
BEE SHADOW RECOGNITION IN VIDEO ANALYSIS OF OMNIDIRECTIONAL

BEE TRAFFIC

by

Laasya Alavala

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Science

Approved:

Vladimir Kulyukin, Ph.D. Xiaojun Qi, Ph.D.
Major Professor Committee Member

Curtis Dyreson, Ph.D. Richard S. Inouye, Ph.D.
Committee Member Vice Provost for Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2019

ii

Copyright c© Laasya Alavala 2019

All Rights Reserved

iii

ABSTRACT

Bee Shadow Recognition in Video Analysis of Omnidirectional Bee Traffic

by

Laasya Alavala, Master of Science

Utah State University, 2019

Major Professor: Vladimir Kulyukin, Ph.D.
Department: Computer Science

Shadows of bees are recognized as bees in video analysis of forager traffic. Thus shadow

detection and elimination is proposed as necessary and important step in the process of

recognizing bees. False detection of bee shadows as bees may lead to incorrect analysis of

bee colony behaviour and health. This thesis proposes various computer vision techniques

and Convolution Neural Network(ConvNets) to detect bees accurately. The best model is

then integrated with a motion detection algorithm that works on a Raspberry Pi 3 computer

which is part of BeePi. We designed and tested the bee detection accuracy with Machine

Learning techniques, ConvNets and several analytical approaches. We compared our models

with some of the standard state of the art models. The main objective is to find the best

classifier to detect bees with less computational time, which improves the estimation of bee

traffic levels.

(76 pages)

iv

PUBLIC ABSTRACT

Bee Shadow Recognition in Video Analysis of Omnidirectional Bee Traffic

Laasya Alavala

Over a decade ago, beekeepers noticed that the bees were dying or disappearing without

any prior health disorder. Colony Collapse Disorder(CCD) has been a major threat to bee

colonies around the world which affects vital human crop pollination. Possible instigators of

CCD include viral and fungal diseases, decreased genetic diversity, pesticides and a variety

of other factors. The interaction among any of these potential facets may be resulting in

immunity loss for honey bees and the increased likelihood of collapse. It is essential to

rescue honey bees and improve the health of bee colony.

Monitoring the traffic of bees helps to track the status of hive remotely. An Electronic

beehive monitoring system extracts video, audio and temperature data without causing any

interruption to the bee hives. This data could provide vital information on colony behaviour

and health. This research uses Artificial Intelligence and Computer Vision methodologies

to develop and analyze technologies to monitor omnidirectional bee traffic of hives without

disrupting the colony. Bee traffic means the number of bees moving in a given area in

front of the hive over a given period of time. Forager traffic is the number of bees coming in

and/or leaving the hive over a time. Forager traffic is a significant component in monitoring

food availability and demand, colony age structure, impacts of pests and diseases, etc on

hives. The goal of this research is to estimate and keep track of bee traffic by eliminating

unnecessary information from video samples.

v

To all the little people....

vi

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my advisor Dr. Vladimir

Kulyukin for the useful comments, motivation and encouragement through the learning

process of this thesis. He always steered me in the right direction whenever I needed. I

could not have imagined having a better advisor and mentor for my thesis.

I would like to thank the rest of my thesis committee: Dr. Xiaojun Qi and Dr. Curtis

Dyreson for their continuous support and insightful comments.

Finally, I wish to thank my parents and friends for their support and continuous en-

couragement in hard times.

Laasya Alavala

vii

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . iv

ACKNOWLEDGMENTS . vi

LIST OF TABLES . ix

LIST OF FIGURES . xi

ACRONYMS . xii

1 INTRODUCTION . 1
1.1 Background . 1
1.2 Related Work . 2
1.3 Current Work . 5

2 MATERIALS AND DATASETS . 6
2.1 Overview . 6
2.2 BeePi and Data Collection . 6
2.3 Datasets . 10

2.3.1 BEE1 . 10
2.3.2 BEE2 . 11
2.3.3 BEE3 . 12

2.4 MANOVA . 15
2.4.1 MANOVA on Datasets . 15

3 SHADOW RECOGNITION TECHNIQUES . 17
3.1 OTSU Segmentation . 17
3.2 LAB Color Space . 18
3.3 Canny Edge Detection . 18

4 FEATURE EXTRACTION AND SELECTION . 19
4.1 Feature Extraction . 19

4.1.1 Principal Component Analysis . 22
4.2 Feature Selection . 22

4.2.1 Sequential Feature Selection . 23
4.2.2 Univariate Feature Selection . 23

viii

5 CLASSIFICATION MODELS . 25
5.1 Convolution Neural Networks . 25
5.2 State of the art models . 30
5.3 Machine Learning . 36

5.3.1 Random Forest . 36
5.3.2 SVM . 37

6 EXPERIMENTS AND RESULTS . 39
6.1 Overview . 39
6.2 Shadow Recognition Techniques . 39
6.3 Feature Extraction . 40

6.3.1 Principle Component Analysis . 42
6.4 Models . 43
6.5 Performance Results . 45

6.5.1 Convolution Neural Network Models with different parameters on
BEE3 dataset . 49

6.5.2 Deep Networks . 49
6.5.3 Deeper Networks . 50

6.6 Algorithm on videos . 53
6.7 Performance metrics on videos . 53
6.8 Comparison with actual data . 54

7 CONCLUSION AND FUTURE WORK . 56

REFERENCES . 58

APPENDIX . 61
A Architecture of ConvNet Models . 62

A.1 ConvNet11 . 62
A.2 ConvNet12 (Best Model) . 63
A.3 ConvNet13 . 64

ix

LIST OF TABLES

Table Page

2.1 Number of Train, Test and Validation samples on BEE1 dataset 11

2.2 Number of Train, Test and Validation samples on BEE2 dataset 12

2.3 Number of Train, Test and Validation samples on BEE3 dataset 14

2.4 MANOVA analysis for three datasets . 16

6.1 Test and Validation accuracies . 40

6.2 Results after Feature Extraction on BEE1 dataset with different sizes . . . 41

6.3 Results after Feature Extraction on BEE2 OneSuper dataset with different
sizes . 41

6.4 Results after Feature Extraction on BEE2 TwoSuper dataset with different
sizes . 42

6.5 Results after Feature Extraction on BEE3 dataset with different sizes . . . 42

6.6 Results after applying PCA on features on BEE1 dataset with different sizes 42

6.7 Results after applying PCA on features on BEE2 OneSuper dataset with
different sizes . 42

6.8 Results after applying PCA on features on BEE2 TwoSuper dataset with
different sizes . 43

6.9 Results after applying PCA on features on BEE3 dataset with different sizes 43

6.10 Results on BEE1 dataset . 45

6.11 Results on BEE2 OneSuper dataset . 46

6.12 Results on BEE2 TwoSuper dataset . 47

6.13 Results on BEE3 dataset . 48

6.14 Effect of FC layer on BEE3 dataset . 49

6.15 Effect of kernel size and optimizer on BEE3 dataset 49

x

6.16 Effect of number of neurons and filter size on BEE3 dataset 50

6.17 COVN layers with FC layers and different optimizers on BEE3 dataset . . . 51

6.18 4 COVN layers with different kernel size and optimizers on BEE3 dataset . 52

6.19 5 COVN layers with different filters on BEE3 dataset 52

6.20 Performance metrics of videos . 54

6.21 Actual counts of videos . 55

A.1 Detailed specification of ConvNet11 . 62

A.2 Detailed specification of ConvNet12 . 63

A.3 Detailed specification of ConvNet13 . 64

xi

LIST OF FIGURES

Figure Page

2.1 Hardware Components of BeePi . 7

2.2 Overall set up of BeePi . 8

2.3 Pi camera mounted on top of hives . 9

2.4 Sample images from BEE1;the first four rows consist images classified as
BEE; last three rows of images are classified as NO-BEE 10

2.5 Sample images from BEE2 1S;the first four rows consist images classified as
BEE; last three rows of images are classified as NO-BEE 11

2.6 Sample images from BEE2 2S;the first four rows consist images classified as
BEE; last three rows of images are classified as NO-BEE 12

2.7 Sample images from BEE3;the first four rows consist images classified as
BEE; the next three rows of images are classified as NO-BEE; last three
rows of images are categorised as SHADOW-BEE 14

3.1 Algorithm for Shadow Segmentation . 17

5.1 Feature map with one filter . 27

5.2 CNN Architecture [1] . 30

5.3 VGGNet Architecture with 16 weighted layers 31

5.4 VGGNet Architecture with 19 weighted layers 31

5.5 Residual Learning building block . 32

5.6 ResNet Architecture . 32

5.7 AlexNet Architecture . 33

5.8 ZFNet Architecture . 34

5.9 Inception module [2] . 35

5.10 GoogleLenet Architecture [3] . 35

6.1 Comparison of all techniques . 40

6.2 Best model on BEE3 dataset . 44

6.3 Algorithm using ternary classification . 53

xii

ACRONYMS

CCD Colony Collapse Disorder

EBM Electronic Beehive Monitoring

MANOVA Multivariate Analysis Of Variance

GLCM Gray Level Co-occurrence Matrix

PCA Principal Component Analysis

SFS Sequential Feature Selection

UFS Univariate Feature Selection

DL Deep Learning

ML Machine Learning

MLP Multi Layer Perceptron

ConvNet Convolutional Neural Network

POOL Pooling layer

SGD Stochastic Gradient Descent

CONV Convolutional layer

FC Fully Connected layer

DNN Deep Neural Networks

CHAPTER 1

INTRODUCTION

1.1 Background

The world’s premier managed pollinator species are the Western honey bees(Apis mel-

lifera L.). In the United States, approximately $15 billion of crops are pollinated by honey

bees every year [4]. Fruits, nut and vegetable farmers raised the demand for honey bee

services. The most important pollinators for agricultural crops are honey bees.

In both the USA and Europe, Apiculture has been diminished over the decades.

Pathogens and other factors contribute to high bee colony losses [5, 6]. Therefore, it is

vital to pursuit beekeeping rather than taking it as a laborious profession to endorse polli-

nation and local apiculture. Abrupt loss of honey colonies has happened. Colony Collapse

Disorder(CCD) has gained great attention from the public. European scientists are also

working hard to explain the vast colony losses. Due to the break down of honey bee supply,

the prices for fruits,nuts and vegetables have risen.

All these factors lead scientists and farmers to consider bee health as a critical issue.

Many scientists and farmers are working around the world for about a decade to address

this problem. Plenty of work has been done earlier for data collection and interpretation.

Khoury, Barron and Myerscough [7] proposed a model in 2013 on designing a model to

predict complex interactions between bees death rate and food availability. Forager traffic

is a significant variable for tracking food availability and demand, impact of pesticides

used, colony age structure, etc. in bee hives [8]. To analyze the impact of pesticides on bee

colony health, forager activity is an important variable. Monitoring forager traffic will lead

to improved remote monitoring of general hive status and improved real time detection of

the impact of pests, diseases, pesticide exposure and other hive management problems [9].

Forager traffic can be affected by food availability, food demand and colony age structure.

2

Thus, sudden changes in that traffic may indicate acute changes on the colony level.

Forager activity is the number of bees coming in or going out of the hive over a given

period of time. Human assistance, while likely to be accurate, clearly limits because it is a

time-consuming process to monitor the hives continuously. Generally, most of the hives are

not located in the immediate vicinity of beekeeper who tend them, so every inspection incurs

a transportation cost to the bee keepers. Also, the number of invasive hive inspections often

disrupt the life cycles of bee colonies.

Thus, Electronic Beehive Monitoring (EBM) systems makes it possible to automate the

process of gathering abundant information about the bees behaviour without disturbing the

bee colonies and increasing physical demand on beekeepers [10]. EBM systems collect video,

audio and temperature data which helps to define the state of a honeybee colony. Each kind

of data reveals some information about the health of hives. Analyzing this data continuously

over a period of time helps to differentiate the abnormal behaviour of honey bees.

1.2 Related Work

The importance of monitoring bee hives and estimating its health demands research

and advancement over a span for several years. EBM system helps in extracting critical

information on colony behaviour without interfering any checkup on bee hives and transit

expenses. EBMs robotize the process of collecting information form bee hives. Incorporating

novel software solutions and improving EBMs design helps for better utilization.

Some algorithms were developed based on computer vision to solve the bee counting

problem which further contributes solutions to estimate forager traffic. Two algorithms are

presented for omnidirectional bee counting from images to estimate bee traffic levels. The

first algorithm is based on contour detection. A list of contours and connected components of

pixels are measured from an image which is binarized. The number of the contours detected

indicate the count of bees on the pad. The second algorithm is based on color segmentation.

Each pixel in the image is inspected for green color. If the pixel color exceeds a threshold

then it is marked as a pad pixel, otherwise as a bee pixel [11]. The number of bees on the

landing pad is estimated by dividing the number of bee detected pixels by a hand crafted

3

threshold. A more accurate was designed based on the concept of 1D Haar Wavelet Spike

and tested in situ on Langstroth landing pad [12].

As Deep Learning(DL) has gained momentum in several fields, with computer vision

being one of the most prominent cases. Images of size 32x32 were extracted and labelled

from the videos collected by BeePis. This work investigates several DL methodologies

i.e. analyzed and compared the performance of MLPs and ConvNets and gave better

performance results than previous approaches [13]. The drawback of this classification is

shadow bee images are also classified as bees.

Detection of shadows is a challenging task as shadows have same magnitude and move-

ment pattern similar to foreground objects. Shadows may be falsely detected as objects in

object detection algorithms. Shadow detection is an important pre-processing step im many

computer vision applications. Murali et. al. [14] proposed an algorithm to detect shadow

pixels from the image. The image is converted to LAB color space. Since the shadow re-

gion is darker and less illuminated than other regions. So, applying threshold on separate

channels gives makes a clear difference between shadow and non-shadow pixels. Shadows

may also be misinterpreted in the image segmentation process. An efficient approach for

shadow detection and removal was proposed by Pal et. al. [15]. Their algorithm is based

on HSV color model and OTSU thresholding.

Extracting ideal features that can reflect the intrinsic content of the images is a challeng-

ing problem in computer vision. Feature extraction is related to dimensionality reduction.

Some of its applications are latent semantic analysis, data compression, decomposition and

projection, and pattern recognition, etc. The main objective of feature extraction is to

have the most relevant information represented in a lower dimensionality space. It can also

enhance the speed and effectiveness of supervised learning. Mohanaiah et. al. [16] presented

an application of gray level co-occurrence matrix to extract second order statistical textural

features for images.

Image classification is a challenging task due to the quality distortions in images such

as noise, lighting, blur, scaling, etc. Human image recognition is typically rapid and more

4

accurate when compared to machines,as the internal representation of images are largely

independent of viewpoint and orientation. Deep Neural Networks(DNNs) have gained ex-

cellent performance over a decade. DNNs have the ability to describe behaviour on a more

fine-grained level. They are more complex and use multiple layers to progressively extract

high level features to represent more abstract patterns in the images which are unrecogniz-

able to humans. Deep Neural Networks(DNNs) create images of high perceptual quality

and a neural representation to divide and combine the features of arbitrary images. Deep

learning(DL) have improved the state-of-the-art techniques in speech recognition, object

recognition, visual object detection and in many other domains.

Convolution Neural Networks(ConvNets) are part of DNNs, have appeared to outper-

form all other techniques in image classification. Zeiler and Fergus [17] introduced a novel

visualization technique that gives insight into the function of intermediate feature layers

and operations of the classifier.

Krizhevsky, Sutskever and Hinton [18] presented their findings on applying deep neural

networks to classify large image datasets. They trained a deep neural network to classify

1.2 million images in the ImageNet LSVRC-2010 contest into 1000 different classes. The

neural network has million parameters and 650,000 neurons, consists of five convolution

layers, some of which are followed by max-pooling layers, and three fully connected layers

with a final 1000-way softmax. This network showed to have best results on other datasets

such as MNIST, CIFAR, etc. This architecture is called as AlexNet.

Deep neural networks are difficult to train as they are learning machines with lots of

parameters, and the building blocks are non-linear units. As they are stacked in layers,

the objective function becomes highly non-complex, so optimization is hard. He et. al [19]

contributed a novel residual learning framework to ease the training of deeper networks. The

researchers explicitly reformulated the layers as learning residual functions with reference to

the layer inputs. An ensemble of these residual nets achieves 3.57% error rate on ImageNet

test set. Their work proclaimed to have better generalization over other popular networks.

Szegedy et. al. [2] proposed a deep convolution neural network, called Inception. The

5

main trademark is to improve the utilization of computational resources inside the network.

Inception is incarnated in GoogleLeNet, a 22 layers deep network. The major benefit of

this method is a significant quality gain at modest increase of computational requirements

compared to shallower and less wide networks.

The success of region proposed methods and region-based ConvNets(R-CNNs) has

improved the growth in object detection. One of such work introduces a Region Proposal

Network(RPN), which shares full-image convolutional features with detection network. It

simultaneously predicts object bounds and objectness scores at each position. Fast R-CNNs

use the trained RPNs, which generate high quality-region proposals for detection [20].

1.3 Current Work

In this thesis, we extended the previous work by adding a new category “SHADOW

BEE” in classifying the bees. The image size is also increased from 32x32 to 64x64 to extract

more information from images for better bee detection. This thesis has been organized

as follows. Chapter 2 explains about the process of collecting and processing the data,

different datasets we used and analyzed by MANOVA. Chapter 3 describes the algorithms

for detecting the shadows in images. Chapter 4 illustrates the textural features of images

and feature selection techniques. Chapter 5 discusses ConvNets, State of the art models and

Machine Learning (ML) techniques in detail. Chapter 6 goes in detail about the experiments

and their results. Chapter 7 concludes the results from the experiments performed and

potential future work of this thesis.

6

CHAPTER 2

MATERIALS AND DATASETS

2.1 Overview

This section provides a detailed description of the hardware components used for data

collection, how the datasets are obtained on which the classifiers are trained to detect the

bees in videos and MANOVA analysis on data.

2.2 BeePi and Data Collection

Each BeePi consists of a Raspberry Pi computer, a temperature sensor, a miniature

camera, an equipment clock, a breadboard, a battery, solar panel wires and controllers.

The principal goal of this BeePi design is reproducibility. This equipment is placed on

top of all the hive frames. The hardware components of BeePi are shown in 2.1. Each

BeePi EBM system is equipped to collect video, temperature and 27.0 GB of audio data in

distinct climatic conditions. Likewise, four BeePi EBM systems were designed and deployed

in Northern Utah apiaries. All the hardware components in BeePi are intended to design

for Langsthroth hives [21].

The Raspberry Pi 3 computer which is used for integration with BeePi has 1GB of RAM

and 4 cores provided for handling recordings with the classifier. The data used for training

the testing Neural Network models and other Machine Learning techniques is obtained from

the recordings stocked by the solar-powered, a multi-sensor EBM system, called BeePi.

Four BeePi’s(henceforth referred to as 4.5,4.7,4.8 and 4.10) were set up in summer of

2018 for four bee hives to collect the data.

7

Fig. 2.1: Hardware Components of BeePi

8

Fig. 2.2: Overall set up of BeePi

The whole setup consists of boxes, we refer to as “supers”. Each box can contain

up to five frames. A frame is a rectangular mesh on which the bees build their hives,

reproduce and store honey. We need to add more boxes in the future as the population of

bees increases.

9

Fig. 2.3: Pi camera mounted on top of hives

As seen in 2.3, Raspberry Pi camera is mounted on the top-most super and facing the

landing pad. The distance of the pi camera increases from the landing pad as the number

of supers increases. The bees appear smaller when we have two supers compared to bees in

one super. All the bee movements over the landing pad are captured by the camera.

10

2.3 Datasets

We have used three different datasets in our thesis. Each dataset is clearly explained

in subsequent sections.

2.3.1 BEE1

BEE1 dataset consists of 54,391 images of size 32X32 for bees and no-bees. Each video

is composed of 749 frames with a resolution of 360x240. 40 videos were randomly selected

to generate this dataset. From each video, 400 frames are randomly sampled and were again

subjected to random sampling to pick the start and end coordinates of each region. This

results in 3980 32x32 images from each video. All these images are pooled to form this

dataset. The images were manually labelled into two categories: BEE and NO-BEE. Table

2.1 illustrates the distribution of data for train,test and validation.

Fig. 2.4: Sample images from BEE1;the first four rows consist images classified as BEE;

last three rows of images are classified as NO-BEE

11

Table 2.1: Number of Train, Test and Validation samples on BEE1 dataset

BEE1 Train Test Validation Total

Bee 19,082 6362 1810 27,254

No Bee 19,057 6362 1718 27,137

Total 38,139 12,724 3528 54,391

2.3.2 BEE2

This dataset has 112,879 labelled images. One super(BEE2 1S) dataset have videos

that were collected between 05 May and 06 September 2018 and Two Super(BEE2 2S) have

videos from 06 September to 07 October 2018. The videos were captured at a resolution of

1920x1080. Each 1-super and 2-super has 50 randomly selected videos. MOG algorithm is

used to extract 54,201 150x150 images from 1-super videos and 54,678 90x90 images from

2-super videos. The images were manually labelled into two categories: BEE and NO-BEE

to obtain the ground truth classification. Videos from hives 4.5 and 4.7 were used for train

and test and 4.8 and 4.10 were used for validation.

Fig. 2.5: Sample images from BEE2 1S;the first four rows consist images classified as BEE;

last three rows of images are classified as NO-BEE

12

Fig. 2.6: Sample images from BEE2 2S;the first four rows consist images classified as BEE;

last three rows of images are classified as NO-BEE

Table 2.2: Number of Train, Test and Validation samples on BEE2 dataset

Train Test Validation Total
Bee No Bee Bee No Bee Bee No Bee

BEE2 1S 8266 27,108 2828 9035 8298 2666 58,201

BEE2 2S 12,982 15983 4194 5327 6823 9369 54,678

Total 21,248 43,091 7022 14,362 15,121 12,035 112,879

2.3.3 BEE3

BEE3 dataset has 64,998 64x64 images, obtained from the videos collected between

05 May and 06 June 2018. On an average, each video has 745 frames at a resolution

of 1080x1920. We used motion detection algorithms: KNN [22],MOG [23],MOG2 [24] to

extract images from the videos. This algorithm detects motion in the current frame by

taking previous frame as reference and if it detects a motion, regions of size 64x64 are

13

cropped and saved. This dataset is mostly focused on shadows of the bees. The data is

very limited to collect images for shadow bees. So, we took the videos which were captured

in the afternoon and manually cropped the shadows of bees from the frames. Shadow bee

data is augmented to increase the data for train and test and were resized to a size of

64x64 while training, testing and validating the classifiers. The ground truth classification

is obtained by manually labelling the images into three categories: BEE, NO-BEE and

SHADOW-BEE. We used videos from hives 4.5 and 4.8 for train and test and videos from

4.7 and 4.10 are used for validation.

14

Fig. 2.7: Sample images from BEE3;the first four rows consist images classified as BEE; the

next three rows of images are classified as NO-BEE; last three rows of images are categorised

as SHADOW-BEE

Table 2.3: Number of Train, Test and Validation samples on BEE3 dataset

BEE3 Train Test Validation Total

Bee 12,948 4236 5187 22,371

No Bee 12,857 4242 5179 22,278

Shadow Bee 12,006 3993 4350 16,749

Total 37,811 12,471 14,716 64,998

15

2.4 MANOVA

Analysis Of Variance(ANOVA) [25] is a collection of statistical models to determine

the significant difference among groups. ANOVA provides a statistical test of whether

the population means of several groups are equal and, therefore generalizes the t-test to

more than two groups. It is useful for comparing three or more group means for statistical

significance. If the observed statistic in the sampling distribution is found to be more

than critical value i.e, 0.05, then the null hypothesis is rejected otherwise, it is retained.

The PR(¿F) value is responsible to determine significant difference between the groups.

Specifically, it tests the null hypothesis:

H0 : µ1 = µ2 = µ3 = ... = µk

where µ is group mean and k is the number of groups.

Multivariate Analysis Of Variance(MANOVA) [26] is merely an ANOVA that has been

extended to apply for two or more dependent variables. Image cannot be represented in

one variable. So we have chosen MANOVA since it can test the difference in two or more

means.

2.4.1 MANOVA on Datasets

We extracted three image features - Contrast, Energy and Homogeneity from the

GLCM using FEATURE from SKIMAGE library [27]. We labelled the data set (train

data as 0, test data as 1 and validation data as 2) and performed MANOVA analysis on

each data set. By observing the table 2.4.1, we can say that all the data sets are significantly

different from training, testing and validation data sets as their Pr(>F) value is less than

0.05.

16

Table 2.4: MANOVA analysis for three datasets

Data set Df Pillai approx F Pr(>F)

BEE1 1 0.00088021 15.971 2.244e-10

BEE2 1S 1 0.14443 3274.7 2.2e-16

BEE2 2S 1 0.021043 391.75 2.2e-16

BEE3 1 0.0042428 92.309 2.2e-16

17

CHAPTER 3

SHADOW RECOGNITION TECHNIQUES

3.1 OTSU Segmentation

First, we tried image segmentation to detect the shadow pixels of images. Thresholding

is a very effective method to separate objects from the background [15]. The proposed

algorithm can be seen in 3.1. The input RGB image is converted to HSV color space.

Hue(H) refers to the dominant color witnessed by observer. Saturation(S) represents the

purity or the amount of light combined with Hue. The areas covered by shadows have

maximum value of saturation and minimum value component in this color space. The

NDI image is extracted using the S and V (brightness) components. OTSU method of

thresholding is used to identify shadow and non-shadow pixels. The obtained image is a

binary image. All the shadow and non-shadow pixels are set to 1 and 0 respectively.

Fig. 3.1: Algorithm for Shadow Segmentation

Now, we tested OTSU thresholding [28] on V (brightness) channel of those color spaces

and also Gaussian blurring [29] was added to see whether blurring the RGB images would

help to reduce noise.

18

3.2 LAB Color Space

The RGB image is converted to LAB color space. L channel gives the illumination

information so it is easy to locate the shadow regions as they are darker than the surround-

ings. The A channel represents red/green values and B channel represents the blue/yellow

values. In most of the outdoor images, the shadow area values for B channel are lesser. As

proposed in the paper [14], we computed the mean values of pixels in L,A and B channels

of image separately. Then if the mean of A and B channels is greater than T1, all the pixels

with a value in L≤ mean(L)-standard deviation (L/3) are classified as shadow pixels or else

pixels with value in L+B ≤ T2 are also classified as shadow pixels.

3.3 Canny Edge Detection

Detecting the shadows based on edges in an image looked convincing. So, we investi-

gated further to check whether the shadow edges and bee edges showed up any difference

in their properties.

A OpenCV function Canny [30] was used to get a list of coordinates of the edge pixels.

The output of this would be a binary with white pixels along the edge. Those boundary

pixel values of the original image are taken and mean is computed. The obtained mean is

then thresholded empirically.

19

CHAPTER 4

FEATURE EXTRACTION AND SELECTION

4.1 Feature Extraction

Feature extraction simplifies the large set of data to the minimal amount of resources

required to perform analysis accurately. Generally, analysing images requires a large amount

of memory and computation power. Training the algorithms with such enormous amount

of data also over fits the training samples and gives poor performance results. Textural

features represents the characteristics of image. Features are computed from the statistical

distribution of intensity points(pixels) combinations which are relative to each other at

specified positions in the image. The pixels in each combination fall into first-order, second-

order and higher-order statistics.

We are using a popular statistical method of extracting features from image which is

Gray Level Co-ocurrence Matrix (GLCM) [16]. GLCM tabulates the information about the

positions of pixel having similar gray level values. It represents the relationship between

two pixels which are known as reference and neighbor pixel. This is as square matrix with

Ng dimension, where Ng is the number of gray levels in the image and both rows and

columns representing a set of image values. Each element [i,j] of the matrix is obtained

by the number of occurrences of the pixel with value i appeared with a pixel with value j.

The matrix element P(i,j‖, d,θ) has the probability values for changes between i and j at a

displacement distance d at an angle θ.

To compute GLCM, we used GREYCOMATRIX implemented from SKIMAGE library.

The feature values for the given GLCM are extracted by using the following formulas [31]:

1. Angular Second Moment(ASM)

∑
i

∑
j

P (i, j)2

20

2. Contrast ∑
i

∑
j

(i− j)2P (i, j)

3. Correlation ∑
i

∑
j

(ij)P (i, j)− µxµy
σxσy

where µx,µy,σx and σy are the means and std.deviations of Px and Py, the partial

probability density functions.

4. Sum of Squares: Variance

∑
i

∑
j

(i− µ)2P (i, j)

where µ is the mean of GLCM matrix.

5. Inverse Difference Moment(IDM)

∑
i

∑
j

P (i, j)

1 + (i− j)2

6. Sum Average(SA)

2Ng∑
i=2

iPx+y(i)

7. Sum Variance
2Ng∑
i=2

(i− SA)2Px+y(i)

8. Sum Entropy

−
2Ng∑
i=2

i log{Px+y(i)}

9. Entropy

−
∑
i

∑
j

P (i, j) log{P (i, j)}

21

10. Difference Variance ∑
i

i2 Px−y(i)

11. Difference Entropy

−
∑
i

Px−y(i) log{Px−y(i)}

12. Info. Measure of Correlation 1

HXY −HXY 1

max{HX,HY }

13. Info. Measure of Correlation 2

(
1− exp[−2(HXY 2−HXY)]

)1/2
where HXY is entropy, HX, HY are the entropy’s of Px and Py and

HXY 1 = −
∑

i

∑
j P (i, j) log{Px(i)Py(j)} HXY 2 = −

∑
i

∑
j Px(i)Py(j) log{Px(i)Py(j)}.

14. Auto Correlation ∑
i

∑
j

(ij) P (i, j)

15. Dissimilarity ∑
i

∑
j

abs(i− j) P (i, j)

16. Homogienity ∑
i

∑
j

P (i, j)

(1 + (i− j)2)2

17. Inverse Difference Normalized(IDN)

∑
i

∑
j

P (i, j)

1 + abs(i− j)/Ng

18. Maximum Probability is the maximum value of GLCM matrix.

22

19. Cluster Shade ∑
i

∑
j

(i+ j − µx − µy)3 P (i, j)

20. Cluster Prominence

∑
i

∑
j

(i+ j − µx − µy)4 P (i, j)

21. Energy
√
ASM

4.1.1 Principal Component Analysis

Principal Component Analysis(PCA) is a dimensionality reduction technique that trans-

forms a number of correlated variables into a number of linearly uncorrelated variables called

principal components. It involves substantial number of correlated variables for multivariate

analysis. Principal components aims at maintaining most of the information from original

data. The first principal component possess the utmost variance of the dataset and each

of the following component accounts for the remaining variance. The resulting components

are an uncorrelated orthogonal basis set i.e. they are statistically independent to each

other [32]. PCA is performed on a square symmetric matrix that explains how our vari-

ables relate to one another. The matrix is broken down into two components: direction and

magnitude. Direction is the combination of data and magnitude indicates the importance

of each direction.

4.2 Feature Selection

After extracting features from the images, it is important to analyze the significant

features which helps the model for better classification rather than creating noise. The

process of selecting subset of relevant features is called as feature selection. This reduces

overfitting, improves the accuracy by mostly eliminating misleading data and also helps

to reduce the complexity of the model to train faster. In order to get optimal subset of

23

features, most of the feature selection techniques scans the entire feature set and ranks

all the features based on evaluation metrics. This section describes some of the feature

selection techniques we used.

4.2.1 Sequential Feature Selection

Sequential Feature Selection belongs to wrapper methods. These methods use an ex-

tensive greedy search algorithm to find the best subset of features which produces best result

for a specific model. SFAs adds or removes one feature at a time based on the performance

of the model to reduce the dimensions in the feature space. The number of features required

must be chosen empirically. The algorithm stops when the given number is reached. SFAs

are categorised into two groups:

• Sequential Forward Selection (SFS): Initially, they train and evaluate n classifiers (n

is the dimension of feature set) with respect to each feature. The feature that gave the

best performance towards classification is selected. Again, n-1 classifiers are trained

and evaluated with the first feature. The combination of two features that yield best

performance is selected. The process stops when the specified number of features is

selected.

• Sequential Backward Selection: In this process, one feature is removed at a time

from the feature set and performance is evaluated by the classifier. The feature set

that yield best results towards classification is retained. The process stops when the

specified number of features is selected.

4.2.2 Univariate Feature Selection

Univariate Feature Selection (UFS) comes under Filter methods. This technique ana-

lyzes each feature to determine the strength of the relationship of the feature with target

variable. The rank of the features are determined by the strength of their relationship with

the outcome based on some statistical tests such as F-test, Mutual Information, chi-square,

etc. Except a preset number of highest scorers, all other features are removed from the

24

feature space. The rest of the features are used to train and evaluate the classifiers. In our

work, we used F-test and Mutual Information univariate statistical tests.

• F-test: It is a statistical test used to compare between the feature and target variable

to check if the difference is significant. F-test captures the relationships between

the features and target variables. Correlation scores(F-score) are computed for the

features. The features with higher F-scores are selected for modelling.

• Mutual Information: This measures the dependency between target variable and the

feature variable. The mutual information value is 0, when the target is independent

of the feature. It is 1, when the target is fully dependent on the feature. In other

cases, the values ranges between 0 and 1. The features with higher mutual information

values are selected for modelling.

25

CHAPTER 5

CLASSIFICATION MODELS

Over last few years, Deep Learning (DL) has given rise to a massive collection of

concepts that were previously fragmented and disparate. DL methods have appeared to

outperform previous state of the art Machine Learning(ML) methods in several fields, no-

ticeably standing out in the field of computer vision. Conventional ML techniques are

restricted to process raw data. For a long time, ML techniques needed lot of domain exper-

tise, human intervention and careful feature engineering transformed raw data into a feature

vector from which a learning system such as classifier could detect or classify patterns in the

input. However, ML is highly susceptible to errors when the data is covered by irrelevant

features. The goal behind DL is to automate the process of learning features from data;

here the algorithms model high level abstractions i.e. they try to learn high-level features

from data in an incremental manner using architectures to produce the output accurately.

The next sections provide detailed explanations of DL models such as Convolution

Neural Networks and State of the art models and Machine Learning models such as Random

Forest and SVMs.

5.1 Convolution Neural Networks

ConvNets are a derivative of standard MLP neural networks optimised for two-dimensional

pattern recognition problems. ConvNets process the data that come in the form of multiple

arrays. It is a good answer for multiple trainable stages stacked top on each other. Feature

maps which are sets of arrays, generated at each stage. Particular features are extracted

at all locations on the input which represents each feature map. ConvNets have neurons

arranged in 3 dimensions (width,height,depth). Neurons in feature maps receives input

from a receptive field which is a restricted subarea of previous layer. Through set of weights

called filter bank, neurons are connected to local patches in feature maps of previous layers.

26

In a feature map, all the neurons share the same filter bank. Different filter banks are used

by different feature maps. The result of this sum is passed through a non-linearity such as

ReLU. This kind of architecture for images forms distinctive local motifs, high correlation

and local statistics are invariant to location. They include pooling for data reduction called

as sub-sampling operations. This operation is applied to the output of previous layer. Pool-

ing computes maximum value of a predefined window in a feature map by eliminating the

non-maximal values. The output layer classifies the input image, every neuron in this layer

is fully connected to the neurons in previous layer. We stack different types layers to form

a full ConvNet architecture [33,34]. Each layer type is described below sections.

Convolution Layer

In Convolution Layers, a convolution operation is applied to the input from previous

layers and the filters. It produces n feature maps, where n is the number of filters and

pass on to the next layer. The main function of convolution layer is to detect the local

conjunctions of features from the previous layer and mapping their appearance to a feature

map. The ConvNet learns the filters which get activated when a specific feature is detected.

Most of the neurons share same vector of weights and bias. The number of filters used to

convolve the input results in the same amount of feature maps which can be seen in figure

5.1.

Activation Function

Activation function is a key component for a neural network. These non-linear activa-

tion functions are transfer functions that convert the linear inputs to non-linear outputs.

The function of the activation function depends on the position it is placed. If it is placed

after the hidden layers, then it transforms the linear mappings to non-linear for propagation.

If placed in the output layer, it performs predictions or classifications [35].

1. Softmax: We have used Softmax as the activation function in the output layer for

all the architectures. It takes a vector of real numbers and calculates the probability

27

Fig. 5.1: Feature map with one filter

distribution. The output of this activation function varies between 0 and 1. Soft-

max activation function is used for multivariate classification models and the sum of

probabilities of each class equals to 1.

f(x) =

(
exi∑J
j=1 e

xj

)
(5.1)

where i = 1,2,...,J.

2. ReLU: The role of Rectified Linear Unit(ReLU) layer is to saturate or limit the gen-

erated output. ReLU favours for training because it creates a sparser representation,

which means zero in the gradient leads to a complete zero unlike sigmoid or tanh

and also for positive input, it has constant gradient [35, 36]. The linear function and

gradient are defined as:

ReLU(x) = max(0, x)

d

dx
(x) = {1 if x > 0; 0 otherwise} (5.2)

3. Tanh: Hyperbolic Tangent Function(Tanh) helps the back-propagation process to

produce zero centered output. It is a smoother function whose values varies between

28

-1 to 1 [35]. The output of this function is as follows:

f(x) =

(
ex − e−x

ex + e−x

)
(5.3)

Pooling Layer

Pooling layer task is to combine features which are semantically similar to one. It is

down-sampling the dimensions of data. Pooling function replaces the output of previous

layer at specific location with one value by computing statistics on nearby outputs. Pooling

does not affect the number of filters and can be used with non-equal filters. If we pool

the input by a small amount, most of the pooled outputs do not change. Convolution

or non-linearity layers are usually succeeded by pooling layers. Max-pooling is one of the

pooling methods. It returns the maximum value from the sub-regions of an image. Pooling

operation does not preserve the information of a position [36].

Dropout

This drops out units at each training step in a neural network. It temporarily removes

the units from all incoming and outgoing connections. Either the probability is kept 1-p or

p. This prevents units from co-adapting too much. Applying dropout results to sampling a

“thinned” network. The thinned network consists of all units that survived the dropout. A

neural network with n, can be seen as a collection of 2n possible thinned neural networks [37].

Batch Normalization

Batch Normalization reduces the amount of internal covariance shift. It allows each

layer in the network to to learn a bit more independently by itself. High learning rates can

be used without any risk of divergence. It also regularizes the model and reduces the use

of dropout. We additionally add this normalization for convolution layers, so that it obeys

the convolution properties and different elements of feature map, at different locations are

normalized in the same manner [38]. We can apply Batch Normalization to any set of

29

activations. First, affine transformation is performed and then element-wise nonlinearity:

z = g(Wu+ b)

where W and b are learned parameters of the model and g(.) is nonlinearity such like

sigmoid, tanh or ReLU. Batch Normalization transform is applied before the nonlinearity,

by normalizing (Wu+b). The Batch Normalization formula used is:

y(k) = γ(k)x̂(k) + β(k)

where x(k) is for each activation and γ(k) ,β(k) are a pair of parameters, by setting γ(k) =√
V ar[x(k)]andγ(k) = E[x(k)].

Fully Connected Layer

Each neuron in a fully-connected layer is connected to every neuron in both the pre-

ceded and succeeded layers. It is better to eliminate the number of neurons and connections

in this layer because the computation complexity increases as per the number of parameters.

The weight parameters are tuned based on the output activation maps, obtained by con-

catenating the convolution, non-linearity and pooling layers to create stochastic likelihood

of each class.

The internal architecture of a Convolution Neural Network is shown in figure 5.2.

It has convolution layer which results in a feature map, the obtained feature maps are

downsampled in pooling layer and again a convolution layer resulting in feature maps.

Next, is the fully connected layer which classifies the input.

30

Fig. 5.2: CNN Architecture [1]

5.2 State of the art models

VGGNet16

The detailed description and control flow of this model is shown in 5.3 This network is

comprised of convolutional layers with 3x3 receptive field filters and stride fixed to 1 and

max-pooling layers with kernel size 2 and stride 2. Followed by 3 FC layers, the first two of

them have 4096 units each and the third is the softmax layer which performs classification

with the desired number of output classes.ReLu is the activation in all the layers. In our

experiments, we have used rmsprop as optimizer [39].

VGGNet19

This model is very much similar to the previous model. Three more convolutional

layers and a flattened layer are added to the architecture. We have used adam optimizer.

The layer by layer control flow is shown in Fig.5.4

31

Fig. 5.3: VGGNet Architecture with 16 weighted layers

Fig. 5.4: VGGNet Architecture with 19 weighted layers

ResNet

ResNet [19] architecture has 32 layers along with convolutional layers, max-pooling

layers, Residual blocks and Normalization layers. Residual blocks as shown in Fig.5.5 are

used to address the degradation problem. Each convolutional layer is followed by ReLU.

The optimizer used is Momemtum. The architecture of this model appears as Fig.5.6

32

Fig. 5.5: Residual Learning building block

Fig. 5.6: ResNet Architecture

AlexNet

AlexNet [18] is comprised of convolutional with different filters and filter sizes, max-

pool layers with kernel size 3 and stride 2, local response normalization and FC layers. The

ReLU is used as the activation for all convolution layers, tanh for FC layers and softmax for

the output layer and momentum is the optimizer. The architecture of this model is clearly

shown in Fig.5.7.

33

Fig. 5.7: AlexNet Architecture

ZFNet

ZFNet architecture is close to AlexNet with some minor differences. The first convo-

lution layer have 96 7x7 filters with strides as 2. The second convolution layer is modified

with the number of strides and rest of the convolution layers have different filters. Detailed

structure of architecture can be seen in Fig.5.8

34

Fig. 5.8: ZFNet Architecture

GoogleLeNet

GoogleLeNet [2] incarnates the architecture of Inception. Fig.5.9 shows the inception

module with dimensionality reduction. This architecture has 9 inception modules, contain-

ing 22 layers along with four max-pooling layers and one average pooling layers. Including

the inception modules, ReLU is used in all the convolutional layers. A 0.4 dropout ratio is

applied to the softmax layer and Momentum is the optimizer. We can see the control flow

of this architecture in Fig.5.10.

35

Fig. 5.9: Inception module [2]

Fig. 5.10: GoogleLenet Architecture [3]

36

5.3 Machine Learning

Machine learning (ML) is based on algorithms that have the capability to learn from

data without being explicitly programmed. The learning process depends on the patterns

and inference of the input. Supervised Learning is a Machine Learning task of learning a

function that maps an input to an output. The training data consist of a set of training

examples and each example is a pair of input object(typically a vector) and a desired

output value. The learning algorithm predicts the training examples iteratively and gets

corrected by the training examples. The learning stops once the algorithm achieves an

acceptable level of performance. The function inferred from training examples can be used

later for predicting the output value for new examples. Supervised Learning is grouped

into Regression and Classification. Regression may predict a continuous quantity or size

and can be evaluated using root mean squared error, whereas Classification may predict a

discrete class label and can be evaluated using accuracy.

We have used Support Vector Machine (SVM) and Random Forest (RF) ML techniques

in our experiments as they were well-used models for image classification.

5.3.1 Random Forest

Random Forest is an ensemble classification method used for classification and regres-

sion. The basic building block of Random Forest is a Decision Tree. The“forest” it builds,

is a collection of Decision Trees. Using “bagging” method each tree considers a subset of

random features sampled independently from the training data. Instances which appear

at least once in the sample are in-bag instances, and the other instances are out-of-bag

instances. It make predictions by averaging over the predictions made by several decision

trees. Each tree in the forest votes for the class label of an unlabelled instance. Then

by majority voting, the class label with most votes classifies the instance. It merges the

predictions to increase overall accuracy of the result.

Random Forest error rates depends on Correlation and Strength. The error rate de-

creases statistically by maximizing the strength of trees and minimizing the correlation

between trees.

37

Variable Importance

RF searches for the best feature among a random subset of features while splitting the

tree. The sum of importance of all variables is equal to 1. The importance of each variable

in RF can be measured in two ways.

1. Accuracy-based Importance: The out-of-bag sample of each tree is used to

calculate the importance of variables. Initially, the prediction accuracy is measured and

then the values of variables are shuffled randomly as the shuffled variables has no predictive

power. The mean decrease in the prediction accuracy on that data gives the variable

importance measure.

2. Gini-based Importance: Gini impurity is used to decide on which variable to

split at each internal node. Each branch is the outcome of this split. A leaf node represents

the class label. The sum of gini decreases every time the same variable is chosen to split

across the trees for each variable. The average of this sum is computed by dividing with

the number of trees. Minimal computation is required for this because the Gini calculations

are already performed during training.

5.3.2 SVM

SVM is a supervised ML algorithm used for Classification and Regression. SVM maps

the input vector to an n-dimensional space to find the hyperplane that classifies the data

points distinctly. The data points of two classes can be separated by several number of

hyperplanes. But the best hyperplane that has maximum distance between the nearest data

points(support vectors) of both the classes is chosen. These support vectors influence the

position and orientation of hyperplane. SVM training algorithm builds a model to classify

the new examples by assigning data points to one of the classes. In non-Linear classification

problems, SVM uses kernel trick to transform the input space to a high dimensional space

to separate the classes by a clear gap that is as wide as possible. In such case, SVM uses

soft margin which involves slack variables and a penalty parameter C. The dimension of the

hyperplane rely on the number of features [40]

SVM One-Vs-Rest (OVR) builds a linear classifier for data points belonging to N

38

different classes. This approach combines n binary classifiers to solve n class classification.

It constructs a function that predicts each one of binary classifiers and then outputs the

largest(most positive) value [41].

39

CHAPTER 6

EXPERIMENTS AND RESULTS

6.1 Overview

To estimate bee traffic, we need to find the best model that would detect the actual

“BEE” from other unwanted information such as “NO BEE” and “SHADOW BEE”. So,

we trained and evaluated several neural networks, SVM and Random Forests. This section

presents the performance results on different shadow recognition techniques, Deep Learning

models, Machine Learning and State of the art models on BEE1, BEE2 and BEE3 datasets.

6.2 Shadow Recognition Techniques

We tested on bee and shadow bee images in BEE3 dataset. Table 6.1 shows the results

of different techniques with their respective threshold values (T). The threshold values used

are dataset specific. We selected them empirically. We tested OTSU thresholding on V

channel and also added Gaussian blurring to the images with a Gaussian kernel of size

7x7 as the width and height of the kernel should be odd. Both these methods have same

performance as OTSU segmentation. We can say that, the Canny edge detector method

did not work well with T=160 when compared to T=150. We tried the other method with

different T1 and T2 values but they did not show good results. In feature extraction method,

we extracted the features of images and saved them in csv files. Then we trained a random

forest classifier with 50 trees using PCA components. This method gave us better results.

We plotted a graph 6.1 on these techniques which gave higher accuracy with a particular

threshold value.

40

Table 6.1: Test and Validation accuracies

Technique Test Accuracy Validation Accuracy

OTSU Segmentation 48.52 45.61

OTSU on V 48.52 45.61

Gaussian Blur & OTSU 48.52 45.61

Canny(T=150) 25.93 30.13

Canny(T=160) 18.32 23.68

LAB(T1 = 256, T2 = 75) 49.11 36.04

LAB(T1 = 256, T2 = 100) 47.19 28.68

LAB(T1 = 100, T2 = 75) 49.11 36.04

LAB(T1 = 75, T2 = 25) 35.38 32.05

Feature Extraction 96.17 86.63

Fig. 6.1: Comparison of all techniques

6.3 Feature Extraction

We performed feature extraction technique on all the three datasets. To see the effect

of image size, we experimented this technique by doubling the original size of the image each

time. By observing the results on BEE1 in Table 6.2, the validation accuracy is increased

by 1% which is not significant. On BEE2 OneSuper in Table 6.3, we can see a 2% increase

in the validation accuracy when the image is resized to 128x128 pixels using Random Forest

classifier. SVMs performed well for this dataset, a significant difference of almost 15% can

be seen. On BEE2 TwoSuper in Table 6.4, a 3% increase in validation accuracy is noticed

41

for 128x128 images. Further increasing the size of the image is a bad idea as we can clearly

see that the validation accuracy is decreased. Now on BEE3 in Table 6.5, the validation

accuracy is increased by 3% for 128x128 images and for this dataset, going beyond 100 trees

is decreasing the accuracy of the model.

Table 6.2: Results after Feature Extraction on BEE1 dataset with different sizes

Model Test Acc Val Acc Test Acc Val Acc
(32x32) (32x32) (64x64) (64x64)

RF(50) 98.16 96.45 98.33 97.39

RF(100) 98.15 96.48 98.38 97.27

RF(150) 98.20 96.54 98.42 97.13

RF(200) 98.25 96.57 98.43 97.22

RF(250) 98.23 96.48 98.43 97.05

SVM 81.29 71.85 79.40 70.89

Table 6.3: Results after Feature Extraction on BEE2 OneSuper dataset with different sizes

Model Test Acc Val Acc Test Acc Val Acc Test Acc Val Acc
(64x64) (64x64) (128x128) (128x128) (256x256) (256x256)

RF(50) 90.17 59.50 90.30 61.76 90.39 61.66

RF(100) 90.39 59.75 90.25 61.96 90.44 62.12

RF(150) 90.39 60.27 90.32 62.25 90.51 62.24

RF(200) 90.49 60.37 90.30 62.26 90.53 62.59

RF(250) 90.41 60.37 90.21 62.39 90.49 62.79

RF(300) 90.44 60.30 90.29 62.28 90.45 62.65

SVM 66.24 75.44 64.34 78.80 67.88 68.84

42

Table 6.4: Results after Feature Extraction on BEE2 TwoSuper dataset with different sizes

Model Test Acc Val Acc Test Acc Val Acc Test Acc Val Acc
(64x64) (64x64) (128x128) (128x128) (256x256) (256x256)

RF(50) 95.12 66.34 95.13 69.22 95.55 68.39

RF(100) 95.18 66.56 95.21 69.54 95.58 68.88

RF(150) 95.22 66.56 95.17 69.09 95.63 69.04

RF(200) 95.24 66.70 95.20 69.16 95.58 68.95

RF(250) 95.30 66.69 95.24 69.33 95.63 68.90

RF(300) 95.32 66.55 95.28 69.31 95.69 69

SVM 58.90 59.93 63.62 54.77 64.08 54.74

Table 6.5: Results after Feature Extraction on BEE3 dataset with different sizes

Model Test Acc Val Acc Test Acc Val Acc
(64x64) (64x64) (128x128) (128x128)

RF(50) 85.84 71.73 86.68 73.88

RF(100) 86.02 71.85 86.78 74.08

RF(150) 85.95 71.83 86.76 74.02

SVM 48.71 52.0 41.71 44.20

6.3.1 Principle Component Analysis

Table 6.6: Results after applying PCA on features on BEE1 dataset with different sizes

Model Test Acc Val Acc Test Acc Val Acc
(32x32) (32x32) (64x64) (64x64)

RF(50) 98.09 96.37 98.31 96.65

RF(100) 98.14 96.42 98.37 96.65

SVM 78.56 67.85 49.53 55.18

Table 6.7: Results after applying PCA on features on BEE2 OneSuper dataset with different
sizes

Model Test Acc Val Acc Test Acc Val Acc Test Acc Val Acc
(64x64) (64x64) (128x128) (128x128) (256x256) (256x256)

RF(50) 91.14 60.10 91.08 62.03 91.01 63.38

RF(100) 91.15 59.53 91.29 62.65 91.13 64.32

RF(150) 91.23 59.72 91.30 62.67 91.25 64.43

SVM 72.29 35.11 46.78 68.22 39.25 66.39

43

Table 6.8: Results after applying PCA on features on BEE2 TwoSuper dataset with different
sizes

Model Test Acc Val Acc Test Acc Val Acc Test Acc Val Acc
(64x64) (64x64) (128x128) (128x128) (256x256) (256x256)

RF(50) 95.44 69.28 95.42 71.17 95.66 70.40

RF(100) 95.48 69.53 95.41 71.04 95.69 70.44

RF(150) 95.32 69.92 95.43 70.75 95.72 70.47

SVM 50.41 48.89 65.18 55.08 65.72 54.92

Table 6.9: Results after applying PCA on features on BEE3 dataset with different sizes

Model Test Acc Val Acc Test Acc Val Acc
(64x64) (64x64) (128x128) (128x128)

RF(50) 86.81 75.56 86.95 76.35

RF(100) 86.76 75.39 87.13 76.23

SVM 51.65 53.97 45.89 51.22

6.4 Models

This section shows the test and validation accuracy of different models on BEE1, BEE2

and BEE3 datasets.

• State of the art models : We also trained and validated state of the art networks

to see their performance with our datasets. The results for 6 such networks are clearly

shown in tables 6.10, 6.11, 6.12 and 6.13.

• Machine Learning : An image of size 64x64 with 3 channels is flattened to a one

dimensional array of 12288. It is normalized using a min-max normalization. These

flattened images are trained with 20,40,60,80 and 100 trees using Random Forest

classifier and SVM classifier using ‘L2’ penalty.

• Feature Selection : The 21 features are indexed from 0 to 20. We manually selected

the number of features required and set the value to 14 in both SFS and UFS methods.

• Other Networks : We used 10 Convolution networks as proposed in prateeks pa-

per. ConvNetGS-1, ConvNetGS-2, ConvNetGS-3, ConvNetGS-4 and ConvNetGS-5

are automatically designed ConvNets using greedy grid search algorithm. ConvNet

44

1, ConvNet 2, ConvNet 3, ConvNet 4, ConvNet 5, ConvNet 6, ConvNet 7, ConvNet

8, ConvNet 9, ConvNet 10 are other ConvNets [42]. ConvNet 11, ConvNet 12 and

ConvNet 13 are the best architectures designed for BEE3 dataset. The architecture

of the best model is shown in Fig.6.2.

Fig. 6.2: Best model on BEE3 dataset

45

6.5 Performance Results

Table 6.10: Results on BEE1 dataset

Model Test Accuracy Validation Accuracy

ResNet 99.78 99.37

ConvNet 1 99.85 99.36

ConvNet 13 99.84 99.33

GoogleLeNet 99.78 99.20

ZFNet 99.80 99.17

ConvNet 11 99.76 99.14

ConvNetGS-5 99.69 99.10

VGGNet 16 99.80 99.09

ConvNetGS-4 99.77 99.08

ConvNet 3 99.81 99.08

ConvNetGS-3 99.69 99.02

ConvNet 2 99.43 99.02

ConvNet 12 99.58 98.97

AlexNet 99.63 98.86

ConvNetGS-2 99.57 98.76

ConvNet 7 99.48 98.50

ConvNet 6 99.29 98.45

ConvNetGS-1 99.25 97.84

ConvNet 5 99.05 97.58

ConvNet 10 99.12 97.31

ConvNet 8 99.25 96.43

SFS 97.91 96.96

UFS 97.64 95.77

ConvNet 4 97.85 95.55

RF(80) 97.52 93.22

RF(100) 97.54 93.14

RF(60) 97.41 93.11

RF(40) 97.40 92.63

RF(20) 97.06 92.48

SVM 55.36 55.18

ConvNet 9 50 50

46

Table 6.11: Results on BEE2 OneSuper dataset

Model Test Accuracy Validation Accuracy

VGGNet 16 93.82 91.52

ConvNet 11 94.17 90.31

ConvNet 2 93.69 89.42

ConvNet 3 92.57 89.48

ConvNet 6 94.21 88.96

AlexNet 93.69 88.05

ConvNet 13 94.23 87.28

ConvNet 12 94.08 86.71

ConvNet 1 94.22 85.59

ZFNet 93.97 84.90

GoogleLeNet 94.12 84.52

ConvNetGS-5 92.82 84.0

ConvNetGS-4 93.50 83.95

ResNet 93.48 83.73

ConvNetGS-1 91.66 83.69

ConvNetGS-3 92.62 83.41

ConvNetGS-2 91.74 82.84

ConvNet 8 94.21 81.14

ConvNet 7 93.59 80.85

ConvNet 5 92.40 77.24

ConvNet 10 92.81 72.11

RF(60) 89.88 61.78

RF(40) 89.86 61.72

RF(100) 90.06 61.08

RF(80) 89.64 60.81

RF(20) 89.35 59.62

SFS 89.58 52.75

UFS 88.71 46.57

ConvNet 4 76.16 50

ConvNet 9 76.16 50

SVM 79.65 33.02

VGGNet 19 76.16 24.31

47

Table 6.12: Results on BEE2 TwoSuper dataset

Model Test Accuracy Validation Accuracy

ResNet 96.82 78.57

VGGNet 16 98.18 75.50

GoogleLenet 98.50 75.29

ZFNet 98.60 74.96

ConvNet 6 97.35 74.31

ConvNet 13 98.19 74.19

RF(100) 97.29 73.77

ConvNet13 98.57 73.64

ConvNetGS-4 98.26 73.43

RF(80) 97.26 73.07

ConvNet 11 98.32 73.04

RF(60) 97.29 72.91

RF(40) 97.24 72.50

AlexNet 98.39 72.43

RF(20) 96.96 72.34

ConvNet 8 97.56 72.80

ConvNet 2 97.83 71.90

ConvNet 12 98.52 71.07

ConvNetGS-5 98.14 70.41

ConvNet 10 97.46 70.45

ConvNetGS-3 97.95 70.26

SVM 87.93 69.34

ConvNet 7 97.27 68.50

SFS 95.43 68.31

ConvNet 1 98.45 68.17

ConvNetGS-1 96.88 68.10

ConvNetGS-2 97.52 68.02

ConvNet 3 98.16 67.04

ConvNet 5 97.44 66.0

UFS 95.70 64.09

VGGNet 19 55.95 57.86

ConvNet 4 55.95 50

ConvNet 9 55.95 50

48

Table 6.13: Results on BEE3 dataset

Model Test Accuracy Validation Accuracy

ResNet 96.58 91.0

ConvNet 12 96.54 91

ConvNet 13 96.56 90.79

ConvNet 4 95.57 90.59

AlexNet 95.93 90.57

ConvNet 1 96.40 90.55

ZFNet 96.45 90.47

ConvNet 11 96.40 90.09

ConvNetGS-4 95.91 89.43

GoogleLenet 95.93 88.63

ConvNet 9 95.46 88.58

ConvNetGS-3 94.79 88.30

ConvNetGS-5 95.04 87.89

ConvNet 2 93.59 87.35

ConvNet 3 93.03 87.34

VGGNet 16 96.01 86.88

ConvNetGS-2 94.19 86.22

ConvNet 6 88.14 84.74

RF(80) 92.67 83.36

ConvNetGS-1 91.16 83.08

RF(100) 92.67 83.07

RF(60) 92.23 82.94

ConvNet 10 89.77 82.93

ConvNet 7 88.89 82.67

RF(40) 92.18 82.55

RF(20) 91.65 80.78

ConvNet 8 83.36 78.77

SFS 89.23 76.87

UFS 85.74 76.28

SVM 73.53 65.34

ConvNet 5 54.85 47.74

49

6.5.1 Convolution Neural Network Models with different parameters on BEE3

dataset

Convolution Network architecture is developed to classify images obtained from videos.

We trained the network to classify 64x64 RGB image ad bee, no-bee or shadow bee. Archi-

tecture of the models are explained below.

6.5.2 Deep Networks

To start with, we trained our network with 2 conv layers. The first convolutional layer

has 32 4x4 filters and second convolutional layer has 64 4x4 filters. Each convolutional layer

is followed by a max-pooling layer with kernel size 3 and then the output layer. We used

tanh as activation function and learning rate is 0.01.

A fully connected layer is added to this network to see its impact. Table 6.14 shows

the results. By adding FC layer with 128 neurons, there is 5% increase in train accuracy

and 2% increase in test accuracy but no significant difference in the validation accuracy.

Table 6.14: Effect of FC layer on BEE3 dataset

Network Train Acc Train Loss Test Acc Test Loss Validation Accuracy

2-conv layers 93.67% 0.16 93.99% 0.169 88.01%

1 FC layer 98.11% 0.076 95.44% 0.130 87.13%

To see the effect of filter size in convolutional layer, its size is increased to 5 and learning

rate is decreased to 0.001. Table 6.15 has the results with two CONV layers and kernel size

as 4, then changing the activation function to tanh and optimizer to ADAM. In the next

network, the kernel size is changed, rest all are same as first network.

Table 6.15: Effect of kernel size and optimizer on BEE3 dataset

Network Train Acc Train Loss Test Acc Test Loss Validation Accuracy

k = 4 87.21% 0.309 89.04% 0.289 82.60%

ADAM 97.69% 0.054 95.53% 0.159 88.06%

k = 7 86.65% 0.342 88.74% 0.312 81.53%

50

From both the tables 6.14 and 6.15, it is observed that the accuracy is reduced as the

learning rate value is decreased. There is no difference in the validation accuracy for the

adam optimizer.

6.5.3 Deeper Networks

This section deals with CNNs with 3 or more convolutional layers.

3 Convolution layers

Initially, we trained our network (Network 1) with 3 CONV layers and 1 FC layer. The

first convolutional layer has 16 3x3 filters, second convolutional layer has 32 3x3 filters and

third has 64 3x3 filters. All the convolutional layers are followed by a max-pooling layer

with kernel size 5. The FC layer has 64 neurons. ReLU is used as activation function and

SGD as optimizer with 0.1 as learning rate.

To see the effect of number of neurons in convolutional layers, we trained another

network (Network 2) with 32 3x3 filters in first convolutional layer, 64 3x3 filters in second

and third convolutional layers. Same as network 1, the convolutional layers are followed

by a max-pooling layer with kernel size as 3. A network (Network 3) with minor changes

to the previous network are made like filter size is set to 5, kernel size to 7 and number of

neurons in FC layers are increased to 256.

Table 6.16: Effect of number of neurons and filter size on BEE3 dataset

Network no. Train Acc Train Loss Test Acc Test Loss Validation Accuracy

1 98.77% 0.034 95.17% 0.180 87.47%

2 99.29% 0.017 95.57% 0.232 88.14%

3 99.72% 0.012 95.97% 0.188 87.96%

4 Convolution layers

Going deeper, we designed a network with 4 convolutional layers and 2 FC layers. The

first and second convolutional layers has 64 filters with size 4. Next two convolution layers

51

has 128 4x4 filters. Each convolutional layer is followed by a max-pooling layer with kernel

size as 3. The hidden layers in FC layers has 256 and 128 neurons. Learning rate is 0.01

and activation function in all the layers is tanh.

Table 6.17 shows the accuracy and loss of training, testing and validation for the

networks with 4 CONV layers. Trained and tested with ADAM optimizer, by adding one

more convolution layer with 256 4x4 filters, FC layer with 64 neurons added to previous

network. We can observe poor performance of the model when the optimizer is changed to

ADAM. The train and test loss are very loss which is not a good sign to use the model.

The accuracy is degraded when a FC layer is added to 5 layered convolutional network. It

is not advisable to add more FC layers to this network.

Table 6.17: COVN layers with FC layers and different optimizers on BEE3 dataset

Network Train Acc Train Loss Test Acc Test Loss Validation Accuracy

4 conv layers 99.74% 0.0098 96.01% 0.141 88.10%

ADAM 34.55% 1.15 34.01% 1.20 35.18%

5 conv layers 99.77% 0.017 96.26% 0.150 88.24%

dense64 97.53% 0.072 95.29% 0.171 86.25%

We designed another 4 convolutional layered network. First convolutional layer has 32

4x4 filters, second and third convolutional layers has 64 4x4 filters and last convolutional

layer has 128 4x4 filters. A max-pooling layer with 3 as kernel size is attached after every

convolutional layer. FC layer with 256 and 128 neurons are applied to the network. Tanh is

the activation function and SGD is optimizer. From table 6.18, we can say that by changing

filter size to 5, kernel size to 4 and changing number of filters in third and fourth convolution

layers to 128, the validation accuracy is reduced whereas changing the optimizer to ADAM

and activation to ReLU improved the performance to 90%.

We trained an architecture with kernel size 3 and stride with 2 in all max-pool layers.

The first convolution layer has 96 7x7 filters and strides with 2. Followed by max-pool and

batch normalization layers. The second convolution layer consists of 356 5x5 filters with 4

strides. The output is max-pooled and batch normalized. Then comes three convolution

52

Table 6.18: 4 COVN layers with different kernel size and optimizers on BEE3 dataset

Network Train Acc Train Loss Test Acc Test Loss Validation Accuracy

k = 3 99.52% 0.016 95.30% 0.168 84.60%

k = 4 33.71% 1.097 33.97% 1.098 35.24%

ADAM & ReLU 99.64% 0.011 95.89% 0.242 90.76%

layers with 512, 1024 and 512 1x1 filters respectively with stride as 1. Max-pooling layer is

attached to it and 2 FC layers with 4096 neurons each. ReLU is the activation function.

A similar network is designed with 128 filters in thrid, 256 in fourth and 128 in fifth

convolution layers. Neurons in FC layers are changed to 512. Results of these architectures

are shown in table 6.19. There is no significant difference in the accuracy of these models.

Table 6.19: 5 COVN layers with different filters on BEE3 dataset

Neurons in FC layer Train Acc Train Loss Test Acc Test Loss Validation Accuracy

4096 99.00% 0.015 96.29% 0.235 88.54%

512 95.68% 0.039 31.95% 0.236 88.59%

53

6.6 Algorithm on videos

The input of the algorithm is a 30 seconds mp4 video collected from a hive. This video

is fed to the algorithm and the motion detection algorithm checks for any motion in the

video. If the motion detection algorithm encounters any motion, it draws a contour and

crops the motion a region across it. The obtained image is then fed to the classifier to check

whether the motion detected region is a bee, no bee or a shadow bee. If the motion detection

algorithm doesn’t encounter any motion in the video then the algorithm terminates once the

the whole video is processed. Figure 6.3 describes the pictorial representation of detecting

the bee motions in the videos.

Fig. 6.3: Algorithm using ternary classification

6.7 Performance metrics on videos

• Precision - the proportion of positive identifications that are actually correct i.e. the

fraction of relevant instances among the retrieved instances.

Precision =
TP

TP + FP
(6.1)

54

• Recall - the proportion of actual positives that are identified correctly i.e. the frac-

tion of relevant instances that have been retrieved over the total amount of relevant

instances.

Recall =
TP

TP + FN
(6.2)

• Accuracy - the proportion of true results among the total number of cases examined

i.e. fraction of predictions model got right.

Accuracy =
TP + TN

TP + TN + FP + FN
(6.3)

We tested the algorithm of detecting bee and shadow bee motions for 10 videos from

four hives with different traffic levels by using the BEE3 classifier. The performance metrics

for 10 videos are tabulated in table 6.20.

The number of bees detected correctly are True Positives(TP), number of shadow bees

correctly detected are True Negatives(TN), number of bees detected as shadow bees are

False Positives(FP) and number of shadow bees detected as bees are False Negatives(FN).

Table 6.20: Performance metrics of videos

Video No. Precision Recall Accuracy

1 97.90 97.33 95.52

2 99.18 95.33 95.03

3 99.36 95.10 94.77

4 99.88 96.74 96.76

5 100 89.74 90.09

6 99.78 90.87 88.49

7 99.41 97.26 96.81

8 97.15 99.91 93.91

9 99.55 98.72 98.34

10 98.12 96.95 95.39

6.8 Comparison with actual data

We took high level, medium level and low level traffic videos and counted the number

55

of bee motions and shadow motions. Table 6.21 shows the number of bee and shadow

motions in videos counted by human and the system. We can observe that more than 85%

of shadow bee motions are detected for medium and low level traffic videos. The system

is unable to detect all the shadow motions for high level traffic videos. The number of bee

motion counts for three videos are overestimated than actual bee motions.

Obtaining ground truth for omnidirectional bee traffic videos is very labour intensive.

It took 19 hours to count number of bee and shadow motions for three videos with different

traffic levels.

Table 6.21: Actual counts of videos

Traffic level Human bee System bee Human shadow System shadow
motion counts motion counts motion counts motion counts

High 8863 12,793 2612 1139

Medium 6853 25,800 951 925

Low 3089 11,489 1107 1030

56

CHAPTER 7

CONCLUSION AND FUTURE WORK

This thesis examines various methods that can be used to analyze bee traffic which

further contributes to monitor the health of bee hives. We evaluated the results of Machine

Learning, Deep Learning and other techniques on different datasets. However, all other

techniques fail to achieve the level of ConvNets. Let’s go deep into our results for different

datasets.

BEE1

ResNet achieved the highest accuracy of all the networks. All other state of the art

models scored above 98% of accuracy and other ConvNets also performed well except Con-

vNet9. Random Forest gave better results when trained and tested on features of the images

than raw images. The validation accuracy is increased by 1% i.e. 97%, when the image

is resized to 64x64 before extracting features from the images. We can say that feature

extraction technique can help to perform on par with deep learning methods.

BEE2

On BEE2 1S, VGGNet 16 outperformed all other networks with 91.52% accuracy.

There is no significant difference in the accuracy’s of Machine Learning techniques on raw

images and features, even after resizing the images to 128x128 and 256x256 pixels. Their

performance is less than 70%.

On BEE2 2S, the best accuracy is 78.57% which is achieved by ResNet. Random

Forest on raw images with an accuracy of 73.77% gave better results than features and

PCA. ConvNet4, ConvNet9 and VGGnet 19 are the bad architectures for this dataset.

57

BEE3

BEE3 consists of SHADOW BEE and BEE images. None of the analytical approaches

gave an accuracy above 50%, except feature extraction technique to detect shadow bee and

bee images. ResNet and ConvNet12 tops the list with 91% accuracy. Random Forest on

raw images with an accuracy of 83.36% is better than some of the ConvNets and feature

extraction and selection techniques. ConvNet5 network does not seem to work well for this

dataset.

We experimented 10 videos taken from four hives using the algorithm. The results

show that more than 85% of shadow bees are detected accurately for medium and low level

traffic videos. For high level traffic videos, the motion detection algorithm is unable to

detect all the motion regions in the video. Multiple motion regions are drawn and detected

as bees for one bee motion region. These problems can be solved by improving the motion

detection algorithm.

The reasons for false positives and false negatives could be because of data and the

classifier. The number of shadow bees detected as bees may be small in number for one

video. But when we need to analyze the bee traffic over a period of time, especially in

the noon and evening shadow bees detected as bees may lead to false analysis of bee hive

health.

In order to detect bees accurately in videos, it is crucial to have consistent and clean

data. The videos collected from four hives are comprised of different backgrounds. Since the

validation data is completely distinct from train/test datasets, the classifier’s performance

decreases. Some bees are detected as shadow bees, it can be improved by increasing the

dataset for shadow bees. If the image has bee and also its shadow, the model is detecting

the image as shadow bee for some of the images. This problem can be solved by enhancing

the architecture of model, experimenting with different hyper parameters or by defining

custom deep learning layers instead of using convolution layers. Feature extraction and

selection techniques can be applied to new datasets and train with different machine learning

algorithms.

58

REFERENCES

[1] Albelwi S.; Mahmood A., “A framework for designing the architectures of deep convo-
lutional neural networks,” 2017.

[2] Szegedy C.; Liu W.; Jia Y.; Sermanet P.;Reed S.; Anguelov D.; Erhan D; Vanhoucke
V.; Rabinovich A., “Going deeper with convolutions,” IEEE Conference on Computer
Vision and Pattern Recognition, 2015.

[3] Pawara P.; Okafor E.; Surinta O.; Scohomaker L.;Wiering M., “Comparing local de-
scriptors and bags of visual words to deep convolutional neural networks for plant
recognition,” 2017.

[4] Christina Herrick. “Survey on honey bee colonies”. [Online]. Available: https:
//www.growingproduce.com/fruits/usda-surveys-honey-bee-colony-health/

[5] Glenny W.; Cavilgli I.; Daughenbaugh K F.; Radford R.; Kegley S E.; Flenniken M
L., “Honey bee (apis mellifera) colony health and pathogen composition in migratory
beekeeping operations involved in california almond pollination.” 2017. [Online].
Available: https://doi.org/10.1371/journal.pone.0182814

[6] Potts S G.; Roberts S P M.; Dean R; Marris G; Brown M A.; Jones R.; Neumann
P; Settele J, “Declines of managed honey bees and beekeepers in europe,” Journal of
Apicultural Research, vol. 49, pp. 15–22, 2010.

[7] Khoury D S.; Barron A B.; Myerscough M R., “Modelling food and population dy-
namics in honey bee colonies,” 2013.

[8] Mclellan A R., “Honeybee colony weight as an index of honey production and nectar
flow: A critical evaluation,” Journal of Applied Ecology, 1977.

[9] Kaiser L.; Decourtye A.; Devillers J.; Delegue M H P., “Behavioural methods to assess
the effects of pesticides on honey bees,” Apidologie 33, 2002.

[10] Barron A B.; Khoury D S.; Myerscough M R., “A quantitative model of honey bee
colony population dynamics,” 2011.

[11] Kulyukin V.; Reka S., “Toward sustainable electronic beehive monitoring: Algorithms
for omnidirectional bee counting from images and harmonic analysis of buzzing signals,”
Engineering Letters, vol. 24, 2016.

[12] Kulyukin V., “In situ omnidirectional vision-based bee counting using 1d haar wavelet
spikes,” Proceedings of the International MultiConference of Engineers and Computer
Scientists, vol. 1, 2017.

[13] Tiwari A., “A deep learning approach to recognizing bees in video analysis of bee
traffic,” Master’s thesis, Utah State University, Logan, UT, 2018. [Online]. Available:
https://digitalcommons.usu.edu/etd/7076/

https://www.growingproduce.com/fruits/usda-surveys-honey-bee-colony-health/
https://www.growingproduce.com/fruits/usda-surveys-honey-bee-colony-health/
https://doi.org/10.1371/journal.pone.0182814
https://digitalcommons.usu.edu/etd/7076/

59

[14] Murali S.; Govindan V K., “Shadow detection and removal from a single image using
lab color space,” CYBERNETICS AND INFORMATION TECHNOLOGIES, vol. 13,
2015.

[15] Singh K K.; Pal K.; Nigam M J., “Shadow detection and removal from remote sensing
images using ndi and morphological operators,” International Journal of Computer
Applications, vol. 42, pp. 37–40, 2012.

[16] Mohanaiah P., Sathyanarayana P., GuruKumar L, “Image texture feature extraction
using glcm approach,” International Journal of Scientific and Research Publications,
vol. 3, 2013.

[17] Zeiler M D., Fergus R., “Visualizing and understanding convolutional networks,” Eu-
ropean Conference on Computer Vision, 2014.

[18] Krizhevsky A.;Sutskever I.,Hinton G E., “Imagenet classification with deep convo-
lutional neural networks,” Advances in Neural Information Processing Systems, pp.
1097–1105, 2012.

[19] He K.; Zhang X.; Ren S.; Sun J., “Deep residual learning for image recognition,” IEEE
Conference on Computer Vision and Pattern Recognition, 2016.

[20] Ren S.; He K.; Girshick R.; Sun J., “Faster r-cnn: Towards real-time object detection
with region proposal networks,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 39, 2015.

[21] Kulyukin V., Putnam M., Reka S, “Digitizing buzzing signals into a440 piano note
sequences and estimating forage traffic levels from images in solar-powered, electronic
beehive monitoring,” 2016.

[22] Zivkovic,Z.;, “Improved adaptive gaussian mixture model for background subtraction,”
Proceedings of 17th international conference on pattern recognition(ICPR), vol. 2, pp.
28–31, 2004.

[23] KaewTraKulPong,P.; Bowden,R., “An improved adaptive background mixture model
for realtime tracking with shadow detection,” Proceedings of second european workshop
on advanced video based surveillance systems(AVBS01), pp. 28–31, 2001.

[24] Zivkovic,Z.; van der Heijden,F., “Efficient adaptive density estimation per image pixel
for the task of background subtraction,” Pattern recognition letters, pp. 773–780, 2006.

[25] “Analysis of Variance(ANOVA)”. [Online]. Available: https://en.wikipedia.org/wiki/
Analysis of variance

[26] Warne R T., “A primer on multivariate analysis of variance (manova) for behavioral
scientists,” Practical Assessment, Research Evaluation, vol. 19, 2014.

[27] “SKIMAGE”. [Online]. Available: https://scikit-image.org/docs/dev/api/skimage.
feature.html

https://en.wikipedia.org/wiki/Analysis_of_variance
https://en.wikipedia.org/wiki/Analysis_of_variance
https://scikit-image.org/docs/dev/api/skimage.feature.html
https://scikit-image.org/docs/dev/api/skimage.feature.html

60

[28] “OTSU Thresholding”. [Online]. Available: https://scikit-image.org/docs/0.14.x/
auto examples/xx applications/plot thresholding.html

[29] “Gaussian Blurring”. [Online]. Available: https://opencv-python-tutroals.
readthedocs.io/en/latest/py tutorials/py imgproc/py filtering/py filtering.html

[30] “Canny Edge Detection”. [Online]. Available: https://docs.opencv.org/3.1.0/da/d22/
tutorial py canny.html

[31] Avinash Uppuluri. “GLCM texture features”. [Online]. Available: https://www.
mathworks.com/matlabcentral/fileexchange/22187-glcm-texture-features

[32] “A One-Stop Shop for Principal Component Anal-
ysis”. [Online]. Available: https://towardsdatascience.com/
a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

[33] LeCun Y.; Bengio Y.; Hinton G., “Deep learning,” Nature Publishing Group, a division
of Macmillan Publishers Limited, 2015.

[34] LeCun Y.; Kavukcuoglu K.; Farabet C., “Convolutional networks and applications in
vision,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 253–
256, 2010.

[35] Nwankpa C.; Ijomah W.; Gachagan A; Marshall S, “Activation functions: Comparison
of trends in practice and research for deep learning,” arXiv preprint arXiv:1811.03378,
2018.

[36] Albawi S.; Mohammed T A.; Alzawi S., “Understanding of a convolutional neural
network,” International Conference on Engineering and Technology, 2017.

[37] Srivastava N.; Hinton G.; Krizhevsky A.; Sutskever I.; Salakhutdinov R., “Dropout: A
simple way to prevent neural networks from overfitting,” Journal of Machine Learning
Research 15, 2014.

[38] Ioffe S.; Szegedy C., “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[39] Simonyan K.; Zisserman A., “Very deep convolutional networks for large-scale image
recognition,” 2015.

[40] “Support Vector Machine”. [Online]. Available: https://en.wikipedia.org/wiki/
Support-vector machine

[41] Rifkin R.; Klautau A., “In defense of one-vs-all classification,” Journal of Machine
Learning Research, pp. 101–141, 2004.

[42] Vats P., “Design and evaluation of convolutional networks for video analysis of bee
traffic,” Master’s thesis, Utah State University, Logan, UT, 2019. [Online]. Available:
https://digitalcommons.usu.edu/etd/7514/

https://scikit-image.org/docs/0.14.x/auto_examples/xx_applications/plot_thresholding.html
https://scikit-image.org/docs/0.14.x/auto_examples/xx_applications/plot_thresholding.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_filtering/py_filtering.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_filtering/py_filtering.html
https://docs.opencv.org/3.1.0/da/d22/tutorial_py_canny.html
https://docs.opencv.org/3.1.0/da/d22/tutorial_py_canny.html
https://www.mathworks.com/matlabcentral/fileexchange/22187-glcm-texture-features
https://www.mathworks.com/matlabcentral/fileexchange/22187-glcm-texture-features
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c
https://en.wikipedia.org/wiki/Support-vector_machine
https://en.wikipedia.org/wiki/Support-vector_machine
https://digitalcommons.usu.edu/etd/7514/

61

APPENDIX

62

Architecture of ConvNet Models

A.1 ConvNet11

Table A.1: Detailed specification of ConvNet11

ConvNet11 Configuration

Layers Specification

Layer 1 Conv-2D filters = 64,filterSize = 4,strides = 1,activation = relu,
weightDecay = 0.1,regularizer = none

Layer 2 Maxpool-2D kernelSize=4,strides = 1
Conv-2D filters = 64,filterSize = 4,strides = 1,activation = relu,

weightDecay = 0.1,regularizer = none

Layer 3 Maxpool-2D kernelSize=4,strides = 1
Conv-2D filters = 128,filterSize = 4,strides = 1,activation = relu,

weightDecay = 0.1,regularizer = none

Layer 4 Maxpool-2D kernelSize=4,strides = 1

Layer 5 FC number of units = 64, activation = relu

Layer 6 FC number of units = 3, activation = softmax

Regression Optimizer = sgd, Learning Rate = 0.1,
Loss = Categorical Crossentropy

63

A.2 ConvNet12 (Best Model)

Table A.2: Detailed specification of ConvNet12

ConvNet12 Configuration

Layers Specification

Layer 1 Conv-2D filters = 96,filterSize = 7,strides = 2,activation = relu,
weightDecay = 0.1,regularizer = none

Layer 2 Maxpool-2D kernelSize=3,strides = 2
Batch Normalization

Conv-2D filters = 256,filterSize = 5,strides = 2,activation = relu,
weightDecay = 0.01,regularizer = none

Layer 3 Maxpool-2D kernelSize=3,strides = 2
Batch Normalization

Conv-2D filters = 384,filterSize = 3,strides = 1,activation = relu,
weightDecay = 0.01,regularizer = none

Layer 4 Conv-2D filters = 384,filterSize = 3,strides = 1,activation = relu,
weightDecay = 0.01,regularizer = none

Layer 5 Conv-2D filters = 256,filterSize = 5,strides = 1,activation = relu,
weightDecay = 0.01,regularizer = none

Layer 6 Maxpool-2D kernelSize=3,strides = 2

Layer 7 FC number of units = 4096, activation = relu

Layer 8 FC number of units = 4096, activation = relu

Layer 9 FC number of units = 3, activation = softmax

Regeression Optimizer = sgd, Learning Rate = 0.01,
Loss = Categorical Crossentropy

64

A.3 ConvNet13

Table A.3: Detailed specification of ConvNet13

ConvNet13 Configuration

Layers Specification

Layer 1 Conv-2D filters = 64,filterSize = 4,strides = 1,activation = relu,
weightDecay = 0.01,regularizer = none

Layer 2 Conv-2D filters = 64,filterSize = 4,strides = 1,activation = relu,
weightDecay = 0.01,regularizer = none

Layer 3 Maxpool-2D kernelSize=5,strides = 2
Conv-2D filters = 128,filterSize = 4,strides = 1,activation = relu,

weightDecay = 0.01,regularizer = none

Layer 4 Conv-2D filters = 128,filterSize = 4,strides = 1,activation = relu,
weightDecay = 0.01,regularizer = none

Layer 5 Maxpool-2D kernelSize=5,strides = 2
Conv-2D filters = 256,filterSize = 4,strides = 1,activation = relu,

weightDecay = 0.01,regularizer = none

Layer 6 Conv-2D filters = 256,filterSize = 4,strides = 1,activation = relu,
weightDecay = 0.01,regularizer = none

Layer 7 Conv-2D filters = 256,filterSize = 4,strides = 1,activation = relu,
weightDecay = 0.01,regularizer = none

Layer 8 Maxpool-2D kernelSize=5,strides = 2
Conv-2D filters = 512,filterSize = 4,strides = 1,activation = relu,

weightDecay = 0.01,regularizer = none

Layer 9 Conv-2D filters = 512,filterSize = 4,strides = 1,activation = relu,
weightDecay = 0.01,regularizer = none

Layer 10 Conv-2D filters = 512,filterSize = 4,strides = 1,activation = relu,
weightDecay = 0.01,regularizer = none

Layer 11 Maxpool-2D kernelSize=5,strides = 2
Conv-2D filters = 512,filterSize = 4,strides = 1,activation = relu,

weightDecay = 0.01,regularizer = none

Layer 12 Conv-2D filters = 512,filterSize = 4,strides = 1,activation = relu,
weightDecay = 0.01,regularizer = none

Layer 13 Conv-2D filters = 512,filterSize = 4,strides = 1,activation = relu,
weightDecay = 0.01,regularizer = none

Layer 14 Maxpool-2D kernelSize=5,strides = 2

Layer 15 FC number of units = 256, activation = relu

Layer 16 FC number of units = 128, activation = relu

Layer 17 FC number of units = 3, activation = softmax

Regression Optimizer = sgd, Learning Rate = 0.01,
Loss = Categorical Crossentropy

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACRONYMS
	INTRODUCTION
	Background
	Related Work
	Current Work

	MATERIALS AND DATASETS
	Overview
	BeePi and Data Collection
	Datasets
	BEE1
	BEE2
	BEE3

	MANOVA
	MANOVA on Datasets

	SHADOW RECOGNITION TECHNIQUES
	OTSU Segmentation
	LAB Color Space
	Canny Edge Detection

	FEATURE EXTRACTION AND SELECTION
	Feature Extraction
	Principal Component Analysis

	Feature Selection
	Sequential Feature Selection
	Univariate Feature Selection

	CLASSIFICATION MODELS
	Convolution Neural Networks
	State of the art models
	Machine Learning
	Random Forest
	SVM

	EXPERIMENTS AND RESULTS
	Overview
	Shadow Recognition Techniques
	Feature Extraction
	Principle Component Analysis

	Models
	Performance Results
	Convolution Neural Network Models with different parameters on BEE3 dataset
	Deep Networks
	Deeper Networks

	Algorithm on videos
	Performance metrics on videos
	Comparison with actual data

	CONCLUSION AND FUTURE WORK
	REFERENCES
	APPENDIX
	A Architecture of ConvNet Models
	ConvNet11
	ConvNet12 (Best Model)
	ConvNet13

