1, cuComplex ∗m2, int l en) ;

// Mu l t i p l i e s two ar ray s o f complex numbers (a+j b)∗ (c+jd) = ac−bd + j ∗(ad + bc)

// r e s u l t : p o i n t e r to t h e complex r e s u l t o f t h e m u l t i p l i c a t i o n

//m1 : p o i n t e r to t h e f i r s t array to be mu l t i p l i e d

//m2 : p o i n t e r to t h e second array to be mu l t i p l i e d ; assumed to be a ha l f−l e n g t h

// array o f complex numbers (e . g . t h e f f t o f a r e a l s i g n a l)

// l en : l e n g t h o f t h e f i r s t i npu t array (second inpu t i s o f l e n g t h l en /2)

g l o b a l void dev multConst (f loat ∗ res , f loat ∗ in , f loat s ca l e , int l en) ;

// Performs a s c a l i n g op e r a t i on on the inpu t array (m u l t i p l i c a t i o n by a con s t an t v a l u e)

// r e s : p o i n t e r to t h e r e t u rned r e s u l t o f t h e s c a l i n g

// in : p o i n t e r to t h e inpu t array to be s c a l e d

// s c a l e : v a l u e by which t h e array i s m u l t i p l i e d

// l en : l e n g t h o f t h e i npu t array

g l o b a l void dev multConst (cuComplex ∗ res , cuComplex ∗ in , f loat s ca l e , int l en) ;

// Performs a s c a l i n g op e r a t i on on the complex i npu t array (m u l t i p l i c a t i o n by a con s t an t v a l u e)

// r e s : p o i n t e r to t h e r e t u rned complex r e s u l t o f t h e s c a l i n g

// in : p o i n t e r to t h e complex i npu t array to be s c a l e d

// s c a l e : v a l u e by which t h e array i s m u l t i p l i e d

// l en : l e n g t h o f t h e i npu t array

g l o b a l void dev abs (f loat ∗data , int l en) ;

// Returns t h e a b s o l u t e v a l u e o f t h e i npu t data

#endif

62

gpu.cu

#include ”gpu . h”

#define PI 3.14159265358979323846

g l o b a l void dev fastConv (cuComplex ∗ r e su l t , cuComplex ∗m1, cuComplex ∗m2, int l en){

int t i d = blockIdx . x∗blockDim . x + threadIdx . x ;

int mid = t id ;

int s tep = blockDim . x∗gridDim . x ;

f loat s c a l e = 1/(f loat) l en ;

while (t i d < l en){

i f (t i d > l en /2)mid = t id − (l en /2) ;

r e s u l t [t i d] . x = s c a l e ∗(m1[t i d] . x∗m2[mid] . x − m1[t i d] . y∗m2[mid] . y) ;

r e s u l t [t i d] . y = s c a l e ∗(m1[t i d] . y∗m2[mid] . x + m1[t i d] . x∗m2[mid] . y) ;

t i d += step ;

}

}

g l o b a l void dev convMult (f loat ∗convArr , f loat ∗ f i l t e r , f loat ∗dataArr , int f i l t L en , int dataLen , int s igLen){

int t i d = blockIdx . x∗blockDim . x ; // th r ead index

int l = threadIdx . x ; // accumula tor index

int i = 0 ; // cu r r en t t ime index

int m = 0; // c o e f f i c i e n t index

int N = f i l t L e n ; // s i z e o f b l o c k and # o f accumu la tor s

int s t r = blockDim . x∗blockIdx . x ;

int end = blockDim . x∗(b lockIdx . x+1)+N;

s h a r e d f loat f i l t [1 0 2 4] ;

i f (l<N) f i l t [l] = f i l t e r [l] ;

f loat x ;

register f loat acc = 0 . f ;

while (t i d < end){

m = (l−i+N)%N;

i f (t i d < dataLen && t id >=s t r)

x = dataArr [t i d] ;

else

x = 0 . 0 ;

acc += f i l t [m]∗ x ;

i f (m == 0){

i f (t id>= s t r && t id < s igLen){

convArr [t i d] = acc ;

acc = 0 . 0 ;

}

}

i = (i+1+N)%N;

t i d++;

}

}

g l o b a l void dev conv (f loat ∗convArr , f loat ∗ f i l t e r , f loat ∗dataArr , int f i l t L en , int dataLen , int s igLen){

int t i d = blockIdx . x∗blockDim . x + threadIdx . x ;

int convLen = f i l t L e n + dataLen − 1 ;

int s tep = blockDim . x∗gridDim . x ;

int l = threadIdx . x ;

s h a r e d f loat f i l t [1 0 2 4] ; // put t h e f i l t e r in shared memory ; max t h r e ad s / b l o c k i s 1024

63

f loat tmp , x ;

int ind ;

while (l < f i l t L e n){

f i l t [l] = f i l t e r [l] ;

l += blockDim . x ;

}

sync th r eads () ;

while (t i d < convLen){

tmp = 0 . 0 ;

for (int i =0; i<f i l t L e n ; i++){

ind = (t i d − i + s igLen)%sigLen ; //% i s e x p en s i v e

i f (ind > dataLen − 1) x = 0 ;

else x = dataArr [ind] ;

tmp += f i l t [i]∗ x ;

}

convArr [t i d] = tmp ;

t i d += step ;

}

}

g l o b a l void dev sr rcDe lay (f loat ∗pulse , f loat alpha , f loat N, int Lp , f loat Ts , f loat tau , int rev) {

int t i d = blockIdx . x∗blockDim . x + threadIdx . x ;

int l en = 2∗Lp∗N+1;

int s tep = blockDim . x∗gridDim . x ;

f loat n , p ;

while (t i d < l en){

n = t id − Lp∗N − tau ;

i f (n∗Ts/N == 0) {

p = (1+alpha ∗(4/PI − 1)) ;

} else i f (n∗Ts/N == Ts/(4∗ alpha) | | n∗Ts/N == −Ts/(4∗ alpha)){

p = alpha ∗((1+2/PI)∗ s i n f (PI /(4∗ alpha))+(1−2/PI)∗ (c o s f (PI /(4∗ alpha)))) / s q r t f (2) ;

} else {

p = (s i n f (PI∗(1−alpha)∗n/N) + (4∗ alpha∗n/N)∗ c o s f (PI∗(1+alpha)∗n/N))

/ ((n∗PI/N)∗(1−powf ((4∗ alpha∗n/N) , 2))) ;

}

p = p/ s q r t f (N) ;

i f (rev == 1){

pu l se [len−1−t i d] = p ;

} else {

pu l se [t i d] = p ;

}

t i d += step ;

}

}

g l o b a l void dev cmplxPow4 (f loat ∗data , f loat ∗yr , f loat ∗yi , int l en){

int t i d = blockIdx . x∗blockDim . x + threadIdx . x ;

f loat y2r , y2i , y4r , y4 i ;

int s tep = blockDim . x∗gridDim . x ;

while (t i d < l en){ // l en i s t h e # o f complex p a i r s

y2r = yr [t i d]∗ yr [t i d] − y i [t i d]∗ y i [t i d] ; //Re(y ˆ2) : aˆ2 − b ˆ2

y2 i = 2∗yr [t i d]∗ y i [t i d] ; //Im(y ˆ2) : 2∗a∗b

y4r = y2r∗y2r − y2 i ∗ y2 i ; //Re(y ˆ4) : re (y ˆ2)ˆ2 − im(y ˆ2)ˆ2

y4 i = 2∗y2r∗ y2 i ; //Im(y ˆ4) : 2∗ re (y ˆ2)∗ im(y ˆ2)

64

data [t i d ∗2] = y4r ; // r e a l / imaginary p o r t i o n s i n t e r l e a v e d

data [t i d ∗2+1] = y4i ;

t i d += step ;

}

}

g l o b a l void dev magComplx (f loat ∗mag , cufftComplex ∗data , int l en){

int t i d = blockIdx . x∗blockDim . x + threadIdx . x ;

int s tep = blockDim . x∗gridDim . x ;

while (t i d < l en){

mag [t i d] = data [t i d] . x∗data [t i d] . x + data [t i d] . y∗data [t i d] . y ;

t i d += step ;

}

}

g l o b a l void dev in i tAr r (f loat ∗data , int l en){

int t i d = blockIdx . x∗blockDim . x + threadIdx . x ;

int s tep = blockDim . x∗gridDim . x ;

while (t i d < l en){

data [t i d] = 0 . 0 ;

t i d += step ;

}

}

g l o b a l void dev in i tAr r (cufftComplex ∗data , int l en){

int t i d = blockIdx . x∗blockDim . x + threadIdx . x ;

int s tep = blockDim . x∗gridDim . x ;

while (t i d < l en){

data [t i d] . x = 0 . 0 ;

data [t i d] . y = 0 . 0 ;

t i d += step ;

}

}

g l o b a l void dev demix (f loat ∗ sigBaseBand , f loat ∗ sigPassBand , int sigLen , int inPhase ,

f loat arg , f loat ph o f f){

int t i d = blockIdx . x∗blockDim . x + threadIdx . x ;

int s tep = blockDim . x∗gridDim . x ;

f loat sq r t2 = s q r t f (2) ;

i f (inPhase == 1){ // in−phase po r t i on

while (t i d < s igLen){

sigBaseBand [t i d] = sqr t2 ∗ c o s f (arg∗ t i d + ph o f f)∗ sigPassBand [t i d] ;

t i d += step ;

}

} else{ // quadra tu re phase po r t i on

while (t i d < s igLen){

sigBaseBand [t i d] =−sq r t2 ∗ s i n f (arg∗ t i d + ph o f f)∗ sigPassBand [t i d] ;

t i d += step ;

}

}

}

g l o b a l void dev downsample (f loat ∗syms , f loat ∗upsamp , int len , int o f f s , int N){

int t i d = blockIdx . x∗blockDim . x + threadIdx . x ;

int s tep = blockDim . x∗gridDim . x ;

65

while (t i d < l en){

syms [t i d] = upsamp [(o f f s+t i d)∗N] ;

t i d += step ;

}

}

g l o b a l void dev c fo (f loat ∗ ups i t , f loat ∗ups qt , f loat ∗ I , f loat ∗Q, f loat arg , int l en){

int t i d = blockIdx . x∗blockDim . x + threadIdx . x ;

f loat cos theta , s i n t h e t a ;

int s tep = blockDim . x∗gridDim . x ;

while (t id<l en){

co s th e t a = co s f (arg∗ t i d) ;

s i n t h e t a = s i n f (arg∗ t i d) ;

up s i t [t i d] = I [t i d]∗ co s th e t a − Q[t i d]∗ s i n t h e t a ;

ups qt [t i d] = I [t i d]∗ s i n t h e t a + Q[t i d]∗ co s th e t a ;

t i d += step ;

}

}

g l o b a l void dev ro ta t e (f loat ∗xr , f loat ∗yr , f loat ∗ I , f loat ∗Q, f loat phi , int l en){

int t i d = blockIdx . x∗blockDim . x + threadIdx . x ;

f loat C, S ;

int s tep = blockDim . x∗gridDim . x ;

C = co s f (phi) ; S = s i n f (phi) ;

while (t id<l en){

xr [t i d] = C∗ I [t i d] − S∗Q[t i d] ;

yr [t i d] = S∗ I [t i d] + C∗Q[t i d] ;

t i d += step ;

}

}

g l o b a l void dev getMin (f loat ∗minArr , int ∗ indArr , f loat ∗array , int l en){

s h a r e d f loat minCache [1 0 2 4] ;

s h a r e d f loat indCache [1 0 2 4] ;

int cacheIdx = threadIdx . x ;

int t i d = blockIdx . x∗blockDim . x + threadIdx . x ;

int s tep = blockDim . x∗gridDim . x ;

f loat min = 1e10 ;

int ind = −1;

while (t id<l en){

i f (array [t i d] < min){

min = array [t i d] ;

ind = t id ;

}

t i d += step ;

}

minCache [cacheIdx] = min ;

indCache [cacheIdx] = ind ;

sync th r eads () ;

int i = blockDim . x /2 ;

//Do the r e du c t i on

while (i !=0){

i f (cacheIdx < i){

66

i f (minCache [cacheIdx+i] < minCache [cacheIdx]){

// p r i n t f (”%d\n” , cache Idx) ;

minCache [cacheIdx] = minCache [cacheIdx+i] ;

indCache [cacheIdx] = indCache [cacheIdx+i] ;

}

}

sync th r eads () ;

i /=2;

}

sync th r eads () ;

i f (cacheIdx == 0){

minArr [b lockIdx . x] = minCache [0] ;

indArr [b lockIdx . x] = indCache [0] ;

}

}

g l o b a l void dev getMax (f loat ∗maxArr , int ∗ indArr , f loat ∗array , int l en){

s h a r e d f loat maxCache [1 0 2 4] ;

s h a r e d f loat indCache [1 0 2 4] ;

int cacheIdx = threadIdx . x ;

int t i d = blockIdx . x∗blockDim . x + threadIdx . x ;

f loat max = −1e10 ;

int ind = −1;

int s tep = blockDim . x∗gridDim . x ;

while (t id<l en){

i f (array [t i d] > max){

max = array [t i d] ;

ind = t id ;

}

t i d += step ;

}

maxCache [cacheIdx] = max ;

indCache [cacheIdx] = ind ;

sync th r eads () ;

int i = blockDim . x /2 ;

//Do the r e du c t i on

while (i !=0){

i f (cacheIdx < i){

i f (maxCache [cacheIdx+i] > maxCache [cacheIdx]){

maxCache [cacheIdx] = maxCache [cacheIdx+i] ;

indCache [cacheIdx] = indCache [cacheIdx+i] ;

}

}

sync th r eads () ;

i /=2;

}

sync th r eads () ;

i f (cacheIdx == 0){

maxArr [b lockIdx . x] = maxCache [0] ;

indArr [b lockIdx . x] = indCache [0] ;

}

}

67

g l o b a l void dev getSum (f loat ∗ r e su l t , f loat ∗data , int nsym){

// Sum the e l emen t s o f da ta ; put p a r t i a l r e s u l t s in r e s u l t

int t i d = blockIdx . x∗blockDim . x + threadIdx . x ;

int cacheIdx = threadIdx . x ;

f loat localSum = 0 ;

int s tep = blockDim . x∗gridDim . x ;

s h a r e d f loat cache [1 0 2 4] ;

while (t i d < nsym){

localSum += data [t i d] ;

t i d += step ;

}

cache [cacheIdx] = localSum ; // s e t cache v a l u e s

sync th r eads () ; // sync t h r e ad s b e f o r e a c c e s s i n g cache data

int i = blockDim . x /2 ; // assume t h r e ad s per b l o c k i s a power o f 2

while (i !=0){

i f (cacheIdx < i){

cache [cacheIdx] += cache [cacheIdx+i] ;

}

sync th r eads () ;

i /=2;

}

sync th r eads () ;

i f (cacheIdx == 0){

r e s u l t [b lockIdx . x] = cache [0] ;

}

}

g l o b a l void dev cmplxKSums (f loat ∗ym4Arr , f loat ∗ym2Arr , f loat ∗y2rArr , f loat ∗y2iArr ,

f loat ∗ r ea l , f loat ∗ imag , int nsym){

int t i d = blockIdx . x∗blockDim . x + threadIdx . x ;

int cacheIdx = threadIdx . x ;

int s tep = blockDim . x∗gridDim . x ;

s h a r e d f loat ym4Cache [1 0 2 4] ;

s h a r e d f loat ym2Cache [1 0 2 4] ;

s h a r e d f loat y2rCache [1 0 2 4] ;

s h a r e d f loat y2iCache [1 0 2 4] ;

f loat ym4 , ym2 , y2r , y2i , mag ;

ym4 = 0 . 0 ; ym2 = 0 . 0 ; y2r = 0 . 0 ; y2 i = 0 . 0 ;

while (t i d < nsym){

mag = r e a l [t i d]∗ r e a l [t i d] + imag [t i d]∗ imag [t i d] ;

ym4 += mag∗mag ;

ym2 += mag ;

y2r += r e a l [t i d]∗ r e a l [t i d] − imag [t i d]∗ imag [t i d] ;

y2 i += 2.0∗ r e a l [t i d]∗ imag [t i d] ;

t i d += step ;

}

ym4Cache [cacheIdx] = ym4 ;

ym2Cache [cacheIdx] = ym2 ;

y2rCache [cacheIdx] = y2r ;

y2iCache [cacheIdx] = y2i ;

s ync th r eads () ;

int i = blockDim . x /2 ;

68

while (i !=0){

i f (cacheIdx < i){

ym4Cache [cacheIdx] += ym4Cache [cacheIdx+i] ;

ym2Cache [cacheIdx] += ym2Cache [cacheIdx+i] ;

y2rCache [cacheIdx] += y2rCache [cacheIdx+i] ;

y2iCache [cacheIdx] += y2iCache [cacheIdx+i] ;

}

sync th r eads () ;

i /=2;

}

sync th r eads () ;

i f (cacheIdx == 0){

ym4Arr [b lockIdx . x] = ym4Cache [0] ;

ym2Arr [b lockIdx . x] = ym2Cache [0] ;

y2rArr [b lockIdx . x] = y2rCache [0] ;

y2iArr [b lockIdx . x] = y2iCache [0] ;

}

}

g l o b a l void dev cmplxKurt (f loat ∗kurt , f loat ∗ym4 , f loat ∗ym2 , f loat ∗y2r , f loat ∗y2i , int nsym){

int t i d = blockIdx . x∗blockDim . x + threadIdx . x ;

f loat k ;

i f (t i d == 0){

f loat eym4 , eym2 , ey2m ;

eym4 = ym4 [0] / (f loat)nsym ;

eym2 = (ym2 [0] / (f loat)nsym)∗ (ym2 [0] / (f loat)nsym) ;

ey2m = (y2r [0] / (f loat)nsym)∗ (y2r [0] / (f loat)nsym) + (y2 i [0] / (f loat)nsym)∗ (y2 i [0] / (f loat)nsym) ;

k = eym4 − 2∗eym2 − ey2m ;

kurt [0] = k ;

}

}

g l o b a l void dev mult (f loat ∗ res , f loat ∗m1, f loat ∗m2, int l en){

int t i d = blockIdx . x∗blockDim . x + threadIdx . x ;

int s tep = blockDim . x∗gridDim . x ;

while (t i d < l en){

r e s [t i d] = m1[t i d]∗m2[t i d] ;

t i d += step ;

}

}

g l o b a l void dev multCmplx (cuComplex ∗ r e su l t , cuComplex ∗m1, cuComplex ∗m2, int l en){

int t i d = blockIdx . x∗blockDim . x + threadIdx . x ;

int mid = t id ;

int s tep = blockDim . x∗gridDim . x ;

while (t i d < l en){

i f (t i d > l en /2)mid = t id − (l en /2) ;

r e s u l t [t i d] . x = m1[t i d] . x∗m2[mid] . x − m1[t i d] . y∗m2[mid] . y ;

r e s u l t [t i d] . y = m1[t i d] . y∗m2[mid] . x + m1[t i d] . x∗m2[mid] . y ;

t i d += step ;

}

}

g l o b a l void dev multConst (f loat ∗ res , f loat ∗ in , f loat s ca l e , int l en){

int t i d = blockIdx . x∗blockDim . x + threadIdx . x ;

69

int s tep = blockDim . x∗gridDim . x ;

while (t i d < l en){

r e s [t i d] = in [t i d]∗ s c a l e ;

t i d += step ;

}

}

g l o b a l void dev multConst (cuComplex ∗ res , cuComplex ∗ in , f loat s ca l e , int l en){

int t i d = blockIdx . x∗blockDim . x + threadIdx . x ;

int s tep = blockDim . x∗gridDim . x ;

while (t i d < l en){

r e s [t i d] . x = in [t i d] . x∗ s c a l e ;

r e s [t i d] . y = in [t i d] . y∗ s c a l e ;

t i d += step ;

}

}

g l o b a l void dev abs (f loat ∗data , int l en){

int t i d = blockIdx . x∗blockDim . x + threadIdx . x ;

int s tep = blockDim . x∗gridDim . x ;

while (t i d < l en){

i f (data [t i d] < 0)

data [t i d] = −data [t i d] ;

t i d += step ;

}

}

APPENDIX B

System Diagrams

71

�
(
−

�
�

+
)

�
0

�
(
−

�
�

+
)

�
1

�
(
−

�
�

+
)

�
2

�
(
−

�
�

+
)

�
�

�
(
−

�
�

+
)

�
0

�
(
−

�
�

+
)

�
1

�
(
−

�
�

+
)

�
2

�
(
−

�
�

+
)

�
�

↓
�

↓
�

↓
�

↓
�

↓
�

↓
�

↓
�

↓
�

(
⋯

)
�

�(
⋯

)
�

�(
⋯

)
�

�(
⋯

)
�

�

�
��

�
��

(
⋯

)

�
�
��

��

�
�
��

��

1
�

�

[
⋯

]
4

�
�

�
�

��
�

�
�

(
⋯

)
�

−
��

�
�

↓
�

↓
�

�
�
(�

)

�
�

(�
)

�
��

0

�

(
⋯

)
�

�(
⋯

)
�

�

�
��

1

(
⋯

)
�

�(
⋯

)
�

�

�
��

�

(
⋯

)
�

�(
⋯

)
�

�

�
��

�
��

(
⋯

)

�
�
��

��

�
�
��

��

1
�

�
�
���

��
�
 �

��
��

�
��

�
. �

�
��

�
��

�
�
���

�
��

(2
�

)
�

�

��
�
(2
�

)
�

�

F
ig.

B
.1:

F
u

ll
S

y
stem

D
iagram

72

�
(
−

�
�

+
)

�
0

�
(
−

�
�

+
)

�
1

�
(
−

�
�

+
)

�
2

�
(
−

�
�

+
)

�
�

�
(
−

�
�

+
)

�
0

�
(
−

�
�

+
)

�
1

�
(
−

�
�

+
)

�
2

�
(
−

�
�

+
)

�
�

↓
�

↓
�

↓
�

↓
�

↓
�

↓
�

↓
�

↓
�

(
⋯

)
�

�(
⋯

)
�

�(
⋯

)
�

�(
⋯

)
�

�

�
��

�
��

(
⋯

)

�
�
��

��

�
�
��

��

��

��

F
ig.

B
.2:

T
im

in
g

C
orrection

S
y
stem

D
iagram

73

1
�

�
[
⋯

]
4

�
�

�
�

��
�

�
�

(
⋯

)
�

−
��

�
�

�

�

�

F
ig.

B
.3:

C
arrier

F
req

u
en

cy
O

ff
set

C
orrection

D
iagram

74

↓
�

↓
�

�
�
(�

)

�
�

(�
)

�
��

0

�

(
⋯

)
�

�(
⋯

)
�

�

�
��

1

(
⋯

)
�

�(
⋯

)
�

�

�
��

�

(
⋯

)
�

�(
⋯

)
�

�

�
��

�
��

(
⋯

)

�
�
��

��

�
�
��

��

��

F
ig.

B
.4:

P
h

ase
C

orrection
S

y
stem

D
iagram

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACRONYMS
	INTRODUCTION
	Motivation
	Thesis overview

	REVIEW OF LITERATURE
	Synchronization in communications systems
	Timing and phase synchronization
	Carrier frequency offset

	Software defined radio
	Implementations of software defined radio

	RESEARCH AND DESIGN METHODS
	Signal model
	Timing and phase correction by complex kurtosis
	Timing offset correction
	Phase offset correction

	Phase offset correction by ``min/max'' equalization method
	Carrier frequency offset correction by spectral estimation
	System verification

	CUDA IMPLEMENTATION AND METHODS
	GPU Architecture
	Indexing
	Parallel Reduction
	Methods of convolution
	Inner-product Convolution
	Multi-threaded convolution
	Fast Convolution
	Conclusions

	RESULTS
	Optimal synchronization parameters
	Comparison of phase synchronization methods
	CUDA Optimizations
	Symbol block size

	Timing tests

	CONCLUSION
	Future work

	REFERENCES
	APPENDICES
	A CODE LISTINGS
	C Functions
	GPU Functions

	B System Diagrams

