Accepted Publication to the 2019 IEEE Intelligent Transportation Systems Conference (ITSC)

October 27-30, 2019, Auckland, New Zealand

How to Match Tracks of Visual Features
for Automotive Long-Term SLAM

Stefan Luthardt™, Christoph Ziegler”, Volker Willert”", and Jiirgen Adamy”

Abstract— Accurate localization is a vital prerequisite for
future assistance or autonomous driving functions in intelligent
vehicles. To achieve the required localization accuracy and
availability, long-term visual SLAM algorithms like LLama-
SLAM are a promising option. In such algorithms visual feature
tracks, i.e. landmark observations over several consecutive
image frames, have to be matched to feature tracks recorded
days, weeks or months earlier. This leads to a more challenging
matching problem than in short-term visual localization and
known descriptor matching methods cannot be applied directly.
In this paper, we devise several approaches to compare and
match feature tracks and evaluate their performance on a
long-term data set. With the proposed descriptor combina-
tion and masking (“CoMa”) method the best track matching
performance is achieved with minor computational cost. This
method creates a single combined descriptor for each feature
track and furthermore increases the robustness by capturing
the appearance variations of this track in a descriptor mask.

I. INTRODUCTION

An accurate estimation of the vehicle’s position is an es-
sential requirement for current and future intelligent vehicles.
Only with a precisely known position, valuable informa-
tion provided by digital maps or by other vehicles can be
utilized. A promising approach for vehicle localization are
V-SLAM (Visual Simultaneous Localization and Mapping)
methods which can deliver superior accuracy and availabil-
ity compared to GNSS (global navigation satellite system)
positioning [1]. To determine the position of the camera
respectively of the vehicle, V-SLAM algorithms need to find
prominent points in the camera image and associate them
with known points from previous images as shown in Fig. 1.
These prominent points in the camera image are called visual
features and detecting and matching them is one of the key
issues in V-SLAMs and similar methods [2]-[4].

A. Visual Features

In general, a visual feature is defined as a point in the
image that uniquely differs in intensity or texture from its
immediate neighbors. In visual localization usually corners
are chosen as visual features, i.e. locations in the image
where there is a high intensity gradient in both directions
[4]. To extract potential visual features from an image, a
detector algorithm like FAST [5] is used. The result of the
detector algorithm is a set of key points, where a key point
p is the pixel position of the visual feature.

The detected key points then need to be matched to
features from previous images, i.e. it has to be determined
which features from two or more images belong to the same

*Control Methods and Robotics Lab, TU Darmstadt, Germany

© 2019 1IEEE

Fig. 1. Detecting and matching visual features is a key issue in visual
localization methods. Here, this issue is illustrated for a simple example
with two image frames. The key points of each visual feature are marked
with a plus and a box indicates the corresponding patch. Matching features,
i.e. features that belong to the same 3D-landmark, have the same color and
are linked to each other.

I|o

¥
#
e

\ \
N il

2

right

frame 1 frame 2 frame 3 frame 1 frame 2 frame 3

Fig. 2. In feature track matching it is already known which stereo feature
pairs belong together in consecutive frames, i.e. which features form a
feature track 7. To enable the recognition of landmarks over longer periods
of time, we want to reliably identify matches between such feature tracks.

real 3D-point in the world (see Fig. 1). Hereafter, we call the
real 3D-points landmarks, whereas we use the term feature
to specify the projection of a landmark in a camera image.
To find features that belong together, the surroundings of the
key points are considered. The surrounding of a key point p
is called patch and is usually limited to a certain size, e. g.
51px. Theoretically, features could be matched by directly
comparing their patches, but this is very costly. Therefore,
descriptor methods are used to convert the patch to a vector
X, which can be seen as a compressed version of the patch.
Descriptors aim to capture all relevant characteristics of the
patch while being invariant to minor transformations and
being robust to illumination changes and noise. Furthermore,
the descriptor vector x should be compact and easy to
compare. A visual feature 6 is therefore composed of a
key point p and a descriptor x describing its surrounding
patch, i.e. 8 = {p,x}. Using the descriptors, features can be
easily compared by computing a descriptor distance d.(x;,X;)
and thereby matching feature pairs can be determined using
some matching criteria. There is a large variety of descriptor
methods and we refer the reader to [6], [7] or [8] for a
comprehensive overview.

B. Visual Feature Tracks in Long-Term V-SLAM

The feature matching problem described above and de-
picted in Fig.1 is the typical setup in optical flow, visual

This version is published under German Copyright Law

odometry or short term V-SLAM methods, i.e. algorithms
where the landmark observations lie usually just fractions of
a second apart. Since only minor appearance changes occur
in such matching problems, they are mostly solvable today.
However, feature matching becomes more challenging in
long-term V-SLAMs with landmark observations over several
days, weeks and months [1], [2]. Long-term V-SLAMs like
LLama-SLAM [9] are advantageous for automotive local-
ization since they offer increased availability, scalability and
updatability compared to visual short-term methods. In this
paper, we will investigate the feature matching problem in
such long-term V-SLAMs. Besides the more challenging
matching task, long-term V-SLAM:s also provide a different
matching setup which is visualized in Fig.2. Using a short-
term matching system, it is already known which features
belong together over several consecutive image frames, i.e.
which features form a feature track. In the case of LLama-
SLAM, the feature tracks are provided by an upstream Visual
Odometry developed by Buczko etal. [10] which uses a
Lucas-Kanade tracking [11] to match the features. Addition-
ally, since a stereo-camera is used, there are actually two
landmark observations available per image frame. Therefore,
a feature track T; contains stereo feature pairs belonging to
one landmark from several consecutive frames and can be

written as T, = {6 1L, Ok, 1R, Ok 21, Ok 2R, - - - Ok L, Ok NR }-

C. Matching Feature Tracks

Contrary to the feature-to-feature matching problem be-
tween different frames in short term V-SLAM methods, we
consider a track-to-track matching in long-term V-SLAMs:
Matching feature tracks have to be identified, i.e. tracks
that belong to the same real landmark. To our knowledge,
there is up to now no published method which solves this
problem. There is an approach published by Zhang etal.
[12] that shares similar ideas, but it is limited to two feature
observations and is not intended for feature track matching
(more detailed comparison in Sec.II-D).

One challenge of long-term track-to-track matching is the
possibly large variation in the feature’s appearance due to
different weather and lighting conditions which demands a
more robust descriptor method. Furthermore, the existing
descriptor comparison techniques cannot be used directly to
compare feature tracks since they only allow the comparison
of two features. Therefore, in order to compare feature tracks,
the track information has to be consolidated in some stage of
the feature comparison. Combining the actual patches of one
track directly is obviously not a good idea, since it would
produce a blurred patch that has lost most of the important
characteristics. So the information consolidation has to be
performed on the descriptor level or during the descriptor
comparison. Consequently, we consider the following possi-
ble solutions for feature track comparison:

1) Compare all features of one track with all features from
the other track and combine the resulting distances.

2) Choose one representative single feature from each track
and use its descriptor as track descriptor.

3) Combine the descriptors of all features within the track
to a new combined track descriptor.
In the first version of LLama-SLAM [9] we adopted the
second approach! which lead to mediocre results. Thus, we
developed new methods, based on three main approaches
listed above. In this paper, we present all these methods and
evaluate their performance using a real long-term data set.

D. Paper Overview

The remainder of this paper is organized as follows: We
will first explain the main principles of binary descriptors
in Sec.II, which are the basis of our track comparison
methods. In Sec.IIl we give an in-depth description of the
methods to compare feature tracks. Experimental results
for the different methods are presented and discussed in
the following Sec.IV. Finally, we will discuss strategies
for comparing, matching and updating tracks in Sec. V and
conclude the paper in Sec. VL.

II. BINARY FEATURE DESCRIPTORS

The track-to-track comparison methods proposed in this
paper use the binary descriptors BRIEF [14] and BOLD
[15] as basis. We choose binary descriptors since they have
a good ratio of accuracy to computational cost and their
simple interpretable structure allows the design of descriptor
combination schemes. This section introduces the basics
of binary descriptors, starting with the “ancestor” BRIEF,
followed by explanations of two major enhancements that
lead to descriptors like BOLD.

A. The BRIEF Descriptor

The BRIEF descriptor invented by Calonder etal. in 2010
[14] was the first successful binary descriptor. It achieves
comparable performance as sophisticated, histogram-based
and real-valued descriptors like SIFT [16] or SURF [17] but
follows a strikingly simple principle. A BRIEF descriptor
X is a bit string where each bit x, encodes the result of an
intensity comparison in the surrounding area of the key point.

LU It <I(p+on),
v 0 otherwise.

(D

Therein, I is a smoothed version of the image and o,; and
0, specify the queried pixels relative to the key point p.
Figure 3(a) illustrates the principle of BRIEF displaying
the test pattern of BRIEF overlaid on an example patch.
The main design parameter of BRIEF is the choice of the
tests, i.e. the queried pixel pairs {0, ,0,2}. Calonder etal.
[14] found that the best choice are random tests, where
0,1 and o,, are independently drawn from a 2D-Gaussian
distribution N(0, <$?), where S is the patch diameter. To

)25
compare two BRIEF descriptors the Hamming distance

dh(X[,Xj) = |X,‘@Xj‘ (2)

is used which is equal to the number of differing bits in
the two bit strings. It can be easily computed using the

'More specifically, we used the BvB method described in Sec. III-C.2
with rBRIEF (ORB) from [13] as base descriptor.

(a) BRIEF (c) masked BOLD

Fig. 3. Visualization of different descriptor test patterns. Only the first 128
tests are shown. For each test, the first pixel is marked with a blue square,
the second pixel with an yellow square and both are connected by a line
signaling the test result. If the second pixel is brighter than the first one,
the test result is 1 (yellow line), otherwise it is O (blue line). The masked
version of BOLD (c) contains a subset of the tests of BOLD (b). All tests
which are unreliable for this specific patch are suppressed by the mask.

(b) BOLD

@-operator (bitwise XOR) and the L1-Norm |-| which in
this case is equivalent to counting the ones in the bit string.

B. Offline Test Optimization

As stated above the pixel pairs used for the tests in BRIEF
are generated randomly. However, in later publications it
was discovered that the choice of tests largely influences
the matching performance and substantially better results can
be achieved if the used tests are optimized [13], [15]. This
idea was investigated for the first time by Rublee etal. and
led to rBRIEF, an optimized BRIEF test pattern which is a
main part of the popular ORB-feature [13]. They emphasized
that in an optimized test pattern, each bit should have a
variance close to the maximum value of 0.25 and the tests
should be uncorrelated. Optimizing these two criteria ensures
a high entropy of the descriptor and thereby improves its dis-
criminability. Consequently, such an optimization increases
the distance between dissimilar patches, i.e. the inter-class
distance. Given a suitable training data set with dissimilar
patches, a greedy search finds an optimized test pattern for
this data set by investigating variance and correlation of all
possible tests for a given patch size S. Due to the resulting
performance benefit, this offline test optimization approach
is part of many descriptors with binary intensity compar-
isons, like BOLD [15], SPHORB [18] and mdBRIEF [8].
Some more sophisticated descriptors, using other methods
to extract the descriptor values, also apply such data-driven
optimization, e.g. DAISY [19] or BinBoost [20].

To provide an intuition of the optimization results we
display the test pattern for BOLD in Fig. 3(b). This optimized
test pattern appears more structured and meaningful than the
completely random pattern of BRIEF shown in Fig. 3(a). The
test points are much wider distributed and they have a strong
vertical tendency, i.e. the tests cover only small horizontal
distances but large vertical distances.

C. Online Test Selection

Another enhancement of BRIEF is online test selection.
This enhancement is used by the descriptor methods BOLD
[15], mdBRIEF [8] and TailoredBRIEF [21]. While the
offline test optimization described above increases the inter-
class distance, a good matching performance is only reached
if the descriptor also provides a low intra-class distance. In

this context, a class contains all patches that match, i.e. that
belong to the same real landmark. The intra-class distance
can be reduced by using only the “reliable” tests of the test
pattern. A test is denoted reliable if it always gives the same
result when applied to matching patches belonging to the
same class. The set of reliable tests may vary from class to
class. Thus, for each class a different set of reliable tests
is selected. Therefore, this approach is denoted online test
selection, since the test selection can only be performed
online during the actual descriptor computation when the
specific patches of a class are given. The test selection can
be done very efficiently by introducing a binary mask w;
for every class which has the same number of bits as the
descriptor. If the test x, is reliable, the bit w;, of the mask
is one, otherwise the bit is zero. This mask w; is then used
in the computation of the masked descriptor distance

dm(Xl‘,Wi,Xj): |(X,‘EBXJ‘)/\W1‘|- 3)

Therein, each zero-bit in the mask suppresses the contri-
bution of an unreliable test to the hamming distance. So
effectively the test pattern is reduced to a reliable test subset
as displayed in Fig.3(c). In most cases, each class contains
just one single patch, since matches between patches are usu-
ally not known beforehand. Therefore, the class is artificially
augmented by simulating viewpoint changes and generating
synthetic variations of the patch. In TailoredBRIEF [21], for
example, 25 synthetic variations of the patches are generated
by simulating random scaling and 3D-rotation. BOLD [15]
and mdBRIEF [8] generate only two synthetic patches with
simulated in-plane rotations since they found this is sufficient
to achieve good results. Using this augmentation method, a
mask for each single patch can be created, i.e. each feature
is given a descriptor x; and a mask w;. To compare such
features, the symmetric masked descriptor distance

128
dmz(Xi,W,',Xj,Wj) = 7|W| |(Xi@Xj) /\Wi|
1
128
+— (X ®x;)AW;| (4)
|Wj|| %) A

is used which is a more elaborated version of (3). This
symmetric masked distance is computed by using the masks
of both descriptors. To avoid the mask length biasing the
distance measure, both terms are normalized by the length
|w| of the mask. We furthermore add the factor 128 to yield
a similar value range as for unmasked 256-bit descriptors.

To compare feature tracks we will also use online test
selection. However, we do not have to generate synthetic
variations of the feature like the aforementioned approaches
but can use real appearance variations.

D. Descriptor Methods using Multi-Frame-Appearances

To our knowledge, there is so far only one other method
published that compares features using the appearance of
the feature in multiple frames: Zhang etal. [12] published
a method in 2016 that aims to detect “loop-closures”, i.e.
matching image frames that show roughly the same scene.
In contrast, we focus on landmarks and want to identify

matching feature tracks that belong to the same landmark.
To identify matching frames they compare sets of codewords
and these codewords are BOLD-like descriptors extracted
from two consecutive frames. However, their approach is
limited to two observations of the feature whereas we use
an arbitrary number of (stereo-)observations in our approach.
Furthermore, they compute the BOLD-descriptor on an artifi-
cial median patch, which is created by averaging the patches
from the two frames. This averaging step may blur important
structures in the patch and we therefore discarded such
intensity averaging approaches completely, as we already
argued in Sec.I-C. So although the method of Zhang etal.
shares a similar idea, they follow a different objective and
their method is less sophisticated and capable compared to
the methods we propose below.

III. COMPARING FEATURE TRACKS

The binary descriptors described in Sec. II allow the com-
parison of single visual features. In this section we will now
discuss methods to compare whole tracks of visual features
with each other. We will use the function d. to generally
indicate a distance measure of a binary descriptor. So for
BRIEF this function represents the hamming distance dy(-,-)
from (2) whereas for BOLD it stands for the symmetric
masked distance dpp(+,-,+,-) from (4).

A. Feature Track Comparison Matrix

We first want to introduce the feature track comparison
matrix as basis for track comparison methods. Given a track
T of length N with descriptor set X; and a second track
7; of length M with descriptor set X;, the feature track
comparison matrix for these two tracks is given by

Cu e RVM with ¢y = (Cur); = di(Xei,x15) . (5)

So each element ¢y ;; in this matrix is equal to the distance
between the ith descriptor of track 7; and the jth descriptor
of track 7.

A track 7; can also be compared to itself which leads to
the intra-track comparison matrix

Cu eRVN | with ¢y i = (Cik)i; = di(Xei, Xk,) - (6)

The main diagonal of this matrix contains only zeros, since
comparing a descriptor with itself always gives zero. The
matrix is also symmetric since the used descriptor distances
are commutative, i.€. it ij = Ck, ji-

B. Splitting Feature Tracks using Distance Levels

Before we present our approaches to compare tracks with
each other, we want to describe an auxiliary measure we
used to facilitate the track matching. Inside one track the
observation distance, i.e. the distance from the camera to
the feature, can vary in a wide range. For example, a feature
could be observed from zfe = 30m in the first frame of
the track and observed from zj,q = 10m in the last frame.?
Obviously, the appearance and the size of the feature in the

2The distance to the feature decreases from the first to the last frame,
since the vehicle with the camera usually moves forward.

TABLE I. Used distance levels for the tracks in our data set.
(patch size: 51px x 51px, focal length of cameras: 1212.5px)

level L ZL distance range real size
1 9.00m 7.35m to 11.02m 0.38m
2 13.50m 11.02m to 16.53m 0.57m
3 20.25m 16.53m to 24.80m 0.85m
4 30.38m 24.80m to 37.20m 1.28m
5 45.56m 37.20m to 55.80m 1.92m
6 68.34m 55.80m to 83.70m 2.87m

TABLE II. Comparison of key figures for the tracks in our data set
with and without distance levels.

without level ~ with levels

number of tracks 282 503

average length of tracks 5.61 3.15
average of mean(cy ;) for BOLDS 34.3 24.5
average of max(ck ;) for BOLD5 63.7 44.0

number of possible comparisons 39621 28483

image will change significantly with such distance varia-
tion. Although many descriptors are robust against minor
viewpoint changes, they cannot handle the large appearance
transformations resulting from such distance changes.

To limit the size and appearance changes of the features in
a track to a reasonable extent, we introduce distance levels,
where each level corresponds to a certain distance range.
The feature tracks are split into new tracks such that in
the new tracks all features belong to one single distance
level according to their observation distances. Since our track
data set contains stereo features, we can easily determine the
observation distance of a feature from its disparity. Table I
shows the used distance levels for our data set. Each level L
has a reference distance z; and the factor between them is
always 1.5, i.e. z;41 = 1.5-zz. The distance range covered
by one level is given by [z, /V15,z,-V15). Since the size of
the features changes inversely proportional with the distance,
the possible size change of a feature within one level lies in
the interval (1/v1.5, v1.5] respectively (0.82, 1.23]. In most
cases, binary descriptors are robust against such smaller size
changes because the patch around the key point is smoothed
before the intensity tests (cf. Sec.II-A and Sec.IV-B).

The levels can also be interpreted such that features have
different real sizes for different levels respectively distance
ranges (see last column of Tab.I). The real size states how
large the side of a real-world square in distance z; is that
is covered by the descriptor patch with size 51px x 51px.
For example, very close features on level 1 are only 38cm x
38cm in size whereas far distant features on level 6 have a
size of 2.87m x 2.87m.

To illustrate the benefit of this level approach, Tab. II lists
some key figures for our data set before and after splitting
the tracks into different levels. The splitting approximately
reduces the length of the tracks by half and consequently
doubles the number of tracks. The most important difference
is the reduced intra-track distance due to limited variability
within a track. Tab.II lists the averaged mean and the
maximum value of the columns cy ; of the intra-track
comparison matrix (6), i. e. the mean and maximum distance
of a descriptor to all other descriptors within the same track.

By splitting the tracks according to their distance levels, the
intra-track distances are reduced by approximately 30%, both
in mean and maximum value. The usage of distance levels
also facilitates the comparison of feature tracks: We only
allow comparison between tracks of the same level, i.e. only
between landmarks with a similar real size. Therefore, the
number of possible matches between the track decreases,
although the total number of tracks increases (see Tab. II).

C. Track-to-Track Comparison Methods

In this section, we describe different distance measures
which tell us whether two feature tracks are similar or not.
We devise three different main approaches for a similarity
measure D(-,-) to compare two feature tracks:

1) Comparing All Descriptors: An obvious possibility to
compare two tracks is to compare all features of one track
with all features of the other track, i.e. using the feature
track comparison matrix introduced in Sec. III-A. Either the
mean of all entries, mean (CkJ), or the largest entry within
this matrix, maX(CkJ), can serve as a similarity measure for
the two tracks. Since all features of one track are compared
to all features of the other track we call this approach “All
vs AIl” (AvA) and define the two track distances:

DmeanAvA (Tks Tl) = mean<ckl)) @)
DmaxAvA(Tk7 Tl) = maX(Ckl) ®)

with comparison matrix Cy; given by (5). An apparent disad-
vantage of this approach is the large number of comparisons
necessary to compare two tracks. For our data set, with a
mean track length of 3.15, the mean number of necessary
comparisons per track pair is approximately ten. Conse-
quently, this approach causes ten times more computational
cost then the two following approaches requiring only one
descriptor comparison.

2) Comparing Representative Descriptors: To reduce the
number of comparisons, we could choose one representative
descriptor for each track and compute the distance only
between these descriptors. One simple choice is the first left
descriptor of each track, which leads to the track distance

Drye (T,) = di(Xk,1,X1,1) - ©)

This naive approach is called “First vs First” (FvF) and it
is used as a baseline for our experiments in Sec. IV-C, since
it is very similar to comparing single features.

To get a more meaningful comparison method than this
simple baseline, the descriptor should rather be chosen such
that it represents the whole track. A reasonable choice for
a representative is the descriptor x; .+ within the track that
has minimal distance to all other features in the track. This
descriptor can be seen as the “best” representative of the
track and we use it in a method called “Best vs Best” (BvB).

The track distance for this method is defined as
Dpyg (T, T1) = du(Xk 0%, X1,p+) , With
a* = argmin, (sum(cy,)) (10)

and b'= argmini(sum(cll,i)) .

Therein, the best descriptor X .« with minimal distance to
all other descriptors in the track is determined by finding the
column ¢y 4+ in the intra-track comparison matrix Cy with
the smallest column sum. The same goes for the second track
7; and finding its best descriptor X; ,+ by evaluating Cy;.
Instead of determining the best descriptor we can also
establish the broad assumption that the “best” descriptor is
always the median descriptor in the track. Since the median
frame is captured from a roughly “median” camera-position,
the median feature presumably has an appearance which is
most similar to the features appearance in all other frames.
This leads to a simplified version of the “Best vs Best”
method, where we always pick the descriptor from the left
median feature as representative. The resulting track distance
is called “Median vs Median’” (MvM) and is defined as

Dwvvm (e, 1) = du(@(Xi) , ¢(X1)) , with

X if N even,
o(Xi)=q 7
Xk’(N+1)/2 if N odd.

(1)

For tracks with an even number of features N, we decided
to always choose the descriptor of the left first median
feature. Of all comparison methods MvM is the least costly
because it involves just one single descriptor comparison and
determining the median feature is a very cheap computation.

3) Comparing Combined Descriptors: Another approach
to compare tracks is combining the descriptor set X; of a
track to one combined descriptor X;. This combined de-
scriptor can then be conveniently compared to the combined
descriptor X; of another track. For the considered binary
descriptors the best choice to combine the descriptors is a
bit-wise majority vote. So if a specific bit x, has the value
1 in the majority of the descriptors of a track, it should
also be 1 in the combined descriptor. For tracks with an
even number of features there can be a tie. In this case, we
take the bit-value from the median descriptor of the track,
since the median descriptor should be on average a good
representative of the whole track, as already stated above. A
majority voting with this tiebreaker can be easily performed
by using simple mean computation and thresholding which
leads to the following formula for the combined descriptor

X =0(Xy) = %ot B2 - Ty, (12)
with the combined bit value
1 if u, >0.5,
__Jo if ., <0.5,
e = Xk.N/2,w if ., =0.5 and N even, (13)

xk,(N+1)/2,V if ‘ukw =05and N Odd,

with Uiy = %ZZ\IZI Xk,iv-

Besides the possibility to create a combined descriptor,
we can also investigate the reliability of particular descriptor
bits. Similar to the online test selection described in Sec. II-C,
we can identify the most reliable bits for this particular
landmark and create a binary mask containing only the
reliable bits. However, we do not have to generate synthetic
variations of the patch but can rather use the real appearance

variations contained in the track. Reliable bits of a descriptor
are bits where the value differs from the combined bit value
only for a small fraction of the descriptors. Using the mean
values i, from (13) the binary reliability mask for a track
can be easily computed as

]T

)y = [wk,l a)k.z wk,V

1 if <E >1-E
with Oy = { 1ty = £ OF Uy, =2)

(14)

0 otherwise,

where a 1 in the mask represents a reliable bit and E is a
preset allowed variation threshold. This reliability criteria is
equal to the requirement that the bit-variance is less than
E — E?. If the used base descriptor already uses a mask,
e.g. BOLD, the combination function &(+) from (12) is also
applied to the descriptors’ masks. The resulting combined
mask is then joined with the reliability mask from (14) using

a bit-wise AND, i.e.
(D;;:G(Wk)/\a)k. (15)

Based on this combined track descriptor we can define the
“Combined vs Combined” (CvC) distance as

Deve(T, 1) = dh(ikail) for BRIEF,
ST dal%, (W) X1, 6(W))) for BOLD.
(16)

If we add the reliability mask @, we get the “Combined
and Masked” (CoMa) distance

Amo(Xg, O, X;, O for BRIEF,
DcoMa(Th, T) = { w2l)

_ _ (17)
dma(Xy, @}, X, @) for BOLD.

IV. EXPERIMENTS

In the previous section we define seven different methods
to compare feature tracks: meanAvA, maxAvA, FvF, BvB,
MvM, CvC and CoMa. To evaluate the performance of these
methods, we performed an extensive experiment on a long-
term data set with 282 feature tracks.

A. Feature Track Data Set

Since none of the existing feature matching data sets is
suitable to extract feature tracks according to the notion in
Sec. I-B, the evaluation is performed on a long-term data set
recorded by our own research vehicle’. The feature tracks
were extracted from three recordings from three different
days (March 16, March 23 and May 5, 2017) on the same,
100m long route section in a sub-urban area. To compose the
feature tracks, the features are matched between consecutive
frames by a Visual Odometry System [10] with Lucas-
Kanade tracking [11]. On this route section the Visual
Odometry System extracted approximately 100 feature tracks
for each recording with 282 tracks in total. The extracted 282
original tracks are split according to their distance level as
described in Sec.III-B, resulting in 503 tracks. To generate
ground truth labels, first, candidate matches were identified

3The utilized vehicle and cameras were provided by Continental as part
of the PRORETA 4 research project. Our visual feature track data set is
available at https://www.proreta.tu-darmstadt.de/p4data.

with a simple, very liberal matching heuristic. In a second
step these candidate matches were investigated and labeled in
three iterations by human experts. The final data set contains
234 matching track pairs and 28249 non-matching pairs.
Please remember that we only allow comparisons between
tracks with the same distance level, which significantly
reduces the number of possible track pairs.

B. Used Descriptor Configurations

In this experiment, we use the BRIEF descriptor [14]
and the BOLD descriptor [15], which were introduced in
Sec. II, as base descriptors for the comparison methods. Both
descriptors are used in their 256-bit version and they are
computed on a patch with a diameter of S = 51px.* Before
the descriptor computation the image patches are smoothed
with a 7x7 box filter. The prior smoothing reduces the noise
sensitivity of the binary tests and thus increases stability and
repeatability of the descriptors [14].

The BOLD descriptor is used in four variations: BOLDO
(no rotation, i.e. no bits are masked), BOLDS5 (&£5°),
BOLDI10 (£10°) and BOLD20 (£20°). Balntas etal. [15]
reported that they achieve the best results when they generate
two synthetic patches by an in-plane rotation of +20°
(BOLD20). However, we notice that on the used data set
this configuration diminishes the performance because too
many bits are masked. Therefore, we also use three additional
BOLD variants with less rotation and therefore less masking.

The reliability masks for the CoMa method are computed
with an allowed variation threshold of £ = 0.15.

C. Experiment Results

To assess the performance of the comparison methods, we
use ROC curves which is a common evaluation procedure
for descriptors (cf. [7], [12], [15], [20], [21]). A ROC curve
is constructed by varying the distance threshold to separate
matches and non-matches and plotting the false positive rate
(FPR) and the true positive rate (TPR) for each threshold.
Hence, it nicely illustrates all possible trade-offs between
detecting a high percentage of true matches (TPR) while
maintaining a low percentage of false detections (FPR).

Figure 4 shows the ROC curves for all comparison meth-
ods with BOLDS as base descriptor. Additionally, Tab.III
lists the coordinates for some important FPR-TPR-points on
the ROC curves. We first note that five of the proposed
track comparison methods achieve a better performance than
the baseline method FvF (black, dotted line). This confirms
that considering the whole track instead of just one feature
improves the matching performance. Only the maxAvA
(orange) comparison method is worse than the baseline. Pre-
sumably, the maximum value of the track comparison matrix
is too noisy for a reliable matching. We also see that MvM
(green) has a distinctly weaker performance than the other
four methods. Although BvB (brown) displays reasonable

“We use the BRIEF pattern defined in OpenCV (opencv_contrib/
modules/xfeatures2d/src/generated-32.1) in its original size
of 49 px. For BOLD we use the pattern provided by the authors at https:
//github.com/vbalnt/bold and re-scaled it to 51px.

https://www.proreta.tu-darmstadt.de/p4data
https://github.com/opencv/opencv_contrib/blob/master/modules/xfeatures2d/src/generated_32.i
https://github.com/opencv/opencv_contrib/blob/master/modules/xfeatures2d/src/generated_32.i
https://github.com/vbalnt/bold
https://github.com/vbalnt/bold

------- FvF (BOLDS)

BvB (BOLD5)

—— MvM (BOLDS)
meanAvA (BOLDS)
maxAvA (BOLDS)
CvC (BOLDS)

—sk— CoMa (BOLD5)

—e— CoMa (BOLDS, no Ivl)

0.95

0.9

true positive rate (TPR)

0.85

0.8 \ \ \ \ |
0 0.02 0.04 0.06 0.08 0.1

false positive rate (FPR)

Fig. 4. ROC curves for the proposed comparison methods with BOLDS
as base descriptor. A method is superior to another method if it has a lower
false positive rate and a higher true positive rate, i.e. its ROC lies left and
above the other ROC. Please note that the plot only shows the upper left
section of the ROC to make the differences visible.

TABLE III. Comparison of significant FPR-TPR-points for the different
track comparison methods with BOLDS as base descriptor. FvF is used as
baseline and the according performance improvement is given in parenthesis.
The last row gives the results when the track splitting is not used (no 1vl).

method ~ FPR@TPR=95% TPR@FPR=1% TPR@FPR=0.1%
FvF 6.7% 83.5% 64.2%

_|BvB 29% (=3.8%) 86.8% (+3.3%) 65.4% (+1.2%)

Z| MvM 55% (—1.2%) 86.6% (+3.2%) 61.7% (—2.5%)

E| meanAvA 2.0% (—4.6%) 87.7% (+4.2%) 58.9% (—5.3%)

2| cve 2% (=3.9%) 87.5% (+4.0%) 65.3% (+1.1%)
CoMa 1.6% (—5.1%) 91.4% (+8.0%) 68.8% (+4.6%)
CoMa (no Ivl) 5.6% (—1.0%) 85.4% (+1.9%) 64.4% (+0.1%)

results, the track comparison methods that combine multiple
appearances of the feature (meanAvA, CvC, CoMa) display
the best performance. This shows that combining the short-
term appearance changes within a track facilitates the long-
term matching of feature tracks. The best results are achieved
by CoMa (purple) and meanAvA (red), but they produce
quite different ROC curve progressions: For low FPR values
CoMa offers higher TPR values, whereas meanAvA achieves
higher TPR values for FPR values above 3%. The superior
performance of CoMa for low FPR values is also evident in
the FPR-TPR-points listed in Tab. III.

In long-term V-SLAMs a low FPR value, i.e. a ROC at
the far left, is much more important than high TPR values.
A low FPR value ensures that almost all detected matches
are true matches and that there are very few false positives
that could corrupt the position estimation. This is more
important than a high TPR value, since a V-SLAM does
not necessarily need to find all matches — it only needs a
sufficient number of matches to compute a reliable position
estimate. Furthermore, there are much more non-matches
than matches (cf. end of Sec.IV-A), which makes a low FPR
even more important. For example in our data set, a 1%
increase of the FPR is equal to 282.5 more false positive
matches, whereas a drop of 1% in TPR equals only 2.3
lost matches. Because of this FPR/TPR-cost imbalance, the
CoMa method is clearly favorable and the distance threshold
to distinguish matches and non-matches should be chosen
with strong preference on a very low FPR value. CoMa is
also more efficient than meanAvA, since only one descriptor

- - - CoMa (BRIEF)
CoMa (BOLDO)
—se— CoMa (BOLDS)
—&— CoMa (BOLD10)
—o— CoMa (BOLD20)

true positive rate (TPR)

| | | | J
0 0.02 0.04 0.06 0.08 0.1

false positive rate (FPR)

0.8

Fig. 5. ROC curves for the CoMa method using different base descriptors.

distance computation is needed for each track comparison,
instead of the N x M computations necessary for meanAvA.

Figure 4 and Table III also show the performance change
if the track splitting from Sec.III-B is not applied (no 1vl).
Without this prior splitting the performance of CoMa drops
to a performance level similar to the baseline method FvE.
This affirms that the splitting of the tracks considerably facil-
itates the matching, since it reduces the intra-track variations
and provides additional matching constraints.

Figure 5 displays the performance of CoMa for different
base descriptors. We note that the BOLD based methods
(solid lines) provide an overall better performance than
BRIEF (dashed line). Furthermore, we see that the BOLD20
variant recommended by [15] delivers worse performance
than the other three less-masking BOLD variants. The best
performance is achieved by BOLDS5 with BOLDO and
BOLDI10 following closely.

V. HOW TO MATCH FEATURE TRACKS

Based on the experiment results we can now specify how
to match tracks of visual features: To facilitate the matching
task, we recommend to split the feature tracks using distance
levels as described in Sec. III-B. The best choice to compare
feature tracks with each other is the CoMa method, since it
offers the best performance with the highest TPR values for
very low FPR values (see Tab. III). Furthermore, it is compu-
tationally inexpensive: The CoMa-descriptor of the track is
computed just once and then only one descriptor distance
computation is necessary for each track comparison. The
distance between the CoMa-descriptors of the tracks serves
as a basis for the track matching process. The threshold
to classify a track pair as a match should be chosen very
conservative to achieve a very low FPR, which is crucial
for long-term V-SLAMs. To increase the matching accuracy
further, additional matching strategies should be utilized,
like matching only the nearest neighbor or considering the
distance ratio to the second nearest neighbor (cf. [7]).

In a long-term V-SLAM like LLama-SLAM [9] the track-
to-track matching can be extended to a track-to-landmark
matching problem: In such a setup, the descriptor of the
landmark is continuously updated with the features from
all tracks that belong to this landmark. A CoMa-descriptor
can be easily updated by repeating the computations from

(12) to (15) with appropriate weights. This update of the
descriptor could lead to improved robustness, since more
observed variations are captured in the reliability mask.

If more suitable for a specific SLAM implementation,
the CoMa-descriptor can also be used to solve feature-to-
landmark matching problems. In this case, the base descrip-
tor computed on a single feature is directly compared to
the CoMa-descriptor of the landmark using the asymmet-
ric masked distance from (3) and the landmark’s CoMa-
descriptor is updated with each newly matched feature.
However, we would rather recommend the track-to-track
or track-to-landmark matching scheme above, since greater
matching accuracy can be achieved if information from
multiple feature observations is exploited in the comparison.

VI. CONCLUSION

We presented approaches to match tracks of visual fea-
tures, i.e. sequences of consecutive feature observations. To
facilitate the track matching problem, we first introduced
a distance level scheme: The feature tracks are split into
smaller tracks according to the observation distances of the
contained features. This procedure reduces the intra-track
variations and adds a useful constraint to the track matching.
Only tracks of the same level, i.e. landmarks with a similar
real size, are compared to each other. This reduces the
number of track pairs that have to be investigated and reduces
the chance of false matches.

In the main part of this publication we proposed seven
feature track comparison methods that are built upon binary
descriptors. Although we investigated only the track match-
ing performance for BOLD and BRIEF, these comparison
methods can also be used with other binary descriptor. With
minor modifications, the comparison methods can even be
used with most real-valued descriptor, if the elements of
the descriptor carry independent information such that a
mask can be applied. Furthermore, the proposed comparison
methods have no restrictions on the camera setup, the image
rate or the length of the feature tracks.

For the CoMa track comparison method the median
appearance and the appearance variation of all features
of a track are compressed into two binary strings. This
compressed representation of the track displayed the best
track-to-track matching performance in our experiments and
has the same computational cost as usual feature-to-feature
matching. In a long-term V-SLAM the CoMa comparison
method can be used to match tracks to other tracks, respec-
tively to match tracks to landmarks, by using a conservative
distance threshold and possibly additional matching criteria.
In addition, the CoMa method offers the ability to update a
landmark’s descriptor with new feature observations.

Since the used data set mainly contains well structured
features like elements of buildings, roads and so on, it
remains to proof the performance of the proposed methods
on more versatile data sets. Furthermore, it is of great interest
what results can be achieved if our track comparison methods
are combined with other base descriptors or embedded in
other long-term V-SLAMSs beside LLama-SLAM.

ACKNOWLEDGMENT

We kindly thank Continental for their great cooperation
within PRORETA 4, a joint research project of TU Darmstadt
and Continental to investigate future concepts for intelligent
and learning driver assistance systems.

REFERENCES

[1] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous localiza-
tion and mapping: A survey of current trends in autonomous driving,”
IEEE Trans. Intell. Transport. Syst., vol. 2, no. 3, pp. 194-220, 2017.

[2] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Trans. Robot., vol. 32, no. 6, pp. 1309-1332, 2016.

[3] D. Scaramuzza and F. Fraundorfer, “Visual odometry: Part I: The first
30 years and fundamentals,” IEEE Robot. Automat. Mag., vol. 18,
no. 4, pp. 80-92, 2011.

[4] F. Fraundorfer and D. Scaramuzza, “Visual odometry: Part II: Match-
ing, robustness, optimization, and applications,” IEEE Robot. Automat.
Mag., vol. 19, no. 2, pp. 78-90, 2012.

[5] E. Rosten, R. Porter, and T. Drummond, “Faster and better: A machine
learning approach to corner detection,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 32, no. 1, pp. 105-119, 2010.

[6] J. Heinly, E. Dunn, and J.-M. Frahm, “Comparative evaluation of
binary features,” in Computer Vision - ECCV 2012. Springer, 2012,
pp. 759-773.

[71 K. Mikolajczyk and C. Schmid, “A performance evaluation of local
descriptors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 10,
pp. 1615-1630, 2005.

[8] S. Urban, M. Weinmann, and S. Hinz, “mdBRIEF - a fast online-
adaptable, distorted binary descriptor for real-time applications using
calibrated wide-angle or fisheye cameras,” Computer Vision and Image
Understanding, vol. 162, pp. 71-86, 2017.

[9] S. Luthardt, V. Willert, and J. Adamy, “LLama-SLAM: Learning high-
quality visual landmarks for long-term mapping and localization,” in
IEEE 21st Int. Conf. on Intelligent Transportation Systems, 2018, pp.
2645-2652.

[10] M. Buczko and V. Willert, “Flow-decoupled normalized reprojection
error for visual odometry,” in IEEE 19th Int. Conf. on Intelligent
Transportation Systems, 2016, pp. 1161-1167.

[11] J.-Y. Bouguet, “Pyramidal implementation of the Lucas Kanade feature
tracker,” Intel Corporation. Microprocessor Research Labs, 2000.

[12] G. Zhang, M. J. Lilly, and P. A. Vela, “Learning binary features
online from motion dynamics for incremental loop-closure detection
and place recognition,” in IEEE Int. Conf. on Robotics and Automation,
2016, pp. 765-772.

[13] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An
efficient alternative to SIFT or SURF,” in IEEE Int. Conf. on Computer
Vision, 2011, pp. 2564-2571.

[14] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary robust
independent elementary features,” in Computer Vision — ECCV 2010.
Springer, 2010, pp. 778-792.

[15] V. Balntas, L. Tang, and K. Mikolajczyk, “BOLD - binary online
learned descriptor for efficient image matching,” in IEEE Conf. on
Computer Vision and Pattern Recognition, 2015, pp. 2367-2375.

[16] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vision, vol. 60, no. 2, pp. 91-110, 2004.

[17] H. Bay, A. Ess, T. Tuytelaars, and L. van Gool, “Speeded-up robust
features (SURF),” Computer Vision and Image Understanding, vol.
110, no. 3, pp. 346-359, 2008.

[18] Q. Zhao, W. Feng, L. Wan, and J. Zhang, “SPHORB: A fast and robust
binary feature on the sphere,” Int. J. Comput. Vision, vol. 113, no. 2,
pp. 143-159, 2015.

[19] M. Brown, G. Hua, and S. Winder, “Discriminative learning of local
image descriptors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33,
no. 1, pp. 43-57, 2011.

[20] T. Trzcinski, M. Christoudias, and V. Lepetit, “Learning image descrip-
tors with boosting,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37,
no. 3, pp. 597-610, 2015.

[21] A. Richardson and E. Olson, “TailoredBRIEF: Online per-feature
descriptor customization,” in IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2015, pp. 74-81.

	Introduction
	Visual Features
	Visual Feature Tracks in Long-Term V-SLAM
	Matching Feature Tracks
	Paper Overview

	Binary Feature Descriptors
	The BRIEF Descriptor
	Offline Test Optimization
	Online Test Selection
	Descriptor Methods using Multi-Frame-Appearances

	Comparing Feature Tracks
	Feature Track Comparison Matrix
	Splitting Feature Tracks using Distance Levels
	Track-to-Track Comparison Methods
	Comparing All Descriptors
	Comparing Representative Descriptors
	Comparing Combined Descriptors

	Experiments
	Feature Track Data Set
	Used Descriptor Configurations
	Experiment Results

	How to Match Feature Tracks
	Conclusion
	References

