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Abstract

Today, it is common practice to outsource time-consuming computations to the
cloud. Using the cloud allows anyone to process large quantities of data without
having to invest in the necessary hardware, significantly lowering cost requirements.
In this thesis we will consider the following work flow for outsourced computations:
A data owner uploads data to a server. The server then computes some function
on the data and sends the result to a third entity, which we call verifier.

In this scenario, two fundamental security challenges arise. A malicious server may
not perform the computation correctly, leading to an incorrect result. Verifiability
allows for the detection of such results. In order for this to be practical, the
verification procedure needs to be efficient. The other major challenge is privacy.
If sensitive data, for example medical data is processed it is important to prevent
unauthorized access to such sensitive information. Particularly sensitive data has
to be kept confidential even in the long term.
The field of verifiable computing provides solutions for the first challenge. In

this scenario, the verifier can check that the result that was given was computed
correctly. However, simultaneously addressing privacy leads to new challenges. In
the scenario of outsourced computation, privacy comes in different flavors. One
is privacy with respect to the server, where the goal is to prevent the server
from learning about the data processed. The other is privacy with respect to
the verifier. Without using verifiable computation the verifier obviously has less
information about the original data than the data owner - it only knows the output
of the computation but not the input to the computation. If this third party
verifier however, is given additional cryptographic data to verify the result of the
computation, it might use this additional information to learn information about
the inputs. To prevent that a different privacy property we call privacy with
respect to the verifier is required. Finally, particularly sensitive data has to be kept
confidential even in the long term, when computational privacy is not suitable any
more. Thus, information-theoretic measures are required. These measures offer
protection even against computationally unbounded adversaries.

Two well-known approaches to these challenges are homomorphic commitments
and homomorphic authenticators. Homomorphic commitments can provide even
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information-theoretic privacy, thus addressing long-term security, but verification
is computationally expensive. Homomorphic authenticators on the other hand can
provide efficient verification, but do not provide information-theoretic privacy.

This thesis provides solutions to these research challenges – efficient verifiability,
input-output privacy and in particular information-theoretic privacy.

We introduce a new classification for privacy properties in verifiable computing.
We propose function-dependent commitment, a novel framework which combines
the advantages of homomorphic commitments and authenticators with respect
to verifiability and privacy. We present several novel homomorphic signature
schemes that can be used to solve verifiability and already address privacy with
respect to the verifier. In particular we construct one such scheme fine-tailored
towards multivariate polynomials of degree two as well as another fine-tailored
towards linear functions over multi-sourced data. The latter solution provides
efficient verifiability even for computations over data authenticated by different
cryptographic keys. Furthermore, we provide transformations for homomorphic
signatures that add privacy. We first show how to add computational privacy and
later on even information-theoretic privacy. In this way, we turn homomorphic
signatures into function-dependent commitments. By applying this transformation
to our homomorphic signature schemes we construct verifiable computing schemes
with information-theoretic privacy.
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Zusammenfassung

Heutzutage ist es üblich aufwendige Berechnungen in der Cloud durchzuführen.
Das Nutzen der Cloud erlaubt es jedem große Mengen an Daten zu verarbeiten
ohne selbst in die dafür notwendige Hardware investieren zu müssen. Dies führt zu
signifikanten Kosteneinsparungen. In dieser Thesis betrachten wir den folgenden
Arbeitsablauf für ausgelagerte Berechnungen: Ein Dateneigner lädt seien Daten
hoch auf einen Server. Der Server berechnet dann eine Funktion über diesen Daten
und sendet das Ergebnis zu einer dritten Partei, welche wir Verifizierer nennen.

In diesem Szenario gibt es zwei fundamentale Sicherheitsprobleme. Ein bösartiger
Server kann von der vorgeschriebenen Berechnung abweichen und so ein inkorrektes
Ergebnis weitergeben. Effiziente Verifizierbarkeit erlaubt es solche Ergebnisse zu
erkennen. Das andere große Sicherheitsproblem ist Vertraulichkeit. Wenn sensible
Daten, zum Beispiel Gesundheitsdaten verarbeitet werden, muss sichergestellt wer-
den, dass diese nicht in falsche Hände geraten. Für besonders sensible Daten muss
dies sogar langfristig sichergestellt werden. So genanntes Verifiable Computing
erlaubt es das erste Problem zu lösen. In diesem Szenario kann der Verifizierer
überprüfen ob ein Ergebnis korrekt berechnet wurde. Möchte man zusätzlich Ver-
traulichkeit gewährleisten, so ergeben sich neue Herausforderungen. Im Szenario von
Verifiable Computing sind verschiedene Varianten von Vertraulichkeit zu beachten.
Eine ist Vertraulichkeit dem Server gegenüber. Hier geht es darum zu verhindern,
dass der Server Informationen über die Daten erhält, welche er verarbeitet. Die
andere ist Vertraulichkeit dem Verifizierer gegnüber. Ohne Verifiable Computing
hat der Verifizierer offensichtlich weniger Informationen über die Daten als der
Dateneigner. Er kennt lediglich das Ergebnis einer Berechnung, nicht aber die
Eingabewerte. Wenn ein solcher Verifizierer aber zusätzliche kryptographische
Daten erhält um die Korrektheit des Ergebnis zu überprüfen, so kann er versuchen
über diese Informationen über die Eingaben abzuleiten. Weiterhin ist es für beson-
ders sensible Daten wichtig, die Vertraulichkeit langfristig zu garantieren. Hierfür
reichen Maßnahmen, die auf Annahmen über beschränkte Rechenpower beruhen
nicht mehr aus und informationstheoretische Ansätze werden benötigt. Diese
erlauben sogar Schutz vor Angreifern welche über unbeschränkte Rechenpower
verfügen. Zwei bekannte kryptographische Lösungsansätze für diese Probleme
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sind homomorphe Commitment Verfahren und homomorphe Authentikatoren.
Homomorphe Commitment Verfahren erlauben sogar informations-theoretisch
vertrauliche Verifizierbarkeit, aber die Verifizierung ist extrem aufwendig. Homo-
morphe Authentikatoren können andererseits effiziente Verifizierung ermöglichen,
erlauben aber keine informationstheoretische Vertraulichkeit,
In dieser Arbeit entwickeln wir Lösungen für diese Herausforderungen – ef-

fiziente Verifizierbarkeit, Vertraulichkeit für Eingaben und Ausgaben insbesodnere
informationstehoretische Vertraulichkeit.
Wir beschreiben zunächst eine neue Klassifizierung für die verschiedenen Ver-

traulichkeitsaspekte im Verifiable Computing. Dann präsentieren wir "Function-
Dependent Commitment" Verfahren, welche die Vorteile von homomorphen Au-
thentikatoren und Commitment Verfahren vereinen. Wir zeigen weiterhin, wie man
homomorphe Authentikatoren transformieren kann um zusätzliche Vertaulichkeits-
garantien zu erhalten. Auf diese Art können wir homomorphe Authentikatoren in
"Function-Dependent Commitment" Verfahren überführen. Indem wir dies auf die
in dieser Arbeit entwickelten homomorphen Authentikatoren anwenden erhalten
wir Verifiable Computing Verfahren mit informationshteoretischer Vertraulichkeit.
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1 Introduction

Motivation
Today, it is common practice to outsource time-consuming computations to the
cloud. Any data owner can upload its data to a cloud server and asks the server
to perform a computation on these data. This allows anyone to process large
quantities of data without having to own and maintain the necessary hardware,
leading to significantly reduced costs. In this thesis we will consider the following
scenario: A (possibly resource-constrained) data owner uploads data to some server
(or even multiple servers) and asks the server to perform a computation on these
data. The server then performs this computation and provides the result either
to the data owner or to a third party. For example, statistics on health data can
be given to an insurance company. In this scenario, two fundamental security
challenges arise.

The first is verifiability, that is the ability to detect if the server executed a given
computation correctly. Here we have a verifier receiving the result. Note that the
verifier and the data owner may be the same entity. However, we will consider the
more generic scenario of a third party verifier. If the verifier is the data owner it
could in theory just redo the computation and thus detect any incorrect result.
This, however, makes outsourcing pointless. If the result is efficiently verifiable, the
verifier can check the correctness in less time than the computation itself requires.
If the verifier is not the data owner, it cannot check the correctness by doing a
re-computation, since it does not have the input data, and requires some other
means - public verifiability.
The second fundamental challenge is privacy. In the scenario of outsourced

computation, this comes in different flavors. One is privacy with respect to the
server, where the goal is to prevent the server from learning about the processed
data. This applies both to inputs and outputs to the computation. The other is
privacy with respect to the verifier. A verifier who is given a result of a computation
obviously does not have all information about the inputs to this computation. If
additional cryptographic data are provided to make this result verifiable, this should
not leak any more information than can be derived from the result. Likewise, this
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1 Introduction

type of privacy can be defined for both inputs and outputs. Note that this is
particularly challenging if we do not have a single data owner but inputs to the
computation are provided by multiple data owners, as any cryptographic data
provided by them is produced under different keys. This scenario for example
arises, when computing the averages on health data provided by multiple patients.
Particularly sensitive data, e.g. medical data, must remain private even in the
long term. Thus, privacy that depends on the computational hardness of certain
problems is insufficient. Here information-theoretic privacy is required.

In this thesis, we address the challenge of providing information-theoretic privacy
in efficiently verifiable outsourced computations.

There already exist partial solutions to this problem. One of the building blocks
to construct verifiable computing schemes are homomorphic authenticators [12].
The general idea of homomorphic authenticators is the following. Before delegating
inputs to a function, the input values are authenticated. The homomorphic property
allows the server to compute an authenticator to the output of a given function
from the authenticators to the inputs to said function. In the public key setting,
homomorphic authenticators are called homomorphic signatures. In the private
key setting, they are called homomorphic MACs.
In order to achieve information-theoretic privacy with respect to the server, we

first require a way to store the data in a long term secure way. A well known
approach to this is proactive secret sharing (see e.g. [33]). It is furthermore known
that multi-party computation is possible based on any linear secret sharing scheme
(see e.g. [51]). Therefore it is even possible to perform computations on data
that is stored in an information-theoretically secure fashion. Another fundamental
building block for long-term security are commitments (see e.g. [32]). Homomorphic
commitments can also be used to achieve verifiability (see e.g. [54]), though in
general without the property of efficient verification.
As discussed above there are multiple types of privacy to be considered. So far

no verifiable computing scheme offers all the privacy properties we require. In
particular no scheme offers complete information-theoretic privacy, i.e. information-
theoretic input-output privacy with respect to both verifier and server. In this
thesis, we provide the first such solutions.

Contribution and Outline

The following paragraphs will now summarize our contributions and elaborate the
structure of this thesis.
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Background (Chapter 2).

First, we explain the relevant background. This includes the basic definitions for
homomorphic authenticators. Furthermore, we briefly introduce secret sharing and
commitment schemes. Subsequently, we provide the basic definitions for verifiable
computing. Finally, we present the cryptographic hardness assumptions used within
this thesis.

Classifying Verifiable Computing Schemes by Their Privacy Properties
(Chapter 3).

In this chapter, we provide a detailed classification for privacy in verifiable comput-
ing, differentiating between four types of privacy:
IPS: input privacy with respect to the server
OPS: output privacy with respect to the server
IPV: input privacy with respect to the verifier
OPV: output privacy with respect to the verifier
Input and output privacy with respect to the server enable the outsourcing of

computations over sensitive data even to an untrustworthy server. Note that we
implicitly include the case of multiple servers. Input privacy with respect to the
verifier guarantees that inputs to a computation are not revealed. Since we consider
the case of publicly verifiable computations, and thus anyone can potentially have
access to the verification data, this scenario cannot be solved by the client’s choice
of trusted servers. Output privacy with respect to the verifier enables the modular
use of verifiable computing schemes, i.e. checking for the correctness of some
intermediate result without needing to know said result. Furthermore both input
and output privacy with respect to the verifier are necessary properties to achieve
input and output privacy with respect to the servers for publicly verifiable schemes,
as anyone, so in particular the server has access to the verification data. If a
verifiable computing scheme achieves all four types of privacy, we say it achieves
complete privacy. We will use this classification of privacy properties to compare
existing verifiable computing schemes.

Function-Dependent Commitment Schemes (Chapter 4).

Having seen that no prior schemes achieves all four privacy properties identified in
Chapter 3, we now focus on constructing the first efficiently verifiable computing
scheme for linear functions that provides complete privacy, even in an information-
theoretic sense. In order to achieve this we present the fundamental building block of
our information-theoretically private schemes — function-dependent commitments
(FDC). This notion is a generalization of both homomorphic authenticators and

3



1 Introduction

commitments. On a high level we first present the framework of FDCs and provide
definitions of their properties. We then provide the first instantiation of a FDC
scheme, supporting linear functions. Finally, we show how our instantiation can be
combined with a linear secret sharing scheme to build the first efficiently verifiable
computing scheme that provides complete privacy.

Context Hiding Homomorphic Authenticators (Chapter 5).

In this chapter, we present two novel homomorphic authenticator schemes that each
satisfy information-theoretic IPV (introduced in Chapter 3). These new schemes
will be the basis for further verifiable computing schemes achieving complete privacy.
We start by introducing the first publicly verifiable homomorphic authenticator
scheme fine-tailored for quadratic functions based on bilinear maps. We then
present the first multi-key linearly homomorphic authenticator scheme to achieve
input privacy with respect to the verifier. Such a scheme can be used to verify the
results of a computation over inputs from different data owners.

Adding Computational Privacy to Homomorphic Authenticators
(Chapter 6).

In this chapter, we show how to add computational IPS and OPS to linearly
homomorphic authenticators. We improve on the work of Catalano et al. [43].
They presented a generic transformation for linearly homomorphic authenticator
schemes. However, prior to this work no instantiations were known, that did not
suffer from false negatives – correct results identified as incorrect by the verifiable
computing scheme. We present the first instantiations that avoid this problem.
One construction is based on the RSA problem and one on the CDH problem.

Adding Information-Theoretic Privacy to Homomorphic Authenticators
(Chapter 7).

In this chapter, we present a transformation for homomorphic authenticators that
adds information-theoretic privacy properties. This transformation adds OPV, IPS
and OPS to homomorphic authenticators. To this end, we investigate the relation
between homomorphic authenticators and the FDCs introduced by us in Chapter 4.
We both show how to transform any FDC into a homomorphic authenticator as
well as how homomorphic authenticators with specific properties can be combined
with commitments to obtain FDCs. Finally we apply this transformation to the two
schemes introduced in Chapter 5. These schemes already achieved IPV. Applying
our transformation results in two verifiable computing schemes with complete
information-theoretic privacy.

4



Conclusion (Chapter 8).

This chapter concludes this thesis with a summary of results and a discussion on
possible directions of future research.
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2 Background

This chapter contains revised and extended parts of the background sections
published in [S1], [S2], [S3], [S4], [S5], [S6], and [S7].

2.1 Labeled Programs
To accurately describe both correct and legitimate operations for homomorphic
authenticators, we use multi-labeled programs similarly to Backes, Fiore, and
Reischuk [12]. The basic idea is to append a function by several identifiers,
in our case input identifiers and dataset identifiers. Input identifiers label in
which order the input values are to be used and dataset identifiers determine
which authenticators can be homomorphically combined. The idea is that only
authenticators created under the same dataset identifier can be combined. We now
give formal definitions.
A labeled program P consists of a tuple (f, τ1, . . . , τn), where f :Mn →M is a

function with n inputs and τi ∈ T is a label for the ith input of f from some set T .
Given a set of labeled programs P1, . . . ,PN and a function g :MN →M, they can
be composed by evaluating g over the labeled programs, i.e. P∗ = g(P1, . . . ,PN).
Note that this is an abuse of notation analogous to function composition. The
identity program with label τ is given by Iτ = (fid, τ), where fid : M → M is
the identity function. The program P = (f, τ1, . . . , τn) can be expressed as the
composition of n identity programs P = f(Iτ1 , . . . , Iτn).
A multi-labeled program P∆ is a pair (P ,∆) of the labeled program P and a

dataset identifier ∆. Given a set of k multi-labeled programs with the same dataset
identifier ∆, i.e. (P1,∆), . . . , (PN ,∆), and a function g :MN →M, a composed
multi-labeled program P∗∆ can be computed, consisting of the pair (P∗,∆), where
P∗ = g(P1, . . . ,PN). Analogously to the identity program for labeled programs,
we refer to a multi-labeled identity program by I(τ,∆) = ((fid, τ),∆).

Definition 2.1 (Well Defined Program [37]). A labeled program P = (f, τ1, . . . , τn)
is well defined with respect to a list L ⊂ T × M if one of the two following
cases holds: First, there are messages m1, . . . ,mn such that (τi,mi) ∈ L ∀i ∈ [n].

7



2 Background

Second, there is an i ∈ [n] such that (τi, ·) /∈ L and f({mj}(τj ,mj)∈L ∪ {m′k}(τk,·)/∈L)
is constant over all possible choices of m′k ∈M.

If f is a linear function, the labeled program P = (f, τ1, . . . , τn), with f(m1, . . . ,mn)
= ∑n

i=1 fimi fulfills the second condition if and only if fk = 0 for all k ∈ [n] such
that (τk, ·) /∈ L.
Freeman pointed out [60] that it may generally not be possible to decide whether a
multi-labeled program is well defined with regard to a list L. For this, we use the
following Lemma:

Lemma 2.2 ([35]). Let λ, n, d ∈ N and let F be the class of arithmetic circuits
f : Fn → F over a finite field F of order p, such that the degree of f is at most d,
for d

p
≤ 1

2 . Then, there exists a probabilistic polynomial time (PPT) algorithm that
for any given f ∈ F , decides if there exists y ∈ F, such that f(u) = y for all u ∈ F
(i.e. if f is constant) and is correct with probability at least 1− 2−λ.

2.2 Homomorphic Authenticators
Definition 2.3 (Homomorphic Authenticator [59](adapted)). A homomorphic
authenticator scheme HAuth is a tuple of the following probabilistic polynomial time
algorithms:

Setup(1λ) : On input a security parameter λ, the algorithm returns a set of public
parameter pp, consisting of (at least) the description of an identifier space T , a
message spaceM, and a set of admissible functions F . The public parameters
pp will implicitly be inputs to all following algorithms even if not explicitly
specified.

KeyGen(pp) : On input the public parameters pp, the algorithm returns a key
triple (sk, ek, vk), where sk is the secret key authentication key, ek is a public
evaluation key, and vk is a verification key that can be either private or public.

Auth(sk,∆, τ,m) : On input a secret key sk, a dataset identifier ∆, a label τ ,
and a message m, the algorithm returns an authenticator σ.

Eval(f, {σi}i∈[n], ek) : On input a function f :Mn →M and a set {σi}i∈[n] of
authenticators, and an evaluation key ek, the algorithm returns an authenticator
σ.

Ver(P∆, vk,m, σ) : On input a multi-labeled program P∆, a verification key vk,
a message m ∈ M, and an authenticator σ , the algorithm returns either
‘1’(accept), or ‘0’(reject).

This definition is adapted from [59] to the single key setting. Compared to earlier
definitions e.g. [37], key generation is split up into a setup of public parameters and
the key generation itself. Note that, unlike previous definitions, our definition does
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2.2 Homomorphic Authenticators

not explicitly demand the scheme to require several properties, instead providing
explicit definitions for the respective properties later on. In particular we do not
demand succinctness as an integral property of homomorphic authenticators. In
this thesis we particularly aim for efficient verification (see Def. 2.8) and context
hiding public verifiability, which is not an integral property in earlier definitions of
homomorphic authenticators. Therefore a scheme achieving efficient verification
and/or context hiding but not succinctness is still of interest.

If vk is private, we call HAuth a homomorphic MAC, while for a public vk we call
it a homomorphic signature.
This described the case for a single key homomorphic authenticator. This can

naturally be extended to multi-key homomorphic authenticators. Note that in the
multi-key case labels consist of two parts, an identity id and an input identifier τ .
In the single key case there is only the input identifier τ . In the multi-key scenario
we will call labels l = (id, τ) to distinguish them.
Definition 2.4 (Multi-Key Homomorphic Authenticator [59](adapted)). A multi-
key homomorphic authenticator scheme MKHAuth is a tuple of the following proba-
bilistic polynomial time (PPT) algorithms:

Setup(1λ) : On input a security parameter λ, the algorithm returns a set of public
parameter pp, consisting of (at least) the description of an identifier space T ,
an identity space ID, a message spaceM, and a set of admissible functions F .
Given T and ID the label space of the scheme is defined as L = ID× T . The
public parameters pp will implicitly be inputs to all following algorithms even
if not explicitly specified.

KeyGen(pp) : On input the public parameters pp, the algorithm returns a key
triple (sk, ek, vk), where sk is the secret key authentication key, ek is a public
evaluation key, and vk is a verification key that can be either private or public.

Auth(sk,∆, l,m) : On input a secret key sk, a dataset identifier ∆, a label l =
(id, τ), and a message m, the algorithm returns an authenticator σ.

Eval(f, {(σi, eksi)}i∈[n]) : On input a function f : Mn → M and a set {(σi,
eksi)}i∈[n] of authenticators and evaluation keys, the algorithm returns an
authenticator σ.

Ver(P∆, {vkid}id∈P ,m, σ) : On input a multi-labeled program P∆, a set of verifi-
cation key {vkid}id∈P , corresponding to the identities id involved in the program
P, a message m ∈M, and an authenticator σ , the algorithm returns either
‘1’(accept), or ‘0’(reject).

To avoid an overhead in notation we will use the single key setting in the rest of
this section unless noted otherwise.
We now define properties relevant for the analysis of homomorphic authenti-

cator schemes: authentication correctness, evaluation correctness, succinctness,
unforgeability, efficient verification and context hiding.
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Correctness naturally comes in two forms. We require both authenticators created
directly with a secret signing key as well as those derived by the homomorphic
property to verify correctly.

Definition 2.5 (Authentication Correctness [41]). A homomorphic authenticator
scheme (Setup,KeyGen,Auth,Eval,Ver) satisfies authentication correctness if, for
any security parameter λ, any public parameters pp ← Setup(1λ), any key triple
(sk, ek, vk) ← KeyGen(pp), any label τ ∈ T , any dataset identifier ∆ ∈ {0, 1}∗,
any message m ∈ M, and any authenticator σ ← Auth(sk,∆, τ,m) we have
Ver(I(τ,∆), vk,m, σ) = ‘1′, where Iτ,∆ is the multi-labeled identity program.

Definition 2.6 (Evaluation Correctness [41]). A homomorphic authenticator
scheme (Setup,KeyGen,Auth,Eval,Ver) satisfies evaluation correctness if, for any
security parameter λ, any public parameters pp ← Setup(1λ), any key triple
(sk, ek, vk)← KeyGen(pp), for any dataset identifier ∆ ∈ {0, 1}∗, and any set of pro-
gram/message/authenticator triples {(Pi,mi, σi)}i∈[N ], such that Ver(Pi,∆, vk,mi, σi)
= 1 the following holds: Let m∗ = g(m1, . . . ,mN),P∗ = g(P1, . . . ,PN), and
σ∗ = Eval(ek, g, {σi}i∈[N ]). Then Ver(P∗∆, vk,m∗, σ∗) = 1 holds.

We now consider two properties impacting the practicality of homomorphic
authenticator schemes. Succinctness on a high level guarantees that bandwidth
requirements for deploying such a scheme are low. Efficient verification allows for
low computational effort on behalf of the verifier.

Definition 2.7 (Succinctness [59]). A homomorphic authenticator scheme (Setup,
KeyGen, Auth, Eval, Ver) is said to be succinct if the size of every authenticator
depends only logarithmically on the size of a dataset. More formally, let pp ←
Setup(1λ), P = (f, τ1, . . . , τn), (sk, ek, vk)← KeyGen(pp), and σi ← Auth(skidi, ∆,
τi, mi) for all i ∈ [n]. A homomorphic authenticator is said to be succinct if there ex-
ists a fixed polynomial p such that |σ| = p(λ, log n), where σ = Eval(f, {σi}i∈[n], ek).
However, we allow authenticators to depend on the number of keys involved in the
computation (in the multi-key setting). A multi-key homomorphic authenticator is
said to be succinct if there exists a fixed polynomial p such that |σ| = p(λ, k, log n),
where σ = Eval(f, {σi, ekidi}i∈[n]) and k = |{id ∈ P}|.

Like Libert and Yung [80], we call a key concise if its size is independent of the
input size n.

Definition 2.8 (Efficient Verification [37]). A homomorphic authenticator scheme
for multi-labeled programs allows for efficient verification if there exist two additional
algorithms (VerPrep,EffVer) such that:

VerPrep(P , vk) : Given a labeled program P = (f, l1, . . . , ln), and verification
key vk this algorithm generates a concise verification key vkP . This does not
depend on a dataset identifier ∆.
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2.2 Homomorphic Authenticators

EffVer(vkP ,∆,m, σ): Given a concise verification key vkP , a dataset ∆, a mes-
sage m, and an authenticator σ, it outputs ‘1’ or ‘0’.

The above algorithms are required to satisfy the following two properties:
Correctness: Let (sk, ek, vk) be an honestly generated key triple and (P∆,m, σ)
be a tuple. Then, for every vkP $← VerPrep(P , vk), we have

Pr[EffVer(vkP ,∆,m, σ) 6= Ver(P∆, vk,m, σ)] = negl(λ),

where negl(λ) denotes any function negligible in the security parameter λ.
Amortized Efficiency: Let P be a program, let m1, . . . ,mn be valid input values
and let t(n) be the time required to compute P(m1, . . . ,mn) with output m.
Then, for any vkP $← VerPrep(P , vk), and any ∆ ∈ {0, 1}∗ the time required to
compute EffVer(vkP ,∆,m, σ) is t′ = o(t(n)), where σi ← Auth(skidi ,∆, li,mi)
for i ∈ [n], and σ ← Eval(f, {σi}i∈[n], ek)).

Here, efficiency is used in an amortized sense. There is a function-dependent
pre-processing phase, so that verification cost amortizes over multiple datasets.

For the notion of unforgeability of a homomorphic authenticator scheme (Setup,
KeyGen, Auth, Eval, Ver), we define the following experiment between an adversary
A and a challenger C. During the experiment, the adversary A can adaptively query
the challenger C for authenticators on messages of his choice under labels of his
choice. He can also make verification queries. Intuitively, the homomorphic property
allows anyone (with access to the evaluation keys) to derive new authenticators.
This can be checked by the use of the corresponding program in the verification
algorithm. An adversary should however not be able to derive authenticators
beyond that.

Definition 2.9 (HomUF− CMAA,HAuth(λ) [41]).

Setup: C runs Setup(1λ) to obtain the public parameters pp that are sent to A,
runs (sk, ek, vk)← KeyGen(pp) and gives ek to A.

Authentication Queries: A can adaptively submit queries of the form (∆, τ,m)
where ∆ is a dataset identifier, τ ∈ T is a label, and m ∈M is a message of
its choice. C answers as follows:

If (∆, τ,m) is the first query for the dataset ∆, C initializes an empty list
L∆ = ∅ and proceeds as follows.

If (∆, τ,m) is such that (τ,m) /∈ L∆, C computes στ ← Auth(sk,∆, τ,m) ,
returns στ to A and updates the list L∆ ← L∆ ∪ (τ,m).
If (∆, τ,m) is such that (τ, ·) ∈ L∆ (which means that the adversary had
already made a query (∆, τ,m′) f), then C ignores the query.
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Verification Queries: A is also given access to a verification oracle. Namely
the adversary can submit a query (P∆,m, σ) and C replies with the output of
Ver(P∆, vk,m, σ).

Corruption Queries(only in the multi-key setting): The adversary A has ac-
cess to a corruption oracle. At the beginning of the experiment, the challenger
C initializes an empty list Lcorr = ∅ of corrupted identities. During the game
A can adaptively query identities id ∈ ID. If id /∈ Lcorr then C replies with the
triple (skid, ekid, vkid) (that is generated using KeyGen if not done before) and
updates the list Lcorr ← Lcorr ∪ id. If id ∈ Lcorr, then C replies with the triple
(skid, ekid, vkid) assigned to id before.

Forgery: In the end, A outputs a tuple (P∗∆∗ ,m∗, σ∗). The experiment outputs
‘1’ if the tuple returned by A is a forgery as defined below (see Def. 2.10 ), and
‘0’ otherwise.

This describes the case of privately verifiable homomorphic authenticators. For
homomorphic signatures vk is given to the adversary.

Definition 2.10 (Forgery [37]). Consider a run of HomUF− CMAA,HAuth(λ) where
(P∗∆∗ ,m∗, σ∗) is the tuple returned by the adversary in the end of the experiment,
with P∗ = (f ∗, τ ∗1 , . . . , τ ∗n). This is a forgery if Ver(P∗∆∗ , vk,m∗, σ∗) = 1, and at
least one of the following properties is satisfied:
Type 1 Forgery: The list L∆∗ was not initialized during the security experiment,
i.e. no message was ever committed under the dataset identifier ∆∗.

Type 2 Forgery: P∗∆∗ is well defined with respect to list L∆∗ and m∗ is not the
correct output of the computation, i.e. m∗ 6= f ∗(m1, . . . , mn)

Type 3 Forgery: P∗∆∗ is not well defined with respect to L∆∗ (see Def. 2.1).

Definition 2.11 (Unforgeability [37]). A homomorphic authenticator scheme
HAuth is unforgeable if for any PPT adversary A we have

Pr[HomUF− CMAA,HAuth(λ) = 1] = negl(λ).

We will now provide a weaker version of unforgeability. In the following experi-
ment weak− HomUF− CMAA,HAuth(λ), the adversary has to declare the message
components of the later signing queries before the key generation and can later on
specify in which dataset ∆j it wants to query it.

Definition 2.12 (weak− HomUF− CMAA,HAuth(λ) [41]).

Declaration of Messages A outputs a list of possible messages {mτ,j}Qτ∈L,j=1 ⊂
M where Q is the number of datasets to be queried.
Setup: C runs Setup(1λ) to obtain the public parameters pp that are sent to A,
runs (sk, ek, vk)← KeyGen(pp) and gives ek to A.
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2.2 Homomorphic Authenticators

Authentication Queries: A can adaptively submit queries of the form
(∆j, τ,mτ,j) where ∆j is a dataset, τ ∈ T is a label, and mτ,j ∈ M is a
declared message. C answers as follows:

If (∆j, τ,mτ,j) is the first query with dataset identifier ∆j, C initializes an
empty list L∆j

= ∅ and proceeds as follows.
If (∆, τ,m) is such that (τ,m) /∈ L∆, C computes στ ← Auth(sk,∆, τ,m) ,
returns στ to A and updates the list L∆ ← L∆ ∪ (τ,m).
If (∆, τ,m) is such that (τ, ·) ∈ L∆ (which means that the adversary had
already made a query (∆, τ,m′) f), then C ignores the query.

Verification Queries: A is also given access to a verification oracle. Namely
the adversary can submit a query (P∆,m, σ) and C replies with the output of
Ver(P∆, vk,m, σ).
Forgery: In the end, A outputs a tuple (P∗∆∗ ,m∗, σ∗). The experiment outputs
‘1’ if the tuple returned by A is a forgery as defined above (see Def. 2.10 ), and
‘0’ otherwise.

Definition 2.13 (Weak Unforgeability [41]). A homomorphic authenticator scheme
HAuth is weakly-unforgeable if for any PPT adversary A we have

Pr[weak− HomUF− CMAA,HAuth(λ) = 1] = negl(λ).

Theorem 2.14. If HAuth is a weakly-unforgeable homomorphic signature scheme
in the sense of Def. 2.13 then it can be transformed into an unforgeable homomorphic
signature scheme in the sense of Def. 2.11.

Proof. This is a direct corollary of [41, Theorem 1].

Moreover the computational assumptions on which the weak unforgeability is
based on are preserved by this transformation.
In the case of multi-key homomorphic authenticators we will also consider a

relaxation of the unforgeability definition in which the adversaries ask for corruptions
in a non-adaptive way. More precisely, we say that an adversary A makes non-
adaptive corruption queries if for every identity id asked to the corruption oracle, id
was not queried earlier in the game to the authentication oracle or the verification
oracle. For this class of adversaries, corruption queries are of no help as the
adversary can generate keys on its own. We will use the following Proposition:

Proposition 2.15 ([59, Proposition 1]). MKHAuth is unforgeable against adver-
saries that do not make corruption queries if and only if MKHAuth is unforgeable
against adversaries that make non-adaptive corruption queries.

Additionally we will make use of the following statements.
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Proposition 2.16 ([60, Proposition 2.3]). Let HAuth = (Setup, KeyGen, Auth,
Eval, Ver) be a linearly homomorphic signature scheme over a message space
M⊂ RT for some ring R. If HAuth is secure against Type 2 forgeries, then HAuth
is also secure against Type 3 forgeries.

Proposition 2.17 ([41, Proposition 2]). Let λ ∈ N be the security parameter, and
let F be the class of arithmetic circuits f : Fn → F over a finite field F of order p and
such that the degree of f is at most d, for d

p
< 1

2 . Let HAuth be a homomorphic signa-
ture with message space F and let Eb be the event that the adversary returns a Type-b
forgery (for b = 1, 2, 3) (see Def. 2.10) in Experiment 2.9. Then, if for any adversary
A we have Pr[HomUF− CMAA,HAuth(λ) = 1 ∧ E2] ≤ ε, then for any adversary A′
producing a Type 3 forgery it holds that Pr[HomUF− CMAA′,HAuth(λ) = 1 ∧ E3] ≤
ε+ 2−λ.

We are now ready to provide our notion of input privacy, in the form of the
context hiding property.

Definition 2.18 (Context Hiding [37]). A homomorphic authenticator scheme for
multi-labeled programs is context hiding if there exist two additional PPT procedures
σ̃ ← Hide(vk,m, σ) and HideVer(vk, P∆,m, σ̃) such that:
Correctness: For any pp← Setup(1λ), (sk, ek, vk)← KeyGen(pp) and any tuple

(P∆,m, σ), such that Ver(P∆, vk,m, σ) = 1,
and σ̃ ← Hide(vk,m, σ), it holds that HideVer(vk,P∆,m, σ̃) = 1.

Unforgeability: The homomorphic authenticator scheme is unforgeable in the
sense of Def. 2.11 when replacing the algorithm Ver with HideVer in the security
experiment.

Context Hiding Security: There is a simulator Sim such that, for any fixed
(worst-case) choice of (sk, ek, vk) ← KeyGen(pp), any multi-labeled program
P∆ = (f, τ1, . . . , τn,∆), messages m1, . . . ,mn, and distinguisher D there exists
a function ε(λ) = negl(λ) such that

|Pr[D(I,Hide(vk,m, σ)) = 1]− Pr[D(I, Sim(I,P∆,m)) = 1]| = ε(λ),

where I = (sk, (mτ , στ ), σi ← Auth(sk,∆, τi,mi), m ← f(m1, . . . ,mn),
σ ← Eval(f, {σi}i∈[n]), and the probabilities are taken over the randomness of
Auth,Hide and Sim.

If ε(λ) = negl(λ), we call the multi-key homomorphic authenticator scheme statisti-
cally context hiding. If ε(λ) = 0, we call it perfectly context hiding.

2.2.1 An Overview over Homomorphic Authenticator Schemes
The idea of linearly homomorphic authenticators was introduced in [55] and later
refined in [73]. Freeman proposed stronger security definitions in [60].
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Homomorphic authenticators can be split into two groups, privately verifiable
homomorphic authenticators in the form of homomorphic MACs and publicly
verifiable homomorphic authenticators in the form of homomorphic signatures.

Homomorphic MACs have been constructed for linear functions [3], quadratic
functions [12] and arithmetic circuits [35,104]. The latter constructions are built
on primitives like fully homomorphic encryption or multilinear maps, for which
efficient instantiations are still challenging.
In the case of homomorphic signatures, the first instantiation was provided by

Boneh et.al. [24] based on the 2-3-Diffie Hellmann assumption. Later realizations
are based on subgroup decision problems [7,8], the k-Simultaneous Flexible Pairing
Problem [9], the RSA problem [64] (offering only security against weak adversaries),
the strong RSA problem [40], the Flexible DH Inversion problem [37], and the
lattice based k-SIS problem [23].

The idea of homomorphic signatures with efficient verification was introduced in
[41]. Intuitively, this means that the outcome of a computation can be checked faster
by using the schemes verification algorithm than computing it oneself. However,
this only holds in an amortized sense, as an expensive preprocessing phase has to
be amortized over multiple datasets (see [12, 43]).
There are also homomorphic signatures beyond the linear case. Catalano et

al. showed how to construct homomorphic signatures for arithmetic circuits of
fixed depth from graded encoding schemes, a special type of multilinear maps [41].
Some lattice-based homomorphic signatures schemes [70], [59] support boolean
circuits of fixed degree and therefore implicitly also arithmetic circuits of fixed
degree. However, these schemes suffer the performance drawback of signing every
single input bit.

2.3 Linearly Authenticated Encryption with Public
Verifiability

Catalano et al. [43] introduced a cryptographic primitive which is called "Linearly
Homomorphic Authenticated Encryption with Public Verifiability" (LAEPuV).
These schemes allow to evaluate a function over messages by evaluating a corre-
sponding function over the encrypted messages such that the result can be verified
by any third party. Below, we formally define LAEPuV schemes.

Definition 2.19. (LAEPuV [43]). A LAEPuV scheme is a tuple of five PPT
algorithms (AKeyGen,AEncrypt,AEval,AVerify,ADecrypt) such that:

AKeyGen(1λ, n): It takes a security parameter λ and the maximum number n of
encrypted messages in each dataset as input. It returns a key pair (sk, pk),
where sk is the secret key for encrypting and signing and pk is the public key
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used for verification and evaluation. The message spaceM, the ciphertext space
C, the input identifier space T , and dataset identifier space D are implicitly
defined by the public key pk.

AEncrypt(sk,∆, τ,m): The input is a secret key sk, a dataset identifier ∆ ∈ D,
an input identifier τ ∈ T , and a message m ∈M. The output is a ciphertext
c.

AEval(pk, f, {ci}ni=1): The input is a public key pk, a linear function f , and a set
of n ciphertexts {ci}i∈[n] ∈ C. The output is a ciphertext c.

AVerify(pk,P∆, c): The input is a public key pk, a multi-labeled program P∆
containing a linear function f , and a ciphertext c ∈ C. The output is either
‘1′, i.e. the ciphertext is valid, or ‘0′, i.e. the ciphertext is invalid.

ADecrypt(sk,P∆, c): It gets a secret key sk, a multi-labeled program P∆, and a
ciphertext c ∈ C as input and outputs a message m if c is valid and ⊥ if c is
invalid, respectively.

Intuitively, a LAEPuV scheme is correct if it satisfies three conditions. First,
the decryption of a ciphertext yields the same message that was used to generate
the ciphertext. Second, any ciphertext which is accepted by the verification
algorithm can be decrypted, i.e. the decryption algorithm does not return ⊥.
Third, decrypting a ciphertext generated by the evaluation algorithm returns the
message obtained by evaluating the function over the original messages. Below we
formally define the correctness of LAEPuV schemes.

Definition 2.20 (Correctness [43]). Let LAE = (AKeyGen, AEncrypt,AEval, AVerify,
ADecrypt) be a LAEPuV scheme. We say LAE is correct if the following three
conditions all hold.
1. For any (sk, pk)← AKeyGen(1λ, n) honestly generated keypair, any message

m ∈M, any dataset identifier ∆ ∈ D, and any input identifier τ ∈ T it holds
with overwhelming probability

ADecrypt(sk,∆,AEncrypt(sk,∆, τ,m), Iτ ) = m

where Iτ is the labeled identity program (note that the identity is also linear).
2. For any key pair (sk, pk)← AKeyGen(1λ, n) and any ciphertext c ∈ C we have

AVerify(pk,P∆, c) = 1⇔ ∃m ∈M : ADecrypt(sk,P∆, c) = m.

3. Let (sk, pk)← AKeyGen(1λ, k) be a key pair, ∆ ∈ D be any dataset identifier,
m1, . . . ,mn ∈ M be messages, and let ci ← AEncrypt(sk,∆, τi,mi). For any
admissible multi-labeled program P∆ = ((f1, . . . , fn), τ1, . . . , τk,∆) it holds that

ADecrypt(sk,P∆,AEval(pk, f, {ci}ni=1)) = f(m1, . . . ,mn).
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In the following we provide the definitions for the security of linearly homomorphic
authenticated encryption with public verifiability (LAEPuV) schemes.
Security comes in two flavors. On the one hand privacy should be guaranteed,

on the other hand no incorrect results should be accepted by such a scheme. Below
we provide formalizations of these notions, as variants of indistinguishability under
chosen ciphertext attacks and unforgeability under chosen ciphertext attacks, that
are respectively fine tailored towards LAEPuV schemes.

These definitions are a slight modification of the original definitions by Catalano
et al. [42] which directly use labeled programs in order to stay consistent with the
rest of the Thesis. In the original labeled programs were only implicitly used.
Definition 2.21 (LH-IND-CCA [42] (adapted)). Let LAE=(AKeyGen, AEncrypt,
AEval, AVerify, ADecrypt) be a LAEPuV scheme. We define the following experiment
LH − IND − CCAH,A(1λ, n) between a challenger C and an adversary A:
Setup: The challenger runs (sk, pk) ← AKeyGen(1λ, n). Then it initializes an
empty list L and gives pk to the adversary A.

Queries I: A can ask a polynomial number of both encryption and decryption
queries. The former are of the form (m,∆, τ) where m ∈ M is a message,
∆ ∈ D is a dataset identifier, and τ ∈ T is an input identifier. The challenger
computes c ← AEncrypt(sk,∆, τ,m), gives c to A and updates the list L ←
L ∪ {(m,∆, τ)}. If L already contains a query (·,∆, τ) the challenger C will
answer ⊥.
The latter queries are of the form (P∆, c) and A receives the output of
ADecrypt(sk,P∆, c). Note that this can be ⊥ if c is not a valid ciphertext.

Challenge: A produces a challenge tuple (m0,m1,∆∗, τ ∗). If a query of the form
(·,∆∗, τ ∗) is contained in L, the challenger returns ⊥ as before. The challenger
chooses a random bit b $← {0, 1} and gives
c∗ ← AEncrypt(sk,∆∗, τ ∗,mb) to A. Then it updates the list L ← L ∪
{(mb,∆∗, τ ∗)}.

Queries II: This phase is carried out similar to the Queries I phase. Any
decryption query (P∆∗ , c) with P∆∗ = ((f1, . . . , fn), τ1, . . . , τn,∆∗) where fτ∗ 6=
0 is answered with ⊥. All other queries are answered as in phase Queries I.

Output: Finally A outputs a bit b′ ∈ {0, 1}. The challenger outputs ‘1’if b = b′

and ‘0’otherwise.
We say that a LAEPuV scheme is LH-IND-CCA secure if for any PPT adversary
A we have

|Pr[LH − IND − CCALAE,A(1λ, n) = 1]− 1/2| ≤ negl(λ).

Definition 2.22 (LH-Uf-CCA (adapted from[42])). A LAEPuV scheme is lienarly
homomorphic unforgeable against chosen ciphertext attacks if the advantage of the
PPT adversary A in the following game is negligible in the security parameter λ.
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Let LAE=(AKeyGen, AEncrypt, AEval, AVerify,ADecrypt) be a LAEPuV scheme.
We define the following experiment LH−Uf−CCAH,A(1λ, n) between a challenger
C and an adversary A:
Setup: The challenger runs (sk, pk) ← AKeyGen(1λ, n). Then it initializes an
empty list L and gives pk to the adversary A.

Queries : A can ask a polynomial number of both encryption and decryption
queries. The former are of the form (m,∆, τ) where m ∈ M is a message,
∆ ∈ D is a dataset identifier, and τ ∈ T is an input identifier. The challenger
computes c ← AEncrypt(sk,∆, τ,m), gives c to A and updates the list L ←
L ∪ {(∆, τ,m, c, Iτ ). If L already contains a query (∆, τ, ·, ·, ·) the challenger
C will answer ⊥.
The latter queries are of the form (P∆, c) and A receives the output of
ADecrypt(sk,P∆, c). Note that this can be ⊥ if c is not a valid ciphertext.

Forgery: Finally A outputs (c∗,P∗∆∗).
Let L∆∗ = {(∆∗, τ,m, c, f)} ⊂ L be the set of entries in L where ∆ = ∆∗. The
adversary wins the game if ADecrypt(sk,P∆, c) 6= ⊥ and one of the following
conditions holds:

L∆∗ is empty
f ∗ (interpreted as a vector) is in the span of {f |(∆∗, ·, ·, ·, f) ∈ L∆∗} but for
any α1, . . . , αs such that f ∗ = ∑s

i=1 αifi it holds m∗ 6=
∑n
i=1 αimi

f ∗ (interpreted as a vector) is not in the span of {f |(∆∗, ·, ·, ·, f) ∈ L∆∗}
Finally we define the advantage AdvLH−UfCCA(A) as the probability that A wins
the game.

There are known encryption schemes like Paillier [84] where the ciphertext space
is larger then the message space. More precisely, the Paillier encryption scheme
has message space ZN , where N = pq for two primes p, q of equal size, while the
corresponding ciphertext space is ZN2 .
Thus, a straightforward combination of the Paillier encryption scheme with a

homomorphic signature scheme, requires a homomorphic signature scheme with
message space ZN2 which significantly decreases the performance of the scheme.

Catalano et al. [43] proposed a novel method which combines the Paillier encryp-
tion scheme and an arbitrary linearly homomorphic signature scheme that supports
the same message space ZN . The high level idea is as follows. The message m is
encrypted yielding a larger ciphertext C. This ciphertext is masked by multiplying
it with a value R and the masked ciphertext is decrypted which gives a message a
of the same size as the original message. Finally, a signature σ of the message a is
generated using the homomorphic signature scheme. Functions are evaluated over
the ciphertexts C, the messages a, and the signatures σ. To verify a computation,
the scheme checks if σ is a valid signature of a and if the encryption of a still yields
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the masked ciphertext of C. If both checks are true, the message m is obtained by
decrypting the ciphertext C.

Below we describe the LAEPuV framework by Catalano et al. [43] which combines
the Paillier encryption scheme with an arbitrary homomorphic signature scheme
HS = (Setup, KeyGen, Auth, Eval, Ver).

Construction 2.23.

AKeyGen(1λ, n): On input a security parameter λ and an integer n, the algorithm
chooses two (safe) primes of size λ/2, sets N ← pq, and chooses an element
g ∈ Z∗N2 of order N . It chooses a linearly homomorphic signature scheme
HS = (Setup, KeyGen, Auth, Eval, Ver) with message space N . It runs pp←
Setup(1λ) as well as (sk′, ek, vk)← KeyGen(pp). Note that we implicitly give
the message space as an additional argument to the key generation of the
homomorphic signature scheme as it not necessarily use the factorization of N
as its secret key. It chooses a hash function H ← H, and returns the key pair
(sk, pk), where sk = (p, q, sk′) and pk = (N,H, g, ek, vk).

AEncrypt(sk,∆, τ,m): On input a secret key sk, a dataset identifier ∆, an input
identifier τ ∈ T , and a message m ∈ ZN , the algorithm chooses β $← Z∗N2,
computes C ← gmβN mod N2, sets R ← H(∆||τ), and computes (a, b) ∈
ZN × Z∗N such that gabN = CR mod N2 by invoking the following steps [84]:
• Obtain a by decrypting CR using the Paillier cryptosystem [84].
• Compute c∗ ← CRg−a mod N .
• Set b← cN

−1 mod L
∗ mod N , where L = lcm(p− 1, q − 1).

Finally, the algorithm computes the signature σ ← Auth(sk′,∆, τ, a) of a and
returns the ciphertext c = (C, a, b, σ).

AEval(pk,∆, f, {ci}i∈[n]): On input a public key pk, a dataset identifier ∆, a
linear function f , and n ciphertexts {ci}i∈[n], with ci = (Ci, ai, bi, σi), the
algorithm computes

C ←
n∏
i=1

Cfi
i mod N2

a←
n∑
i=1

fiai mod N

b←
n∏
i=1

bfii mod N2

σ ← Eval(f, {σi}i∈[n], ek)

and returns the ciphertext c = (C, a, b, σ).
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AVerify(pk,P∆, c): On input a public key pk, a multi-labeled program P∆ con-
taining a linear function f , and a ciphertext c = (C, a, b, σ), algorithm checks
if

Ver(P∆, vk,m, σ) = 1

gabN = C
n∏
i=1

H(∆||τi)fi mod N2

If both equations are satisfied, the algorithm returns 1, i.e. the ciphertext is
valid, otherwise, it returns 0, i.e. the ciphertext is invalid.

ADecrypt(sk,P∆, c): On input a secret key sk, a multi-labeled program P∆, and a
ciphertext c = (C, a, b, σ), the algorithm returns ⊥ if ADecrypt(sk,P∆, c) = 0.
Otherwise, it returns m obtained by decrypting C using the Paillier cryptosys-
tem.

We will present the two theorems arguing about the security of this construction.

Theorem 2.24 ([43, Theorem 6]). In the random oracle model, if the DCR as-
sumption (see Definition 2.44) holds, H is a random oracle, and HS = (Setup,
KeyGen, Auth, Eval, Ver) is a linearly homomorphic signature scheme over ZN that
is unforgeable in the sense of Def. 2.11, Construction 2.23 is LH-IND-CCA secure
according to Definition 2.21.

Theorem 2.25 ([43, Theorem 7]). If HS = (Setup, KeyGen, Auth, Eval, Ver)
is a linearly homomorphic signature scheme over ZN that is unforgeable in the
sense of Def. 2.11, then Construction 2.23 is LH-Uf-CCA secure according to
Definition 2.22.

2.4 Secret Sharing
Shamir secret sharing allows a data owner to distribute a message among a set of
shareholders, such that the message can only be reconstructed if a qualified subset
of these shareholders collaborates. At the same time no other subset can learn
any information about the message distributed. Let N be the total number of
shareholders, i ∈ [N ] be the unique ID of shareholder i, t ≤ N be the threshold
required for reconstruction, and Fp be a field with p > N elements. Then, Shamir
secret sharing can be defined via the following two algorithms.

Definition 2.26 (Shamir Secret Sharing [97]). Let N be the total number of
shareholders, i ∈ [N ] be the unique ID of shareholder i, t ≤ N be the threshold
required for reconstruction, and Fp be a field with p > N elements. Then Shamir
secret sharing consists of the following algorithms.
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SShare(m) : Given a message m ∈ Fp as input the algorithm chooses a polynomial
f(x) = m+a1 +a2x+ · · ·+at−1x

t−1, where the message m is the free coefficient
and the other coefficients a1, · · · , at−1 are chosen uniformly at random. Then
it computes N shares si, for i ∈ [N ], where si = f(j) is sent to shareholder i.

SReconstruct(B, {si}i∈B) : It takes as input a subset B ⊂ {1, . . . , N} of share-
holders and corresponding shares si, ∀i ∈ B. If |B| < t it outputs ⊥. Otherwise
it reconstructs the unique interpolation polynomial f ∗(x) of degree t − 1 in
Fp[x] and returns message f ∗(0) = m∗.

Note that there exists a reconstruction vector ({wi}i∈B) such that ∑i∈B wisi = m.
Since for Shamir secret sharing the Lagrange Interpolation formula is used to
reconstruct the message m the reconstruction vector is defined as wi = ∏

j∈B,j 6=i
j
j−i ,

for i ∈ B. Furthermore, shares generated with polynomials of degree t− 1 are called
t-reconstructing shares.

2.5 Commitment Schemes
Commitment schemes, particularly homomorphic commitment schemes, are a basic
building block in cryptography.
A commitment scheme can be seen as the cryptographic analogue of a sealed

envelope. It allows a party to fix any chosen message m without other parties
learning about m. At a later point, the party can chose to reveal the message m
and show that the revealed message is the one that was fixed earlier. We provide
the formalizations used in this work.

Definition 2.27 (Commitment Scheme). A commitment scheme Com is a tuple
of the following algorithms (CSetup, Commit, Decommit):

CSetup(1λ) : On input a security parameter λ, this algorithm outputs a commit-
ment key CK. We implicitly assume that every algorithm uses this commitment
key, leaving it out of the notation.

Commit(m, r) : On input a message m ∈M and randomness r ∈ R, it outputs
the commitment C and the decommitment d.

Decommit(m, d, C) : On input a message m ∈ M, decommitment d, and a
commitment C it outputs ‘1’ or ‘0’.

Definition 2.28. Let F be a class of functions. A commitment scheme Com =
(CSetup,Commit,Decommit) is F-homomorphic if there exists an algorithm CEval
with the following properties:

CEval(f, C1, . . . , Cn) : On input a function f ∈ F and a tuple of commitments
Ci for i ∈ [n], the algorithm outputs C∗.
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Correctness: For every mi ∈M, ri ∈ R, i ∈ [n] with (Ci, di)← Commit(mi, ri)
and C∗ ← CEval(f, C1, . . . , Cn), there exists a unique function f̂ ∈ F , such
that Decommit(f(m1, . . . , mn), f̂(m1, . . . ,mn, d1, . . . dn), C∗) = 1.

2.5.1 An Overview over Commitment Schemes
Commitment schemes are a convenient tool to add verifiability to various processes,
such as secret sharing [88], multi-party computation [16], or e-voting [83]. The
most well-known and widely used commitment schemes used to provide verifiability
are Pedersen’s commitments [88] and Feldmann’s commitments [57]. Libert et
al. [79] introduce the notion of functional commitments. Functional commitments
are commitments to a tuple of messages that can then be opened to any linear
combination of these messages.

2.6 Verifiable Computing
Definition 2.29 (Verifiable Computing Scheme [62]). A Verifiable Computing
Scheme VC is a tuple of the following probabilistic polynomial-time (PPT) algo-
rithms:

VKeyGen(1λ, f) : The probabilistic key generation algorithm takes a security
parameter λ and the description of a function f . It generates a secret key
sk, a corresponding verification key vk, and a public evaluation key ek (that
encodes the target function f) and returns all these keys.

ProbGen(sk, x) : The problem generation algorithm takes a secret key sk and data
x. It outputs a public value σx which encodes the data x and a corresponding
decoding value ρx.

Compute(ek, σx) : The computation algorithm takes the evaluation key ek and
the encoded input σx. It outputs an encoded version σy of the function’s output
y = f(x).

Verify(vk, ρx, σy) : The verification algorithm obtains a verification key vk and
the decoding value ρx. It converts the encoded output σy into the output of
the function y. If y = f(x) holds, it returns y or outputs ⊥ indicating that σy
does not represent a valid output of f on x.

Definition 2.30 (Correctness [62]). A verifiable computing scheme VC is correct if
for any choice of f and output (sk, vk, ek)← VKeyGen(1λ, f) of the key generation
algorithm it holds that ∀ x ∈ Domain(f), if (σx, ρx) ← ProbGen(sk, x) and y ←
Compute(ek, σx), then y = f(x)← Verify(vk, ρx, σy).

In the original work on non-interactive verifiable computing Gennaro et al. [62]
only considered privately verifiable computing schemes as defined below.
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Definition 2.31 (Privately Verifiable Computing Scheme). If sk = vk and C needs
to keep ρx private, VC is called a privately verifiable computing scheme.

Clearly, such a scheme requires the client to run the verification algorithm. Later
in [87], Parno et al. introduced the notion of publicly verifiable computing schemes.

Definition 2.32 (Publicly Verifiable Computing Scheme). If sk 6= vk, VC is called
a publicly verifiable computing scheme.

It allows to hand out vk to third parties without revealing sk. Therefore, everyone
with knowledge of vk and ρx can verify the correctness of the server’s computation.

Intuitively the difference between the two notions is that in privately verifiable
computing the client keeps its verification key secret. It follows that only the client
can act as verifier. Note that in privately verifiable computing schemes revealing
the verification key often leads to a loss of security. More precisely, knowledge of
the verification key allows the server computing a wrong result leading to a correct
verification proof. In publicly verifiable computing, on the other hand, knowledge
of the verification key does not help a malicious server to forge an incorrect result.
Thus, it can be published allowing not only the client but anyone to act as verifier
and to check the correctness of a performed computation.

2.7 Properties of Verifiable Computing Schemes
In this section a definition for security and efficiency is given. We will mainly
follow the approach of Gennaro et al. [62], who were the first to define verifiable
computing schemes. In addition, we also integrate some later proposals to obtain
stronger security definitions, e.g. adaptive security presented in [20].

2.7.1 Security
Intuitively a verifiable computing scheme VC is secure, if a malicious server cannot
persuade the verification algorithm to output y∗ 6= f(x) except with negligible
probability. Formally, we define the following two experiments. We distinguish
between two types of adversaries, a weak adversary and an adaptive adversary. The
weak adversary [62] only has oracle access to ProbGen but is not allowed to call
Verify in the privately verifiable computing setting. It can only try once to have an
incorrect result verified as correct but must never learn the client’s acceptance bit,
since this information might be used to produce subsequent forgeries.
An adaptive adversary [20] can run EXPVerify

A multiple times, and learn about
the client’s acceptance bit and adapt its forgeries accordingly.
In the non-adaptive case the adversaries A’s advantage is defined as
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Experiment EXPVerify
A [VC, f, λ] :

(sk, ek, vk)← VKeyGen(1λ, f)
for i = 1, . . . , ` = poly(λ) do
xi ← A(ek, x1, . . . xi−1, σ1, . . . , σi−1)
(σi, ρi)← ProbGen(sk, xi)

end for
(i, σ∗y)← A(ek, x1, . . . , x`, σ1, . . . , σ`)
y∗ ← Verify(vk, ρi, σ∗y)
if y∗ 6= ⊥ ∧ y∗ 6= f(x) then
return 1

else
return 0

end if

AdvVerify
A (VC, f, λ) = Pr

[
EXPVerify

A [VC, f, λ] = 1
]
.

So in practice this type of adversary is acceptable if a client aborts the protocol
once it detects an incorrect result.
An adaptive adversaries A’s advantage is defined as

AdvAdaptVerify
A (VC, f, λ) = Pr

[
EXPAdaptVerify

A [VC, f, λ] = 1
]
.

From this the security definition for verifiable computing schemes follows.

Definition 2.33 (Security [20, 62]). A verifiable computing scheme VC is (weakly)
secure if

AdvVerify
A (VC, f, λ) ≤ negl(λ)

and adaptively secure if

AdvAdaptVerify
A (VC, f, λ) ≤ negl(λ).

2.7.2 Efficiency
Finally we are interested in using verifiable computing schemes by means of
delegating computations. For this we want the work performed by the client and
the verifier to be less than computing the function on their own.

Definition 2.34 (Efficiency [62]). A verifiable computing scheme provides efficiency
if for any x and any σy, the time required for VKeyGen(1λ, f) plus the time required
for ProbGen(sk, x) plus the time required for Verify(vk, ρx, σy) is o(T ), where T is
the time required to compute f(x).
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Experiment EXPAdaptVerify
A [VC, f, λ]:

(sk, vk, ek)← VKeyGen(f, 1λ)
for j = 1, . . . ,m = poly(λ) do
for i = 1, . . . , ` = poly(λ) do

xi ← A(ek, x1, . . . xi−1, σ1, . . . , σi−1, δ1, . . . , δj−1)
(σi, ρi)← ProbGen(sk, xi)

end for
(i, σ∗y)← A(ek, x1, . . . , x`, σ1, . . . , σ`, δ1, . . . , δj−1)
y∗ ← Verify(vk, ρi, σ∗y)
if y∗ 6= ⊥ ∧ y∗ 6= f(x) then

δj := 1
else

δj := 0
end if

end for
if ∃ j such that δj = 1 then
return 1

else
return 0

end if

A slightly relaxed definition is the following.

Definition 2.35 (Amortized Efficiency). A verifiable computing scheme provides
amortized efficiency if it permits efficient verification. This implies that for any
x and any σy, the time required for Verify(vk, ρx, σy) is o(T ), where T is the time
required to compute f(x).

Note that in literature amortized efficiency has been defined ambiguously. We use
here a broad version that ensures that the minimal requirements for outsourceability
are met.
Intuitively the difference between efficiency and amortized efficiency is the cost

of the preprocessing phase. Efficient verifiable computing schemes allow a verifier
to verify the correctness of a computation more efficiently than performing the
computation by itself, including the preprocessing phase performed by the client.
Some verifiable computing schemes have an expensive preprocessing phase, but still
provide an efficient verification phase. Since the preprocessing phase only has to
be performed once and might not be time critical in many applications, we classify
them as verifiable computing schemes providing amortized efficiency.

One aspect that also impacts the practicality of all verifiable computing schemes
is the server’s overhead to evaluate a computation using Compute versus natively
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executing it. Note that this does not affect the computation complexity for the
client or the verifier. So far in literature this aspect has not been rigorously covered
and is therefore not considered in our efficiency analysis.
Existing verifiable computing schemes are compared in detail in Section 3.2.

2.8 Cryptographic Assumptions
We recall the computational assumptions on which our schemes are based.

Definition 2.36 (DL). Let G be a generator of cyclic groups of order p and let
G $← G(1λ). We say the Discrete Logarithm assumption (DL) holds in G if there
exists no PPT adversary A that, given (g, ga) for a random generator g ∈ G
and random a ∈ Zp, can output a with more than negligible probability, i.e. if
Pr
[
a← A(g, ga) | g $← G, a $← Zp

]
= negl(λ).

Definition 2.37 (Asymmetric bilinear groups). An asymmetric bilinear
group is a tuple bgp = (p,G1,G2,GT , g1, g2, e), such that:
• G1,G2, and GT are cyclic groups of prime order p,
• g1 ∈ G1 and g2 ∈ G2 are generators for their respective groups,
• the DL assumption holds in G1,G2, and GT ,
• e : G1 ×G2 → GT is bilinear, i.e. e(g1

a, g2
b) = e(g1, g2)ab ∀ a, b ∈ Z,

• e is non-degenerate, i.e. e(g1, g2) 6= 1, and
• e is efficiently computable.

We will write gt = e(g1, g2).
In case of symmetric pairings where G1 ' G2 we write G for both G1 and G2

for the sake of convenience.

Definition 2.38 (DDH). Let G be a generator of asymmetric bilinear groups and
let bgp = (p,G1,G2,GT , g1, g2, e) $← G(1λ). We say the Decisional Diffie–Hellman
assumption (DDH) holds in G1 if, for every PPT adversary A,

|Pr
[
A(bgp, gx1 , g

y
1 , g

xy
1 ) | x, y $← Zp

]
− Pr

[
A(bgp, gx1 , g

y
1 , g

z
1) | x, y, z $← Zp

]
|

= negl(λ).

Definition 2.39 (co − DHP ∗ [44]). Let bgp = (p,G1,G2,GT , g1, g2, e) be a de-
scription of a bilinear group. We say the Computational Diffie-Hellman assumption
holds in bgp, if there exists no ppt adversary A that given (bgp, ga1 , gb1, gb2) where
a, b

$← Zp can output gab1 with more than negligible probability.
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Definition 2.40 (Double Pairing Assumption in G1 (DBP1 [1])). Let bgp =
(p,G1,G2,GT , g2, e) $← G(1λ) and R,Z $← G1. Any PPT adversary A can produce
(GR, GZ) ∈ G2

2\{(1, 1)} such that 1 = e (R,GR) · e (G,GZ) only with a probability
negligible in λ.

We have an analogous computational problem in G2.

Definition 2.41 (Double Pairing Assumption in G2 (DBP2 [1])). Let bgp =
(p,G1,G2,GT , g1, g2, e) $← G(1λ) and R,Z

$← G2. Any PPT adversary A can
produce (GR, GZ) ∈ G2

1\{(1, 1)} such that 1 = e (GR, R) · e (GZ , Z) only with a
probability negligible in λ.

It is known that DBP1 implies the Decisional Diffie–Hellman assumption in G1
and DBP2 implies the Decisional Diffie–Hellman assumption in G2, and the security
reductions are tight [2].
We also use the Flexible Diffie–Hellman Inversion hardness assumption, intro-

duced by Catalano, Fiore and Nizzardo [37]. In the extended version of their
CRYPTO2015 paper, they formally investigate the hardness of this assumption
and analyse it in the generic group model.

Definition 2.42 (FDHI [37]). Let G be a generator of asymmetric bilinear groups
and let bgp = (p,G1,G2,GT , g1, g2, e) $← G(1λ). We say the Flexible Diffie–Hellman
Inversion (FDHI) assumption holds in bgp if, for every PPT adversary A,

Pr
W ∈ G1\{1G1} ∧W ′ = W

1
z | (W,W ′)← A(g1, g2, g

z
2, g

v
2 , g

z
v
1 , g

r
1, g

r
v
1 ) |

z, r, v
$← Zp


= negl(λ).

Definition 2.43 (Factorization Assumption). Let N = pq be a random RSA
modulus of length λ, where λ ∈ N. We say that the factorization assumption holds
if for any PPT adversary A we have Pr[(p, q)← A(N)] = negl(λ)

Definition 2.44 (DCRA [84]). Let N be the product of two (safe) primes, i.e.
N = pq. We say the Decisional composite residuosity assumption (DCRA) holds
if there exists no ppt adversary A that can distinguish between an element drawn
uniformly random from the set Z∗N2 and an element from the set {zN |z ∈ Z∗N2},
that is the set of the N-th residues modulo N2.

Definition 2.45 (Strong RSA [14]). Let N = pq be a random RSA modulus
of length λ, where λ ∈ N, and z ∈ ZN a random element in ZN . We say
that the Strong RSA assumption holds if for any PPT adversary A we have
Pr[(y, e)← A(N, z) : ye = z mod N ∧ e 6= 1] = negl(λ).
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3 Classifying Verifiable Computing
Schemes by Their Privacy Prop-
erties

Today, it is common practice to outsource large-scale computations to the cloud.
In such a situation, it is desirable to be able to verify the outsourced computation.
The background for the field of verifiable computing was discussed in Section 2.6.
In addition to the basic properties discussed there, further properties are required
when dealing with sensitive data. Particularly sensitive data, e.g. medical data,
must remain private even in the long term. Thus, privacy that depends on the
computational hardness of certain problems is insufficient. Here everlasting, i.e.
information-theoretic privacy is required.
To account for the different types of privacy threats arising in such scenarios

we distinguish between four different privacy notions. We first distinguish by
which information is private - input or the outcome of the computation. We then
distinguish by the attacker we want to prevent from learning sensitive information.
In the case of verifiable computing, this can either be the server performing the
computation or the third-party verifier verifying the correctness.

Organization. In this chapter we first provide definitions for multiple privacy
notions related to verifiable computing in Section 3.1. We then give an overview
of existing verifiable computing schemes and their properties - in particular their
privacy properties in Section 3.2.

Publications. This section is based on publication [S1].

3.1 Privacy
Verifiable computing can guarantee the integrity of a computation. Beyond that, a
desirable property is to protect the secrecy of the client’s inputs towards the server(s)

29



3 Classifying Verifiable Computing Schemes by Their Privacy Properties

Experiment EXPIn−PrivacyServer
A [VC, f, λ, t]

(sk, ek, vk)← VKeyGen(f, 1λ)
(x0, x1)← AOProbGen(vk,·)(ek), s.t. f(x0) = f(x1)
(σ0, ρ0)← ProbGen(sk, x0)
(σ1, ρ1)← ProbGen(sk, x1)
b

$← {0, 1}
σyb ← Compute(ek, σxb)
B ← A with B ⊂ {1, . . . , n} and |B| = t− 1
b∗ ← AOProbGen(sk,·)(ek, x0, x1, {σyb,j}j∈B)
if b∗ = b then
return 1

else
return 0

end if

and when using a publicly verifiable scheme also towards the verifiers. To formally
define input privacy w.r.t the servers we define experiment EXPIn−PrivacyServer

A , during
which the adversary controls t servers. We use the oracle OProbGen(sk,x) which calls
ProbGen(sk, x) to obtain (σx, ρx) and only returns the public part σx.

In this experiment, the adversary first receives the public verification key for the
scheme. Then, it selects two inputs x0, x1 and is given the encoding of one of the
two inputs chosen at random. The adversary then must determine which input has
been encoded. During this process, the adversary may request the encoding of any
input of its choice. We define an adversaries A’s advantage as

AdvIn−PrivacyServer
A (VC, f, λ, t) =

∣∣∣Pr
[
EXPIn−PrivacyServer

A [VC, f, λ, t] = 1
]
− 1

2

∣∣∣ .
Definition 3.1 (Input privacy w.r.t. the server [62]). A verifiable computing
scheme VC provides unconditional input privacy with respect to the server if any
computationally unbounded adversary A has AdvIn−PrivacyServer

A (VC, f, λ, t) = 0.

If the advantage is negligible, we say the scheme provides computational input
privacy with respect to the server.

We give an analogous definition for output privacy. To formally define output pri-
vacy w.r.t the server, we define experiment EXPOut−PrivacyServer

A , during which the ad-
versary controls t servers. We use the oracle OProbGen(sk,x) which calls ProbGen(sk, x)
to obtain (σx, ρx) and only returns the public part σx.

In this experiment, the adversary first receives the public evaluation key for the
scheme. Then, it selects two inputs x0, x1. It is given the results of the computation
y0 = f(x0), y1 = f(x1) and is given the encoding of one of the two inputs chosen at
random. The adversary corrupts t servers and receives their share of the encoding
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Experiment EXPOut−PrivacyServer
A [VC, f, λ, t]

(sk, ek, vk)← VKeyGen(f, 1λ)
(x0, x1)← AOProbGen(sk,·)(ek)
(σx0 , ρx0)← ProbGen(sk, x0)
(σx1 , ρx1)← ProbGen(sk, x1)
b

$← {0, 1}
σyb ← Compute(ek, σxb)
B ← A with B ⊂ {1, . . . , n} and |B| = t− 1
b∗ ← AOProbGen(sk,·)(ek, y0, y1, {σyb,j}j∈B)
if b∗ = b then
return 1

else
return 0

end if

and then must determine which encoded output has been computed. During this
process, the adversary may request the encoding of any input of its choice.
We define an adversaries A’s advantage as

AdvOut−PrivacyServer
A (VC, f, λ, t) =

∣∣∣∣Pr
[
EXPOut−PrivacyServer

A [VC, f, λ, t] = 1
]
− 1

2

∣∣∣∣
Definition 3.2 (Output privacy w.r.t. the server). A verifiable computing scheme
VC provides unconditional output privacy with respect to the server if any compu-
tationally unbounded adversary A has AdvOut−PrivacyServer

A (VC, f, λ, t) = 0.

If the advantage is merely negligible, we say the scheme provides computational
output privacy with respect to the server.

If we have a publicly verifiable computing scheme a third-party verifier might
try to learn about the input data from the publicly available verification data. To
formally define input privacy w.r.t a third-party verifier we define the following
experiment.

In this experiment, the adversary first receives the public verification key for the
scheme. Then, it selects two inputs x0, x1 and is given the encoding of one of the
two inputs chosen at random. The adversary then must determine which input has
been encoded. Note that during this process the adversary is allowed to request
the encoding of any input of its choice.
We define an adversaries A’s advantage as

AdvIn−PrivacyVerifier
A (VC, f, λ) =

∣∣∣∣Pr
[
EXPIn−PrivacyVerifier

A [VC, f, λ] = 1
]
− 1

2

∣∣∣∣ .
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Experiment EXPIn−PrivacyVerifier
A [VC, f, λ]

(sk, vk, ek)← VKeyGen(f, 1λ)
(x0, x1)← AOProbGen(sk,·)(vk)
(σx0 , ρx0)← ProbGen(sk, x0)
(σx1 , ρx1)← ProbGen(sk, x1)
b

$← {0, 1}
σyb ← Compute(ek, σxb)
b∗ ← AOProbGen(sk,·)(vk, x0, x1, σyb , ρyb)
if b∗ = b then
return 1

else
return 0

end if

Definition 3.3 (Input Privacy w.r.t. the Verifier). A verifiable computing scheme
VC provides input privacy if

AdvIn−PrivacyVerifier
A (VC, f, λ) ≤ negl(λ).

If the advantage is negligible, we say the scheme provides computational input
privacy with respect to the verifier.

Note that for authenticator-based verifiable computing schemes [12] this captures
all the variations of the context hiding property (see Definitions 5.1 to 2.18)
discussed in Section 2.2.

For a publicly verifiable computing scheme, it is interesting to show correctness
of a computation without revealing its outcome. A third-party verifier might try
to learn about the output data from the publicly available verification data. To
formally define output privacy w.r.t a third-party verifier, we define the following:

Definition 3.4 (Output privacy w.r.t. the verifier). A verifiable computing scheme
VC provides unconditional output privacy with respect to the verifier if there exist
additional algorithms (HideCompute,HideVerify,Decode):

HideCompute(ek, σx) : The computation algorithm takes the evaluation key ek
and the encoded input σx. It outputs an encoded version σ̃y of the function’s
output y = f(x).

HideVerify(vk, σ̃y) : The verification algorithm obtains a verification key vk and
an encoding σ̃y. It outputs either ⊥, or σ̂y.

Decode(vk, ρx, σ̂y, σy) : It takes as input the verification key vk, a decoding value
ρx, and encoded values σ̂y, σy. It outputs either ⊥ indicating that σy does not
represent a valid output of f on x or it returns y.
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Experiment EXPout−PrivacyVerifier
A [VC, f, λ]

(sk, ek, vk)← VKeyGen(f, 1λ)
(x0, x1)← AOProbGen(vk,·)(ek)
(σx0 , ρx0)← ProbGen(sk, x0)
(σx1 , ρx1)← ProbGen(sk, x1)
σ̃y0 ← HideCompute(ek, σx0)
σ̃y1 ← HideCompute(ek, σx1)
b

$← {0, 1}
b∗ ← AOProbGen(vk,·)(ek, y0, y1, σ̃yb , ρxb)
if b∗ = b then
return 1

else
return 0

end if

and the following two properties hold:

Correctness For any security parameter λ, and any admissible function f ,
let (sk, ek, vk) ← VKeyGen(1λ, f), and any input x, we have for (σx, ρx) ←
ProbGen(sk, x), σy ← Compute(ek, σx),
and
σ̃y ← HideCompute(ek, σx), σ̂y ← HideVerify(vk, σ̃y)
Pr[Decode(vk, ρx, σ̂y, σy) 6= Verify(vk, ρx, σy)] = negl(λ).

Privacy We describe the experiment EXPout−PrivacyVerifier
A .

In this experiment, the adversary first receives the public verification key
for the scheme. Then, it selects two inputs x0, x1. It is given the results
y0 = f(x0), y1 = f(x1) and is given the encoding of one of the two outputs
chosen at random. The adversary then must determine which input has been
encoded. During this process, the adversary may request the encoding of any
input of its choice. We define an adversaries A’s advantage as

AdvOut−PrivacyVerifier
A (VC, f, λ) =

∣∣∣∣Pr
[
EXPOut−PrivacyVerifier

A [VC, f, λ] = 1
]
− 1

2

∣∣∣∣ .
for any computationally unbounded adversary A, AdvOut−PrivacyVerifier

A (VC, f, λ) =
0.

If the advantage is negligible, we say the scheme provides computational output
privacy with respect to the verifier.
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3 Classifying Verifiable Computing Schemes by Their Privacy Properties

3.2 An Overview over Verifiable Computing
Schemes

In this section, we summarize verifiable computing scheme and compare them, in
particular with respect to their privacy properties. The first property examined is
which function class the scheme supports. Some support (subsets of) arithmetic
circuits, while others can also deal with stateful operations or general loops, i.e.
without needing to know the length of the loop during the preprocessing stage.
Furthermore, we specify which type of adversary the solution can cope with. Some
schemes are secure against a strong adversary (S), some are only secure against
a weak adversary (W), and for some approaches the security level has not been
analyzed yet (∅). Note that this corresponds to the adaptive and weak adversaries
described in Def. 2.33.
In addition, we show which primitives the construction relies on, since most of

them come with further assumptions regarding security. Furthermore, in some
scenarios it might be preferable that the scheme provides a certain level of privacy.
Depending on the type of data, a scheme may either ensure input privacy (I), output
privacy (O), input-output privacy (I/O), or no privacy at all (×) with regard to
the server. Several solutions are tailored to private verification, i.e. where the
verification can only be performed by the data owner. However, in some scenarios
the verification must be performed by a party different from the owner, requiring
the scheme to be publicly verifiable. For computing schemes that are publicly
verifiable we also highlight whether they provide privacy towards the verifier, i.e.
the public. Thus, for a publicly verifiable computing scheme we further distinguish
whether it provides input privacy (I), output privacy (O), input-output privacy
(I/O), or no privacy at all (×) with respect to the verifier. For privately verifiable
computing schemes this notion is obviously not applicable (NA).

To be successfully applied in practice, a scheme also needs to provide efficiency.
We define a verifiable computing scheme as efficient (E), if the time required for
preprocessing and verification is o(T ), where T is the time required to compute the
function. If only the verification can be performed in o(T ), then the computing
scheme only provides amortized efficiency (A). Sometimes it is not possible to make
a general statement about a scheme’s attributes as they are dependent on choices
of primitives (D). The abbreviations introduced here are summarized in Table 3.1.

In the setting of proof based verifiable computing a (super-)polynomial-time
prover wants to convince a computationally bounded verifier of the validity of some
statement in an NP-language. In the context of verifiable computing the prover
is the server performing a given computation and the statement represents the
correctness of the computed result. To achieve this goal, rather theoretical tools,
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Category Abbreviation Explanation
Adversary S Strong adversary

W Weak adversary
Privacy I Input privacy

O Output Privacy
I/O Input-output privacy
inf. information-theoretic
× no privacy
NA no information available

Efficiency E Efficient
A Amortized efficient

General D Dependent on primitives

Table 3.1: Used abbreviations

such as interactive proof systems [68] and probabilistically checkable proofs (PCP)
[6, 10] were used. While the application to verifiable computing scenarios have
already been mentioned in very early works, the solutions from these theoretical
tools were not suitable for any practical application. Later work relaxed these
potentially super-polynomial provers to polynomially bounded provers to obtain
(typically more efficient) argument systems [30]. Furthermore, this line of work has
been improved by both theoretical refinements and suitable implementations.

As shown by Table 3.2, the only proof-based approach that provides an efficient
generation and verification process is the one proposed in [101]. This scheme,
however, only supports a very restricted class of circuits. The other PCP or
linear PCP based constructions support larger classes of programs, but achieve
only amortized efficiency. In addition, all these approaches are interactive, i.e.
require multi-round interaction between the server and the client. To reduce the
server’s overhead later solutions are non-interactive. Backes et al.’s proposal [11]
even achieves input privacy towards the verifier and provides public verifiability.
However, all non-interactive proof based schemes use so called QAPs [63] and are
based on non-falsifiable assumptions of knowledge, i.e. assumptions that cannot
be efficiently denied. As shown in [67] it is actually impossible to build a SNARG
(e.g. using QAPs) that is based solely on falsifiable assumptions. This raises some
questions on the security of these schemes. In fact, although it has been shown
that PCPs and QAPs are secure against an adaptive adversary, it has not been
proven that the same holds true for the verifiable computing scheme using this
primitive. For some of the schemes offering public verifiability two variations are
described – one with and one without input privacy. In this case we only denote
the version with input privacy.
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Scheme Function Class PrS E VER PrV
[101]/[100] Circuits of polylog. depth × E X NA
[102] Arithm. Circuits × A X NA
[95] Arithm. Circuits × A × ×
[96] Arithm. Circuits × A × ×
[31] Stateful × A × ×
[94] Arithm. Circuits × A × ×
[103] Arithm. Circuits × A X NA
[86] Arithm. Circuits × A X I
[50] Arithm. Circuits × A X I
[18] General Loops × A X I
[19] General Loops × A X I
[11] Arithm. Circuits × A X I
[93] Arithm. Circuits I/O(inf.) A X I

Table 3.2: Proof-based verifiable computation schemes. Properties: privacy w.r.t.
server (PrS), efficiency (E), public verifiability (VER), privacy w.r.t
verifier (PrV)

We now discuss approaches to verifiable computing that use fully homomorphic
encryption (FHE [66]) as a building block. For these solutions the client encrypts
the data before it outsources it to the server. Thus, these solutions achieve input
privacy. In addition, only the client can decrypt the result, which is why also output
privacy is assured. However, on the downside all fully homomorphic encryption
based schemes are only privately verifiable. Furthermore, all such solutions are
only secure against weak adversaries as defined in Def. 2.33 and providing efficient
FHE schemes is still an open research challenge.

Scheme Function Class A PrS E VER PrV
[62] Arithm. Circuits W I/O A × NA
[47] Arithm. Circuits W I/O A × NA

Table 3.3: FHE-based verifiable computation schemes. Properties: adversary (A),
privacy w.r.t server (PrS), efficiency (E), public verifiability (VER),
privacy w.r.t verifier (PrV)

Homomorphic authenticators allow to evaluate functions on authenticated data.
There exist constructions both in the secret key setting in the form of homomorphic
message authentication codes (MACs) and in the public key setting in the form of
homomorphic signatures. Their properties are discussed in more detail in Section 2.2.
These solutions can be used to respectively construct privately and publicly verifiable
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3.2 An Overview over Verifiable Computing Schemes

computing schemes. There are homomorphic MAC and signature schemes that are
not known to allow verification faster than computing the function, e.g. [65], and
are therefore not considered here.

Scheme Function Class A PrS Primitives E VER PrV
[12] Poly. of Degree 2 S × Bilinear Maps A × ×
[104] Poly. of Fixed Degree S × Multilinear Maps A × ×
[58] Poly. of Degree 2 S I Bilinear Maps A × ×
[37] Linear S × Bilinear Maps A X I(inf.)
[41] Poly. of Fixed Degree S × Multilinear Maps A X NA
[36] Poly. of Fixed Degree S × RSA A X NA
[75] D D I/O HE/HEA [75] D D D
[59] Arithm. Circuits S × Lattices A X ×
[76] D S × SNARKs A X D

Table 3.4: Authenticator-based verifiable computation schemes. Properties: adver-
sary (A), privacy w.r.t server (PrS), efficiency (E), public verifiability
(VER), privacy w.r.t verifier (PrV)

The schemes using homomorphic authentication, see Table 3.4, are more restric-
tive with respect to the supported function class. Furthermore, all schemes only
provide amortized efficiency and only the solutions using homomorphic signature
schemes provide public verifiability. The generic construction proposed by Lai et
al. [75] allows to combine authentication based verifiability with encryption gaining
a verifiable computing scheme preserving input-output privacy towards the server.
Nevertheless, the function class, security, and efficiency depend on the underlying
primitives and further research is required for identifying promising instantiations
for different applications.
Another line of research are verifiable computing schemes based on functional

encryption (FE) or functional signatures (FS), see Table 3.5. We present the
verifiable computing schemes that use (key-policy) attribute-based encryption
(ABE) or are directly constructed from functional encryption schemes. Key-policy
ABE (KP-ABE) [72,89] is a public key encryption paradigm, where a public key is
associated to a universe of attributes A and secret keys are associated to boolean
functions f . A holder of a secret key corresponding to f can only decrypt a message
encrypted with respect to a subset A′ of attributes iff f(A′) = 1. FE [26] is a
very generic definition of various types of public key encryption concepts, such
as identity based encryption (IBE [22]), ABE, and many other classes. Basically,
in such schemes secret keys are associated to a function f and given a ciphertext
of a message m under the corresponding public key, the holder of a secret key
corresponding to f will only learn f(m) during decryption, instead of learning the
full plaintext m. Assuming that the plaintext space has an additional structure
and in particular plaintexts are pairs of some (public) index and message space,
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3 Classifying Verifiable Computing Schemes by Their Privacy Properties

then one can define FE on predicates over the index space and the key space. In
doing so, one obtains KP-ABE as a so-called predicate encryption (PE) scheme
with a public index. FS [28] is the signature analog to FE. It allows the delegated
signing of a messages m if f(m) = 1 holds for a given function f .

Scheme Function Class A PrS Primitives E VER PrV
[87] Boolean Functions ∅ × ABE A × ×
[13] D S I/O FE,MAC,FHE,PE A X D
[28] Arithm. Circuits W × FS D X NA

Table 3.5: FE- and FS-based verifiable computation schemes. Properties: adversary
(A), privacy w.r.t server (PrS), efficiency (E), public verifiability (VER),
privacy w.r.t verifier (PrV)

Beyond the families of schemes we have seen so far, there exist verifiable com-
puting schemes for specific functions, which we present in Table 3.6. These are
fine-tailored to the verifiable computation of specific functions.

Scheme Function Class A PrS Primitives E VER PrV
[5] Arithmetic Branching Programs W I Randomized Encodings A × ×
[85] Poly. + Derivations S × Bilinear Maps A X NA
[56] Univariate Poly. S × Bilinear Maps A X NA
[56] Matrix-Vector Multiplication S × Bilinear Maps A X NA
[45] Bilinear Maps S × Bilinear Maps A × ×
[58] Univariate Poly. S I Bilinear Maps A × ×
[74] Set Operations S × SNARK A X NA
[20] Poly. of Fixed Degree S × Bilinear Map A × ×
[99] Multivariate Polynomials S × Bilinear Maps A X NA
[99] Matrix-Vector Multiplication S × Bilinear Maps A X NA

Table 3.6: Other verifiable computation schemes. Properties: adversary (A), pri-
vacy w.r.t server (PrS), efficiency (E), public verifiability (VER), pri-
vacy w.r.t verifier (PrV)

There are several schemes that have been developed within this thesis. Those
will be described in detail in the following chapters and compared to the state of
the art.
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4 Function-Dependent Commitment
Schemes

When outsourcing computations, several security risks arise. One such risk are
undetected incorrect results. Verifiability allows to detect incorrect results. Ver-
ifying a computation in less time than performing the computation itself gives
obvious benefits for the client. Often, not only the data owner is interested in the
correctness of a computation; but also third parties. Public verifiability allows such
third party verifiers to check the correctness of an outsourced computation.

For sensitive data on which outsourced computation takes place, the leakage of
private data is another security risk. In the case of publicly verifiable computing,
this risk exists both with respect to the server(s) and the verifier. In this chapter,
we show how to address these security risks. In order to achieve this, we present
the fundamental building block of our information-theoretically private schemes
— function-dependent commitments (FDC). This novel cryptographic primitive
is a generalization of both homomorphic authenticators and commitments. We
furthermore present the first concrete instantiation of an FDC scheme. It allows
the efficient public verification of linear functions. Finally, we show how to build an
efficiently verifiable computing scheme for linear functions that provides complete
information-theoretic privacy (information-theoretic input and output privacy with
respect to both servers and verifiers), by combining our FDC scheme with linear
secret sharing. A crucial security property of FDCs is the hiding property, which
means a commitment to a message does not leak information about the message.
This property can be used to achieve output privacy with respect to the verifier.
This property furthermore allows us to achieve input and output privacy with
respect to the servers when combining an FDC with secret sharing.

Contribution. In this chapter, we solve the problem of providing efficient veri-
fication with information-theoretic privacy for linear functions. To achieve this,
we introduce a novel generic construction that combines information-theoretic
privacy with strong unforgeability and fast verification. We call this construction
function-dependent commitments (FDCs).
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In addition, we provide a concrete, unconditionally hiding instantiation of FDCs
for linear functions using pairings, demonstrating that our generic construction can
be realized in the standard model. Finally, we showcase a verifiable multi-party
computation scheme based on the concrete instantiation. This scheme makes it
possible to verify whether the reconstructed result has been computed correctly
by computing additional audit data on a single storage server. Previous proposals
require all storage servers to perform computations to check correctness. Our
scheme provides unconditional input-output privacy towards the servers and parties
verifying computational correctness. In Figure 4.1 we show which properties of an
FDC are used to address which particular challenge.

Organization. In this chapter we first introduce our framework for FDC schemes
(Sec. 4.1). We then present a concrete instantiation of an FDC using pairings, and
prove its properties (Sec. 4.2). Finally we show how this instantiation can be used
to build a verifiable computing scheme for shared data (Sec. 4.3).

Publications. This chapter is based on publication [S2].

Related Work. FDCs combine properties of commitments (see Sec. 2.5) and
homomorphic authenticators (see Sec. 2.2). In [79], the notion of functional
commitments is introduced. Their notion of function bindingness, however, is
strictly weaker than our notion of adaptive unforgeability. functional commitments.
Functional commitments allow only a unique opening of a given commitment to
the result of a linear computation. Our FDCs only allow the computation of a
unique commitment.

Both our FDC and the homomorphic signature scheme presented in [37] are based
on the FDHI assumption 2.42, and indeed our FDC builds on this homomorphic
signature scheme. The Catalano–Fiore–Nizzardo construction is context hiding,
i.e. signatures to the output of a function do not leak information about the
inputs to the function beyond knowledge of the output to a third party verifier.
By contrast, our FDC achieves an even stronger privacy property: information-
theoretic input–output privacy with respect to both verifiers and servers. A freshly
signed signature in the case of [37] still reveals information about the message to an
adversary corrupting a server. Our unconditionally hiding FDC, however, does not.
Furthermore, our verification algorithm FunctionVerify only requires a commitment
to the output of a computation, enabling output privacy, while verification in [37]
requires the output itself. This requires a novel strategy in our security reduction.
In [92] and [93] schemes for verifiable MPC are described. They demand that

every shareholder performs computations in order to allow for verification and
thereby produces a significant overhead. Our verifiable computing scheme for
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shared data allows to process secret shares while only one storage server has to
compute the audit data.

4.1 Function-Dependent Commitments
In this section, we present our novel framework of FDC schemes and define their
relevant properties. We define the classical properties of commitments, binding and
hiding, in the context of FDCs. Furthermore we provide definitions for evaluation
correctness and unforgeability. In terms of performance properties, we consider
succinctness and amortized efficiency.
Like in the case of homomorphic commitments or authenticators, a function-

dependent commitment can be used to derive new commitments by its homomorphic
properties. It is necessary that the homomorphic property cannot be abused to
create forgeries. In the context of homomorphic authenticators, the notions of
labeled and multi-labeled programs (see Section. 2.1) are introduced to provide
meaningful security definitions.
Evaluating a function can be modeled as performing a program on a set of

labeled inputs that belong to a given dataset. On a high level, a message is
uniquely identified by two identifiers: one input identifier τ , and one dataset
identifier ∆. One can think of a dataset as an array of message, and of the input
identifiers as pointers to specific positions within this array.

This enables a precise description of homomorphic properties. For authenticators,
it is usually required that only authenticators created under the same dataset
identifier are used for homomorphic evaluation.
Using the formalism of multi-labeled programs as described in Section 2.1, we

now define FDCs.

Definition 4.1. A function dependent commitment (FDC) scheme for a class F
of functions is a tuple of algorithms (Setup, KeyGen, PublicCommit, PrivateCommit,
FunctionCommit, Eval, FunctionVerify, PublicDecommit):

Setup(1λ) takes as input the security parameter λ and outputs public parameters
pp. We implicitly assume that every algorithm uses these public parameters,
leaving them out of the notation.

KeyGen(pp) takes the public parameters pp as input and outputs a secret-public
key pair (sk, pk).

PublicCommit(m, r) takes as input a message m and randomness r and outputs
a commitment C and decommitment value d.

PrivateCommit(sk,m, r,∆, τ) takes as input the secret key sk, a message m,
randomness r, a dataset ∆, and an identifier τ and outputs an authenticator
A for the tuple (m, r,∆, τ).
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Properties Challenges

Correctness

Unforgeability Secure Outsourcing

Binding

Hiding Input-Output Privacy

Succinctness Low Bandwidth Requirement

Amortized Efficiency Efficiency for Privately
Verifiable Computing

Figure 4.1: Properties of FDCs
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FunctionCommit(pk,P) takes as input the public key pk and a labeled program
P and outputs a function commitment F to P.

Eval(f, A1, . . . An) takes as input a function f and a set of authenticators
A1, . . . , An, where Ai is an authenticator for (mi, ri,∆, τi), for i = 1, . . . , n. It
outputs an authenticator A∗.

FunctionVerify(pk, A, C, F,∆) takes as input a public key pk, an authenticator
A, a commitment C, a function commitment F , as well as a dataset identifier
∆. It outputs either 1 (accept) or 0 (reject).

PublicDecommit(m, d, C) takes as input message m, decommitment d, and com-
mitment C. It outputs either 1 (accept) or 0 (reject).

High Level Overview over FDCs FDCs allow for two different ways of commit-
ting to messages. One is just a standard commitment. This allows us to achieve
output privacy with respect to the verifier. The other way commits to a message
under a secret key to produce an authenticator. These authenticators allow for
homomorphic evaluation. Given authenticators to the input of a function, we can
derive an authenticator to the output of a function. We additionally allow to
commit to a function under a public verification key. This results in a function
commitment. Our scheme allows us to check if a public commitment C matches an
authenticator A (derived from a secret key) and a function commitment F (derived
from a public key). As long as a cryptographic hardness assumption holds, such a
match is only possible if A was obtained by running the evaluation on the exact
function committed to via F .
Regarding the unforgeability of FDCs, we face a fundamental problem in ho-

momorphic cryptography. The homomorphic property allows for the creation of
commitments not created by the original data owner. Our primitive seeks to limit
this ability to avoid forgeries. To this end, we consider the messages we commit to
as structured data. Messages are bundled in datasets and have a position within the
datasets. This approach has been formalized under the notion of labeled programs
(see e.g. [12]).

As for classical commitments, we want our schemes to be binding. That is,
after committing to a message, it should be infeasible to open the commitment
to a different message. We describe the following security experiment between a
challenger C and an adversary A.

Definition 4.2 (Binding experiments).
EXPBind

A,Com(λ) :
Challenger C runs (sk, pk)← KeyGen(pp) and gives pk to the adversary A.
A outputs a commitment C and the pairs (m, d) and (m′, d′), with m 6= m′.
If we have both PublicDecommit(m, d, C) = 1 and PublicDecommit(m′, d′, C) the
experiment outputs ‘1’, else it returns ‘0’.
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Definition 4.3 (Binding). Using the formalism of Def. 4.2, an FDC is called
binding if for any probabilistic polynomial-time (PPT) adversary A,

Pr
[
EXPBind

A,Com(λ) = 1
]

= negl(λ),

where negl(λ) denotes any function negligible in the security parameter λ.

Note that defining the binding property for FunctionCommit works completely
analogously.

We will also provide a weaker version of the binding property, the target binding
property. As for ordinary commitments (see e.g. [81]) the difference is similar to
the difference between collision resistance and second-preimage resistance for hash
functions.

Definition 4.4 (Target bindingness experiments).
EXPTarget−Bind

A,Com (λ) :
Challenger C runs (sk, pk)← KeyGen(pp) and gives pk to the adversary A.
Challenger C runs (C, d)← PublicCommit(m, r) and gives (C, d) to A.
A outputs a pair and (m′, d′), with m 6= m′.
If we have both PublicDecommit(m, d, C) = 1 and PublicDecommit(m′, d′, C) = 1
the experiment outputs ‘1’, else it returns ‘0’.

Definition 4.5 (Target Binding). Using the formalism of Def. 4.4, an FDC is
called target binding if for any probabilistic polynomial-time (PPT) adversary A,

Pr
[
EXPTarget−Bind

A,Com (λ) = 1
]

= negl(λ),

where negl(λ) denotes any function negligible in the security parameter λ.

Obviously the binding property implies the target binding property.
Another important notion, targeting privacy, is the hiding property. Commit-

ments are intended not to leak information about the messages they commit to.
This is not to be confused with the context hiding property, where homomorphic
authenticators to the output of a computation do not leak information about the
inputs to the computation. Context hiding homomorphic authenticators do however
leak information about the output.

Definition 4.6 (Hiding). An FDC is called computationally hiding if the sets of
commitments

{PublicCommit(m, r) | r $← R} and

{PublicCommit(m′, r′) | r′ $← R}
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as well as
{PrivateCommit(sk,m, r,∆, τ) | r $← R} and

{PrivateCommit(sk,m′, r′,∆, τ) | r′ $← R}
have distributions that are indistinguishable for any PPT adversary A for all
m 6= m′ ∈M.
An FDC is called unconditionally hiding if these sets have the same distribution
respectively for all m 6= m′ ∈M.

An obvious requirement for an FDC is to be correct, i.e. if messages are authen-
ticated properly and evaluation is performed honestly, the resulting commitment
should be verified. This is formalized in the following definition.

Definition 4.7 (Correctness). An FDC achieves correctness if for any security
parameter λ, any public parameters pp ← Setup(1λ), any key pair (sk, pk) ←
KeyGen(pp), and any dataset identifier ∆ ∈ {0, 1}∗, the following properties hold:

For any message m ∈ M, any randomness r ∈ R, any label τ ∈ T , and any
authenticator A← PrivateCommit(sk,m, r,∆, τ), commitment
C ← PublicCommit(m, r) function commitment FI ← FunctionCommit(pk, Iτ ),
where Iτ is the labeled identity program, we have

FunctionVerify(pk, A, C, FI ,∆) = 1.

Let g ∈ F be any admissible function, {(Ai,mi, ri,Pi)}i∈[N ] be any tuple
such that for (Ci, di) ← PublicCommit(mi, ri), Fi ← FunctionCommit(pk,Pi),
FunctionVerify(pk, Ai, Ci, Fi,∆) = 1 the following holds: There exists a func-
tion ĝ ∈ F , that is efficiently computable from g, such that for the follow-
ing holds: Let m∗ = g(m1, . . . ,mN), r∗ = ĝ(m1, . . . ,mn, r1, . . . rn), C∗ ←
PublicCommit(m∗, r∗), P∗ = g(P1, . . . ,PN), F ∗ ← FunctionCommit(pk,P∗),
A∗ ← Eval(g, A1, . . ., AN). Then FunctionVerify(pk, A∗, C∗, F ∗,∆) = 1.

The security notion of FDCs is also based on well defined programs (see Def. 2.1).
We introduce an experiment the attacker can run in order to generate a successful
forgery and present a definition for unforgeability based on this experiment.

Definition 4.8 (Forgery). A forgery is a tuple (P∗∆∗ , A∗, C∗) such that

FunctionVerify(pk, A∗, C∗,FunctionCommit(pk,P∗),∆∗) = 1
holds and exactly one of the following conditions is met:
Type 1 Forgery: No message was ever committed under the data set identifier

∆∗, i.e. the list L∆∗ of tuples (τ,m, r) was not initialized during the security
experiment (see Def. 4.9).
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Type 2 Forgery: P∗∆∗ is well defined with respect to list L∆∗ and for
m∗ = f({mj}(τj ,mj ,rj)∈L∆∗ ), r∗ = f̂({dj}(τj ,mj ,rj)∈L∆∗ )), where f is taken from
P∗, we have

PublicDecommit(C∗,m∗, r∗) = 0,

that is, C∗ is not a commitment to the correct output of the computation.
Type 3 Forgery: P∗∆∗ is not well defined with respect to L∆∗.

To define unforgeability, we first describe the experiment EXPUF−CMA
A,FDC (λ) be-

tween an adversary A and a challenger C.

Definition 4.9 (EXPUF−CMA
A,FDC (λ) [90]).

EXPUF−CMA
A,FDC (λ) :

Setup C calls pp $← Setup(1λ) and gives pp to A.
Key Generation C calls (sk, pk) $← KeyGen(pp) and gives pk to A.
Queries A adaptively submits queries for (∆, τ,m, r) where ∆ is a dataset,
τ is an identifier, m is a message, and r is a random value. C proceeds as
follows:

If (∆, τ,m, r) is the first query with dataset identifier ∆, it initializes an
empty list L∆ = ∅ for ∆.
If L∆ does not contain a tuple (τ, ·, ·), that is, A never queried (∆, τ, ·, ·),
C calls A ← PrivateCommit(sk,m, r,∆, τ), updates the list L∆ = L∆ ∪
(τ,m, r), and gives A to A.
If (τ,m, r) ∈ L∆, then C returns the same authenticator A as before.
If L∆∗ already contains a tuple (τ,m′, r′) for (m, r) 6= (m′, r′), C returns
⊥.

Forgery A outputs a tuple (P∗∆∗ , A∗, C∗).
EXPUF−CMA

A,FDC (λ) outputs ‘1′ if the tuple returned by A is a forgery as defined
before in Def. 4.8.

Definition 4.10 (Unforgeability). An FDC is unforgeable if for any PPT adversary
A,

Pr
[
EXPUF−CMA

A,FDC (λ) = 1
]

= negl(λ).

Regarding performance, we consider additional properties. Succinctness specifies
a limit on the size of the FDCs, thus keeping the required bandwidth low when
using FDCs to verify the correctness of an outsourced computation.

Definition 4.11 (Succinctness). An FDC is succinct if, for a fixed security pa-
rameter λ, the size of the authenticators depends at most logarithmically on the
dataset size n.
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Amortized efficiency specifies a bound on the computational effort required to
perform verifications.

Definition 4.12 (Amortized Efficiency). Let P∆ = (P ,∆) be a multi-labeled
program, m1, . . . ,mn ∈ M a set of messages, r1, . . . rn ∈ R a set of random-
ness, f ∈ F be an arbitrary function, and t(n) be the time required to compute
f(m1, . . . ,mn). An FDC achieves amortized efficiency if, for any public parameters
pp and any (sk, pk) $← KeyGen(pp), any authenticator A, any commitment C, and
function commitment F , the time required to compute FunctionVerify(pk, A, C, F,∆)
is t′ = o(t(n)). Note that A and F may depend on f and n.

Analogous definitions for amortized efficiency haven been given in [12], [37], and
[41]. Compared to Def. 2.8 this definition does not require additional algorithms but
rather has analogous requirements for the runtime of algorithms. The usual one-time
pre-computation (VerPrep in Def. 2.8) is captured by our algorithm FunctionCommit
and FunctionVerify is already required to provide efficient verification (analogous to
EffVer in Def. 2.8). In the case of reuse of the same function over multiple datasets,
this property enables an improvement in terms of runtime.

4.2 An FDC for Linear Functions
In the previous section, we introduced the idea of FDCs. In this section, we
provide a concrete instantiation for linear functions that is succinct, supports
efficient verification, and is information-theoretically hiding. We will prove these
properties along with the basic properties of correctness and unforgeability. In
terms of hardness assumptions, only a variant of the Diffie–Hellman problem [37]
is required. We are now ready to describe the algorithms making up our FDC.
We use a signature scheme Sig = (KeyGenSig, SignSig, VerSig) and a pseudorandom
function Φ : K× {0, 1}∗ → Zp. For a set of possibly different messages m1, . . . ,mn,
we denote by mi the i-th message. Since our messages are vectors, i.e. ,∈ FTp , we
write m[j] to indicate the j-th entry of message vector m. Therefore mi[j] denotes
the j-th entry of the i-th message. Given a linear function f , its i-th coefficient is
denoted by fi. So we have f(m1, . . . ,mn) = ∑n

i=1 fimi.

High level overview over our construction. Our FDC allows for two different
ways of committing to messages. Both are derived from the linearly homomorphic
Pedersen commitments [97]. We use this homomorphic property as the basis of
our public evaluation algorithm Eval. However, in order to achieve unforgeability
further steps are necessary. Our authenticators also depend on the identifiers used
to label the messages as structured data. Both the secret key and the verification
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key contain elements associated to the identifiers. This allows us to link the
secret elements used when creating an authenticator to the public elements used in
creating a function commitment.

Construction 4.13.
Setup(1λ): On input security parameter λ, the algorithm runs G(1λ) to obtain
a bilinear group bgp = (p,G1,G2,GT , g1, g2, e). It chooses m,T ∈ N. Then it
chooses H0, . . . , HT

$← G1 uniformly at random. It checks whether Hj 6= Hi

for all j 6= i. If not it chooses new Hj. Note that this check fails only with
negligible probability. Additionally, it fixes a regular signature scheme Sig =
(KeyGenSig, SignSig, VerSig) and a a pseudorandom function Φ : K×{0, 1}∗ → Zp.
It outputs the public parameters pp = (λ, n, T, bgp, H0, . . . HT , Sig,Φ).

KeyGen(pp) : On input public parameters pp it chooses y $← Zp uniformly at
random and computes Y = gy2 . Additionally it chooses b1, . . . bn

$← Fp uniformly
at random and checks whether bi 6= bj for all i 6= j. If it fails it chooses a
new bi. Note that this check is failed only with negligible probability. Then
it computes hi = gbit for all i ∈ [n]. Additionally the algorithm chooses
random seeds K,K ′ $← K for the pseudorandom function Φ. It computes
keys for the regular signature scheme (skSig, pkSig) ← KeyGenSig(1λ). It sets
sk = (b1, . . . , bn, skSig, K,K

′, y) and pk = (h1, . . . , hn, pkSig, Y ). It outputs
(sk, pk).

PublicCommit(m, r): On input a message m ∈ FTp and randomness r ∈ Fp it
computes C = Hr

0 ·
∏T
j=1H

m[j]
j , where m[j] is the j-th entry of message vector

m ∈ FTp , and outputs the commitment C and decommitment value d = r.
PrivateCommit(sk,m, r,∆, τ): On input a secret key sk, a message m ∈ FTp ,
randomness r ∈ Fp, a dataset ∆ ∈ {0, 1}∗, and an identifier τ ∈ [n] the
algorithm first computes z = ΦK(∆) and calculates Z = gz2. Then, it binds Z to
the dataset identifier ∆ by signing their concatenation, i.e.σ∆ ← SignSig(∆||Z).
Then, it sets u = ΦK′(∆||τ), U = gu1 , and Λ =

(
U · gbτ1 ·H

yr
0 ·

∏T
j=1H

ym[j]
j

) 1
z .

It returns the authenticator A = (σ∆, Z, U,Λ).
FunctionCommit(pk,P): On input a public key pk and a labeled program P =

(f, τ1, . . . , τn). It computes F = ∏n
i=1 h

fi
i , where fi denotes the i-th coefficient

of f , and outputs the function commitment F .
Eval(f, A1, . . . An): On input a linear function f and authenticators A1, . . . , An
the algorithm parses Ai = (σ∆,i, Zi, Ui,Λi). It sets σ∆ = σ∆,1, Z = Z1 and
computes U = ∏n

i=1 U
fi
i and Λ = ∏n

i=1 Λfi
i and outputs authenticator A =

(σ∆, Z, U,Λ).
FunctionVerify(pk, A, C, F,∆): On input a public key pk, an authenticator A, a
commitment C, a function commitment F , and a dataset identifier ∆, the
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algorithm parses A = (σ∆, Z, U,Λ) It checks whether VerSig(pkSig, σ∆,∆||Z) = 1
holds. If not it outputs ‘0’, otherwise it checks whether e (Λ, Z) = e (U, g2) ·
F · e (C, Y ) holds. If it does, it outputs ‘1’; otherwise it outputs ‘0’.

PublicDecommit(m, d, C): On input a message m ∈ FTp , decommitment d ∈
Fp, and a commitment C. It outputs ‘1’if C = PublicCommit(m, d) and
‘0’otherwise.

Our construction can also be used to provide authenticity in the form of uncon-
ditionally hiding authenticators, similarly to signatures. First, algorithm KeyGen is
called. To authenticate a message m, the owner of the secret key sk generates a
random value r and computes an authenticator A with algorithm PrivateCommit.
The authenticator A serves as a signature for m. To verify the authenticity of m,
the verifier computes the commitment C by calling PublicCommit(m, r). Then, it
uses pk and algorithm FunctionCommit to generate a function commitment FID to
the identity function. Finally, it calls algorithm FunctionVerify to check whether
the tuple C,A, FID,∆ is valid.
In the appendix we present the runtimes of Construction 4.13 in Sec. 4.2.
In the following, we first prove that our concrete scheme is indeed correct in the

sense of Def.4.7. We then prove that it satisfies the classical commitment properties
— binding and hiding. With respect to efficiency, we next show succinctness and
amortized efficiency. Finally, we reduce the security of our scheme to the hardness
of the FDHI assumption (see Def. 2.42).
Theorem 4.14. Our construction is a correct FDC in the sense of Def. 4.7 if Sig
is a correct signature scheme.
Proof. Let λ be an arbitrary security parameter, pp← Setup(1λ) arbitrary public
parameters, (sk, pk) ← KeyGen(pp) be an arbitrary key pair, and ∆ ∈ {0, 1}∗ an
arbitrary dataset identifier.

Now let m ∈ ZTp be an arbitrary message, r ∈ Zp be arbitrary randomness, and
τ ∈ [n] be an arbitrary input identifier, as well as A← PrivateCommit(sk,m, r,∆, τ),
C ← PublicCommit(m, r), and FI ← FunctionCommit(pk, Iτ ), where Iτ is the
labeled identity program. Then we have A = (σ∆, Z, U,Λ) with σ∆ = SignSig(∆||Z).
It computes u = ΦK′(∆||τ) and Λ =

(
U · gbτ1 ·H

yr
0 ·

∏T
j=1H

ym[j]
j

) 1
z . If Sig is a

correct signature scheme we have VerSig(pkSig, σ∆,∆||Z) = 1.
Furthermore we have

e (Λ, Z) = e


U · gbτ1 ·Hyr

0 ·
T∏
j=1

H
ym[j]
j

 1
z

, gz2


= e

U · gbτ1 ·Hyr
0 ·

T∏
j=1

H
ym[j]
j , g2
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= e (U, g2) · e
(
gbτ1 , g2

)
· e

Hr
0 ·

T∏
j=1

H
m[j]
j , gy2


= e (U, g2) · FI · e (C, Y )

Therefore all checks of FunctionVerify pass.
Now consider a set of arbitrary tuples {(Ai,mi, ri,Pi)}i∈[N ] such that for Ci ←

PublicCommit(mi, ri), Fi ← FunctionCommit(pk,Pi), we have FunctionVerify(pk, Ai,
Ci, Fi, ∆) = 1.

Let m∗ = g(m1, . . . ,mN) = ∑N
i=1 gimi, r∗ = ĝ(m1, . . . ,mn, r1, . . . rn) = ∑N

i=1 giri,
C∗ ← PublicCommit(m∗, r∗), P∗ = g(P1, . . . ,PN), F ∗ ← FunctionCommit(pk,P∗),
A∗ ← Eval(f, A1, . . . , AN).
We parse A∗ = (σ∗∆, Z∗,Λ∗, U∗)
Then we have by construction σ∗∆ = σ∆,1 and Z∗ = Zi for all i ∈ [N ] and

therefore VerSig(pkSig, σ∆,∆||Z) = 1.
Note that F ∗ = ∏N

i=1 F
gi
i by construction.

We also have

e (Λ∗, Z∗) = e

(
N∏
i=1

Λgi
i , Z

∗
)

=
N∏
i=1

e (Λi, Zi)gi =
N∏
i=1

(e (Ui, g2) · Fi · e (Ci, Y ))gi

= e

(
N∏
i=1

U gi
i , g2

)
·
N∏
i=1

F gi
i · e

(
N∏
i=1

Cgi
i , Y

)

= e (U∗, g2) · F ∗ · e
 N∏
i=1

Hri
0 ·

T∏
j=1

H
mi[j]
j

gi , Y


= e (U∗, g2) · F ∗ · e
H∑N

i=1 giri
0 ·

T∏
j=1

H
∑N

i=1 gimi[j]
j , Y


= e (U∗, g2) · F ∗ · e

Hr∗

0 ·
T∏
j=1

H
∑N

i=1 gim
∗[j]

j , Y


= e (U∗, g2) · F ∗ · e (C∗, Y )

Therefore all checks of FunctionVerify pass. This shows the correctness of our
scheme.

The binding property of a commitment ensures that is can only be opened to
one message. This property enables the use of FDCs for verifiable computing, as
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our algorithm FunctionVerify only verifies a commitment C. If this is binding we
know that this can only be opened to one specific message, the correct result of
the computation.

Theorem 4.15. Construction 4.13 is a binding FDC scheme in the sense of Def.4.3
as long as the discrete logarithm problem (see Def. 2.36) in G1 is hard.

Proof. The following proof is adapted from [29, Section 2.3.2].
Assume we have a PPT adversary A that can break the binding property of

our construction. We will show how a simulator S can use this to break the DL
problem in G1. It takes as input (bgp, h1 ∈ G1).

Simulator S chooses aj, bj $← Fp uniformly at random for j ∈ [T ] and sets Hj =
g
aj
1 h

bj
1 for j ∈ [T ], as well as H0 = g1. S gives H0, . . . HT to the adversary A. Since

the aj and bj are chosen uniformly at random theseHj are perfectly indistinguishable
from elements sampled uniformly at random in G1. Let (m, r), (m′, r′) be the output
of the adversary. If this breaks the binding property then we have m 6= m′ and
Hr

0 ·
∏T
j=1H

m[j]
j = Hr′

0 ·
∏T
j=1H

m′[j]
j .

S sets a = (r′ − r) +∑T
j=1 aj(m′[j]−m[j]), b = ∑T

j=1 bj(m[j]−m′[j]). If b = 0,

it aborts. Otherwise, it outputs x = a
b

= (r′−r)+
∑T

j=1 aj(m
′[j]−m[j])∑T

j=1 bj(m[j]−m′[j])
. Since we have

Hr
0 ·

T∏
j=1

H
m[j]
j = Hr′

0 ·
T∏
j=1

H
m′[j]
j ⇔ Hr−r′

0 ·
T∏
j=1

H
(m[j]−m′[j])
j = 1

⇔ gr−r
′

1 ·
(
g
aj
1 h

bj
1

)(m[j]−m′[j])
= 1

⇔ h

∑T

j=1 bj(m[j]−m′[j])
1 = g

(r′−r)+
∑T

j=1 aj(m
′[j]−m[j])

1

⇔ h1 = gx1

This is a solution to the DL problem. The bj are information-theoretically hid-
den from the adversary A, and are thus independent of A’s output. Since
m∗ 6= m̂, there exists a j ∈ [T ] such that (m[j] − m′[j]) 6= 0. For any tu-
ple (b1, . . . , bj−1, bj+1, . . . bT ) ∈ FT−1

p , there exists a unique bj ∈ Fp such that
b = ∑T

j=1 bj(m[j] −m′[j]) = 0. Since all bj are chosen uniformly at random, the
probability that S aborts is therefore pT−1

pT
= 1

p
.

The binding property for FunctionCommit works completely analogously.

The hiding property will be the key to achieving information-theoretic privacy.
On the one hand it ensures privacy with respect to the server as not even a
computationally unbounded adversary can derive information about inputs to a
computation from the authenticators to these inputs. Note that this is merely a
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necessary condition for achieving information-theoretic input and output privacy
with respect to the servers. We will combine our FDC with secret sharing to
actually achieve it. On the other hand the hiding property is used to obtain
information-theoretic output privacy with respect to the verifier. A (third party)
verifier can check the correctness of a computation without even having to learn the
result, as only an unconditionally hiding commitment is used during verification.
This is captured in the following Theorem.

Theorem 4.16. Construction 4.13 is an unconditionally hiding FDC in the sense
of Def. 4.6.

Proof. If r $← Zp is chosen uniformly at random then {Hr
0 | r

$← Zp} is uniformly
distributed over G1. Therefore the set {Hr

0 ·
∏T
j=1H

m[j]
j | r $← Zp} is uniformly

distributed over G1 for every m ∈ ZTp . So {PublicCommit(m, r) |r $← Zp} and
{PublicCommit(m′, r′) |r′ $← Zp} have the same distribution ∀m,m′ ∈ ZTp . The
output of PrivateCommit is an authenticator A = (σ∆, Z, U,Λ). By construction
σ, Z, U are all independent of m. Considering the Λ component, we have Λ =(
U · hτ ·

(
Hr

0 ·
∏T
j=1H

m[j]
j

)y) 1
z . This is uniformly distributed over G1 if and only

if the set {Hr
0 ·

∏T
j=1H

m[j]
j | r $← Zp} is. As we have shown this to be true

{PrivateCommit(sk,m, r,∆, τ) | r ∈ Zp} and {PrivateCommit(sk,m′, r′,∆, τ) | r′ ∈
Zp} have the same distribution for all m,m′ ∈ ZTp .

We will now look at the efficiency properties of our construction. On the one
hand we show its low bandwidth requirements in the from of succinctness. On the
other hand we show that our verification procedure FunctionVerify runs in constant
time.

Proposition 4.17. Construction 4.13 is succinct in the sense of Def. 4.11.

Proof. An authenticator produced by either PrivateCommit or Eval consists of a
conventional signature, two elements in G1 and one element in G2. This is a
constant and independent of n. Therefore our construction is succinct.

Proposition 4.18. Construction 4.13 achieves amortized efficiency in the sense
of Def. 4.12.

Proof. Let t(n) be the running time of an evaluation of the linear function f .
Then we have t(n) = O(n). An evaluation of FunctionVerify consists of a signature
verification, two pairing evaluations, and two group operations. Thus their combined
running time is independent of n. Therefore, our construction achieves amortized
efficiency for suitably large n.
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Implementation
We now report on the experimental results of a Rust implementations of Construc-
tion 5.3. The measurements are based on an implementation by Rune Fiedler and
Lennart Braun. As a pairing group the BLS curve [15] BLS12-381 [27] is used.

The following measurements were executed on an Intel Core i7-4770K (Haswell)
processor running at 3.50 GHz.
We present the runtimes of the individual subalgorithms of the FDC presented

in Construction 4.13. We first present the runtimes influenced by the dimension T
of vectors m ∈ ZTp given as messages in Table 4.1 and then present the runtimes
influenced by the number of inputs n messages in Table 4.2.

Dimension Setup PublicCommit PrivateCommit
32 9734 9667 11442
64 19176 19018 20768
128 38065 37913 39821
256 75835 75467 77344
512 151475 150746 152616

Table 4.1: Runtimes of our FDC 4.13 in µs

Inputs KeyGen FunctionCommit Eval FunctionVerify
256 525987 448335 151895 6972
512 1049245 896659 303786 6974
1024 2096320 1795722 608621 6977
2048 4191057 3588564 1216129 6976
4096 8380399 7175238 2431693 6976

Table 4.2: Runtimes of our FDC 4.13 in µs

We now address the issue of unforgeability and provide a security reduction of
our FDC scheme.

Theorem 4.19. Our construction is an unforgeable FDC scheme in the sense of
Def. 4.10 if Sig is an unforgeable signature scheme, Φ is a pseudorandom function,
and the FDHI assumption (see Def. 2.42) holds in bgp.

Proof. This proof follows the structure of [37, Theorem 8]. A major difference is
that, in our security reduction, the actual outcome of the computation function f
is never required. In particular [38, Lemmata 5 and 7], knowledge of the forged
outcome of the computation is a crucial part of the security reductions that prove
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indistinguishability between games. We present a new indistinguishability reduction
that only uses group elements.
To prove Theorem 4.19, we define a series of games with the adversary A and

we show that the adversary A wins, i.e. the game outputs ‘1’ only with negligible
probability. Following the notation of [37], we write Gi(A) to denote that a run of
game i with adversary A returns ‘1’. We use flag values badi, initially set to false.
If at the end of the game any of these flags is set to true, the game simply outputs
‘0’. Let Badi denote the event that badi is set to true during game i.

It is an immediate corollary of Proposition 2.16, that any adversary who outputs
a Type 3 forgery (see Def. 4.8) can be converted into one that outputs a Type 2
forgery. Therefore we only have to deal with Type 1 and Type 2 forgeries.

Game 1 is the security experiment EXPUF−CMA
A,FDC (λ) between an adversary A

and a challenger C, where A makes no corruption queries and only outputs
Type 1 or Type 2 forgeries.
Game 2 is defined as Game 1, except for the following change: Whenever A
returns a forgery (P∗∆∗ ,m∗, r∗, A∗) and the list L∆∗ has not been initialized by
the challenger during the queries, then Game 2 sets bad2 = true. It is worth
noticing that after this change the game never outputs 1 if A returns a Type 1
forgery. In Lemma 4.20, we show that Bad2 cannot occur if Sig is unforgeable.
It is worth noticing that after this change the game never outputs ‘1’if A
returns a Type 1 forgery.
Game 3 is defined as Game 2, except that the keyed pseudorandom function
ΦK is replaced by a random function R : {0, 1}∗ → Zp. In Lemma 4.21 we
show that these two games are indistinguishable if Φ is pseudorandom.
Game 4 is defined as Game 3, except except for the following change. At the
beginning C chooses µ ∈ [Q] uniformly at random, with Q = poly(λ) is the
number of queries made by A during the game. Let ∆1, . . . ,∆Q be all the
datasets queried by A. Then, if in the forgery ∆∗ 6= ∆µ, set bad4 = true. In
Lemma 4.22 we show that Pr[G3(A)] = Q · Pr[G4(A)].
Game 5 is defined as Game 4, except for the following change. At the
beginning, C chooses zµ ∈ Zp at random and computes Zµ = g

zµ
2 . It uses

Zµ whenever queried for dataset ∆µ. It chooses bi, si ∈ Zp uniformly at
random for i = 1, . . . n and sets hi = g

bi+zµsi
t . If k = µ, simulator S sets

the component Uτ = g
−bτ−a0yr−

∑T

j=1 ajym[j]
1 . In Lemma 4.23, we show that

Pr[G5(A)] = Pr[G4(A)].
Game 6 is defined as Game 5, except for the following change. The challenger
runs an additional check. It computes m̂ = f(m1, . . . ,mn), r̂ = f(r1, . . . , rn),
as well as Â = Eval(f, A1, . . . , An), i.e. it runs an honest computation over the
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messages, randomness and authenticators in dataset ∆µ. If

FunctionVerify(vk, A∗, C∗,FunctionCommit(pk,P∗),∆∗)) = 1

and U∗ = Û , then C sets bad6 = true In Lemma 4.24, we show that any
adversary A for which Bad6 occurs implies a solver for the FDHI problem.
Game 7 is defined as Game 6, except for the following change. During a query
for (∆µ, τ,m, r), the challenger sets Uτ = g−bτ1 . In Lemma 4.25, we show that
Pr[G7(A)] = Pr[G6(A)]. Finally in Lemma 4.26, we show that any adversary
A that wins Game 7 implies a solver for the FDHI problem.

Lemma 4.20. For every PPT adversary A, there exists a PPT forger F such that
|Pr[G2(A)]− Pr[G1(A)]| ≤ AdvUF−CMA

Sig,F (λ).

Proof. Games 2 and 1 only differ if Bad2 occurs, i.e. the list L∆∗ was never
initialized during the security experiment. In case of a successful forgery this means
that there are valid signatures σ∆∗,id for the concatenation (∆∗||Zid). even though
no signature on (∆∗||·) was ever generated by the challenger. This immediately
leads to an existential forgery for the regular signature scheme Sig, i.e. Pr[Bad2] =
|Pr[G1(A)]− Pr[G2(A)]| ≤ AdvUF−CMA

Sig,F (λ).

Lemma 4.21. For every PPT adversary A running Game 3, there exists a PPT
distinguisher D such that |Pr[G3(A)]− Pr[G2(A)]| ≤ AdvPRFΦ,D (λ).

Proof. Assume we have a noticeable difference |Pr[G3(A)]−Pr[G2(A)]| ≥ ε. Since
the only difference between these games is the replacement of the pseudorandom
function Φ by the random function R, this immediately leads to a distinguisher D
that achieves an advantage of ε against the pseudorandomness of Φ.

Lemma 4.22. For every PPT adversary A running Game 4, we have Pr[G3(A)] =
Q · Pr[G4(A)].

Proof. First, Pr[G3(A)] = Pr[G4(A) ∧ bad4 = false] = Pr[G4(A) | bad4 = false] ·
Pr[bad4 = false], since Game 4 will always output ‘0’ when Bad4 occurs. Second,
observe that when Bad4 does not occur, i.e. bad4 = false, the challenger guessed
the dataset ∆∗ correctly and the outcome of Game 4 is identical to the outcome of
Game 3. Since µ is chosen uniformly at random and is completely hidden to A, we
have Pr[bad4 = false] = 1

Q
and therefore Pr[G4(A)] = 1

Q
Pr[G3(A)].

Lemma 4.23. We have Pr[G5(A)] = Pr[G4(A)]

Proof. The two games are perfectly indistinguishable, corresponding to two different
samplings of randomness.
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Lemma 4.24. If there exists a PPT adversary A for whom Bad6 occurs with
non-negligible probability during Game 7 as described in Theorem 4.19, there exists
a PPT simulator S who can solve the FDHI problem (see Definition 2.42) with
non-negligible probability.

Proof. Assume we have a PPT adversary A that can produce the result Bad6 during
Game 6. We show how a simulator S can use this to break the FDHI assumption.
Given (g1, g2, g

z
2, g

v
2 , g

z
v
1 , g

u
1 , g

u
v
1 ), simulator S simulates Game 6.

Setup : Simulator S chooses aj ∈ Zp uniformly at random for j ∈ [T ] and
sets Hj = g

aj
1 . Additionally, it fixes a regular signature scheme Sig =

(KeyGenSig, SignSig, VerSig) and a random function R : {0, 1}∗ → Zp. It gives
the public parameters pp = (λ, n, T, bgp, H0, . . . HT , Sig,R) to A.

KeyGen : Simulator S chooses an index µ ∈ {1, . . . , Q} uniformly at random.
During key generation, it chooses bi, si ∈ Zp uniformly at random for all
i = 1, . . . , n. It sets hi = gbit · e (g1, g

z
2)si . It chooses y ∈ Zp uniformly at

random and sets Y = gy2 . Additionally, it generates a key pair (skSig, pkSig)←
KeyGenSig(1λ). It gives the public key pk = (h1, . . . , hn, pkSig, Y ) to A.

Queries Let k be a counter for the number of datasets queried by A (initially,
it sets k = 1). For every new queried dataset ∆, simulator S creates a list
L∆ of tuples (τ,m, r), which collects all the label/message/randomness tuples
queried by the adversary on ∆ and the respectively generated authenticators.
Moreover, whenever the k-th new dataset ∆k is queried, S does the following:
If k = µ, it samples a random ξµ ∈ Zp, sets Zµ = (gz2)ξµ and stores ξµ. If k 6= µ,
it samples a random ξk ∈ Zp and sets Zk = (gv2)ξk and stores ξk. Since all Zk
are randomly distributed in G2 they have the same distribution as in Game 6.
Given a query (∆, τ,m, r) with ∆ = ∆k, simulator S first computes σ∆k

←
SignSig(skSig,∆k || Zk).
If k 6= µ, it samples ρτ ∈ Zp uniformly at random and computes Uτ =

g−bτ1 · (gu1 )ρτ · g
−a0yr−

∑T

j=1 ajym[j]
1 , Λτ =

(
(g

z
v
1 )sτ · (g

u
v
1 )ρtau

) 1
ξk , and gives A =
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(σ∆k
, Zk, Uτ ,Λτ ) to A. We have

e (Λτ , Zk) = e

(((
g
z
v
1

)sτ
·
(
g
u
v
1

)ρτ) 1
ξk
, Zk

)

= e
(

((gz1)sτ · (gu1 )ρτ )
1
vξk , Zk

)

= e

((gz1)sτ · gbτ−bτ1 · g
−a0yr−

∑T

j=1 ajym[j]+a0yr+
∑T

j=1 ajym[j]
1 · (gu1 )ρτ

) 1
zk

, Zk


= hτ · e (Uτ , g2) · e

ga0r
1

T∏
j=1

g
ajm[j]
1 , gy2


= hτ · e (Uτ , g2) · e (PublicCommit(m, r), Y )

This output is indistinguishable from the challenger’s output during Game 6.
If k = µ, simulator S sets Uτ = g

−bτ−a0yr−
∑T

j=1 ajym[j]
1 , computes Λτ = (gsτ1 )

1
ξµ

and gives A = (σ∆µ , Zµ, Uτ ,Λτ ) to A . We have
e (Λτ , Zµ) = e

(
(gsτ1 )

1
ξµ , Zµ

)
= e

(
(gzsτ1 )

1
zξµ , Zµ

)
= e

(
(gzsτ1 )

1
zµ , Zµ

)
= e

(
(gzsτ1 · g

bτ−bτ+a0yr+
∑T

j=1 ajym[j]−a0yr−
∑T

j=1 ajym[j]
1 )

1
zµ , Zµ

)

= e

(
gzsτ1 · g

bτ−bτ+a0yr+
∑T

j=1 ajym[j]−a0yr−
∑T

j=1 ajym[j]
1 , g2

)

= gzsτt ·g−btaut ·gbτt ·g
ya0r+

∑T

j=1 yajm[j]
t = hτ ·e (Uτ , g2) ·e (PublicCommit(m, r), Y ).

Thus this output is indistinguishable from the challenger’s output during Game
6.
Forgery Let (P∗∆∗ , C∗, A∗) with A∗ = (σ∗∆∗ , Z∗, U∗,Λ∗) be the forgery returned
by A. S follows Game 6 to compute Û , Λ̂, Ĉ = PublicCommit(m̂, r̂). If Bad6
occurs, we have e (Λ∗, Zµ) = FunctionCommit(pk,P∗∆∗) · e (U∗, g2) · e (C∗, Y )
and e

(
Λ̂, Zµ

)
= FunctionCommit(pk,P∗∆∗) · e

(
Û , g2

)
· e
(
Ĉ, Y

)
Dividing those

equations and using the fact that Û = U∗ we obtain Λ∗
Λ̂ = (C∗

Ĉ
)

y
zξµ or equiva-

lently (Λ∗
Λ̂ )ξµ = (C∗

Ĉ
) yz and therefore W = (C∗

Ĉ
)y and W ′ = (Λ∗

Λ̂ )ξµ are a solution
to the FDHI problem. By the definition of unforgeability, we have W 6= 1.

Lemma 4.25. We have Pr[G7(A)] = Pr[G6(A)]

Proof. The two games are perfectly indistinguishable, corresponding two different
samplings of randomness.
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Lemma 4.26. Assume there exists a PPT adversary A who wins Game 7 with
non-negligible probability. Then there exists a PPT simulator S who can solve the
FDHI problem (see Def. 2.42) with non-negligible probability.

Proof. Assume we have a PPT adversary A that wins Game 7. We show how a
simulator S can use this to solve the FDHI problem.
Given (g1, g2, g

z
2, g

v
2 , g

z
v
1 , g

u
1 , g

r
u
1 ), simulator S simulates Game 7.

Setup : Simulator S chooses aj ∈ Zp uniformly at random for j ∈ [T ] and
sets Hj = g

aj
1 . Additionally, it fixes a regular signature scheme Sig =

(KeyGenSig, SignSig, VerSig) and a random function R : {0, 1}∗ → Zp. It gives
the public parameters pp = (λ, n, T, bgp, H0, . . . HT , Sig,R) to A.

KeyGen : Simulator S chooses an index µ ∈ {1, . . . , Q} uniformly at random.
During key generation, it chooses bi, si ∈ Zp uniformly at random for all
i = 1, . . . , n. It sets hi = gbit · e (g1, g

z
2)si . It sets Y = gz2. Additionally, it

generates a key pair (skSig, pkSig) ← KeyGenSig(1λ). It gives the public key
pk = (h1, . . . , hn, pkSig, Y ) to A.

Queries: Let k be a counter for the number of datasets queried by A (initially,
it sets k = 1). For every new queried dataset ∆, simulator S creates a list L∆
of tuples (τ,m, r), which collects all label/message/randomness tuples queried
by the adversary on ∆ and the respectively generated authenticators.
Moreover, whenever the k-th new dataset ∆k is queried, S does the following.
If k = µ, it samples a random ξµ ∈ Zp, sets Zµ = (gz2)ξµ and stores ξµ. If
k 6= µ, it samples a random ξk ∈ Zp and sets Zk = (gv2)ξk and stores ξk. Since
all Zk are randomly distributed in G2, they have the same distribution as in
Game 7. Given a query (∆, τ,m, r) with ∆ = ∆k, simulator S first computes
σ∆k

= Sign(skSig,∆k || Zk).
If k 6= µ it samples ρτ ∈ Zp uniformly at random and computes Uτ =

g−bτ1 · (gu1 )ρτ , Λτ =
(

(g
z
v
1 )sτ · (g

u
v
1 )ρτ · (g

z
v
1 )a0r+

∑T

j=1 ajm[j]
) 1
ξk and gives A =

(σ∆k
, Zk, Uτ ,Λτ ) to A. We have

e (Λτ , Zk) = e

((
(g

z
v
1 )sτ · (g

u
v
1 )ρτ · (g

z
v
1 )a0r+

∑T

j=1 ajm[j]
) 1
ξk
, Zk

)

= e

((
(gz1)sτ · (gu1 )ρτ · (gz1)a0r+

∑T

j=1 ajm[j]
) 1
vξk

, Zk

)

= e

((
(g

z
v
1 )sτ · gbτ1 · g−bτ1 · (g

u
v
1 )ρτ · (g

z
v
1 )a0r+

∑T

j=1 ajm[j]
) 1
zk
, Zk

)
= hτ · e (Uτ , g2) · ga0zr

t

∏T
j=1 g

ajzm[j]
t = hτ · e (Uτ , g2) · e (PublicCommit(m, r), Y ).

This output is indistinguishable from the challenger’s output during Game 7.
If k = µ, simulator S sets Uτ = g−bτ1 , Λτ = (gsτ1 · g

a0r+
∑T

j=1 ajm[j]
1 )

1
ξµ and gives

A = (σ∆µ , Zµ, Uτ ,Λτ ) to A . We have
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e (Λτ , Zµ) = e

(gsτ1 · g
a0r+

∑T

j=1 ajm[j]
1

) 1
ξµ

, Zµ


= e

(gzsτ+za0r+
∑T

j=1 zajm[j]
1

) 1
zξµ

, Zµ


= e

(gzsτ1 · g−bτ1 · gbτ1 · g
za0r+

∑T

j=1 zajm[j]
1

) 1
zµ

, Zµ


= e

(
gzsτ1 · g−bτ1 · gbτ1 · g

za0r+
∑T

j=1 zajm[j]
1 , g2

)

= gzsτt · g−bτt · gbτt · g
za0r+

∑T

j=1 zajm[j]
t = hτ · e (Uτ , g2) · e

(
g
a0r+

∑T

j=1 ajm[j]
1 , gz2

)
= hτ · e (Uτ , g2) · e (PublicCommit(m, r), Y )
and this output is indistinguishable from the challenger’s output during Game 7.

Forgery: Let (P∗∆∗ ,m∗, r∗, A∗) with A∗ = (σ∗∆∗ , Z∗, U∗,Λ∗) be the forgery re-
turned by A. S follows Game 7 to compute Û , Λ̂, m̂, r̂. If Game 7 outputs 1,
we have

e (Λ∗, Zµ) = FunctionCommit(pk,P∗∆∗) · e (U∗, g2) · e (C∗, Y ) ,

as well as

e
(
Λ̂, Zµ

)
= FunctionCommit(pk,P∗∆∗) · e

(
Û , g2

)
· e
(
Ĉ, Y

)
.

Dividing those equations yields

Λ∗

Λ̂
=
(
U∗

Û
· (C

∗

Ĉ
)z
) 1
zξµ

= (U
∗

Û
)

1
zξµ · (C

∗

Ĉ
)

1
ξµ .

Thus S can compute W = U∗

Û
, W ′ = (Λ∗

Λ̂ )ξµ · C∗
Ĉ
. We have (W ′)z = (Λ∗

Λ̂ )zξµ ·
(C∗
Ĉ

)z = U∗

Û
= W and thus (W,W ′) is a solution to the FDHI problem. Our

simulation has the same distribution as a real execution of Game 7.

4.3 Verifiable Computing on Shared Data from our
FDC

Our instantiation of a FDC can be used to build a verifiable computing scheme
for shared data supporting linear functions. Using the scheme 4.13 itself allows
for information-theoretic input privacy with respect to the verifierand information-
theoretic output privacy with respect to the verifier. By combining this with secret
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sharing we additionally obtain information-theoretic input and output privacy with
respect to the servers. That way we have shown how to achieve efficient verification
and complete information-theoretic privacy.
Secure multi-party computation performed on shared data is realized using a

secret sharing scheme, e.g. Shamir secret sharing [97], which we briefly describe. To
share a secret m ∈ Zp, the client chooses random a1, . . . , at−1

$← Zp and computes
the polynomial P (x) = m+ a1x+ . . .+ at−1x

t−1. By evaluating P (j) for j ∈ [N ] it
creates N shares which are given to N shareholders. Since a polynomial of degree
t − 1 is uniquely determined by t points (j, P (j)) one can recover the secret by
requesting t shares. At the same time, even a computationally unbounded adversary
cannot learn anything about m from t− 1 shares or less (see [97]). Shamir secret
sharing is linearly homomorphic, i.e. αP (j) + βP ′(j) = (αP + βP ′)(j) for any two
polynomials P, P ′ ∈ Fp[x] and constants α, β ∈ Zp. Linear functions can thus be
evaluated locally on the shares.
Verifiable computing for shared data can be performed as follows.

Construction 4.27.

VKeyGen(1λ,P) : On input a security parameter λ and the description of a
function f given as a labeled program P = (f, τ1, . . . , τn), it runs pp ←
Setup(1λ), (sk′, pk) ← KeyGen(pp), and F ← PublicCommit(pk,P). It sets
sk = (sk′,P), ek = P, vk = (pk, F ) and returns (sk, ek, vk).

ProbGen(sk, x): On input the secret key sk and x = (m1, . . . ,mn,∆) consisting of
a tuple of n messages mi ∈ ZTp for i ∈ [n] and a dataset identifier ∆ ∈ {0, 1}∗,
it chooses r1, . . . , rn

$← Zp uniformly at random. It applies Shamir secret
sharing to each message entry mi[j] for all i ∈ [n], j ∈ [T ] as well as to all
ri for i ∈ [n], i.e. it computes (s1(mi[j]), . . . , sN(mi[j]))← SShare(mi[j]) for
all i ∈ [n], j ∈ [T ], as well as (s1(ri), . . . , sN(mi))← SShare(ri) for all i ∈ [n].
Then, it runs Ai ← PrivateCommit(sk,mi, ri,∆, τ). It chooses k∗ ∈ [N ]. This
will identify the distinguished shareholder that will perform operations on
authenticators. k∗ can be chosen according to a clients preferences. It outputs
the shares sk(mi[j]) as well as sk(ri) giving sk(mi[j]) and sk(ri) to shareholder k
for i ∈ [n], j ∈ [T ], k ∈ [N ], and additionally outputs A1, . . . , An to shareholder
k∗. It sets ρx = 0 and σx = (∆, {Ai, sk(mi[j]), sk(ri)}i∈[n],j∈[T ],k∈[N ]). It outputs
(σx, ρx).

Compute(ek, σx) : On input an evaluation key ek and an encoded input σx, the
algorithm parses ek = (f, τ1, . . . , τn) with f a linear function given by its
coefficient vector f1, . . . , fn) and σx = (∆, {Ai, sk(mi[j]), sk(ri)}i∈[n],j∈[T ],k∈[N ]).
Each shareholder k computes sk(m∗[j]) = ∑n

i=1 fi ·sk(mi[j]), as well as sk(r∗) =∑n
i=1 fi · sk(ri). They set sk(m∗) = (sk(m∗[1]), . . . , sk(m∗[T ])).

Additionally k∗ runs A∗ ← Eval(f, A1, . . . , An).
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It sets σy = (∆, A∗, {sk(m∗), sk(r∗)}k∈[N ]) and outputs σy.
Verify(vk, ρx, σy) : On input a verification key vk, a decoding value ρx and an
encoded value σy, it parses vk = (pk, F ), ρx = 0, as well as σy = (∆, A∗,
{sk(m∗), sk(r∗)}k∈[N ]). It chooses a subset B ⊂ [N ] with |B| = t. It creates
the reconstruction vector (w1, . . . , wt) derived from B (see Sec. 2.4 for details).
It computes m∗ = ∑

k∈B wksk(m∗) as well as r∗ = ∑
k∈B wksk(r∗). Then, it

runs C∗ ← PublicCommit(m∗, r∗).
Finally, it runs b ← FunctionVerify(pk, A∗, C∗, F,∆). If b = 0 it outputs ⊥,
else it outputs m∗.

We now look at the basic properties of this construction. A first and obvious
requirement is correctness, showing that any honest execution of the algorithm
leads to verifiers accepting a correct result.

Proposition 4.28. Construction 4.27 is a correct verifiable computing scheme ins
the sense of Def. 2.30

Proof. Let f be an arbitrary linear function, x = (m1, . . . ,mn,∆) be an arbitrary in-
put. Let f be described as a labeled program P = (f, τ1, . . . , τn). Let (sk, ek, pk)←
VKeyGen(1λ,P), (σx, ρx)← ProbGen(sk, x), and σy ← Compute(ek, σx).

Let y = ∑n
i=1 fimi. We parse σx = (∆, {Ai, sk(mi[j]), sk(ri)}i∈[n],j∈[T ],k∈[N ]).

Then we have

C∗ =
∏
k∈B

sk(C∗)wk

=
∏
k∈B

(PublicCommit(sk(y), sk(r∗)))wk

=
∏
k∈B

(
PublicCommit(sk(

n∑
i=1

fimi), sk(
n∑
i=1

firi))
)wk

=
∏
k∈B

(
PublicCommit(

n∑
i=1

sk(fimi),
n∑
i=1

sk(firi))
)wk

.

By the correctness of our FDC scheme (see Theorem 4.14) we have therefore
Verify(vk, ρx, σy) = 1.

Next we consider the case of third party verifiers and show that this construction
is even publicly verifiable.

Proposition 4.29. Construction 4.27 is a publicly verifiable computing scheme.

Proof. Note, that ρx = 0 by definition. Obviously this does not need to be kept
secret. Since we have vk = (pk, F ), where pk is the public key of the FDC scheme
(see Construction 4.13) and F is a function commitment. Both values are public.
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Now we formally show that this combination of our FDC with Shamir secret
sharing does indeed lead to secure verifiable computing scheme.

Proposition 4.30. Construction 4.27 is an adaptively secure verifiable computing
scheme in the sense of Def. 2.33.

Proof. Assume we have a PPT adversary A that can produce a successful forgery
during the security experiment EXPAdaptVerify

A [VC, f, λ] (see Def. 2.33), we then show
how a simulator S can use A to either win the security experiment EXPUF−CMA

A,FDC
(see Def. 4.9) or the security experiment EXPBind

A,Com(λ) (see Def. 4.2).
Setup S runs pp← HSetup(1λ) and outputs pp. It chooses an arbitrary linear
function f described as a labeled program P = (f, τ1, . . . , τn).
Let be an , x = (m1, . . . ,mm,∆) be an arbitrary input. Let f be Let
(sk, ek, pk)← VKeyGen(1λ,P).
Key Generation Simulator S runs (sk′, ek, vk) ← KeyGen(pp). By con-
struction, ek = 0. Furthermore it runs F ← PublicCommit(pk,P). It sets
sk = (sk′,P), ek = P , vk = (pk, F ) and returns (sk, ek, pk).
Queries When A queries x = (m1, . . . ,mn,∆) S does the following. It chooses
r1, . . . , rn

$← Zp uniformly at random, and queries for (∆, τi,mi, ri) for i ∈ [n],
receiving Ai. It runs {sk(mi[j])}k∈[N ] ← SShare(mi[j]) for i ∈ n, j ∈ [T ] as
well as {sk(ri}k∈[N ] ← SShare(ri) and outputs
σx = (∆, {Ai, sk(mi[j]), sk(ri)}i∈[n],j∈[T ],k∈[N ]). Note that this is the identical
response to an honest evaluation of ProbGen.
Forgery A returns σ∗y . S parses σ∗y = ∆, A∗, {sk(m∗), sk(r∗)}k∈[N ]). It chooses
a subset B of size t and runs m∗ ← SReconstruct(B, {sk(m∗)}k∈B), as well as
r∗ ← SReconstruct(B, {sk(r∗)}k∈B).
It computes m̂ = ∑n

i=1 fimi as well as r̂ = ∑n
i=1 firi. Then, it sets Ĉ ←

PublicCommit(m̂, r̂) and C∗ ← PublicCommit(m∗, r∗). It checks, whether C∗ =
Ĉ. If not (m∗, r∗), (m̂, r̂) wins the binding experiment EXPBind

A,Com(λ) (see
Def. 4.2). If C∗ 6= Ĉ, it sets P∗∆∗ = (P ,∆∗) and outputs (P∗∆∗ , A∗, C∗). If
Verify(vk, ρx, σy) = 1, then (P∗∆∗ , A∗, C∗) is a type 2 forgery as defined in
Def. 4.8.

If we have EXPAdaptVerify
A [VC, f, λ] = 1, then in particular we have σ∗y = (∆, A∗,

{sk(C∗)}k∈[N ]) such that for C∗ = ∏
k∈B sk(C∗)wk we have FunctionVerify(pk, A∗,

C∗, F, ∆) = 1, which implies a forgery in EXPUF−CMA
A,FDC (λ).

Therefore the claim follows from Theorems 4.15 and 4.19.

Furthermore we can show that our construction preserves efficient verification.
After a one time function-dependent preprocessing verification can indeed be faster
than a computation of the function itself.
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Proposition 4.31. Construction 4.27 is a verifiable computing scheme that achieves
amortized efficiency in the sense of Def. 2.35.

Proof. Let t(n) be the running time of an evaluation of the linear function f . Then
we have t(n) = O(n).

An evaluation of FunctionVerify consists of a signature verification, two pairing
evaluations, and two group operations. Thus their combined running time is
independent of n. Therefore, our construction achieves amortized efficiency for
suitably large n.

Finally we show that our verifiable computing scheme achieves complete infor-
mation theoretic privacy. Over the following four propositions we prove that it
offers information-theoretic input privacy with respect to the servers, information-
theoretic output privacy with respect to the servers, information-theoretic input
privacy with respect to the verifier and information-theoretic output privacy with
respect to the verifier which have each been defined in Section 3.1.

Proposition 4.32. Construction 4.27 achieves information-theoretic input privacy
with respect to the servers in the sense of Def. 3.1 against an adversary corrupting
at most t− 1 shareholders.

Proof. Setup: Let f be a linear function given by its coefficient vector (f1, . . . , fn)
and P = (f, τ1, . . . , τn) and ∆← {0, 1}∗ a dataset identifier.

Let m1, . . . ,mn ← ZTp and m′1, . . . ,m′n ← ZTp be two tuples of messages. Setting
x0 = (m1, . . . ,mn,∆) and x1 = (m′1, . . . ,m′n,∆), let σxi ← ProbGen(sk, xi). The
adversary A chooses a subset B ⊂ [N ] of size |B| = t− 1. We assume k∗ ∈ B. If
the adversary does not corrupt k∗ the claim immediately follows from the hiding
property of Shamir secret sharing [97].

Thus the adversary obtains and seeks to distinguish
(x0, x1,∆, {Ai, sk(mi[j]), sk(ri)}i∈[n],j∈[T ],k∈B)
and
(x0, x1,∆, {A′i, sk(m′i[j]), sk(r′i)}i∈[n],j∈[T ],k∈B).
By the hiding property of Shamir secret sharing
(x0, x1,∆, {Ai, sk(mi[j]), sk(ri)}i∈[n],j∈[T ],k∈B)
is perfectly indistinguishable from
(x0, x1,∆, {Ai, Rijk |Ai ← PrivateCommit(sk,mi, ri,∆, τi), Rijk

$← Zp}i∈[n],j∈[T ],k∈B).
Obviously this is perfectly indistinguishable from
(x0, x1,∆, {Ai, R′ijk |Ai ← PrivateCommit(sk,mi, ri,∆, τi), R′ijk

$← Zp}i∈[n],j∈[T ],k∈B),
as this is just another sampling of randomness. By the hiding property of the FDC
(see Theorem 4.16), this is perfectly indistinguishable from (x0, x1,∆, {A′i, R′ijk |A′i ←
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PrivateCommit(sk,m′i, r′i,∆, τi), R′ijk
$← Zp}i∈[n],j∈[T ],k∈B). Again by the hiding prop-

erty of Shamir secret sharing this is perfectly indistinguishable from (x0, x1, ∆,
{A′i, sk(m′i[j]), sk(r′i)}i∈[n],j∈[T ],k∈B). This completes the proof.

Proposition 4.33. Construction 4.27 achieves information-theoretic output pri-
vacy with respect to the servers in the sense of Def. 3.2 against an adversary
corrupting at most t− 1 shareholders.

Proof. Setup: This setup is identical to Proposition 4.32.

Let σyi ← Compute(ek, σxi) for i ∈ {0, 1} and y0 = ∑n
i=1 fimi, y1 = ∑n

i=1 fim
′
i,

r = ∑n
i=1 firi, r′ =

∑n
i=1 fir

′
i.

We parse σy0 = (∆, A, {sk(y0), sk(r)}k∈[N ]) and σy1 = (∆, A′, {sk(y1), sk(r′)}k∈[N ]).
Thus the adversary obtains and seeks to distinguish (y0, y1,∆, A, {sk(y0), sk(r)}k∈B)
and (y0, y1,∆, A′, {sk(y1), sk(r′)}k∈B).

By the hiding property of Shamir secret sharing (y0, y1,∆, A, {sk(y0), sk(r)}k∈B)
is perfectly indistinguishable from (y0, y1,∆, {A,Rk, Sk | Rk

$← G1}k∈B). Obviously
this is perfectly indistinguishable from (y0, y1,∆, {A,R′k, S ′k | R′k

$← G1}k∈B) as this
is just another sampling of randomness. By the hiding property of the FDC (see
Theorem 4.16), this is perfectly indistinguishable from (y0, y1,∆, {A′, R′k, S ′k | R′k

$←
G1}k∈B). Again by the hiding property of Shamir secret sharing this is perfectly
indistinguishable from (y0, y1,∆, A′, {sk(y1), sk(r′)}k∈B). This completes the proof.

Proposition 4.34. Construction 4.27 achieves information-theoretic input privacy
with respect to the verifier in the sense of Def. 3.3.

Proof. Let f be a linear function given by its coefficient vector (f1, . . . , fn) and
P = (f, τ1, . . . , τn) and ∆← {0, 1}∗ a dataset identifier.
Let m1, . . . ,mn ← ZTp and m′1, . . . ,m′n ← ZTp be two tuples of messages. such

that ∑n
i=1 fimi = ∑n

i=1 fim
′
i.

Setting x0 = (m1, . . . ,mn,∆) and x1 = (m′1, . . . ,m′n,∆), let σxi ← ProbGen(sk, xi).
Let σyi ← Compute(ek, σxi) for i ∈ {0, 1} and y = ∑n

i=1 fimi, r = ∑n
i=1 firi,

r′ = ∑n
i=1 fir

′
i. By assumption we have y = ∑n

i=1 fim
′
i.

We parse σy0 = (∆, A, {sk(y), sk(r)}k∈[N ]) and σy1 = (∆, A′, {sk(y), sk(r′)}k∈[N ]).
Thus the adversary obtains and seeks to distinguish

(x0, x1,∆, A, {sk(y), sk(r)}k∈B) and (x0, x1,∆, A′, {sk(y), sk(r′)}k∈B).
Note that an adversary A that can distinguish (x0, x1,∆, A, {sk(y), sk(r)}k∈B)

and (x0, x1,∆, A′, {sk(y), sk(r′)}k∈B) immediately implies an adversary A′ that can
distinguish (x0, x1,∆, y, r) and (x0, x1,∆, y, r′). Since both r and r′ are distributed
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uniformly at random as linear combinations of uniformly randomly chosen values,
these are perfectly indistinguishable.

Proposition 4.35. Construction 4.27 achieves information-theoretic output pri-
vacy with respect to the verifier in the sense of Def. 3.4.

Proof. Let f be a linear function given by its coefficient vector (f1, . . . , fn) and
P = (f, τ1, . . . , τn) and ∆← {0, 1}∗ a dataset identifier.

We first show correctness in the sense of Def. 3.4. We provide the three additional
algorithms.

HideCompute(ek, σx) : The computation algorithm takes the evaluation key ek
and the encoded input σx.
It parses σx = (∆, {Ai, sk(mi[j]), sk(ri)}i∈[n],j∈[T ],k∈[N ]). Each shareholder k
computes sk(m∗[j]) = ∑n

i=1 fi · sk(mi[j]), as well as sk(r∗) = ∑n
i=1 fi · sk(ri).

They run sk(C∗)← PublicCommit(sk(m∗), sk(r∗)).
Additionally k∗ runs A∗ ← Eval(f, A1, . . . , An).
It sets σ̃y = (∆, A∗, {sk(C∗)}k∈[N ]) and outputs the encoded version σ̃y.

HideVerify(vk, σ̃y) : On input a verification key vk = (pk, F ) and an encoded
value σ̃y, it parses σ̃y = (∆, A∗, {sk(C∗)}k∈[N ]). It chooses a subset B ⊂ [N ]
with |B| = t. It creates the reconstruction vector (w1, . . . , wt) derived from B
(see Sec. 2.4 for details). Then, it runs C∗ ← PublicCommit(m∗, r∗). Finally,
it runs b← FunctionVerify(pk, A∗, C∗, F,∆). If b = 0 it outputs ⊥, else it sets
σ̂y = (∆, A∗, C∗) outputs σ̂y.

Decode(vk, ρx, σ̂y, σy) : It takes as input the verification key vk, a decoding value
ρx = 0, and encoded values σ̂y, σy. It parses σy = (∆, A∗, {sk(m∗), sk(r∗)}k∈[N ]),
σ̂y = (∆, A∗, C∗). It computes m∗ = ∑

k∈B wksk(m∗) and r∗ = ∑
k∈B wksk(r∗),

and runs b← PublicDecommit(C∗,m∗, r∗). If b = 0 it outputs ⊥, else it returns
m∗.

Now we show privacy in the sense of Def. 3.4.
Let m1, . . . ,mn ← ZTp and m′1, . . . ,m′n ← ZTp be two tuples of messages.

Setting x0 = (m1, . . . ,mn,∆) and x1 = (m′1, . . . ,m′n,∆), let σxi ← ProbGen(sk, xi).
Let σyi ← Compute(ek, σxi) for i ∈ {0, 1} and y0 = ∑n

i=1 fimi, y1 = ∑n
i=1 fim

′
i.

We parse σy0 = (∆, A, {sk(C)}k∈[N ]) and σy1 = (∆, A′, {sk(C ′)}k∈[N ]).
Note that an adversary A that can distinguish (y0, y1,∆, A, {sk(C)}k∈[N ]) and

(y0, y1,∆, A′, {sk(C ′)}k∈[N ]) immediately implies an adversary A′ that can distin-
guish (y0, y1,∆, A, C) and (y0, y1,∆, A′, C ′).
However, (y0, y1,∆, A, C) and (y0, y1,∆, A′, C ′) are perfectly indistinguishable

by the hiding property of the FDC (see Theorem 4.16).
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thenticators

Outsourcing costly computations to potentially untrustworthy servers leads to the
risk of receiving incorrect results. Homomorphic authenticator schemes can be
used to make such computations verifiable, allowing verifiers to detect incorrect
results. In the case of third party verifiers this leads to a potential attack on
privacy. A curious verifier can try to derive information about the inputs from the
authenticator to the output. To protect against this we require schemes to provide
input privacy with respect to the verifier.
Depending on the scenario, specific properties are required. To use verifiable

delegation for instance for second order statistics, like variances or covariances,
we require homomorphic authenticators that support quadratic functions. Before
our work, schemes either did not provide input privacy with respect to the verifier
or were based on multilinear maps. Multilinear maps have suffered from strong
cryptanalytic attacks, and are therefore hard to instantiate.

Many interesting computations involve multiple clients; for instance, computing
on health data across datasets provided by multiple hospitals. Keeping clients
separate instead of merging all data supports fine-grained authenticity. In the
multi-client case, a new type of attacker on the input privacy has to be considered.
Where we previously considered an external verifier trying to learn about the inputs,
we now also consider the scenario of one (or several) of the contributing clients
learning about the inputs of a different client. Before this work, no multi-client
scheme was known to provide any form of input privacy with respect to the verifier.
In this chapter, we present novel homomorphic authenticator schemes. First,

to address the case of verifying quadratic functions, we present the first scheme
from bilinear maps supporting quadratic functions to provide information-theoretic
input privacy with respect to the verifier. Then, we present the first multi-key
homomorphic authenticator scheme that achieves even information-theoretic input
privacy with respect to the verifier against both the classical (external) adversaries
and our newly defined (internal) adversaries.
In the previous chapter we introduced the concept of FDCs and presented a
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first instantiation. Later in this thesis (see chapter 7) we will discuss how to turn
suitable homomorphic authenticators into FDCs. In this chapter, we present such
homomorphic authenticator schemes, fine-tailored towards specific applications –
linear functions over data from multiple sources and multivariate polynomials of
degree 2 respectively.

Contribution. In this chapter we present novel homomorphic signature schemes
fine-tailored towards specific problems. First, we solve the problem of providing
efficient and context hiding verification for multivariate quadratic functions. The
core component of our solution is the new homomorphic signature scheme CHQS
(Context Hiding Quadratic Signatures). CHQS allows to generate a signature on
the function value of a multivariate quadratic polynomial from signatures on the
input values without knowledge of the signing key. CHQS is perfectly context
hiding, i.e. the signature of the output value does not leak any information about
the input values. Furthermore, verification time is linear (in an amortized sense).
A trade-off of our approach is a signature size that grows during homomorphic
evaluation, so our scheme is not succinct. Still, freshly generated signatures are of
constant size. Like most solutions in this area, the CHQS construction is based
on bilinear groups. However, CHQS showcases for the first time how to use such
groups to simultaneously achieve both public verification and multiplicative depth.

Next, we present the first publicly verifiable homomorphic authenticator scheme
providing efficient and context hiding verification in the setting of multiple clients
(allowing for multiple keys). We construct a multi-key linearly homomorphic
signature scheme, and thus focus on the public key setting. We first define the
context hiding property in the multi-key case. We then describe a new publicly
verifiable multi-key linearly homomorphic authenticator scheme. Our scheme
allows to generate an authenticator on the function value of a linear function from
authenticators on the input values of various identities without knowledge of the
authentication key. Furthermore, our scheme is perfectly context hiding, i.e. the
authenticator to the output value does not leak any information about the input
values. Using our multi-key homomorphic authenticator scheme, the verification
procedure for outsourced computations of linear functions can be implemented as
follows. The various clients each upload data, signed under their personal private
key, to the cloud. The cloud server computes the result of the given function over
these data. It also generates an authenticator to this result from the signatures
on the inputs. The verifier uses this authenticator to check for correctness of the
computation, by using the verification keys associated to the clients providing input
to the computation. Regarding performance, verification time depends only on the
number of identities involved (in an amortized sense).
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Organization. This chapter is structured as follows. We first provide our def-
initions for the context hiding property in the multi-key scenario in Sec. 5.1.
Next, we construct a multi-key homomorphic authenticator scheme that achieves
information-theoretic input privacy with respect to the verifier (Sec. 5.2). After
presenting the construction in Sec.5.2.1, we show its correctness and analyze its
efficiency in Sec.5.2.2. We then discuss its security, first with respect to input
privacy in the form of the context hiding property in Sec.5.2.3 and afterward
with respect to unforgeability in Sec.5.2.4. Afterwards, we first present CHQS,
our homomorphic authenticator scheme supporting quadratic functions, providing
information-theoretic input privacy with respect to the verifier (Sec. 5.3). After
presenting the construction in Sec. 5.3.1, we show its correctness and analyze its
efficiency in Sec. 5.3.2. We then discuss its security, first with respect to input
privacy in the form of the context hiding property in Sec. 5.3.3 and afterward with
respect to unforgeability in Sec.5.3.4.

Publications. This chapter is based on publications [S3] and [S4].

Related Work. There are several constructions for homomorphic authenticators
that go beyond the linear case. Backes et al. presented a homomorphic MAC for
arithmetic circuits of degree 2 constructed from bilinear maps [12]. However, this
approach is not context hiding and only offers private verifiability, while our scheme
CHQS (see Construction 5.17) offers verifiability for arbitrary third parties and is
perfectly context hiding. Catalano et al. showed how to construct homomorphic
signatures for arithmetic circuits of fixed depth from graded encoding schemes, a
special type of multilinear maps [41]. Existing graded encoding schemes [49, 61]
have, however, suffered strong cryptanalytic attacks in recent years [77], [48,82].
In contrast, CHQS can be instantiated with elliptic curve-based bilinear groups,
which have long been a reliable building block in cryptography.

Some lattice-based homomorphic signatures schemes [59, 70] support boolean
circuits of fixed degree. However, these schemes suffer the performance drawback of
signing every single input bit, while our solution can sign entire finite field elements.
Additionally [59] is also not shown to be context hiding.

There are also known multi-key homomorphic authenticators. Agrawal et al. [4]
considered a notion of multi source signatures for network coding, and proposed
a solution for linear functions. Network coding signatures are one application of
homomorphic signatures, where signed data is combined to produce new signed
data. Their solution allows for the usage of different keys in combining signatures,
but differ slightly in their syntax and homomorphic property, as formalized in
our definition of evaluation correctness. Unlike this work, our scheme achieves
efficient verification and is perfectly context hiding. Fiore et al. [59] have even
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constructed multi-key homomorphic authenticators for boolean circuits of bounded
depth. While our scheme only supports linear functions, it allows the authentication
of field elements, while in the case of [59] each single bit is signed individually. Thus
our authenticators are significantly smaller. Both their and our solution achieve
fast amortized verification, independently of function complexity. Their solution,
however, is not context hiding. Lai et al. [76] proposed a generic constructions of
multi-key homomorphic authenticators from zk-SNARGs. So far, zk-SNARGs are
only known to exist under non-falsifiable assumptions [67]. Their constructions
only allows for an a priori set bound of applications of Eval on authenticators that
have been produced by Eval. Our construction has no such bound.

Verifiable computation has also been considered in the multi-key setting [46,71].
Here the verifier is always one of the clients providing inputs to the functions,
whereas our construction is publicly verifiable. Existing multi-client verifiable
computation schemes also require a message from the verifier to the server, where
it has to provide an encoding of the function f , which is not necessary for our
homomorphic authenticators. Furthermore, the communication between the server
and the verifier is at least linear in the total number of inputs of f , whereas in
the case of succinct multi-key homomorphic authenticators the communication
between server and verifier is proportional only to the number of clients. Finally,
in multi-client verifiable computation, an encoding of one input can only be used
in a single computation. Any input to be used in multiple computations has to be
uploaded for each computation. In contrast, multi-key homomorphic authenticators
allow the one-time authentication of every input and allow it to be used in an
unbounded number of computations.

5.1 Context Hiding Multi-Key Homomorphic
Authenticators

We are now ready to provide our notion of input privacy, in the form of the context
hiding property. We adapt this to the multi-key setting.
Our definition for the context hiding property is inspired by Gorbunov et al.’s

definition [70] for the single-key case. However, in our case, the simulator is explicitly
given the circuit for which the authenticator is supposed to verify. With respect
to this difference, our definition is more general. We stress that the circuit is not
hidden in either of these notions. Furthermore, we differentiate between an external
adversary and an internal adversary, that corrupts some of the various identities
involved in a computation, i.e. knows their secret keys and inputs to a computation.
Such an adversary will learn more than the outcome of the computation, since
it knows some of the secret keys. It is however desirable for any non-corrupted
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party to achieve context hiding privacy even against other parties involved in the
computation, as far as that is possible. We now formally define context hiding for
both kinds of adversaries. Finally we describe an even stronger variation of the
context hiding property, where all secret keys, inputs and signatures are known.
Note, that this variation is analogous to the context hiding definition of Catalano
et al. [37].

Definition 5.1 (External Context Hiding). A (multi-key) homomorphic authenti-
cator scheme for multi-labeled programs is externally context hiding if there exist
two additional PPT procedures σ̃ ← Hide({vkid}id∈P ,m, σ) and
HideVer({vkid}id∈ID, P∆,m, σ̃) such that:
Correctness: For any pp ← Setup(1λ), (skid, ekid, vkid) ← KeyGen(pp) and any
tuple (P∆,m, σ), such that Ver(P∆, {vkid}id∈P ,m, σ) = 1,
and σ̃ ← Hide({vkid}id∈ID,m, σ), it holds that HideVer({vkid}id∈ID,P∆,m, σ̃) =
1.

Unforgeability: The homomorphic authenticator scheme is unforgeable in the
sense of Def. 2.11 when replacing the algorithm Ver with HideVer in the security
experiment.

Context Hiding Security: There is a simulator Sim such that, for any fixed
(worst-case) choice of {(skid, ekid, vkid)← KeyGen(pp)}id∈P , any multi-labeled
program P∆ = (f, l1, . . . , ln,∆), messages m1, . . . ,mn, and distinguisher D
there exists a function ε(λ) = negl(λ) such that

Pr[D(Hide({vkid}id∈P ,m, σ)) = 1]−Pr[D(Sim({skid}id∈P ,P∆,m)) = 1]| = ε(λ),

where σi ← Auth(skidi ,∆, li,mi), m ← f(m1, . . . ,mn), σ ← Eval(f, {(σi,
eksi)}i∈[n]), and the probabilities are taken over the randomness of Auth,Hide
and Sim.

If ε(λ) = negl(λ), we call the multi-key homomorphic authenticator scheme statisti-
cally externally context hiding. If ε(λ) = 0, we call it perfectly externally context
hiding.

Note that correctness and unforgeability are the same properties as defined in
Def. 2.18, only adapted to the multi-key setting.
The following definition only makes sense in the multi-key setting.

Definition 5.2 (Internal Context Hiding). A multi-key homomorphic authenti-
cator scheme for multi-labeled programs is internally context hiding if there exist
two additional PPT procedures σ̃ ← Hide({vkid}id∈P ,m, σ) and HideVer({vkid}id∈ID,
P∆,m, σ̃) such that:
Correctness: This is the same property as defined in Def. 5.1.
Unforgeability: This is the same property as defined in Def. 5.1.
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Context Hiding Security: There is a simulator Sim such that, for any fixed
(worst-case) choice of {(skid, ekid, vkid)← KeyGen(pp)}id∈P , any multi-labeled
program P∆ = (f, l1, . . . , ln,∆), messages m1, . . . ,mn, and distinguisher D
there exists a function ε(λ) = negl(λ) such that

|Pr[D(I,Hide(vk,m, σ)) = 1]− Pr[D(I, Sim({skid}id∈P ,P∆,m)) = 1]|
= ε(λ),

where I = ({skid}id∈ ˜ID, {(m(τ,id), σ(τ,id))}id∈ ˜ID), ˜ID ⊂ ID is a set of corrupted
identities, σi ← Auth(skidi ,∆, li,mi), m ← f(m1, . . . ,mn), σ ← Eval(f, {(σi,
eksi)}i∈[n]), and the probabilities are taken over the randomness of Auth,Hide
and Sim.

If ε(λ) = negl(λ), we call the multi-key homomorphic authenticator scheme statisti-
cally internally context hiding. If ε(λ) = 0, we call it perfectly internally context
hiding.
These two definitions along with Def. 2.18 provide three different notions for

the context hiding property. External context hiding models an attacker that tries
to distinguish a simulated authenticator derived form the result of a computation
from an authenticator derived by using the homomorphic property in the form of
the Eval algorithm. This external attacker has all the information a public verifier
might have at his disposal, including the secret keys, modeling a leaked key. The
internal attacker has all the information a public verifier might have at his disposal
as well as all the information someone contributing to the computation would have,
i.e. its own inputs and the authenticators it provided. Def. 2.18 presents an even
stronger notion as here the distinguisher knows all the inputs and authenticators
provided to the computation.

5.2 A Publicly Verifiable Multi-Key Linearly
Homomorphic Authenticator Scheme

In this section, we present our multi-key homomorphic signature scheme, i.e. a
publicly verifiable homomorphic authenticator. It supports linear functions. We
analyze it with respect to its correctness, its succinctness and efficient verifiability.
Finally, we prove that our scheme is indeed perfectly context hiding. Unforgeability
is dealt with in the next section.

5.2.1 Our Construction
In our construction, a homomorphically derived authenticator consists of both
components associated to an identity id and global elements. In order to prevent
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the elements associated to id from leaking information about the inputs provided
by id, the authenticators are randomized, and the global elements are used to
deal with the randomization in order to preserve the homomorphic property. Our
verification procedure naturally splits into two parts, only one of which involves
the actual outcome of the computation. The other part only depends on the public
verification key vk and the function to be evaluated, and can thus be precomputed.
This allows for amortized efficient verification, i.e. after an expensive function-
dependent one-time precomputation, all subsequent verifications occur in constant
time.

Notation If we have n possibly distinct messages m1, . . . ,mn, we denote by mi

the ith message. Since our messages are vectors, i.e. m ∈ ZTp , we write m[j] to
indicate the jth entry of message vector m for j ∈ [T ]. Therefore mi[j] denotes
the jth entry of the ith message. Given a linear function f , its ith coefficient is
denoted by fi, i.e. f(m1, . . . ,mn) = ∑n

i=1 fimi. If we have n possibly distinct
authenticator components, e.g. Λ1, . . . ,Λn, we denote by Λi the ith component.
A single authenticator comprises different components, corresponding to different
identities. For authenticator Λ, we denote by Λid the component for identity
id. We denote by Λid,i the component of the ith authenticator corresponding to
identity id. We use a regular signature scheme Sig = (KeyGenSig, SignSig,VerSig) as
a building block. (skSig, pkSig) denotes a secret/public key pair for Sig. || denotes
concatenation.

Construction 5.3.
MKLin:
Setup(1λ) : On input a security parameter λ, this algorithm chooses the parame-
ters k, n, T ∈ Z, a bilinear group bgp = (p,G1,G2,GT , g1, g2, e) $← G(1λ), the
message spaceM = ZTp , the tag space T = [n], and the identity space ID = [k].
Additionally it fixes a pseudorandom function F : K × {0, 1}∗ → Zp, as well
as a signature scheme Sig. It chooses H1, . . . HT

$← G1 uniformly at random.
It outputs the public parameters pp = (k, n, T, bgp, H1, . . . , HT , F, Sig, λ).

KeyGen(pp) : On input the public parameters pp, the algorithm chooses K $← K
uniformly at random. It runs (skSig, pkSig) ← KeyGenSig(1λ). It chooses
x1, . . . , xn, y

$← Zp uniformly at random. It sets hi = gxit for all i ∈ [n],
as well as Y = gy2 . It sets sk = (K, skSig, x1, . . . xn, y), ek = ∅, vk =
(pkSig, h1, . . . , hn, Y ) and outputs (sk, ek, vk). Each identity performs KeyGen()
individually, and hence obtains its own key tuple (skid, ekid, vkid).

Auth(sk,∆, l,m) : On input a secret key sk, a dataset identifier ∆, a label
l = (id, τ), and a message m ∈ ZTp , the algorithm computes z = ΦK(∆),
sets Z = gz2 and binds this parameter to the dataset by signing it, i.e. it
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computes σ∆ ← SignSig(skSig, Z||∆). Then it chooses r, s ∈ Zp uniformly at
random and sets R = gr−ys1 , S = g−s2 . It parses l = (id, τ) and computes A =(
gxl+r1 ·∏T

j=1H
m[j]
j

) 1
z and C = gs1 ·

∏T
j=1 H

1
y
m[j]

j . It sets Λ = {(id, σ∆, Z, A,C)}
and outputs σ = (Λ, R, S).

Eval(f, {(σi, eksi)}i∈[n]) : On input an function f : Mn → M and a set {(σi,
eksi)}i∈[n] of authenticators and evaluation keys (in our construction, no eval-
uation keys are needed, so this set contains only authenticators), the algo-
rithm parses f = (f1, . . . fn) as a coefficient vector. It parses each σi as
(Λi, Ri, Si) and sets R = ∏n

i=1R
fi
i , S = ∏n

i=1 S
fi
i . Set LID = ⋃n

i=1{idi}. For
each id ∈ LID it chooses a pair (σ∆,id, Zid) uniformly at random such that
a tuple (id, σ∆,id, Zid, A, C) is contained in one of the Λi. More formally, it
chooses (σ∆,id, Zid) $← {(σ, Z) | ∃ A,C | (id, σ∆, Z, A,C) ∈ ⋃ni=1 Λi}. Then it
computes Aid =

n∏
i=1

idi=id

Afii , Cid =
n∏
i=1

idi=id

Cfi
idi
, and sets Λid = {(id, σ∆,id, Zid, Aid,

Cid)}. Set Λ = ⋃
id∈LID Λid. It returns σ = (Λ, R, S).

Ver(P∆, {vkid}id∈P ,m, σ) : On input a multi-labeled program P∆, a set of ver-
ification key {vkid}id∈P , corresponding to the identities id involved in the
program P, a message m ∈ M, and an authenticator σ , the algorithm
parses σ = (Λ, R, S). For each id such that (id, σ∆,id, Zid, Aid, Cid) ∈ Λ it
takes pksig,id from vkid and checks whether VerSig(pkSigid, Zid||∆, σ∆,id) = 1
holds, i.e. whether there is a valid signature on (Zid||∆). If any check
fails it returns ‘0’. Otherwise it checks whether the following equations
hold: ∏

id∈P e (Aid, Zid) = ∏n
i=1 h

fi
li
· ∏id∈P e (Cid, Yid) · e (R, g2), as well as

e (g1, S) · ∏id∈P e (Cid, Yid) = e
(∏T

j=1H
m[j]
j , g2

)
. If they do, it outputs ‘1’,

otherwise it outputs ‘0’.

Our authenticators σ consist of several components, so we have σ = (Λ, R, S),
where Λ is a list of elements, each associated to some identity id, i.e. Λ = {(id, σ∆,id,
Zid, Aid, Cid)}id∈P . The R and S components are global. Note, that the Aid, Cid
are randomized in order for the scheme to be internally context hiding and the
global components are used to preserve the homomorphic property.

Implementation
We now report on the experimental results of a Rust implementations of Construc-
tion 5.3. The measurements are based on an implementation by Rune Fiedler and
Lennart Braun. As a pairing group the BLS curve [15] BLS12-381 [27] is used.

The following measurements were executed on an Intel Core i7-4770K (Haswell)
processor running at 3.50 GHz.

We present the runtimes of the individual subalgorithms of the multi-key linearly
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homomorphic authenticator scheme presented in Construction 5.3. We first present
the runtimes influenced by the dimension T of vectors m ∈ ZTp given as messages
in Table 5.1. Next, we present the runtimes influenced by the number of inputs n
messages in Table 5.2. Finally, we note that the preprocessed verification EffVer
depends both on the number of distinct identities k, i.e. the number of distinct
keys used in this multi-key scheme, and the dimension T . These runtimes are
presented in Table 5.3.

Dimension Setup Auth
32 6133 12671
64 12249 22077
128 24448 41162
256 48979 78769
512 97487 153549

Table 5.1: Runtimes of MKLin 5.3 in µs

Inputs KeyGen Eval VerPrep
256 449467 495666 448971
512 896669 918890 897654
1024 1790956 1831059 1789746
2048 3576367 3664813 3581843
4096 7147901 7328274 7161900

Table 5.2: Runtimes of MKLin 5.3 in µs

Dimension k = 2 k = 4 k = 8 k = 16 k = 32
32 28174 37536 56281 93746 168609
64 37427 46808 65564 102991 177863
128 56462 65832 84561 122035 196897
256 94457 103832 122620 160053 234944
512 170469 179806 198607 236090 310868

Table 5.3: Runtimes of EffVer in MKLin 5.3 in µs

5.2.2 Correctness and Efficiency
We now analyze our scheme with respect to its correctness and efficiency. An
obvious requirement for a homomorphic authenticator scheme is to be correct.
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Due to the homomorphic property, there are two different types of correctness to
consider (see Def. 2.5 and Def. 2.6). The former ensures, that our scheme MKLin
can be used as a conventional signature scheme, by verifying it with respect to the
identity program. The latter property ensures a correct homomorphic evaluation
will also be verified as correct.

Proposition 5.4. The scheme MKLin (Construction 5.3) satisfies authentication
correctness (see Def. 2.5), if Sig is a correct signature scheme.

Proof. Let λ be an arbitrary security parameter, pp← Setup(1λ) be arbitrary public
parameters, (sk, ek, vk)← KeyGen(pp) an arbitrary key triple, l = (id, τ) ∈ ID× T
an arbitrary label, ∆ ∈ {0, 1}∗ an arbitrary dataset identifier, and m ∈ Fp an
arbitrary message. Furthermore let σ ← Auth(sk,∆, l,m). We parse σ = (Λ, R, S)
and Λ = (id, σ∆, Z, A,C).

By construction we have σ∆ ← SignSig(skSig, Z||∆) and if Sig is a correct signature
scheme then VerSig(pkSigid, Zid||∆, σ∆) = 1 holds. We have by construction

e (A,Z) = e


gxl+r1 ·

T∏
j=1

H
m[j]
j

 1
z

, gz2

 = e

gxl+r−ys1 · gys1 ·
T∏
j=1

H
m[j]
j , g2


= gxl+r−yst · e

gs1 · T∏
j=1

H
1
y
m[j]

j , gy2

 = hl · e (C, Y ) · e (R, g2)

as well as e (g1, S) · e (C, Y ) = g−st · gst e
(∏T

j=1H
m
j [j], g2

)
= e

(∏T
j=1H

m[j]
j , g2

)
, and

thus Ver(Il,∆, vk,m, σ) = 1 holds.

Proposition 5.5. The scheme MKLin (Construction 5.3) satisfies evaluation cor-
rectness (see Def 2.6).

Proof. Let λ be an arbitrary security parameter, pp← Setup1λ be arbitrary public
parameters, {(skid, ekid, vkid)← KeyGen(pp)}id∈ID be a set of arbitrary key triples,
and ∆ ∈ {0, 1}∗ an arbitrary dataset identifier. Let {(Pi,mi, σi)}i∈[N ] be an arbi-
trary set of program/message/authenticator triples, such that Ver(Pi,∆, vk,mi, σi) =
1. Let g : MN → M be an arbitrary linear function given by its coefficient
vector (g1, . . . , gN) Let m∗ = g(m1, . . . ,mN),P∗ = g(P1, . . . ,PN), and σ∗ =
Eval(ek, g, {σi}i∈[N ]).
We will make use of the following notation: We write id ∈ P if for P =

(f, l1, . . . , ln) there exists an i ∈ [n] such that li = (id, τi) for some input identifier
τi.

Since we have Ver(Pi,∆, vk,mi, σi) = 1, we also have VerSig(pkSigid, Zid||∆, σ∆,id) =
1 for all id ∈ Pi. Note that we have ⋃Ni=1{id ∈ Pi} = {id ∈ P∗}. Therefore we also
have VerSig(pkSigid, Zid||∆, σ∆,id) = 1 holds for all id ∈ P∗
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If Ver(Pi,∆, vk,mi, σi) = 1, holds, then in particular

∏
id∈Pi,∆

e (Aid,i, Zid) =
n∏
k=1

h
fi,k
li,k
· e

 ∏
id∈Pi,∆

Cid,i, Yid

 · e (Ri, g2)

holds as well as e (g1, Si) · e
(∏

id∈Pi,∆ Cid,i, g2
)

= e
(∏T

j=1H
mi[j]
j , g2

)
for all i ∈ [N ].

Without loss of generality let {id ∈ Pi,∆} = {id ∈ Pj,∆} for all i, j ∈ [n]. Let fk
for k ∈ [n] denote the coefficients describing P = g(P1, . . . ,PN). Then we have
fk = ∑N

i=1 gifi,k. We have

N∏
i=1

 ∏
id∈Pi,∆

e (Aid,i, Zid,i)
gi =

N∏
i=1

 n∏
k=1

h
fi,k
li,k
·
∏

id∈Pi,∆
e (Cid,i, Yid) · e (Ri, g2)

gi

and

∏
id∈P∗∆

e (A∗id, Z∗id) =
N∏
i=1

 ∏
id∈Pi,∆

e (Aid,i, Zid,i)
gi

=
N∏
i=1

 n∏
k=1

h
fi,k
li,k
·
∏

id∈Pi,∆
e (Cid,i, Yid) · e (Ri, g2)

gi

=
n∏
k=1

hfklk ·
∏

id∈P∗∆

e (C∗id, Y ∗id) · e (R∗, g2)

We also have

e (g1, S
∗) ·

∏
id∈P∗

e (C∗id, Yid) = e

(
g1,

N∏
i=1

Sgii

)
·
∏

id∈P∗
e

(
N∏
i=1

Cgi
i,id, Yid

)

=
N∏
i=1

e

 T∏
j=1

H
mi[j]
j , g2

gi = e

 T∏
j=1

H
∑N

i=1 gimi[j]
j , g2

 = e

 T∏
j=1

H
m∗[j]
j , g2

 .
Thus all checks of Ver() pass and Ver(P∗∆, vk,m∗, σ∗) = 1 holds.

We now consider our scheme’s efficiency properties, first w.r.t. bandwidth, in
the form of succinctness, and then w.r.t. verification time.

A trivial solution to constructing a homomorphic signature scheme is to (conven-
tionally) sign every input, and during Eval to just concatenate all the signatures
along with the corresponding values. Verification then consists of checking every
input value and then redoing the computation. This naive solution is obviously
undesirable in terms of bandwidth, efficiency and does not provide any privacy
guarantees.
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Succinctness guarantees that a homomorphically derived signature is still small,
thus keeping bandwidth requirements low. Efficient verification ensures that the
time required to check an authenticator is low. This is achieved by splitting Ver
into two sub-algorithms, one of which can be precomputed, and the other one
EffVer can be faster than natively computing the function itself.

Proposition 5.6. The scheme MKLin (Construction 5.3) is succinct (Def. 2.7).

Proof. An authenticator consists of (at most) k + 1 elements of G1, k elements of
G2, k identities id ∈ ID, and k (conventional) signatures. None of this depends on
the input size n. Therefore MKLin is succinct.

Proposition 5.7. The scheme MKLin (Construction 5.3) allows for efficient veri-
fication (Def.2.8).

Proof. We describe the algorithms (VerPrep,EffVer):
VerPrep(P , {vkid}id∈P) : On input a labeled program P = (f, l1, . . . , ln), with f

given by its coefficient vector (f1, . . . fn), the algorithm takes (Yid, pkSigid) from
vkid. For label li = (idi, τi) it takes hli from vkidi . It computes hP ←

∏n
i=1 h

fi
li

and outputs vkP ← (hP , {(Yid, pksig,id)}id∈P). This is independent of the input
size n.

EffVer(vkP ,∆,m, σ): On input a concise verification key vkP , a dataset ∆, a
message m, and an authenticator σ, the algorithm parses σ = (Λ, R, S).
For each id ∈ P it checks whether VerSig(pkSigid, Zid||∆, σ∆,id) = 1 holds. If
not, it outputs ‘0’. Otherwise, it checks whether the following equation
holds: ∏id∈P e (Aid, Zid) = hP ·

∏
id∈P e (Cid, Yid) · e (R, g2) as well as e (g1, S) ·

e (∏id∈P Cid, g2) = e
(∏T

j=1H
m[j]
j , g2

)
. If they do, it outputs ‘1’, otherwise it

outputs ‘0’.
Obviously if Ver(P∆, {vkid}id∈P ,m, σ) = b and vkP ← VerPrep(P , {vkid}id∈P), then
also EffVer(vkP ,∆,m, σ) = b. We can see that the runtime of EffVer() is O(k), and
is independent of the input size n. Thus, for n � k, MKLin allows for efficient
verification.

5.2.3 Context Hiding
We now showcase our scheme’s privacy property. On a high level, we want an
authenticator to the output of a computation not to leak information about the
inputs to the computation, which we have formalized in Definitions. 5.1 and 5.2.
Intuitively, the outcome of a function (e.g. the average) reveals significantly less
information than the individual inputs to the computation. In our scenario, multiple
clients upload data to a cloud server that performs the computation, and allows
for public verification of the result due to the use of homomorphic authenticators.
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The context hiding property ensures that the verifier cannot use the authenticators
provided to him to derive additional information about the inputs, beyond his
knowledge of the output.

We recall that in the multi-key setting, the question who exactly is meant to be
prevented from learning about the input values becomes relevant. In particular, we
differentiate between an external adversary — one that has not corrupted any of
the identities involved in a computation — and an internal adversary, who has this
additional knowledge. Thus we capture the two slightly different notions of keeping
the input values private with respect to some outside party (externally context
hiding), versus keeping the input values confidential with respect to an computation
(internally context hiding). The second property is naturally stronger. We show
that our scheme from Construction 5.3 achieves even the stronger property.

Theorem 5.8. The scheme MKLin (Construction 5.3) is perfectly internally context
hiding (Def. 5.2) and thus also externally context hiding (Def. 5.1).

Proof. First, in our case, the algorithm Hide is just the identity function. More
precisely, we have Hide({vkid}id∈ID,m, σ) = σ, for all possible verification keys vkid,
messages m and authenticators σ. Thus we have HideVer = Ver, so correctness and
unforgeability hold by Proposition 5.4, Proposition 5.5, and Theorem 5.9.

We show how to construct a simulator Sim that outputs authenticators perfectly
indistinguishable from the ones obtained by running Eval. Consider that for all
linear functions f , we have f(m1, . . . ,mn) = ∑n

i=1 fimi = ∑
i∈I fimi +∑

j∈J fjmj,
for each I,J ⊂ [n], with I ∪ J = [n] and I ∩ J = ∅.
S can simulate the corrupted parties perfectly. By the identity shown before,

we can in our case therefore reduce internal context hiding security to external
context hiding security. We now show external context hiding security. Parse the
simulator’s input as skid = (Kid, K

′
id, skSigid, x1,id, . . . xn,id, yid), m = (m[1], . . . ,m[T ]),

and P∆ = (f, l1, . . . , ln,∆). With this information, the simulator computes:

Z ′id = gzid
2 where zid ← ΦKid(∆) σ′∆,id

$← SignSig(skSigid, Zid||∆)
r′id

$← Zp r′ = ∑
l=(τ,id)∈P flr

′
id

s′id
$← Zp s′ = ∑

id∈P yidsl

A′id =
(
g

∑
(id,τ)∈P xlfl+r

′

1 ·∏T
j=1H

m[j]
j

) 1
zid id∗ $← ID

C ′id = g
−s′id
1 for all id 6= id∗ C ′id∗ = g

−s′id∗
1 ·∏T

j=1H
1
y
m[j]

j

R′ = g
r′+
∑

id∈P yids
′
id

1 S ′ = g−s
′

2
Λ′ = ⋃

id∈P{(A′id, Z ′id, σ′∆,id)}

The simulator outputs the authenticator σ′ = (Λ′, R′, S ′). We now show that
this simulator allows for perfectly context hiding security. We fix arbitrary key
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pairs (skid, pkid), a multi-labeled program P∆, and messages m1, . . . ,mn ∈ ZTp .
Let σ ← Eval(f, {(σi, eksi)}i∈[n]) and parse it as σ = (Λ, R, S). We look at each

component of the authenticator. We have Zid = ΦKid(∆) by definition and therefore
also Zid = Z ′id. Yid and Y ′id are both taken from the public keys and therefore
identical. In particular we also have zid = z′id . We have σ∆id = SignSig(sk′, Zid||∆)
by definition and σ′∆id

= SignSig(sk′, Z ′id||∆). Since Zid = Z ′id, for all id ∈ P, σ∆id

and σ′∆id
are identically distributed and thus perfectly indistinguishable to any

distinguisher D. These components are therefore either identical or perfectly
indistinguishable to any distinguisher D.
A′id is a uniformly random (u.r.) element of G1, as r′id is also u.r. Aid is a u.r.

element of G1, as rid = ∑
id∈l flrl is u.r. as a linear combination of u.r. elements.

C ′id is a u.r. element of G1, as s′id is also u.r. Cid is a u.r. element of G1, as
sid = ∑

id∈l flsl is u.r. as a linear combination of u.r. elements. R′is a u.r. element
of G1, as all r′id are also u.r. R is a u.r. element of G1, as r = ∑

id∈P rid is u.r. as a
linear combination of u.r. elements. The A′id, C ′id as well as R′ uniquely define S ′
and Aid, Cid as well as R uniquely define S.

Thus, all simulated elements have the identical distribution as the ones from the
real evaluation. They correspond to a different choice of randomness during Auth.
This holds even if all secret keys skid are known to D. Hence σ and σ′ are perfectly
indistinguishable for any (computationally unbounded) distinguisher D.

5.2.4 Unforgeability
In delegated computations, the question of the correctness of the result arises.
Homomorphic authenticators aim at making these computations verifiable, thus
allowing for the detection of incorrect results. It should therefore be infeasible for
any adversary to produce a authenticator that passes the Ver() algorithm, that has
not been produced by honestly performing the Eval() algorithm. This has been
formalized in Def 2.11. In this section, we present the security reduction for the
unforgeability of our scheme. To this end, we first describe a sequence of games,
allowing us to argue about different variants of forgeries. We then present a series
of lemmata, where we bound the difference between those games.
Since our authenticators have multiple components, we consider specific types

of forgeries in the various games, i.e. ones where one or multiple components are
indeed correct, and in our final security reduction we consider the generic case.
When simulating the final two games, the issue of providing signatures, without
knowing the correct secret key arises. Here we use the elements hid,τi taken from
the public keys associated to the label l = (id, τi) and embed an information
theoretically hidden trapdoor into them, which we use to answer signing queries.
Note, that by (conventionally) signing the concatenation (∆||Zid) we use a similar
approach to Fiore et al. [59, Theorem 2]. Not directly using their more generic
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approach however yields a lower bound on the adversary’s overall success probability
in the security experiment.
Theorem 5.9. The scheme MKLin (Construction 5.3) is unforgeable in the sense
of Def. 2.11 if Sig is an unforgeable (EU-CMA [69]) signature scheme, Φ is a
pseudorandom function and G is a bilinear group generator, such that the DL
assumption (see Def. 2.36), the DDH assumption (see Def. 2.38) and the FDHI
assumption (see Def. 2.42) hold.
Proof. We can deal with corruptions via our generic result of Proposition 2.15. It
is thus sufficient to prove the security against adversaries that make no corruptions.
Recall that any corrupted party provides their key tuples (skid, ekid, vkid) to the
adversary, giving the adversary additional knowledge in order for him to adaptively
query messages. To prove Theorem 5.9, we define a series of games with the
adversary A and we show that the adversary A wins, i.e. any game outputs ‘1’,
only with negligible probability. Following the notation of [37], we write Gi(A)
to denote that a run of game i with adversary A returns ‘1’. We use flag values
badi, initially set to false. If, at the end of each game, any of these previously
defined flags is set to true, the game simply outputs ‘0’. Let Badi denote the event
that badi is set to true during game i. Using Proposition 2.16, any adversary who
outputs a Type 3 forgery (see Def. 2.10) can be converted into one that outputs a
Type 2 forgery. Hence we only have to deal with Type 1 and Type 2 forgeries.

Game 1 is the security experiment HomUF− CMAA,MKHAuth(λ) between an
adversary A and a challenger C, where A makes no corruption queries and
only outputs Type 1 or Type 2 forgeries.
Game 2 is defined as Game 1, except for the following change: Whenever A
returns a forgery (P∗∆∗ ,m∗, σ∗) and the list L∆∗ has not been initialized by
the challenger during the queries, then Game 2 sets bad2 = true. It is worth
noticing that after this change the game never outputs 1 if A returns a Type 1
forgery. In Lemma 5.10, we show that Bad2 cannot occur if Sig is unforgeable.
Game 3 is defined as Game 2, except that the keyed pseudorandom function
FK is replaced by a random function R : {0, 1}∗ → Zp. In Lemma 5.11, we
show that these two games are indistinguishable if F is pseudorandom.
Game 4 is defined as Game 3, except for the following changes. It computes m̂ =
f ∗(m1, . . . ,mn), as well as σ̂ = Eval(f ∗, {(σi, eksi)}i∈[n]), i.e. it runs an honest
computation over the queried messages and generated authenticators in dataset
∆∗. The challenger runs an additional check. If ∏T

j=1H
m∗[j]
j = ∏T

j=1H
m̂[j]
j

and m̂ 6= m∗ it sets bad4 = true. We clearly have |Pr[G3(A)]− Pr[G4(A)]| ≤
Pr[Bad4]. In Lemma 5.12, we show that any adversary A for which Bad4 occurs
implies a solver for the DL problem.
Game 5 is defined as Game 4, except for the following change. The challenger
runs an additional check. If ∏id∈P e (C∗id, Yid) = ∏

id∈P e
(
Ĉid, Yid

)
and m∗ 6= m̂
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it sets bad5 = true, where C∗id are components of the forged authenticator σ∗
and Ĉid are components of the honest execution of Eval over the queried data
set, as defined in Game 4. We have |Pr[G4(A)]− Pr[G5(A)]| ≤ Pr[Bad5]. In
Lemma 5.14, we show that any adversary A for which Bad5 occurs implies a
solver for the DDH problem.
Game 6 is defined as Game 5, except for the following change. At the beginning
C chooses µ ∈ [Q] uniformly at random, with Q = poly(λ) is the number of
queries made by A during the game. Let ∆1, . . . ,∆Q be all the datasets queried
by A. Then, if in the forgery ∆∗ 6= ∆µ, set bad6 = true. In Lemma 5.13, we
show that Pr[G5(A)] ≤ Q · Pr[G6(A)].
Game 7 is defined as Game 6, except for the following change. The chal-
lenger runs an additional check. If Ver(P∗∆∗ , {vkid}id∈P∗ ,m

∗, σ∗) = 1 as well
as m̂ 6= m∗ and ∏id∈P∗ e

(
Âid, Z

∗
id

)
= ∏

id∈P∗ e (A∗id, Z∗id), where Âid, A
∗
id are the

components taken from σ̂ and σ∗ respectively, then C sets bad7 = true. We
have |Pr[G6(A)]− Pr[G7(A)]| ≤ Pr[Bad7]. In Lemma 5.15, we show that any
adversary A for which Bad7 occurs implies a solver for the FDHI problem.

Finally, Lemma 5.16 shows that any adversary A that wins Game 7 implies a solver
for the FDHI problem. Together, Lemma 5.10—5.16 prove Theorem 5.9 and we
have Pr[G(A)] ≤ AdvUF−CMA

Sig,F (λ) + AdvPRFF,D (λ) + (1− 1
p
) · AdvDLS (λ) + AdvDDHS (λ) +

2QAdvFDHIS (λ).

Lemma 5.10. For every PPT adversary A, there exists a PPT forger F such that
|Pr[G2(A)]− Pr[G1(A)]| ≤ AdvUF−CMA

Sig,F (λ).

Proof. This is a direct corollary of Lemma 4.20.

Lemma 5.11. For every PPT adversary A running Game 3, there exists a PPT
distinguisher D such that |Pr[G3(A)]− Pr[G2(A)]| ≤ AdvPRFΦ,D (λ).

Proof. This is a direct corollary of Lemma 4.21.

Lemma 5.12. For every PPT adversary A running Game 4, there exists a PPT
simulator S such that Pr[Bad4] ≤ AdvDLS (λ).

Proof. This is a direct corollary of Theorem 4.15.

Lemma 5.13. For every PPT adversary A running Game 6, we have Pr[G5(A)] ≤
Q · Pr[G6(A)].

Proof. This is a direct corollary of Lemma 4.22.

Lemma 5.14. For every PPT adversary A running Game 5, there exists a PPT
simulator S such that Pr[Bad5] ≤ AdvDDHS (λ).
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Proof. Assume we have a PPT adversary A that can produce a successful forgery
during Game 5. We will show how a simulator S can use this to break the DDH
problem in G1. It takes as input a tuple (bgp, gx1 , g

y
1 , g

z
1).

Setup Simulator S sets bgp′ = (p,G1,G2,GT , g
x
1 , g2, e) and chooses cj ∈ Fp

uniformly at random for j = 0, . . . , T and sets Hj = g
cj
1 .

Queries Simulator S can run KeyGen honestly and answer any authentication
queries honestly.
Forgery Let (P∗∆∗ ,m∗, σ∗) be the forgery returned by A. S follows Game 5 to
compute m̂, σ̂. We then have

e(gx1 , S∗) ·
∏

id∈P
e (C∗id, Yid) = e(

T∏
j=1

H
m∗[j]
j , g2) = e(g

∑T

j=1 cjm
∗[j]

1 , g2)

as well as

e(gx1 , Ŝ) ·
∏

id∈P
e
(
Ĉid, Yid

)
= e(

T∏
j=1

H
m̂[j]
j , g2) = e(g

∑T

j=1 cjm̂[j]
1 , g2).

We set M = ∑T
j=1 cj(m∗[j]− m̂[j]). Dividing the two equations and using the

fact that ∏id∈P e (C∗id, Yid) = ∏
id∈P e

(
Ĉid, Yid

)
we obtain

e
(
gx1 ,

S∗

Ŝ

)
= e (g1, g2)M .

We now have z = xy if and only if e (gy1 , g2) = e
(
gz1,

(
S∗

Ŝ

) 1
M

)
. Since bad4 =

false, we have M 6= 0.
Note that since we have bad4 = false we must have S∗ 6= Ŝ.

Lemma 5.15. For every PPT adversary A running Game 7, there exists a PPT
simulator S such that Pr[Bad7] = AdvFDHIS (λ).

Proof. Assume we have a PPT adversary A that can produce a successful forgery
during Game 7 such that bad7 = true. We will show how a simulator S can use
this to break the FDHI assumption. Given (g1, g2, g

z
2, g

v
2 , g

z
v
1 , g

r
1, g

r
v
1 ) simulator S

simulates Game 7.
Setup Simulator S chooses cj ∈ Zp uniformly at random for j = 0, . . . , T and
sets Hj = g

cj
1 . It outputs the public parameters pp = (k, n, T, bgp, H1, . . . ,

HT ,R, Sig, λ).
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Key Generation Simulator S chooses an index µ ∈ [Q] uniformly at random.
During the key generation it chooses al, bl ∈ Zp uniformly at random for all l ∈
L. It sets hl = galt · e (g1, g

z
2)bl . It honestly runs (skSig, pkSig)← KeyGenSig(1λ),

chooses yid uniformly at random, and sets Yid = (gz2)yid for all id ∈ ID. It gives
the public keys ekid = ∅, vkid = (pkSigid, hid,1, . . . , hid,n, Yid) to A for all id ∈ ID.
Queries Let k be a counter for the number of datasets queried by A. (Initially
it sets k = 1). For every new queried dataset ∆ simulator S creates a list
L∆ of pairs (l,m), which collects all the label/message pairs queried by the
adversary on ∆ and the respectively generated authenticators.
Moreover, whenever the kth new dataset ∆k is queried, S does the following: If
k = µ, it samples a random ξid,µ ∈ Zp , for all id ∈ ID sets Zid,µ = (gz2)ξid,µ and
stores ξid,µ. If k 6= µ, it samples a random ξid,k ∈ Zp and sets Zid,k = (gv2)ξid,k

and stores ξid,k. Since all Zid,k are randomly distributed in G2, they have
the same distribution as in Game 7. Given a query (∆, l,m) with ∆ = ∆k,
simulator S first computes σ∆k,id = SignSig(skSigid, (∆k||Zk,id)).
If k 6= µ, it samples ρl, sl ∈ Zp uniformly at random and computes

Al =
(

(g
z
v
1 )bl+yidsl+

∑T

j=1 yidcjm[j] · (g
r
v
1 )ρl

) 1
ξid,k

,

Rl = g−al1 · (gr1)ρl ,
Sl = g−sl2 , as well as

Cl = g
sl+
∑T

j=1 cjm[j]
1

It sets Λl = (id, σ∆k,id, Zk,id, Al, Cl) and gives (Λl, Rl, Sl) to A.
We have

e (Al, Zk,id) = e


(g zv1 )bl+yidsl+

∑T

j=1 yidcjm[j]
·
(
g
r
v
1

)ρl 1
ξid,k

, (gv2)ξid,k


= e

(
(gz1)bl+yidsl+

∑T

j=1 yidcjm[j] · (gr1)ρl , g2

)
= e

(
gblz+al−al+rρl1 , g2

)
· e
(
g
sl+
∑T

j=1 cjm[j]
1 , gzyid

2

)
= hl · e (R, g2) · e (C, Yid)

as well as

e (g1, Sl) · e (Cl, g2) = g
−s+s+

∑T

j=1 cjm[j]
t = e

 T∏
j=1

H
m[j]
j , g2


and this output is indistinguishable from the challenger’s output during Game 7.
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If k = µ, simulator S computes Al =
(

(g
z
v
1 )bl+yidsl+

∑T

j=1 yidcjm[j]
) 1
ξid,k , Rl = g−al1 ,

Cl = g
sl+
∑T

j=1 yidcjm[j]
1 , as well as Sl = g−sl2 . It sets Λl = (id, σ∆k,id, Zk,id, Al, Cl)

and gives (Λl, Rl, Sl) to A.
We have

e (Al, Zk,id) = e

(gbl+yidsl+
∑T

j=1 yidcjm[j]
1

) 1
ξid,k

, (gz2)ξid,k


= e

(
(gz1)bl+yidsl+

∑T

j=1 yidcjm[j] , g2

)
= e

(
gblz+al−al1 , g2

)
· e
(
g
sl+
∑T

j=1 cjm[j]
1 , gzyid

2

)
= hl · e (R, g2) · e (C, Yid)

and

e (g1, Sl) · e (Cl, g2) = g
−s+s+

∑T

j=1 cjm[j]
t = e

 T∏
j=1

H
m[j]
j , g2


so this output is indistinguishable from the challenger’s output during Game 7.
Forgery Let (P∗∆∗ ,m∗, σ∗) be the forgery returned by A. S follows Game 7 to
compute m̂, σ̂. Since (P∗∆∗ ,m∗, σ∗) is a successful forgery, we have

∏
id∈P∗

e (A∗id, Zid) =
n∏
i=1

h
f∗i
li
· e (R∗, g2) ·

∏
id∈P∗

e (C∗id, Yid)

as well as
∏

id∈P∗
e
(
Âid, Zid

)
=

n∏
i=1

h
f∗i
li
· e
(
R̂, g2

)
·
∏

id∈P∗
e
(
Ĉid, Yid

)

according to Proposition 5.5. We compute A∗ = ∏
id∈P∗ (A∗id)ξid,µ as well

as Â = ∏
id∈P∗

(
Âid
)ξid,µ . We note that e (A∗, gz2) = ∏

id∈P∗ e (A∗id, Zid) and
e
(
Â, gz2

)
= ∏

id∈P∗ e
(
Âid, Zid

)
. Since we have bad7 = true, we know that

A∗ = Â. We compute C∗ = ∏
id∈P∗ (C∗id)yid as well as Ĉ = ∏

id∈P∗
(
Ĉid
)yid . We

have e (C∗, g2) = ∏
id∈P∗ e (C∗id, Yid) and e

(
Ĉ, g2

)
= ∏

id∈P∗ e(Ĉid, Yid).
By dividing the equations above and using A∗ = Â, we obtain e

(
Ĉ
C∗
, gz2

)
=

e
(
R∗

R̂
, g2
)
. Setting W = Ĉ

C∗
and W ′ = R∗

R̂
, we get a solution (W,W ′) to

the FDHI assumption. Since bad5 = false, we know that C∗ 6= Ĉ and thus
(W,W ′) 6= (1, 1).
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Lemma 5.16. For every PPT adversary A running Game 7, there exists a PPT
simulator S such that Pr[G7(A)] = AdvFDHIS (λ).

Proof. Assume we have a PPT adversary A that can produce a successful forgery
during Game 7. We will show how a simulator S can use this to break the FDHI
problem. Given (g1, g2, g

z
2, g

v
2 , g

z
v
1 , g

r
1, g

r
v
1 ) simulator S simulates Game 7.

Setup Simulator S chooses cj ∈ Zp uniformly at random for j = 0, . . . , T and
sets Hj = g

cj
1 . It outputs the public parameters pp = (k, n, T, bgp, H1, . . . ,

HT ,R, Sig, λ).
Key Generation Simulator S chooses an index µ ∈ [Q] uniformly at random.
During the key generation, it chooses al, bl ∈ Zp uniformly at random for
all l ∈ L. It sets hl = galt · e (g1, g

z
2)bl . It honestly runs (skSig, pkSig) ←

KeyGenSig(1λ), chooses yid uniformly at random, and sets Yid = gyid
2 for all

id ∈ ID. Note, that unlike Lemma 5.15, we do not use the element gz2 taken
from the problem instance to generate the Yid. It gives the public keys ekid = ∅,
vkid = (pkSigid, hid,1, . . . , hid,n, Yid) to A for all id ∈ ID.
Queries Let k be a counter for the number of datasets queried by A (initially,
it sets k = 1). For every new queried dataset ∆ simulator S creates a list
L∆ of pairs (l,m), which collects all the label/message pairs queried by the
adversary on ∆ and the respectively generated authenticators.
Moreover, whenever the kth new dataset ∆k is queried, S does the following: If
k = µ, it samples a random ξid,µ ∈ Zp , for all id ∈ ID sets Zid,µ = (gz2)ξid,µ and
stores ξid,µ. If k 6= µ, it samples a random ξid,k ∈ Zp and sets Zid,k = (gv2)ξid,k

and stores ξid,k. Since all Zid,k are randomly distributed in G2, they have
the same distribution as in Game 7. Given a query (∆, l,m) with ∆ = ∆k,
simulator S first computes σ∆k,id = SignSig(skSigid, (∆k||Zk,id)).
If k 6= µ, it samples ρl, sl ∈ Zp uniformly at random and computes Al =(

(g
z
v
1 )bl · (g

r
v
1 )ρl

) 1
ξid,k , Rl = g−al−yidsl

1 · (gr1)ρl · g
−
∑T

j=1 yidcjm[j]
1 , Sl = g−sl2 , as well

as Cl = g
sl+
∑T

j=1 cjm[j]
1 . It sets Λl = (id, σ∆k,id, Zk,id, Al, Cl) and gives (Λl, Rl, Sl)

to A.

86



5.2 A Publicly Verifiable Multi-Key Linearly Homomorphic Authenticator Scheme

We have

e (Al, Zk,id) = e

((
(g

z
v
1 )bl · (g

r
v
1 )ρl

) 1
ξid,k

, (gv2)ξid,k

)
= e

(
gzbl+rρl1 , g2

)
= e

(
g
zbl+al−al+

∑T

j=1 yidcjm[j]−
∑T

j=1 yidcjm[j]syidsl−yidsl+rρl
1 , g2

)

= gal+zblt · e
(
g−al1 · (gr1)ρl · g

−yidsl−
∑T

j=1 yidcjm[j]
1 · g

sl+
∑T

j=1 cjm[j]
1 , gY2

)
= hl · e (Rl, g2) · e (Cl, Yid)

and

e (g1, Sl) · e (Cl, g2) = g
−s+s+

∑T

j=1 cjm[j]
t = e

 T∏
j=1

H
m[j]
j , g2

 .
This output is indistinguishable from the challenger’s output during Game 7.
If k = µ, simulator S computes Al =

(
gbl1
) 1
ξid,µ , Cl = g

sl+
∑T

j=1 yidcjm[j]
1 , Rl =

g
−yidsl−al−

∑T

j=1 cjm[j]
1 , as well as Sl = g−sl2 . It sets Λl = (id, σ∆k,id, Zk,id, Al, Cl)
and gives (Λl, Rl, Sl) to A.
We have

e (Al, Zµ,id) = e
((
gbl1
) 1
ξid,µ , (gz2)ξid,µ

)
= e

(
gzbl1 , g2

)
= e

(
g
zbl+al−al+

∑T

j=1 yidcjm[j]−
∑T

j=1 yidcjm[j]+yidsl−yidsl
1 , g2

)

= gal+zblt · e
(
g
−yidsl−al−

∑T

j=1 yidcjm[j]
1 · g

ylsl+
∑T

j=1 yidcjm[j]
1 , g2

)
= hl · e (Rl, g2) · e (Cid, Yid)

and

e (g1, Sl) · e (Cl, g2) = g
−s+s+

∑T

j=1 cjm[j]
t = e

 T∏
j=1

H
m[j]
j , g2

 .
This output is indistinguishable from the challenger’s output during Game 7.
Forgery Let (P∗∆∗ ,m∗, σ∗) be the forgery returned by A. S follows Game 7 to
compute m̂, σ̂. Since (P∗∆∗ ,m∗, σ∗) is a successful forgery, we have

∏
id∈P∗

e (A∗id, Zid) =
n∏
i=1

h
f∗i
li
· e (R∗, g2) ·

∏
id∈P∗

e (C∗id, Yid)
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as well as
∏

id∈P∗
e
(
Âid, Zid

)
=

n∏
i=1

h
f∗i
li
· e
(
R̂, g2

)
·
∏

id∈P∗
e
(
Ĉid, Yid

)

according to Proposition 5.5. We compute A∗ = ∏
id∈P∗ (A∗id)ξid,µ as well

as Â = ∏
id∈P∗

(
Âid
)ξid,µ . We note that e (A∗, gz2) = ∏

id∈P∗ e (A∗id, Zid) and
e
(
Â, gz2

)
= ∏

id∈P∗ e
(
Âid, Zid

)
. Since we have bad7 = false we know that

A∗ 6= Â. We compute C∗ = ∏
id∈P∗ (C∗id)yid as well as Ĉ = ∏

id∈P∗
(
Ĉid
)yid .

We note that e (C∗, g2) = ∏
id∈P∗ e (C∗id, Yid) and e

(
Ĉ, g2

)
= ∏

id∈P∗ e(Ĉid, Yid).
Dividing the equations above, we obtain e

(
A∗

Â
, gz2

)
= e

(
C∗·R∗
Ĉ·R̂ , g2

)
and setting

W = R∗·C∗
R̂·Ĉ , as well as W ′ = A∗

Â
we have obtained a solution (W,W ′) to the

FDHI assumption. Since we have bad7 = false, we know that A∗ 6= Â and thus
(W,W ′) 6= (1, 1).

5.3 A Context Hiding Homomorphic Signature
Scheme for Quadratic Functions

5.3.1 CHQS: A New Homomorphic Signature Scheme for
Quadratic Functions

We now present the algorithms making up CHQS. It is homomorphic with respect
to arithmetic circuits f : Znp → Zp of degree 2, where p ≥ 5 (see Prop. 2.17). CHQS
is graded, i.e. there exist level-1 and level-2 signatures. Level-1 signatures are
created by signing messages, whereas level-2 signatures occur during homomorphic
evaluation over multiplication gates. Graded structures like this occur naturally
in homomorphic schemes like the ones by Catalano and others [34, 41]. We use
dedicated elements (which we will denote by Tτ ) in our level-1 signatures to handle
multiplication gates. Those elements no longer occur in the level-2 signatures.

Construction 5.17.

Setup(1λ): On input a security parameter λ the algorithm runs G(1λ) to obtain a
bilinear group bgp = (p,G1,G2,GT , g1, g2, e). It chooses n ∈ N. Additionally,
it fixes a regular signature scheme Sig = (KeyGenSig, SignSig, VerSig) and a
pseudorandom function Φ : K×{0, 1}∗ → Zp. It outputs the public parameters
pp = (λ, n, bgp, Sig,Φ).
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KeyGen(pp) : On input public parameters pp it chooses x, y $← Zp uniformly at
random. It sets ht = gxt . It samples tτi , kτi

$← Zp uniformly at random for
all i ∈ [n] and sets Fτi = g

tτi
2 , as well as fτi = g

ytτi
t , fτi,τj = g

tτikτj
t , for all

i, j ∈ [n]. Additionally the algorithm chooses a random seed K $← K for the
pseudorandom function Φ. It computes keys for the regular signature scheme
(skSig, pkSig) ← KeyGenSig(1λ). It sets sk = (skSig, K, x, y, {tτi}ni=1, {kτi}ni=1),
ek = 0 and vk = (pkSig, ht, {Fτi , fτi}ni=1, {fτi,τj}ni,j=1).

Auth(sk,∆, τ,m): On input a secret key sk, a dataset identifier ∆, an input
identifier τ ∈ T , and a message m ∈ Zp, the algorithm generates the parameters
for the dataset identified by ∆, by running z ← ΦK(∆) and computing Z = g

1
z
2 .

Z is bound to the dataset identifier ∆ by using the regular signature scheme,
i.e. it sets σ∆ ← SignSig(∆||Z).
It chooses r, s $← Zp uniformly at random. It computes Λ← g

z(xm+(y+s)tτ+r)
1 ,

R← gr1, Sτ ← gs1, as well as Tτ ← gym−kτ1 . It sets T = {(τ, Sτ , Tτ )} and then
returns the signature σ = (m,σ∆, Z,Λ, R, T ). Following the convention of
Backes et al. [12], our signature contains the message m.

Eval(ek, f, σ1, . . . , σn): Inputs are a public evaluation key ek, an arithmetic cir-
cuit f of degree at most 2, and signatures σ1, . . . , σn, where (w.l.o.g.) σi =
(mi, σ∆,i, Zi,Λi, Ri, Ti). The algorithm checks if the signatures share the same
public values, i.e. if σ∆,1 = σ∆,i and Z1 = Zi for all i = 2, . . . , n, and the sig-
nature for each set of public values is correct and matches the dataset identifier
∆, i.e. VerSig(pkSig, σ∆,i,∆i||Zi) = 1 for any i ∈ [n]. If this is not the case, the
algorithm rejects the signature. Otherwise, it proceeds as follows. We describe
this algorithm in terms of six different procedures (Add1,Mult,Add2, cMult1,
cMult2, Shift) allowing to evaluate the circuit gate by gate.

Add1: On input two level-1 signatures σi = (mi, σ∆, Z,Λi, Ri, Ti) for i = 1, 2
it computes as follows: m = m1 +m2, Λ = Λ1 · Λ2, R = R1 ·R2, and
Sτ = Sτ,1 · Sτ,2 as well as Tτ = Tτ,1 · Tτ,2 for all (τ, ·) ∈ T1 ∩ T2, Sτ =
Sτ,i as well as Tτ = Tτ,i for all τ such that (τ, ·) ∈ T1∆T2, and T =
{(τ, Sτ , Tτ )} for all (τ, ·) ∈ T1 ∪ T2. It outputs a level-1 signature σ =
(m,σ∆, Z,Λ, R, T ).

Mult: On input two level-1 signatures σi = (mi, σ∆, Z,Λi, Ri, Ti) for i = 1, 2
and the public key pk, it computes as follows: m = m1m2, Λ = Λm2

1 ,
R = Rm2

1 , S ′τ1 = Sm2
τ1 ·

∏
τ2∈T2 Tτ2, for all τ1 ∈ T1, and L = {(τ, S ′τ )} for

all τ ∈ T1. It outputs a level-2 signature σ = (m,σ∆, Z,Λ, R,L).
Add2: On input two level-2 signatures σi = (mi, σ∆, Z,Λi, Ri,Li) for i = 1, 2,
it computes as follows: m = m1 + m2, Λ = Λ1 · Λ2, R = R1 · R2,
Sτ = Sτ,1 · Sτ,2 for all (τ, ·) ∈ L1 ∩ L2, Sτ = Sτ,i for all τ such that
(τ, ·) ∈ L1∆L2, and L = {(τ, Sτ )} for all (τ, ·) ∈ L1 ∪ L2. It outputs a
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level-2 signature σ = (m,σ∆, Z,Λ, R,L).
cMult1: On input a level-1 signature σ′ = (m′, σ∆, Z,Λ′, R′, T ′) and a con-
stant c ∈ Zp, it computes as follows: m = cm′, Λ = Λ′c, R = R′c,
Sτ = S ′τ

c, Tτ = T ′τ
c for all τ ∈ T ′, and T = {(τ, Sτ , Tτ )}τ∈T . It outputs

a level-1 signature σ = (m,σ∆, Z,Λ, R, T ).
cMult2: On input a level-2 signature σ = (m′, σ∆, Z,Λ′, R′,L′) and a con-
stant c ∈ Zp, it computes as follows: m = cm′, Λ = Λ′c, R = R′c, Sτ = S ′cτ
for all (τ, S ′τ ) ∈ L′, and L = {(τ, Sτ )} for all (τ, S ′τ ) ∈ L′. It outputs a
level-2 signature σ = (m,σ∆, Z,Λ, R,L).

Shift: On input a level-1 signature σ′ = (m′, σ∆, Z,Λ′, R′, T ′), it computes
as follows: m = m′, Λ = Λ′, R = R′, and L = {(τ, Sτ )}τ∈T ′. It outputs
a level-2 signature σ = (m,σ∆, Z,Λ, R,L). Shift simply describes how to
derive a level-2 signature from a level-1 signature.

Ver(vk,P∆,M, σ): On input a public evaluation key vk, a message M , a (level-
1 or -2) signature σ, a multi-labeled program P∆ containing an arithmetic
circuit f of degree at most 2, the algorithm parses (without loss of generality)
σ = (m,σ∆, Z,Λ, R,L).
It then checks whether the following conditions hold:
1. M = m
2. VerSig(pkSig, σ∆,∆||Z) = 1
3.

e (Λ, Z) = e (R, g2) · hmt ·
n∏
i=1

f cii ·
∏

(τ,·,·)∈T
e (Sτ , Fτ )

as well as for an arbitrary τ ∗ ∈ T

e

(∏
τ∈T

Tτ , Fτ∗

)
·
∏
τ∈T

f cττ,τ∗ = fmτ∗

for level-1 signatures and

e (Λ, Z) = e (R, g2) · hmt ·
n∏

i,j=1
f
ci,j
i,j ·

n∏
j=1

f
cj
j ·

∏
(τ,·)∈L

e (Sτ , Fτ )

for level-2 signatures, respectively, where ci,j and cj are the coefficients in
P∆.

If all 4 or 3 conditions hold respectively, it returns ‘1’. Otherwise, it returns
‘0’.

Implementation
We now report on the experimental results of a Rust implementations of Construc-
tion 5.17. The measurements are based on an implementation by Rune Fiedler and
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Lennart Braun. As a pairing group the BLS curve [15] BLS12-381 [27] is used.
The following measurements were executed on an Intel Core i7-4770K (Haswell)

processor running at 3.50 GHz.
We present the runtimes of the individual subalgorithms of the authenticator

scheme for quadratic functions presented in Construction 5.17. We present the
runtimes influenced by the number of inputs n messages in Table 5.4. Note that
the runtime of Auth is independent of n and as in this scheme messages m ∈ Zp
are given as inputs, the dimension of inputs does not vary. The result is given in
Table 5.5.

Inputs KeyGen Eval VerPrep EffVer
1 8549 2920 3440 8692
2 14688 7568 8667 10985
4 32315 22107 24351 15619
8 88630 72157 76282 24823
16 285081 256934 264901 43149
32 1015105 958685 976165 79983
64 3823874 3703191 3733905 153457
128 14833281 14631758 14597335 300702
256 58396099 58071618 57725493 594869
512 231798428 232029549 229621235 1183757
1024 923505377 933255024 915832701 2361895
2048 3686773222 3795627595 3657874966 4721335

Table 5.4: Runtimes of CHQS 5.17 in µs

Auth 2138

Table 5.5: Runtimes of Authentication for CHQS 5.17 in µs

5.3.2 CHQS: Correctness and Efficiency
We will now analyze CHQS with respect to its basic correctness and efficiency
properties.
The following proposition shows that freshly generated authenticators, created

by calling Auth are accepted by Ver.

Proposition 5.18. CHQS (Construction 5.17) achieves authentication correctness
in the sense of Def- 2.5 if Sig is a correct signature scheme.
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Proof. Let λ be an arbitrary security parameter, pp ← Setup(1λ) be arbitrary
public parameters, (sk, ek, vk) ← KeyGen(pp) an arbitrary key triple, τ ∈ T an
arbitrary label, ∆ ∈ {0, 1}∗ an arbitrary dataset identifier, and m ∈ Fp an arbitrary
message. Furthermore let σ ← Auth(sk,∆, τ,m). We parse σ = (m,σ∆, Z,Λ, R, T ).
We obviously have m = m. If Sig is a correct signature scheme we have

VerSig(pkSig, σ∆,∆||Z) = 1. Then we have

e (Λ, Z) = e
(
g
z(xm+(y+s)tτ+r)
1 , g

1
z
2

)
= e

(
g
xm+(y+s)tτ+r
1 , g2

)
= g

xm+(y+s)tτ+r
t = hmt · fτ · e (R, g2) · e (S, Fτ )

Therefore all checks of Ver pass.

We now show the second correctness property, by showing that if we have several
authenticators that are accepted by Ver and we apply Eval to them we again obtain
an authenticator that is accepted by Ver.

Proposition 5.19. CHQS (Construction 5.17) achieves evaluation correctness in
the sense of Def- 2.6.

Proof. Let λ be an arbitrary security parameter, pp← Setup(1λ) be arbitrary public
parameters, (sk, ek, vk)← KeyGen(pp) an arbitrary key triple, and ∆ ∈ {0, 1}∗ an
arbitrary dataset identifier.
We show the correctness of the evaluation of the six procedures (Add1, Mult,

Add2, cMult1, cMult2, Shift). So we take any two program/message/authenticator
triples (Pi,mi, σi) for i = 1, 2, such that Ver(Pi,∆, vk,mi, σi) = 1.
Note, that without loss of generalization we can assume Z1 = Z2. If we had

Z1 6= Z2, and we know that since Ver(Pi,∆, vk,mi, σi) = 1 for i = 1, 2 we in particular
have VerSig(pkSig, σ∆,i,∆||Zi) = 1 for i = 1, 2. If we had σ∗ ← Eval(ek, g, σ1, σ2),
P∗ = g(P1,P2), m∗ = g(m1,m2) and Ver(P∗, vk,m∗, σ∗) = 0, then we find σ′1, σ′2
with Z1 = Z2 such that the same holds. To achieve this we can simply set σ′1 = σ1
and σ′2 = (m2, σ∆,1, Z1, R2, T2) or σ′2 = (m2, σ∆,1, Z1, R2,L2) depending on whether
σ2 is a level 1 or 2 signature. We then have Eval(ek, g, σ1, σ2) = Eval(ek, g, σ′1, σ′2).
Thus we can assume that Z1 = Z2.

Add1: Since we have Ver(Pi,∆, vk,mi, σi) = 1 for i = 1, 2, we know that in
particular VerSig(pkSig, σ∆,i,∆||Zi) = 1 for i = 1, 2. So with Z = Z1, σ∆ = σ∆,1
we also have VerSig(pkSig, σ∆,∆||Z) = 1. We also have m1 +m2 = g(m1,m2).
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Furthermore we have

e (Λ, Z) = e (Λ1 · Λ2, Z1)
= e (Λ1, Z1) · e (Λ2, Z2)
= e (R1, g2) · hm1

t · f1 · e (S1, F1) · e (R2, g2) · hm2
t · f2 · e (S2, F2)

= e (R1 ·R2, g2) · hm1+m2
t · f1 · f2 · e (S1, F1) · e (S2, F2)

= e (R, g2) · hmt · f1 · f2 · e (S1, F1) · e (S2, F2)

as well as for an arbitrary τ ∗ ∈ T

e

(∏
τ∈T

Tτ , Fτ∗

)
· f1 · f2 = e

∏
τ∈T1

Tτ ·
∏
τ∈T2

Tτ , Fτ∗

 · f1 · f2

= e

∏
τ∈T1

Tτ , Fτ∗

 · f1 · e

∏
τ∈T2

Tτ , Fτ∗

 · f2

= fm1
τ∗ · fm2

τ∗ = fm1+m2
τ∗

hence all checks of Ver(P , vk,m, σ) pass.
Mult: Since we have Ver(Pi,∆, vk,mi, σi) = 1 for i = 1, 2, we know that in

particular VerSig(pkSig, σ∆,i,∆||Zi) = 1 for i = 1, 2. So with Z = Z1, σ∆ = σ∆,1
we also have VerSig(pkSig, σ∆,∆||Z) = 1. For ease of notation we consider
the case where Ti each contains only a single entry. We also have m1 ·m2 =
g(m1,m2). Furthermore we have

e (Λ, Z) = e (Λm2
1 , Z1) = e (Λ1, Z1)m2

= e (Rm2
1 , g2) · hm1m2

t · fm2
1 · e (Sm2

1 , F1)
= e (Rm2

1 , g2) · hm1m2
t · fm2

1 · e (Sm2
1 , F1) · e (T2, F1) · f1,2 · f−m2

1

= e (R, g2) · hmt · f1,2 · e (Sm2
1 · T2, F1) = e (R, g2) · f1,2 · e (S, F1)

hence all checks of Ver(P , vk,m, σ) pass.
Add2: Since we have Ver(Pi,∆, vk,mi, σi) = 1 for i = 1, 2, we know that in

particular VerSig(pkSig, σ∆,i,∆||Zi) = 1 for i = 1, 2. So with Z = Z1, σ∆ = σ∆,1
we also have VerSig(pkSig, σ∆,∆||Z) = 1. We also have m1 +m2 = g(m1,m2).
Furthermore we have

e (Λ, Z) = e (Λm2
1 , Z1) = e (Λ1, Z1)m2

= e (R1, g2) · hm1
t · f1 ·

∏
(τ,·)∈L1

e (Sτ,1, Fτ )

· e (R2, g2) · hm2
t · f2 ·

∏
(τ,·)∈L2

e (Sτ,2, Fτ )

= e (R, g2) · hmt · f1 · f2
∏

(τ,·)∈L
e (Sτ , Fτ )
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hence all checks of Ver(P , vk,m, σ) pass.
cMult1: Since we have Ver(P ′∆, vk,m′, σ′) = 1, we know in particular that

VerSig(pkSig, σ
′
∆,∆||Z ′) = 1. So with Z = Z ′ and σ∆ = σ′∆ we also have

VerSig(pkSig, σ∆,∆||Z) = 1. We also have m = c ·m′ = g(m′). Furthermore we
have

e (Λ, Z) = e
(
Λ′c, Z ′

)
= e (Λ′, Z ′)c

= e
(
R′

c
, g2
)
· hcm′t · f ′c · e

(
S ′
c
, F
)

= e (R, g2) · hmt · f · e (S, F )

as well as for an arbitrary τ ∗ ∈ T

e

(∏
τ∈T

Tτ , Fτ∗

)
· fe

 ∏
τ∈T ′

T ′
c
τ , Fτ∗

 · f ′c
=
e

 ∏
τ∈T ′

T ′τ , Fτ∗

 · f ′
c

=
(
fm
′

τ∗

)c
= fmτ∗

hence all checks of Ver(P , vk,m, σ) pass.
cMult2: Since we have Ver(P ′∆, vk,m′, σ′) = 1, we know that in particular

VerSig(pkSig, σ
′
∆,∆||Z ′) = 1. So with Z = Z ′ and σ∆ = σ′∆ we also have

VerSig(pkSig, σ∆,∆||Z) = 1. We also have m = c ·m′ = g(m′). Furthermore we
have

e (Λ, Z) = e
(
Λ′c, Z ′

)
= e (Λ′, Z ′)c

= e
(
R′

c
, g2
)
· hcm′t · f ′c · e

(
S ′
c
, F
)

= e (R, g2) · hmt · f · e (S, F )

hence all checks of Ver(P , vk,m, σ) pass.
Shift: Since we have Ver(P ′∆, vk,m′, σ′) = 1, we know that in particular

VerSig(pkSig, σ
′
∆,∆||Z ′) = 1 holds. So with Z = Z ′, σ∆ = σ′∆ we also have

VerSig(pkSig, σ∆,∆||Z) = 1. We also have m = m′ = g(m′). Furthermore we
have

e (Λ, Z) = e (Λ′, Z ′)
= e (R′, g2) · hm′t · f ′ · e (S ′, F )
= e (R, g2) · hmt · f · e (S, F )

hence all checks of Ver(P , vk,m, σ) pass.
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We now analyze the runtime of our verification algorithm Ver.

Proposition 5.20. CHQS (Construction 5.17) provides verification in time O(n)
in an amortized sense.

Proof. We describe the two algorithms (VerPrep,EffVer).
VerPrep(pk,P) : This algorithm parses P = (f, τ1, . . . τn) with f(m1, . . . , mn) =∑n

i=1 cimi +∑n
i,j=1 ci,jmimj and takes the fi, fi,j for i, j ∈ [n] contained in

the public key. It computes FP ←
∏n
i,j=1 f

ci,j
i,j ·

∏n
i=1 f

ci
i and outputs vkP =

(pkSig, ht, {Fi}ni=1, FP) where pkSig, ht, {Fi}ni=1 are taken from vk.
EffVer(vkP ,m, σ,∆): This algorithm is analogous to Ver, except that the value∏n

i,j=1 f
ci,j
i,j ·

∏n
i=1 f

ci
i has been precomputed as FP .

This satisfies correctness. During EffVer, the verifier now computes

e (Λ, Z) = e (R, g2) · hmt · FP ·
n∏
i=1

e (Si, Fi)

The running time of EffVer is thus O(n).

Thus, CHQS achieves amortized efficiency in the sense of Def. 2.8 for every arith-
metic circuit f of multiplicative depth 2, that has superlinear runtime complexity.

Bandwidth: CHQS is not succinct. However, the output of Auth is of constant
size and thus independent of n. Hence no extensive bandwidth is needed during
the upload of the data. After a homomorphic evaluation a signature consists of up
to n+ 2 elements in G1, 1 element in G2, one conventional signature, the message
and up to n input identifiers contained in a list.

5.3.3 CHQS: Context Hiding Property
Next, we consider the privacy property of CHQS. More specifically, we show that
it achieves information-theoretic input privacy with respect to the verifier. For
homomorphic authenticators we discussed variations of the context hiding property
in Section 2.2. Since CHQS is a single key scheme there is no difference between
the internal (see Def. 5.2) and external (see Def. 5.1) context hiding property.

Theorem 5.21. CHQS (Construction 5.17) is perfectly externally context hiding
according to Definition 5.1.
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Proof. We show that our scheme is perfectly externally context hiding in the sense
of Def. 5.1, by comparing the distributions of homomorphically derived signatures
to that of simulated signatures. In our construction we have to distinguish between
level-1 and level-2 signatures. For level-2 signatures Hide is just the identity function,
i.e. σ ← Hide(vk,m, σ) for all vk,m, σ and HideVer = Ver. For level-1 signatures
Hide is the operation Shift described in Eval and we again have HideVer = Ver.
We show how to construct a simulator Sim that outputs signatures perfectly
indistinguishable from the ones obtained by running Eval. Parse the simulator’s
input as sk = (sk′, K), P∆ = (f, τ1, . . . , τn,∆). For each τ appearing in P∆, it
chooses sτ ∈ Zp uniformly at random as well as r ∈ Zp uniformly at random. With
this information, the simulator computes m′ = m, Z ′ = gz2 where z ← ΦK(∆),
σ′∆

$← SignSig(sk′, Z||∆), Λ′ = g
z(xm′+y(

∑n

i,j=1 cijtikj+
∑n

i=1 citi)+
∑n

i=1 sτi ti+r)
1 , R′ = gr1,

S ′τ = gsτ1 for all τ appearing in P∆, and L′ = {(τ, Sτ )}τ∈P∆ . The simulator outputs
the signature σ′ = (m′, σ′∆, Z ′,Λ′, R′,L′).
We now show that this simulator allows for perfectly context hiding security.

We fix an arbitrary key triple (sk, ek, vk), a multi-labeled program (f, τ1, . . . , τn,∆),
and messages m1, . . . ,mn ∈ Zp. Let σ ← Eval(vk,P∆, σ1, . . . , σn) and parse it as
σ = (σ∆, Z,Λ, R,L). We inspect each component of the signature. Z = ΦK(∆)
by definition and thus also Z = Z ′. In particular, z = z′ where Z = gz2 and
Z ′ = gz

′
2 . We have σ∆ = SignSig(sk′, Z||∆) by definition, and since Z = Z ′, σ∆ and

σ′∆ are identically distributed. We consider Λ as an exponentiation of gz1. Since
Λ = ∏n

i,j=1 Λcijmj
i by construction, for the exponent we have:

xm+
n∑

i,j=1
cijmj(siti + yti + ri) = xm′ +

n∑
i,j=1

cijmj(siti + yti + ri)

+ y(
n∑

i,j=1
cijtikj +

n∑
i=1

citi)− y(
n∑

i,j=1
cijtikj +

n∑
i=1

citi)

= xm′ +
n∑
i=1

(
n∑
j=1
−ycijkj − yci + cijmjy + cijsimj)ti

+ y(
n∑

i,j=1
cijtikj +

n∑
i=1

citi) +
n∑

i,j=1
cijmjri

= xm′ + y(
n∑

i,j=1
cijtikj +

n∑
i=1

citi) +
n∑
i=1

s̃iti + r̃

Thus the exponent corresponds to a different choice of r, si ∈ Zp. Analogously,
Sτ = g

s̃τi
1 for all (τ, ·) ∈ L1 and R = gr̃1, where r̃, s̃τi are distributed uniformly at

random as linear combinations of uniformly random field elements.
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All elements are either identical, or have the exact same distribution. Thus even
a computationally unbounded distinguisher has no advantage distinguishing the
two cases.

5.3.4 CHQS: Unforgability
In this section we will discuss the unforgeability of CHQS. We provide a security
reduction by describing various security games, dealing with specific types of
forgeries and bound the difference between these games in a series of lemmata.
Under various cryptographic assumptions all of these differences,as well as the final
probability of an adversary winning the security game are negligible.

Theorem 5.22. CHQS (Construction 5.17) is unforgeable in the sense of Def. 2.11,
if Sig is an unforgeable (EU-CMA [69]) signature scheme, Φ is a pseudorandom
function and G is a bilinear group generator, such that the FDHI assumption (see
Def. 2.42) holds.

Proof. To prove Theorem 5.22, we define a series of games with the adversary
A and we show that the adversary A wins, i.e. the game outputs ‘1’ only with
negligible probability. Following the notation of [37], we write Gi(A) to denote
that a run of game i with adversary A returns ‘1’. We use flag values badi, initially
set to false. If at the end of the game any of these flags is set to true, the game
simply outputs ‘0’. Let Badi denote the event that badi is set to true during game
i. As shown in Proposition 2.17, any adversary who outputs a Type 3 forgery (see
Def. 2.9) can be converted into one that outputs a Type 2 forgery. Hence we only
have to deal with Type 1 and Type 2 forgeries.

Game 1 is the security experiment HomUF− CMAA,HAuth(λ) between an ad-
versary A and a challenger C, where A makes no corruption queries and only
outputs Type 1 or Type 2 forgeries.
Game 2 is defined as Game 1, except for the following change: Whenever A
returns a forgery (P∗∆∗ ,m∗, σ∗) and the list L∆∗ has not been initialized by
the challenger during the queries, then Game 2 sets bad2 = true. It is worth
noticing that after this change the game never outputs 1 if A returns a Type 1
forgery. In Lemma 5.23, we show that Bad2 cannot occur if Sig is unforgeable.
It is worth noticing that after this change the game never outputs ‘1’if A
returns a Type 1 forgery.
Game 3 is defined as Game 2, except that the keyed pseudorandom function
ΦK is replaced by a random function R : {0, 1}∗ → Zp. In Lemma 5.24 we
show that these two games are indistinguishable if Φ is pseudorandom.
Game 4 is defined as Gam 3, except for the following change. At the beginning
C chooses µ ∈ [Q] uniformly at random, with Q = poly(λ) is the number of
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queries made by A during the game. Let ∆1, . . . ,∆Q be all the datasets queried
by A. Then, if in the forgery ∆∗ 6= ∆µ, set bad4 = true. In Lemma 5.25 we
show that Pr[G3(A)] = Q · Pr[G4(A)].
Game 5 is defined as Game 4, except for the following change. At the very
beginning C chooses zµ ∈ Zp at random and computes Zµ = g

zµ
2 . It will use Zµ

whenever queried for dataset ∆µ. It chooses ai, bi ∈ Zp uniformly at random
for i ∈ [n] and sets fτi = g

y(ai+zµbi)
t , Fτi = g

ai+zµbi
2 as well as fτi,τj = g

kjy(ai+zµbi)
t .

In Lemma 5.26, we show that Pr[G5(A)] = Pr[G4(A)].
Game 6 is defined as Game 5, except for the following change. The challenger
runs an additional check. If Ver(pk,P∗∆,m∗, σ∗) = 1, the challenger computes
σ̂ ← HEval(pk,P∗∆,σ) over the signatures σi generated in dataset ∆∗. We
have σ̂ = (m̂, T̂ , σ∆, Z, Λ̂, R̂, Ŝ) in case of a level-1 signature and σ̂ = σ =
(m̂, σ∆, Z, Λ̂, R̂, L̂) in case of a level-2 signature. If Λ∗ ·∏n

i=1 Ŝ
bi
i = Λ̂ ·∏n

i=1 S
∗
i
bi ,

then C sets bad6 = true. In Lemma 5.27, we show that any adversary A for
which Bad6 occurs implies a solver for the FDHI problem.
Finally, in Lemma 5.28, we show that any adversary A that wins Game 6 also
implies a solver for the FDHI problem.

Lemma 5.23. For every PPT adversary A, there exists a PPT forger F such that
|Pr[G2(A)]− Pr[G1(A)]| ≤ AdvUF−CMA

Sig,F (λ).

Proof. This is a direct corollary of Lemma 4.20.

Lemma 5.24. For every PPT adversary A running Game 3, there exists a PPT
distinguisher D such that |Pr[G3(A)]− Pr[G2(A)]| ≤ AdvPRFΦ,D (λ).

Proof. This is a direct corollary of Lemma 4.21.

Lemma 5.25. For every PPT adversary A running Game 4, we have Pr[G3(A)] =
Q · Pr[G4(A)].

Proof. This is a direct corollary of Lemma 4.22.

Lemma 5.26. We have Pr[G5(A)] = Pr[G4(A)]

Proof. The two games are perfectly indistinguishable, corresponding two different
samplings of randomness.

Lemma 5.27. If there exists a PPT adversary A for whom Bad6 occurs with
non-negligible probability during Game 6 as described in Theorem 5.22, there exists
a PPT simulator S who can solve the FDHI problem (see Definition 2.42) with
non-negligible probability.
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Proof. Assume we have a PPT adversary A that can produce the result Bad6 during
Game 6. We show how a simulator S can use this to break the FDHI assumption.
Given (g1, g2, g

z
2, g

v
2 , g

z
v
1 , g

r
1, g

r
v
1 ) simulator S simulates Game 6.

Setup : Simulator S chooses an index µ ∈ [Q] uniformly at random as well as
n ∈ N.
Additionally, it fixes a regular signature scheme Sig = (KeyGenSig, SignSig,
VerSig) and a random function R : {0, 1}∗ → Zp. It outputs the public
parameters pp = (λ, n, bgp, Sig,R).

KeyGen : During the key generation simulator S chooses an index µ ∈ [Q]
uniformly at random. Then it chooses ai, bi, ki, y $← Zp uniformly at random
for all i ∈ [n]. It sets fτi = gyait · e (g1, g

z
2)ybi , Fτi = gai2 · (gz2)bi , for all i ∈ [n],

as well as fτi,τj = g
kjyai
t · e (g1, g

z
2)kjybi , for all i, j ∈ [n]. It sets ht = e(g1, g

z
2).

Additionally, it generates a key pair (skSig, pkSig)← KeyGenSig(1λ).
It sets ek = 0 and vk = (pkSig, ht, {Fτi , fτi}ni=1, {fτi,τj}ni,j=1) and gives (ek, vk)
to the adversary.

Queries: Let l be a counter for the number of datasets queried by A (initially,
it sets l = 1). For every new queried dataset ∆, simulator S creates a list
L∆ of tuples (τ,m), which collects all the label/message pairs queried by the
adversary on ∆.
Moreover, whenever the l-th new dataset ∆l is queried, S does the following:
If l = µ, it samples a random ζµ ∈ Zp, sets Zµ = (gz2)

1
ζµ and stores ζµ.

If l 6= µ, it samples a random ζl ∈ Zp and sets Zl = (gv2)
1
ζl and stores ζl. Since

all Zl are randomly distributed in G2, they have the same distribution as in
Game 6. Given a query (∆, τ,m) with ∆ = ∆m, simulator S first computes
σ∆l
← SignSig(skSig, Zl||∆l).

If l 6= µ, it samples sτ , ρτ ∈ Zp uniformly at random and computes

Λτ =
(

(g
z
v
1 )(y+sτ )bτ · (g

r
v
1 )ρτ · (g

z
v
1 )m

)ζl
, Rτ = g

−(y+sτ )aτ
1 · (gr1)ρτ , Sτ = gsτ1 , Tτ =

gmy−kτ1 , T = {(τ, Sτ , Tτ )} and gives σ = (m,σ∆l
, Zl,Λτ , Rτ , T ) to A. We have

e(Λτ , Zl) = e
(

(g
z
v
1 )(y+sτ )bτ · (g

r
v
1 )ρτ · (g

z
v
1 )m, g

v
ζl
2

)ζl
= e

(
(g

z
v
1 )(y+sτ )bτ · (g

r
v
1 )ρτ · (g

z
v
1 )m, gv2

)
= g

z(y+sτ )bτ+rρτ+zm
t

= g
z(y+sτ )bτ+rρτ+zm+aτ (y+sτ )−aτ (y+sτ )
t = gzmt · g

y(aτ+zbτ )
t · g−yaτ+rρτ

t · gsτ (aτ+bτ z)
t

= hmt · fτ · e (Rτ , g2) · e (Sτ , Fτ )

and this output is indistinguishable from the challenger’s output during Game
6.
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If l = µ, simulator S computes Λτ =
(
g

(y+sτ )bτ+m
1

)ζµ , Rτ = g
−(y+sτ )aτ
1 , Sτ = gsτ1 ,

Tτ = gmy−kτ1 , T = {(τ, Sτ , Tτ )} and gives σ = (m,σ∆µ , Zµ,Λτ , Rτ , T ) to A.
We have

e(Λτ , Zµ) = e
(
g

(y+sτ )bτ+m
1 , g

z
ζµ

2

)ζµ
= e

(
g

(y+sτ )bτ+m
1 , gz2

)
= g

z(y+sτ )bτ+zm
t

= g
z(y+sτ )bτ+zm+(y+sτ )aτ−(y+sτ )aτ
t = gzmt · g

y(aτ+zbτ )
t · g−yaτt · gsτ (aτ+bτ z)

t

= hmt · fτ · e (Rτ , g2) · e (Sτ , Fτ )

and this output is indistinguishable from the challenger’s output during Game
6.

Forgery: Let (P∗∆∗ , σ∗) be a forgery with σ∗ = (m∗, σ∗∆∗ , Z∗,Λ∗, R∗,L∗) and
L∗ = {(τ, S∗τ )}τ∈I , where I is a subset of the label space, be the forgery
returned by A.
The case of σ∗ as a level-1 signature is just a simplification of the level-2 case
and is omitted.
S computes σ̂ ← HEval(pk,P∗∆,σ) over the signatures σi generated in dataset
∆∗. S parses σ̂ = (m̂, σ∗∆∗ , Z∗, Λ̂, R̂, L̂) with L̂ = {(τ, Ŝτ )}τ∈Î where Î is
a subset of the label space. Without loss of generality, we assume I =
Î = {τi}i∈[n], i.e. I is the whole label space. We can always append L
with (τi, 1G1) and write Sτi = Si. If Game 6 outputs ‘1′, we have Z∗ = Zµ,
Λ∗ ·∏n

i=1 Ŝ
bi
i = Λ̂ ·∏n

i=1 S
∗
i
bi , and the following hold:

e (Λ∗, Zµ) = e (R∗, g2) · hm∗t ·
n∏

i,j=1
f
ci,j
i,j ·

n∏
j=1

f
cj
j ·

n∏
i=1

e
(
S∗τi , Fτi

)

e
(
Λ̂, Zµ

)
= e

(
R̂, g2

)
· hm̂t ·

n∏
i,j=1

f
ci,j
i,j ·

n∏
j=1

f
cj
j ·

n∏
i=1

e
(
Ŝτi , Fτi

)
Dividing those equations yields

(
g

(m̂−m∗)z
1

) ζµ
z =

(
R∗

R̂
·
n∏
i=1

S∗i
Ŝi

ai
) ζµ

z

Thus, S can compute W = gm̂−m
∗

1 , W ′ = R∗

R̂
·∏n

i=1
S∗i
Ŝi

ai , and return W,W ′ as
a solution to the FDHI problem. Since we have m∗ 6= m̂, we have (W,W ′) 6=
(1, 1). Our simulation has the same distribution as a real execution of Game 6.

Lemma 5.28. If there exists a PPT adversary A who wins Game 6 with non-
negligible probability, then there exists a PPT simulator S who can solve the FDHI
problem (see Def. 2.42) with non-negligible probability.
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Proof. Assume a PPT adversary A wins Game 6. We show how a simulator S
can use this to break the FDHI assumption. Given (g1, g2, g

z
2, g

v
2 , g

z
v
1 , g

r
1, g

r
v
1 ), S

simulates Game 6.

Setup : Simulator S chooses n ∈ N. Additionally, it fixes a regular signature
scheme Sig = (KeyGenSig, SignSig, VerSig) and a random function R : {0, 1}∗ →
Zp. It outputs the public parameters pp = (λ, n, bgp, Sig,R).

KeyGen : During the key generation simulator S chooses an index µ ∈ [Q]
uniformly at random. Then it chooses ai, bi, ki, y $← Zp uniformly at random
for all i ∈ [n]. It sets fτi = gyait · e (g1, g

z
2)ybi , Fτi = gai2 · (gz2)bi , for all i ∈ [n],

as well as fτi,τj = g
kjyai
t · e (g1, g

z
2)kjybi , for all i, j ∈ [n]. It then chooses x ∈ Zp

uniformly at random. It sets ht = e (g1, g2)x Additionally, it generates a key
pair (skSig, pkSig)← KeyGenSig(1λ).
It sets ek = 0 and vk = (pkSig, ht, {Fτi , fτi}ni=1, {fτi,τj}ni,j=1) and gives (ek, vk)
to the adversary.

Queries: Let l be a counter for the number of datasets queried by A (initially,
it sets l = 1). For every new queried dataset ∆, simulator S creates a list
L∆ of tuples (τ,m), which collects all the label/message pairs queried by the
adversary on ∆.
Moreover, whenever the l-th new dataset ∆l is queried, S does the following:
If l = µ, it samples a random ζµ ∈ Zp, sets Zµ = (gz2)

1
ζµ and stores ζµ. If

l 6= µ, it samples a random ζl ∈ Zp and sets Zl = (gv2)
1
ζl and stores ζl. Since

all Zl are randomly distributed in G2, they have the same distribution as in
Game 6. Given a query (∆, τ,m) with ∆ = ∆m, simulator S first computes
σ∆l
← SignSig(skSig, Zl||∆l).

If l 6= µ, it samples ρτ , sτ ∈ Zp uniformly at random and computes

Λτ =
(

(g
z
v
1 )(y+sτ )bτ · (g

r
v
1 )ρτ

)ζl
, Rτ = g−mx1 · g−(y+sτ )aτ

1 · (gr1)ρτ , Sτ = gsτ1 , Tτ =

gmxy−kτ1 , T = {(τ, Sτ , Tτ )} and gives σ = (m,σ∆l
, Zl,Λτ , Rτ , T ) to A. We

have

e(Λτ , Zl) = e
(

(g
z
v
1 )(y+sτ )bτ · (g

r
v
1 )ρτ , g

v
ζl
2

)ζl
= e

(
(g

z
v
1 )(y+sτ )bτ · (g

r
v
1 )ρτ , gv2

)
= g

z(y+sτ )bτ+rρτ
t = g

z(y+sτ )bτ+rρτ+ym−ym+aτ (y+sτ )−aτ (y+sτ )
t

= gymt · g
y(aτ+zbτ )
t · g−ym−yaτ+rρτ

t · gsτ (aτ+zbτ )
t = hmt · fτ · e (Rτ , g2) · e (Sτ , Fτ )

and this output is indistinguishable from the challenger’s output during Game 6.
If l = µ, simulator S computes
Λτ =

(
g

(y+sτ )bτ
1

)ζµ , Rτ = g
−mx−(y+sτ )aτ
1 , Sτ = gsτ1 , Tτ = gmxy−kτ1 , T = {(τ, Sτ ,
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Tτ )} and gives σ = (m,σ∆l
, Zl,Λτ , Rτ , T ) to A. We have

e(Λτ , Zµ) = e
(
g

(y+sτ )bτ
1 , g

z
ζµ

2

)ζµ
= e

(
g

(y+sτ )bτ
1 , gz2

)
= g

z(y+sτ )bτ
t

= g
z(y+sτ )bτ+xm−xm+(y+sτ )aτ−(y+sτ )aτ
t = gmxt · g

y(aτ+zbτ )
t · g−mx−yaτt · gsτ (aτ+zbτ )

t

= hmt · fτ · e (Rτ , g2) · e (Sτ , Fτ )

and this output is indistinguishable from the challenger’s output during Game 6.
Forgery: Let (P∗∆∗ , σ∗) be a forgery with σ∗ = (m∗, σ∗∆∗ , Z∗,Λ∗, R∗,L∗) and
L∗ = {(τ, S∗τ )}τ∈I where I is a subset of the label space, be the forgery
returned by A. The case of σ∗ as a level-1 signature is just a simplification of
the level-2 case and is omitted.
S computes σ̂ ← HEval(pk,P∗∆,σ) over the signatures σi generated in dataset
∆∗. S parses σ̂ = (m̂, σ∗∆∗ , Z∗, Λ̂, R̂, L̂) with L̂ = {(τ, Ŝτ )}τ∈Î where Î is a
subset of the label space. Without loss of generality, we assume I = Î =
{τi}i∈[n], i.e. I is the whole label space. We can always append L with (τi, 1G1),
and write Sτi = Si.
If Game 6 outputs ‘1′, we have Z∗ = Zµ, Λ∗ = Λ̂, as well as

e (Λ∗, Zµ) = e (R∗, g2) · hmt ·
n∏

i,j=1
f
ci,j
i,j ·

n∏
j=1

f
cj
j ·

n∏
i=1

e
(
S∗τi , Fτi

)
and

e
(
Λ̂, Zµ

)
= e

(
R̂, g2

)
· hmt ·

n∏
i,j=1

f
ci,j
i,j ·

n∏
j=1

f
cj
j ·

n∏
i=1

e
(
Ŝτi , Fτi

)
.

Dividing those equations yields

Λ∗

Λ̂
=
(
R∗

R̂
· gx(m∗−m̂)

1 ·
n∏
i=1

S∗i
Ŝi

ai+biz
) ζµ

z

=
(
R∗

R̂
· gx(m∗−m̂)

1 ·
n∏
i=1

S∗i
Ŝi

ai
) ζµ

z

·
n∏
i=1

S∗i
Ŝi

biζµ

Thus S can computeW =
(
R∗

R̂
· gx(m∗−m̂)

1 ·∏n
i=1

S∗i
Ŝi

ai
)ζµ , W ′ = Λ∗

Λ̂ ·
∏n
i=1

S∗i
Ŝi

−biζµ ,
and return W,W ′ as a solution to the FDHI problem. Since we have bad6 =
false, we have W ′ 6= 1. Our simulation has the same distribution as a real
execution of Game 6.
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Outsourcing data and computations to the cloud has become an increasingly
important aspect of IT. Such techniques provide a higher level of efficiency and
flexibility and are therefore very valuable for private and commercial users. However,
they also pose new risks for data security. Thus, secure outsourcing is a highly
relevant research field. Cloud technologies must ensure that no malicious party
gets access to the outsourced data and that no unauthorized modifications can be
performed, i.e. the solutions must provide confidentiality and correctness. Both
security goals can be provided by encrypting and, respectively, signing the data
before outsourcing it to the cloud.
To allow for computations on the outsourced data, encryption and signature

schemes with homomorphic properties were developed. However, so far most
works focused on either confidentiality - provided by homomorphic encryption, or
correctness - provided by homomorphic authenticators. In the previous chapter
we presented such homomorphic authenticators and showed that our schemes
already achieve input privacy with respect to the verifier. In this chapter we
will now consider computational privacy with respect to the server, by combining
homomorphic encryption with homomorphic signatures.

Catalano et al. [43] already developed a framework called “linearly homomorphic
authenticated encryption with public verifiability" (LAEPuV) that allows to com-
bine both primitives into one unified solution. They show that their framework can
be instantiated with the Paillier cryptosystem [84] and any linearly homomorphic
signature scheme supporting the same message space. However, the instantiation
provided in [43] suffered from false negatives, i.e. correct results were considered
incorrect by the verification algorithm. In this chapter, we present the first correct
instantiations of LAEPuV schemes.

Contribution. In this chapter we propose novel LAEPuV instantiations, one
based on the RSA problem and another based on the CDH problem. Following
the methodology of Catalano et al. [43] we do so by first constructing suitable
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linearly homomorphic signature schemes and afterwards applying the transformation
described in [43] to them. The LAEPuV schemed derived from our CDH based
homomorphic signature scheme is furthermore the first LAEPuV scheme to be
context hiding, even in an information-theoretic sense.

Organization. This chapter is structured as follows. We first present a linearly
homomorphic signature scheme based on the strong RSA problem in Sec. 6.1 and
prove its correctness and security properties. We then describe a combination
of this scheme with Paillier encryption [84], that adds computational input and
output privacy with respect to the servers to the homomorphic signature scheme
in Sec. 6.2. Afterwards we present a linearly homomorphic signature scheme based
on the CDH problem in Sec. 6.3 and prove its correctness and security properties.
Finally we show how to combine this scheme with with Paillier encryption in order
to achieve computational input and output privacy with respect to the servers in
Sec. 6.4.

Publications. This chapter is based on publications [S5] and [S6].

Related Work. Catalano et al. [43] proposed a framework and an instantiation
for a linearly homomorphic authenticated encryption scheme providing public
verifiability. As pointed out in [98], the candidate instantiation of [43] suffers
from false negatives. In this work we further improve their instantiation by
providing instantiations with provable correctness. We furthermore present the first
construction (see Con. 6.13) that is context hiding and thus achieves information-
theoretic input privacy with respect to the verifier.

6.1 An RSA Based Linearly Homomorphic Signature
Scheme

Catalano et al. [43] introduced a cryptographic primitive called LAEPuV that
allows a data owner to outsource encrypted data and computations on this data to
the cloud. For this to be secure, the cloud must keep the data received confidential
and provide measures that allow verifying the integrity of the computation results.
Optimally, the results are publicly verifiable, enabling third parties such as external
auditors to perform these checks.
To ensure privacy, the data owner can encrypt her data using a homomorphic

encryption scheme. Due to its homomorphic properties, functions can be evaluated
over the messages by evaluating corresponding functions over the ciphers. This
allows the data owner to outsource the computations to a cloud such that it neither
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learns the input nor the result. However, the data owner has to trust that the
cloud evaluates the functions correctly.
To ensure the correctness of the result, the data owner could authenticate her

data using a homomorphic authenticator scheme before outsourcing it to the cloud.
This allows the data owner to delegate computations such that the data owner,
or - in case of homomorphic signatures - any third party on behalf of the data
owner, can verify the correctness of the computations. However, without using
an encryption scheme to encrypt the data, the cloud would learn the input and
the output of the computations. If both correctness and privacy are desired both
schemes must be combined. More precisely, the data owner encrypts her data, signs
the ciphers, and asks the cloud to evaluate the function over the ciphers. When the
data owner receives the resulting cipher along with its (homomorphically computed)
signature from the cloud, it can verify the computation using the signature and
obtain the message by decrypting the cipher.
A naive combination of these primitives requires that the cipher space of the

encryption scheme and the message space of the homomorphic signature scheme are
equal. The message space of the Paillier cryptosystem is ZN , where N = pq for two
primes p, q of equal size while the corresponding cipher space is ZN2 . This leads
to a performance problem as the homomorphic signature scheme has to support a
significantly larger message space than the Paillier cryptosystem. Thus, Catalano
et al. [43] proposed a method (see Construction 2.23) which allows combining the
Paillier cryptosystem with a homomorphic signature scheme in a more efficient
manner. Instead of signing the ciphers, the scheme masks the ciphers and signs
the decrypted masked ciphers which have the same size as the original messages.

The first instantiation of a LAEPuV scheme described in [43], however was not
correct as it suffered from false positives as shown in [98].

In the following we will describe a linearly homomorphic signature scheme HSig =
(Setup,KeyGen,Auth,Eval,Ver) on which we will base our improved LAEPuV
scheme. This scheme is a variation of a scheme presented by Catalano et al. [40].

Construction 6.1.

Setup(1λ): On input a security parameter λ, the algorithm chooses an integer n
and an integer NM ← pMqM (for primes pM , qM of size λ/2). Additionally, it
fixes a regular signature scheme Sig = (KeyGenSig, SignSig, VerSig). It outputs
the public parameters pp = (λ, n,NM , Sig).

KeyGen(pp) : On input public parameters pp the algorithm chooses two (safe)
primes pS, qS such that gcd(NM , φ(NS)) = 1, where NS ← pSqS. It chooses
n+ 2 elements g0, g1, h1, ..., hn

$← Z∗NS uniformly at random and generates a
key pair (skSig, pkSig)← KeyGenSig(1λ). It sets sk = (skSig, , pS, qS), ek = 0 and
vk = (pkSig, NS, g0, g1, h1, ..., hn). It outputs (sk, ek, vk).
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Auth(sk,∆, τ,m): On input a secret key sk, a dataset identifier ∆, an input
identifier τ ∈ T , and a message m ∈ ZNM , if ∆ is used for the first time, it
chooses a not yet used prime e of length l < λ/2 such that gcd(eNM , φ(NS)) =
1, computes its signature σe ← SignSig(skSig,∆||e), and stores (∆, e, σe) in
the list L∆. Otherwise, it takes (∆, e, σe) from the list L∆. Then, it chooses
s

$← ZeNM , computes x such that xeNM = gs0hτg
m
1 mod NS, as well as e−1

mod NS, ge = ge
−1

1 and returns the signature σ = (m, e, ge, σe, s, x).
Eval(ek, f, σ1, . . . , σn): On input a public evaluation key ek,a linear function f
given by its coefficient vector (f1, . . . , fn), and signatures σ1, . . . , σn, where
σi = (mi, ei, gei , σei , si, xi), the algorithm checks if the signatures share the
same primes, i.e. if e1 = ei for all i ∈ [n]. If true, the algorithm proceeds as
follows, otherwise, it aborts. It sets e = e1, σe = σe1, ge = ge1 and computes

m←
n∑
i=1

fimi mod NM m′ ←
(

n∑
i=1

fimi −m
)
/(NM)

s←
n∑
i=1

fisi mod eNM s′ ←
(

n∑
i=1

fisi − s
)
/(eNM)

x←
∏n
i=1 x

fi
i

gs
′

0 g
m′
e

mod NS

and returns the signature σ = (m, e, ge, σe, s, x).
Ver(vk,P∆,m, σ): On input a public evaluation key vk, a multi-labeled program
P∆ = (f, τ1, . . . , τn,∆) , a message m, and a signature σ, the algorithm parses
(without loss of generality) σ = (m, e, ge, σe, s, x). It checks whether

VerSig(pkSig, σe,∆||e) = 1
m, s ∈ ZeNM

xeNM = gs0

n∏
i=1

hfiτig
m
1 mod NS

If all checks pass it outputs ‘1’, else it outputs ‘0’.

Note that compared to the construction of [40], our scheme has an additional
component ge and does not use the specific hash function described in [40].
In the following we show that this construction is indeed correct. For homo-

morphic authenticators, correctness naturally comes in two forms. On the one
hand, freshly generated authenticators, obtained by using the data owner’s secret
key should be verified. On the other hand, authenticators derived by using the
homomorphic properties should also be verified.
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Proposition 6.2. The linearly homomorphic signature scheme 6.1 achieves au-
thentication correctness in the sense of Def. 2.5.

Proof. Let λ be an arbitrary security parameter, pp← Setup(1λ) be arbitrary public
parameters, (sk, ek, vk)← KeyGen(pp) an arbitrary key triple, τ ∈ T an arbitrary
label, ∆ ∈ {0, 1}∗ an arbitrary dataset identifier, and m ∈ ZNM an arbitrary
message. Furthermore let σ ← Auth(sk,∆, τ,m). We parse σ = (m, e, ge, σe, s, x).
We consider the labeled identity program I(τ,∆). Here we have fτ = 1 and fi = 0
for all other identifiers. By assumption it holds that Sig is a correct signature
scheme and thus we have VerSig(pkSig, σe,∆||e) = 1. By construction it holds that
s ∈ ZeNM and m < NM , thus m ∈ ZeNM . Furthermore, it holds that

xeNM = gs0hτg
m
1 = gs0hτ

∏
τj 6=τ

h0
τj
· gm1 = gs0

n∏
i=1

hfiτig
m
1

which yields Ver(vk, I(τ,∆),m, σ) = 1.

Proposition 6.3. The linearly homomorphic signature scheme 6.1 achieves evalu-
ation correctness in the sense of Def. 2.6 if Sig is a correct signature scheme.

Proof. Let λ be an arbitrary security parameter, pp← Setup(1λ) be arbitrary pub-
lic parameters, (sk, ek, vk)← KeyGen(pp) an arbitrary key triple, and ∆ ∈ {0, 1}∗
an arbitrary dataset identifier. Let {(Pi,mi, σi)}i∈[N ] be any set of program/mes-
sage/authenticator triples, such that Ver(vk,Pi,∆,mi, σi) = 1 and g : ZNNM → ZNM
be an arbitrary linear function given by its coefficient vector (c1, . . . , cN). Let
m∗ = g(m1, . . . ,mN),P∗ = g(P1, . . . ,PN), and σ∗ = Eval(ek, g, {σi}i∈[N ]).
We parse σ∗ = (m∗, e∗, g∗e , σ∗e , s∗, x∗).
By assumption we have VerSig(pkSig, σei ,∆||ei) = 1 for all i ∈ [N ]. Since we have
by construction e∗ = e1 and σ∗e = σe1 we have VerSig(pkSig, σ

∗
∆,∆||e∗) = 1.

During Eval, both m and s are reduced modulo NM and eNM , respectively, hence
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m, s ∈ ZeNM . It holds that

xeNM = (∏N
i=1 x

ci
i )eNM

(gs′0 gm′e )eNM = (∏N
i=1 x

eNM
i )ci
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∏N
i=1 h

ci
i g
∑N

i=1 cimi
1

gs
′eNM

0 · g
m′
e
eNM

1

= g
∑N

i=1 cisi
0

∏N
i=1 h

ci
i g
∑N

i=1 cimi
1

gs
′eNM

0 · gm′NM1

= g
∑N

i=1 cisi
0

∏N
i=1 h

ci
i g
∑N

i=1 cimi
1(

g
(
∑N

i=1 cisi−s)/(eNM )
0

)eNM
·
(
g

((
∑N

i=1 cimi−m)/(NM ))
1

)NM

= g
∑N

i=1 cisi
0

∏N
i=1 h

ci
i g
∑N

i=1 cimi
1

g
∑N

i=1 cisi−s
0

(
g

(
∑N

i=1 cimi−m)/(NM )
1

)NM

= g
∑N

i=1 cisi
0

∏N
i=1 h

ci
i g

e
∑N

i=1 cimi
1

g
∑N

i=1 cisi−s
0 g

(
∑N

i=1 cimi−m)
1

= g
∑N

i=1 cisi
0

∏N
i=1 h

ci
i g

e
∑N

i=1 cimi
1

g
∑N

i=1 cisi−s
0 g

(∑N

i=1 cimi)−m
1

= gs0

N∏
i=1

hcii g
m
1

which yields Ver(vk,P∗∆,m∗, σ∗) = 1.

Next, we prove that this scheme is actually unforgeable, so a malicious cloud
server cannot produce an incorrect result and corresponding authenticator that will
be accepted by a verifier. In order to show this we describe a security reduction
between multiple security games. In the individual games we will address specific
types of forgery and subsequently show that each can only be achieved with
negligible probability.
The security of the scheme is given in the following theorem.

Theorem 6.4. If Sig is an unforgeable signature scheme, the factorization as-
sumption (see Def 2.43) and the strong-RSA assumption (see Def. 2.45) hold, then
Construction 6.1 is secure against chosen message attacks according to Defini-
tion 2.11.

Proof. To prove this Theorem we define a series of games with the adversary
A and we will show that the adversary A wins, i.e. the game outputs ‘1′, only
with negligible probability. We write Gi(A) to denote that a run of game i with
adversary A returns ‘1′. We will make use of flag values badi initially set to false.
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If at the end of the game any of these flags is set to true, the game simply outputs
‘0′. Let Badi denote the event that badi is set to true during a game.

As shown in Proposition 2.16, any adversary who outputs a Type 3 forgery (see
Def. 2.9) can be converted into one that outputs a Type 2 forgery. Hence we only
have to deal with Type 1 and Type 2 forgeries.

Game 1 is the experiment HomUF− CMAA,HAuth (see Def. 2.9) where A only
outputs Type 1 or Type 2 forgeries.
Game 2 is defined as Game 2 except for the following change: Whenever A
returns a forgery (P∗∆∗ ,m∗, σ∗) and the list L∆∗ has not been initialized by
the challenger during the queries, then Game 2 sets bad2 = true. It is worth
noticing that after this change the game never outputs 1 if A returns a Type 1
forgery. In Lemma 6.5, we show that any adversary A, such that Pr[Bad2] is
non negligible implies a solver for the strong RSA problem (See Def. 2.45). It
is worth noticing that after this change the game never outputs ‘1’if A returns
a Type 1 forgery.
Game 3 is defined as Game 3, except for the following change. At the beginning
C chooses µ ∈ [Q] uniformly at random, with Q = poly(λ) is the number of
queries made by A during the game. Let ∆1, . . . ,∆Q be all the datasets
queried by A. Then, if in the forgery ∆∗ 6= ∆µ, set bad3 = true. In Lemma 6.6
we show that Pr[G3(A)] = Q · Pr[G3(A)].
Game 4 is defined as Game 4, except for the following change. When given a
forgery (P∗∆∗ ,m∗, σ∗) where P∗∆∗ = ((f ∗, τ1, . . . , τn),∆∗) the simulator parses
σ∗ = (m∗, e∗, g∗e , σ∗e , s∗, x∗). It computes x̂ = ∏n

i=1 x
fi
i and checks wheter x∗ = x̂

If it does it sets bad4 = true.
In Lemma 6.7, we show that any adversary A, such that Pr[Bad4] is non
negligible, implies a solver for the factorization problem of safe primes.
Finally, in Lemma 6.8, we show how a simulator can use an adversary winning
Game 4.

Lemma 6.5. For every PPT adversary A, there exists a PPT forger F such that
|Pr[G2(A)]− Pr[G2(A)]| ≤ AdvUF−CMA

Sig,F (λ).

Proof. This is a direct corollary of Lemma 4.20.

Lemma 6.6. For every PPT adversary A running Game 3, we have Pr[G3(A)] =
Q · Pr[G3(A)].

Proof. First, Pr[G3(A)] = Pr[G3(A) ∧ bad3 = false] = Pr[G3(A) | bad3 = false] ·
Pr[bad3 = false], since Game 3 will always output ‘0’ when Bad3 occurs. Second,
observe that when Bad3 does not occur, i.e. bad3 = false, the challenger guessed
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the dataset ∆∗ correctly and the outcome of Game 3 is identical to the outcome of
Game 3. Since µ is chosen uniformly at random and is completely hidden to A, we
have Pr[bad3 = false] = 1

Q
and therefore Pr[G3(A)] = 1

Q
Pr[G3(A)].

Lemma 6.7. A PPT adversary A running Game 4, that can produce a forgery
with bad4 = true implies a solver of the factorization problem of safe primes.

Proof. As our Construction 6.1 is a variation of a scheme presented by Catalano
et al. [40], this proof will follow the general outline of [40]. We show how to
construct a simulator S which uses an efficient adversary A, for whom Bad4 occurs
during Game 4 to solve the factorization problem for products of safe primes. The
simluator S takes a input NS = pSqS = (2p′M + 1)(2q′M + 1) a product of two safe
primes. It chooses ξ $← QRNS , where QRNS are the quadratic residues modulo NS.

Setup : Let Q be the number of datasets for which the adversary queries sig-
natures. The simulator chooses Q primes e1, ..., eQ. The simulator S de-
fines the message space NM = pMqM by choosing primes pM , qM such that
gcd(NM , ei) = 1 for i ∈ [Q]. It chooses n ∈ N. Additionally, it fixes a regu-
lar signature scheme Sig = (KeyGenSig, SignSig, VerSig). It outputs the public
parameters pp = (λ, n,NM , Sig).

KeyGen : The simulator S computes keys for the regular signature scheme
(skSig, pkSig) ← KeyGenSig(1λ). It chooses a, w1, ..., wn, b1, ..., bn uniformly at
random from the set [N2

S]. Following this, it sets g0 = ξENM , g1 = ξENMa, and
hi = ξENM (eµwi+bi) for i ∈ [n], where E = ∏n

i=1 ei. We write El = ∏n
i=1
i 6=l

ei.
Then, it gives vk = (pkSig, NS, g0, g1, h1, ..., hn) to the adversary.
Since a, b1, ..., bn are chosen uniformly at random, the adversary can not
distinguish vk from a public key of the genuine scheme.

Queries: For every new queried dataset ∆, simulator S creates a list L∆ of tuples
(τ,m), which collects all the label/message pairs queried by the adversary
on ∆. On query (∆l, τ,m) the simulator S checks if l = µ. We distinguish
between two cases.
• Case 1: The adversary queries the signatures for the l-th dataset, where
l ∈ [n]\{µ}.
• Case 2: The adversary queries the signatures for the µ-th dataset.

Case 1: On query (∆l, τ,m), S computes σel ← SignSig(skSig,∆l||el). It
computes gel = ξElNMa1 , chooses s $← ZeµNM , and sets
x =

(
ξEl
)s+eµwτ+bτ+am

. It returns σ = (m, el, gel , σel , s, x) to A. To verify
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that this is a valid signature, note that

xelNM =
(
ξEl
)(s+eµwτ+bτ+am)elNM

=
(
ξNME

)s+eµwτ+bτ+am

= ξNMEs · ξNME(eµwτ+bτ ) · ξNME(am)

= gs0 · hτ · gm1

Case 2: For a query in the dataset ∆µ for which the simulator S guessed
that A will produce a forgery, S, computes σeµ ← SignSig(skSig,∆µ||eµ). It
computes geµ = ξEµNMa1 . It sets s = (bτ − am) mod eµ and sets x = ξE·y

, where y = bτ−s+eµwτ−am
eµ

. It holds that

xeµNM = ξE·y·eµ·NM

= ξ
NME( bτ−s+eµwτ−am

eµ
)·eµ

= ξNME(bτ−s+eµwτ−am)

= ξNMEs · ξNMEµ(eµwτ+bτ ) · ξNME(am)

= gs0 · hτ · gm1

thus, σ = (m, e, ge, σe, s, x) is a valid signature on m.
Forgery: Let (P∗∆∗ ,m∗, σ∗) be the forgery returned by the adversary A. Parse
σ∗ = (m∗, e, σe, s, x). By assumption we have x∗ = x̂, where x̂ = ∏n

i=1 x
fi
i . We

compute m′ = ∑n
i=1 fimi as well as s′ = ∑n

i=1 fisi. Since σ∗ is forgery we have
(x∗)eµNM = gs

∗
0
∏n
i=1 h

fi
i g

m∗
1 =

(
ξNMEµ

)s∗+∑n

i=1(eµwτi+bτi )fi+am
∗

. Furthermore, it
holds that

1 =
(

x∗∏n
i=1 x

fi
i

)eµNM
=

gs
∗

0
∏n
i=1 h

fi
τi
gm
∗

1∏n
i=1 (gsi0 · hτi · g

mi
1 )fi

=

(
ξNME(s∗+(eµwτ )fi+am∗)

)
(
ξNME(

∑nk

i=1 fisi+(eµwτ )fi+a
∑n

i=1 fimi)
)

= ξNME(s∗−s′+a(m∗−m′))

Let y = NME(s∗−s′+a(m′−m′)). We have found an integer y such that y = 0
mod ϕ(NS). Notice that we can write a = αp′Sq

′
S + β with 0 ≤ β ≤ p′Sq

′
S and

α is information-theoretically hidden from A. Therefore we have y 6= 0 with
non-negligible probability and can use the knowledge of ϕ(NS) to reconstruct
pSqS = (2p′S + 1)(2q′S + 1).
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Lemma 6.8. A PPT adversary A that wins Game 4 implies a solver of the strong
RSA problem (see Def. 2.45).

Proof. This proof works analogously to Case II-b presented by Catalano et al. [39,
Theorem 2]. The main difference is the presence of the component ge in our
authenticators σ. We will describe how to simulate such a component. The
simulator S takes as input a strong RSA instance ξ,NS = pSqS (for safe primes
pS, qS) (see Def. 2.45). During key generation S samples y $← QRNS and sets
g1 = yE, where we have again E = ∏n

i=1 ei. For a query in dataset ∆l, S can
compute ge = yEl , where we again have El = ∏n

i=1
i 6=l

ei. The rest of the proof is a
corollary of [39, Theorem 2].

6.2 RSA Based Linearly Homomorphic
Authenticated Encryption

We are now ready to provide our new scheme, which simultaneously achieves
verifiability and computational input and output privacy with respect to the servers.
This is achieved by applying the transformation of [43] to our Construction 6.1.

Construction 6.9.
RSA-based LAEPuV:
AKeyGen(1λ, n): On input a security parameter λ and an integer n, the algo-
rithm samples the four (safe) primes pE, qE, pS, qS, the group elements
g0, g1, h1, ..., hn ∈ Z∗NS and g ∈ Z∗N2

E
of order NE, and the hash function

H ∈ H : {0, 1}∗ → Z∗N2
E
. Additionally, it fixes a regular signature scheme

Sig = (KeyGenSig, SignSig, VerSig). It computes keys for the regular signature
scheme (skSig, pkSig)← KeyGenSig(1λ) and returns the key pair (sk, pk), where
sk = (pE, qE, pS, qS, g, skSig) and pk = (NE, g, NS, g0, g1, h1, ..., hn, H, pkSig). It
returns the key pair (sk, pk).

AEncrypt(sk,∆, τ,m): On input a secret key sk, a dataset identifier ∆, an input
identifier τ ∈ T , and a message m ∈ ZTNE , it chooses β

$← ZN2
E
uniformly

at random . It computes the ciphertext C ← gm · βN mod N2
E, computes

S ← H(∆||τ) and computes (a, b) ∈ ZNE × Z∗NE such that ga · bNE = C · S
mod N2

E using the factorization of NE (see [84] for a detailed description).
If ∆ is used the first time, it chooses a not yet used prime e of length l <
λ/2 such that gcd(eNE, φ(NS)) = 1, computes ge = ge

−1
1 and its signature
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6.2 RSA Based Linearly Homomorphic Authenticated Encryption

σe ← SignSig(skSig, τ ||e), and stores (∆, e, σe) in the list L∆. Otherwise, it
takes (∆, e, σe) from the list L∆. Then, it chooses s $← ZeNE , computes
the value x such that xeNE = gs0hτg

a
1 mod NS, and returns the ciphertext

c = (C, a, b, e, ge, σe, s, x).
AEval(pk,P∆, {ci}ni=1): On input a public key pk, a multi-labeled program P∆,
and a set of ciphertexts ci, it parses P∆ = (f, τ1, . . . , τn,∆), where f is a linear
function given by its coefficient vector (f1, . . . , fn), as well as ci = (Ci, ai, bi,
ei, gei, σei, si, xi) It checks whether VerSig(pkSig, σei ,∆||ei) = 0 for any i ∈ [n].
Furthermore, the algorithm checks if there are two indexes i 6= j ∈ [n] such
that ei 6= ej. If one of the checks is true, the algorithm aborts. Otherwise, the
algorithm sets e = e1, ge = ge1, σe = σe1, computes

C =
n∏
i=1

Cfi
i mod N2

E a =
n∑
i=1

fiai mod NE

b =
n∏
i=1

bfii mod N2
E s =

n∑
i=1

fisi mod eNE

s′ =
(

n∑
i=1

fisi − s
)
/(eNE) x =

∏n
i=1 x

fi
i

gs
′

0
mod NS

a′ =
(

n∑
i=1

fiai − a
)
/NE x =

∏n
i=1 x

fi
i

gs
′

0 g
a′
e

mod NS

Then, it returns the ciphertext c = (C, a, b, e, ge, σe, s, x).
AVerify(pk,P∆, c): On input a public key pk, a multi-labeled program P∆, and a
ciphertext c, it parses P∆ = ((f1, ..., fn), τ1, . . . , τn,∆) and c = (C, a, b, e, ge,
σe, s, x). The algorithm checks whether the following equations hold:

VerSig(pkSig, σe,∆||e) = 1
a, s ∈ ZeNE

xeNE = gs0

n∏
i=1

hfiτig
a
1 mod NS

gabNE = C
n∏
i=1

H(∆||τi)fi mod N2
E

If all four checks pass, the algorithm returns ‘1’, i.e. c is a valid ciphertext.
Otherwise, it returns ‘0’, i.e. c is an invalid ciphertext.

ADecrypt(sk,P∆, c): On input a secret key sk, a multi-labeled program P∆ and a
ciphertext c, the algorithm does the following. It runs b← AVerify(pk,P∆, c).
If b = 0 it outputs ⊥. Otherwise, it computes (m,β) such that gmβNE = C
mod N2

E and returns m.
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We will explicitly show this combination of primitives is still correct. The first
instantiation of a LAEPuV scheme described in [43] was indeed not correct as it
suffered from false negatives as shown in [98]. A correct execution of Eval and a
correct computation of a function could (with non-negligible probability) lead to
AVerify not accepting the result.

Theorem 6.10. Construction 6.9 is a correct LAEPuV scheme in the sense of
Definition 2.20.

Proof. In the following, we show that each condition described in Definition 2.20
holds. Throughout this proof, let (sk, pk)← AKeyGen(1λ, n) be a key pair, where
sk = (skSig, pE, qE, pS, qS) and pk = (NE, g, NS, g0, g1, h1, ..., hn, H, pkSig).
Condition 1: Let m ∈ ZNE be an arbitrary message, ∆ be an arbitrary

dataset identifier, τ ∈ T , c = (C, a, b, e, ge, σe, s, x)← AEncrypt(sk,∆, τ,m) be the
encryption of m, and f the linear function given by the i-th unit vector.

By construction we have a, s ∈ ZeNE and VerSig(pkSig, σe,∆||e) = 1. It holds that

xeNE = gs0hig
a
1 = gs0hτi

n∏
j=1
j 6=i

h0
τj
ga1 = gs0

n∏
j=1

h
fj
j g

a
1

and

gabNE = CR = CH(∆||τi) = CH(∆||τi)
n∏
j=1
j 6=i

H(∆||τj)0 = C
n∏
j=1

H(∆||τj)fj

which yields AVerify(pk,P∆, c) = 1, for P∆ = (f, τ1, . . . , τn,∆). Thus, ADecrypt
returns the Paillier decryption of C, i.e. ADecrypt(sk,P∆, c) = m.
Condition 2: We prove the equivalence by showing that both implications are

satisfied.
⇐: Let m ∈ M = ZNE be a message, f be a linear function given by its

coefficient vector (f1, ..., fn) with fi < NE for i ∈ [n], and c be a ciphertext such
that ADecrypt(sk,P∆, c) = m. The fact that ADecrypt(sk,P∆, c) 6= ⊥ directly leads
to AVerify(pk,P∆, c) = 1.
⇒: Let c = (C, a, b, ege, σe, s, x) ∈ C be a ciphertext, ∆ be a dataset identifier,

and f be a linear function such that AVerify(pk,P∆, c) = 1. Since ord(g) = NE,
this guarantees that the Paillier decryption of C yields m ∈ M = ZNE . Thus,
∃m ∈M : ADecrypt(sk,P∆, c) = m.
Condition 3: Let ∆ be an arbitrary dataset identifier, m1, ...,mn ∈ ZNE

be messages, and ci = (Ci, ai, bi, e, gei , σe, si, xi) ← AEncrypt(sk,∆, τi,mi) be the
ciphertext obtained by encrypting the message mi for i ∈ [n].
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Let f be a linear function given by its coefficient vector (f1, ..., fn) such that
fi < NE for all i ∈ [n] and c = (C, a, b, e, ge, σe, s, x) ← AEval(pk,P∆, {ci}ni=1) be
the ciphertext obtained by evaluating the function f over the ciphertexts ci.
By construction it holds that VerSig(pkSig, σe,∆||e) = 1. During AEval, s and a

are reduced modulo eNE and NE, respectively. Thus, s, a ∈ ZeNE . In order to show
that AVerify(pk,P∆, c) = 1, it remains to show that

xeNE = gs0

n∏
i=1

hfiτig
a
1 mod NS

gabNE = C
n∏
i=1

H(∆||τi)fi mod N2
E

For the first equation we have

xeNE = (∏n
i=1 x

fi
i )eNE

(gs′0 ga′e )eNE =
∏n
i=1(gsi0 hτig

ai
1 )fi

(gs′0 ga
′e−1

1 )eNE

=
g
∑n

i=1 fisi
0

∏n
i=1 h

fi
τi
g
∑n

i=1 fiai
1(

g
(
∑n

i=1 fisi−s)/(eNE)
0 g

((
∑n

i=1 fiai−a)/(NE))e−1

1

)eNE

=
g
∑nk

i=1 fisi
0

∏n
i=1 h

fi
τi
g
∑n

i=1 fiai
1

g
∑n

i=1 fisi−s
0

(
g

(
∑n

i=1 fiai−a)/(eNE)
1

)eNE

=
g
∑n

i=1 fisi
0

∏n
i=1 h

fi
τi
g
∑n

i=1 fiai
1

g
∑n

i=1 fisi−s
0 g

∑n

i=1 fiai−a
1

= gs0

n∏
i=1

hfiτig
a
1

For the latter equation we obtain

C
n∏
i=1

H(∆||τi)fi =
n∏
i=1

Cfi
i

n∏
i=1

H(∆||τi)fi =
n∏
i=1

(CiH(∆||τi))fi

=
n∏
i=1

(gaibNEi )fi = g
∑n

i=1 fiai
n∏
i=1

bfiNEi = gabNE

Thus, it holds that AVerify(pk,P∆, c) = 1.
Finally, we have C = ∏n

i=1C
fi
i = ∏n

i=1(gmiβ
NE
i )fi = g

∑n

i=1 fimi
∏n
i=1 β

fiNE
i . hence

Paillier decryption yields ∑n
i=1 fimi = f(m1, ...,mn), which leads to ADecrypt(sk,

P∆, AEval(pk,P∆, {ci}ni=1)) = f(m1, ...,mn). Thus, Construction 6.9 satisfies
Condition 1 - 3 which proves the statement.

The security of this construction can be shown by applying the generic result
of [43].
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Theorem 6.11. ([43]) In the random oracle model, if the DCR Assumption (see
Def. 2.44), the factorization assumption (see Def. 2.43 ), the strong RSA Assump-
tion (see Def. 2.45) hold and H is a random oracle then Construction 6.9 is a
LH-IND-CCA secure (see Definition 2.21) LAEPuV scheme.

Proof. This is a direct corollary of Theorem 2.24 and Theorem 6.4.

Theorem 6.12. ([43]) Construction 6.9 is a LH-Uf-CCA secure LAEPuV scheme
according to Definition 2.22.

Proof. This is a direct corollary of Theorem 2.25 and Theorem 6.4.

6.3 A CDH Based Linearly Homomorphic Signature
Scheme

In Section 6.1 we described a homomorphic authenticator scheme that can be
transformed into a LAEPuV scheme and thus achieves computational input and
output privacy with respect to the servers. Compared to the schemes discussed in
Chapter 5 however this construction does not achieve input privacy with respect
to the verifier. In the following we provide an alternative instantiation that does
additionally achieve this even in an information-theoretic sense. Furthermore, while
Construction 6.1 only supported linear evaluations of filed elements, i.e. vectors
of length 1, we will discuss how this can be generalized to vectors of polynomial
length T .

In the following we will describe a linearly homomorphic signature scheme HSig =
(Setup,KeyGen,Auth,Eval,Ver) based on CDH in bilinear groups. Multi-labeled
programs contain linear functions f given by their coefficients, i.e. f = (f1, . . . , fn).

Construction 6.13.
CDH− LinAuth:
Setup(1λ): On input a security parameter λ the algorithm runs G(1λ) to obtain a
bilinear group bgp = (p,G1,G2,GT , g1, g2, e). It chooses n, T ∈ N. Addition-
ally, it fixes a regular signature scheme Sig = (KeyGenSig, SignSig, VerSig) and a
pseudorandom function Φ : K × {0, 1}∗ → Zp. It samples H1, . . . , HT

$← Zp.
It outputs the public parameters pp = (λ, n, T, bgp, Sig,Φ, H1, . . . , HT ).

KeyGen(pp) : On input public parameters pp it chooses a random seed K $← K
for the pseudorandom function Φ. It computes keys for the regular signature
scheme (skSig, pkSig)← KeyGenSig(1λ). It samples Rτ1 , . . . Rτn

$← Zp uniformly
at random. It sets sk = (skSig, K), ek = 0 and vk = (pkSig, Rτ1 , . . . Rτn). It
outputs (sk, ek, vk).
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Auth(sk,∆, τ,m): On input a secret key sk, a dataset identifier ∆, an input iden-
tifier τ ∈ T , and a message m ∈ ZTp , the algorithm generates the parameters
for the dataset identified by ∆, by running z ← ΦK(∆) and computing Z = gz2.
It binds Z to the dataset identifier ∆ by using the regular signature scheme,
i.e. it sets σ∆ ← SignSig(∆||Z). Then, it computes Λ ←

(
Rτ ·

∏T
j=1H

m[j]
j

)z
.

It outputs the signature σ = (σ∆, Z,Λ).
Eval(ek, f, σ1, . . . , σn): On input a public evaluation key ek,a linear function f ,
and signatures σ1, . . . , σn, where σi = (σ∆,i, Zi,Λi), the algorithm checks if
the signatures share the same public values, i.e. if σ∆,1 = σ∆,i and Z1 = Zi
for all i = 2, . . . , n and the signature for each set of public values is correct
and matches the dataset identifier ∆, i.e. VerSig(pkSig, σ∆,i,∆i||Zi) = 1 for any
i ∈ [n]. If this is not the case it outputs ⊥. Else it computes Λ = ∏n

i=1 Λfi
i ,

and returns the signature σ = (σ∆,1, Z1,Λ).
Ver(vk,P∆,m, σ): On input a public evaluation key vk,a multi-labeled program
P∆ containing a linear function f , a message m, and a signature σ, the
algorithm parses (without loss of generality) σ = (σ∆, Z,Λ). It checks whether
VerSig(pkSig, σ∆,∆||Z) = 1. If not it outputs ‘0’. It computes R ← ∏n

i=1R
fi
τi

and checks if e
(
R ·∏T

j=1 h
m[j]
j , Z

)
= e (Λ, g2). If it does it outputs ‘1’, else it

outputs ‘0’.

We again show correctness in its two flavors. On the one hand freshly generated
authenticators, obtained by using the data owners secret key should be verified.
On the other hand authenticators derived by using the homomorphic properties
should also be verified.

Proposition 6.14. Construction 6.13 achieves authentication correctness in the
sense of Def- 2.5 if Sig is a correct signature scheme.

Proof. Let λ be an arbitrary security parameter, pp ← Setup(1λ) be arbitrary
public parameters, (sk, ek, vk) ← KeyGen(pp) an arbitrary key triple, τ ∈ T an
arbitrary label, ∆ ∈ {0, 1}∗ an arbitrary dataset identifier, and m ∈ Fp an arbitrary
message. Furthermore let σ ← Auth(sk,∆, τ,m). We parse σ = (σ∆, Z,Λ). We
consider the labeled identity program I(τ,∆). Here we have fτ = 1 and fi = 0 for
all other identifiers. By construction it holds that VerSig(pkSig, σ∆,∆||Z) = 1. We
then set R = ∏n

i=1R
fi
τi

= Rτ . This yields

e

Rτ ·
T∏
j=1

H
m[j]
j , Z

 = e

Rτ ·
T∏
j=1

H
m[j]
j , gz2


= e

Rτ ·
T∏
j=1

H
m[j]
j

z , g2

 = e (Λ, g2)
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Thus, we have Ver(vk, I(τ,∆),m, σ) = 1.

Proposition 6.15. Construction 6.13 achieves evaluation correctness in the sense
of Def- 2.6.

Proof. Let λ be an arbitrary security parameter, pp← Setup1λ be arbitrary public
parameters, (sk, ek, vk) ← KeyGen(pp) an arbitrary key triple, and ∆ ∈ {0, 1}∗
an arbitrary dataset identifier. Let {(Pi,mi, σi)}i∈[N ] be any set of program/mes-
sage/authenticator triples, such that Ver(Pi,∆, vk,mi, σi) = 1 and g :

(
ZTp
)N
→ ZTp

be an arbitrary linear function given by its coefficient vector (g1, . . . , gN). Let
m∗ = g(m1, . . . ,mN),P∗ = g(P1, . . . ,PN), and σ∗ = Eval(ek, g, {σi}i∈[N ]). We
parse σ∗ = (σ∗∆, Z∗,Λ∗). By construction we have Z∗ = Zi for all i ∈ [N ]
and σ∗∆ = σ∆,1, hence we have VerSig(pkSig, σ

∗
∆,∆||Z∗) = 1. To prove evaluation

correctness it remains to show that e
(
R∗ ·∏T

j=1H
m∗[j]
j , Z∗

)
= e (Λ∗, g2), where

R∗ = ∏N
i=1R

gi
i . It holds that

e

R∗ · T∏
j=1

H
m∗[j]
j , Z∗

 = e

 N∏
i=1

Rgi
i ·

T∏
j=1

H
∑N

i=1 gimi[j]
j , Z∗


= e

 N∏
i=1

Ri ·
N∏
i=1

T∏
j=1

(
H
mi[j]
j

)gi
, Z∗


=

N∏
i=1

e

Ri ·
T∏
j=1

H
mi[j]
j , Zi

gi

=
N∏
i=1

e (Λi, g2)gi = e

(
N∏
i=1

Λgi
i , g2

)
= e (Λ∗, g2)

hence we have Ver(P∗∆, vk,m∗, σ∗) = 1.

Next, we discuss the efficiency properties of this construction. Succinctness
guarantees that authenticators are suitably small leading to low bandwidth require-
ments. Efficient verification ensures that the verification time is small, in our case
it is even in constant time.

Proposition 6.16. Construction 6.13 is succinct linearly homomorphic signature
scheme in the sense of Def. 2.7.

Proof. An authenticator produced by either Auth or Eval consists of a conventional
signature, one element in G1 and one element in G2. This is a constant and
independent of n. Therefore our construction is succinct.
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Proposition 6.17. Construction 6.13 allows for efficient verification in the sense
of Def. 2.8.

Proof. We describe the two algorithms (VerPrep,EffVer).
VerPrep(pk,P) : This algorithm parses P = ((f1, . . . , fn), τ1, . . . τn) and takes

the Ri for i ∈ [n] contained in the public key. It computes RP ←
∏n
i=1R

fi
i and

outputs vkP = (pkSig, RP), where pkSig is taken from vk
EffVer(vkP ,m, σ,∆): This algorithm is analogous to Ver, except that the value∏n

i=1R
fi
τi

has been precomputed as RP .
This satisfies correctness. During EffVer, the verifier now checks whether
VerSig(pkSig, σ∆,∆||Z) = 1 and computes

e

RP · T∏
j=1

H
m[j]
j , Z

 = e (Λ, g2)

The running time of EffVer is thus independent of n. Thus our construction is
constant time (in an amortized sense).

Theorem 6.18. Construction 6.13 is a perfectly context hiding linearly homomor-
phic signature scheme in the sense of Def. 2.18 if Sig is a deterministic signature
scheme.

Proof. We show that our scheme is perfectly externally context hiding in the
sense of Def. 2.18, by comparing the distributions of homomorphically derived
signatures to that of simulated signatures. First we note that in our case the
algorithm Hide is just the identity function, i.e. σ ← Hide(vk,m, σ) for all vk,m, σ
and we have HideVer = Ver. We will show how to construct a simulator Sim
that outputs signatures perfectly indistinguishable from the ones obtained by
running Auth and Eval. Parse the simulator’s input as sk = (skSig, K), P∆ =
((f1, . . . , fn), τ1, . . . , τn,∆), and m̃ = (m̃[1], . . . , m̃[T ]). With this information the
simulator computes the following:

Z ′ = gz2 where z ← ΦK(∆)
σ∆ ← SignSig(∆||Z)
Λ′ =

(∏n
i=1R

fi
i ·

∏T
j=1 h

m[j]
j

)z
The simulator outputs the signature σ′ = (σ′∆, Z ′,Λ′).

We will now show that this simulator allows for perfectly context hiding security.
We will fix an arbitrary key triple (sk, ek, vk), a multi-labeled program P∆, and
messages m1, . . . ,mn ∈ ZTp .
Let σ ← Eval(ek, f, σ1, . . . , σn) and parse it as σ = (σ∆, Z,Λ).
We look at each component of the signature.
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We have Z = ΦK(∆) by definition and therefore also z = z′. In particularly we
also have Z = Z ′ where Z = gz2 and Z ′ = gz

′
2 .

We have σ∆ = SignSig(∆||Z) by definition and since Z = Z ′ therefore also
σ∆ = σ′∆ since Sig is deterministic.
We have Λ = ∏n

i=1(Ri ·
∏T
j=1H

mi[j]
j )z·fi = (∏n

i=1R
fi
i )z · (∏T

j=1
∏k
i=1H

fi·mi[j]
j )z =

(∏n
i=1R

fi
i ·
∏T
j=1H

m[j]
j )z, where the last equation holds since m = ∑n

i=1 fi ·mi. Thus
we also have Λ = Λ′.

We can see that we have identical elements and therefore even a computationally
unbounded distinguisher has no advantage distinguishing the two cases.

In order to show unforgeability we again provide a security reduction over various
security games. In particular we deal with special types of forgeries in one game,
showing that such a specific forgery implies an algorithm for solving a certain
cryptographic problem. Then, knowing that such a specific forgery can no longer be
produced by the adversary we use this knowledge in order to provide the following
security reduction in the following game to a different cryptographic assumption.

Theorem 6.19. If Sig is an unforgeable signature scheme, Φ is a pseudorandom
function, the DL assumption (see Def 2.36) holds in G1 and the co − CDH∗

assumption (see Def. 2.39) holds in bgp, then the signature scheme describe above
is a weakly-unforgeable homomorphic signature scheme in the sense of Def 2.13.

Proof. To prove this Theorem we define a series of games with the adversary A
and we will show that the adversary A wins, i.e. the game outputs ‘1′, only with
negligible probability. Following the notation of [37] we will write Gi(A) to denote
that a run of game i with adversary A returns ‘1′. We will make use of flag values
badi initially set to false. If at the end of the game any of these flags is set to true,
the game simply outputs ‘0′. Let Badi denote the event that badi is set to true
during a game.

Game 1 is the experiment Weak− HomUF− CMAA,HomSign (see Def. 2.12)
where A only outputs Type-1 or Type-2 forgeries.
Game 2 is defined as Game 1 except for the following change: Whenever A
returns a forgery (P∗∆∗ ,m∗, σ∗) and the list L∆∗ has not been initialized by
the challenger during the queries, then Game 2 sets bad2 = true. It is worth
noticing that after this change the game never outputs 1 if A returns a Type 1
forgery. In Lemma 6.20, , we show that Bad2 cannot occur if Sig is unforgeable.
It is worth noticing that after this change the game never outputs ‘1’if A
returns a Type 1 forgery.
Game 3 is defined as Game 2, except that the keyed pseudorandom function
ΦK is replaced by a random function R : {0, 1}∗ → Zp. In Lemma 6.21, we
show that these two games are indistinguishable if Φ is pseudorandom.
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6.3 A CDH Based Linearly Homomorphic Signature Scheme

Game 4 is defined as Game 3, except except for the following change. At the
beginning C chooses µ ∈ [Q] uniformly at random, with Q = poly(λ) is the
number of queries made by A during the game. Let ∆1, . . . ,∆Q be all the
datasets queried by A. Then, if in the forgery ∆∗ 6= ∆µ, set bad4 = true. In
Lemma 6.22 we show that Pr[G3(A)] = Q · Pr[G4(A)].
Game 5 is defined as Game 4, except for the following change. When given a
forgery (P∗∆∗ ,m∗, σ∗) where P∗∆∗ = ((f ∗, τ1, . . . , τn),∆∗) the simulator com-
putes m̂ = f ∗(m1,∆, . . . ,mn,∆). It checks whether ∏T

j=1H
m̂[j]
j = ∏T

j=1H
m∗[j]
j

holds. If it does it sets bad5 = true.
In Lemma 6.23, we show that any adversary A, such that Pr[Bad5] is non
negligible, implies a solver for the DL problem.
Finally, in Lemma 6.24, we show how a simulator can use an adversary winning
Game 5 to solve the co− CDH∗ problem in bgp.

Lemma 6.20. For every PPT adversary A, there exists a PPT forger F such that
|Pr[G2(A)]− Pr[G1(A)]| ≤ AdvUF−CMA

Sig,F (λ).

Proof. This is a direct corollary of Lemma 4.20.

Lemma 6.21. For every PPT adversary A running Game 3, there exists a PPT
distinguisher D such that |Pr[G3(A)]− Pr[G2(A)]| ≤ AdvPRFΦ,D (λ).

Proof. This is a direct corollary of Lemma 4.21.

Lemma 6.22. For every PPT adversary A running Game 4, we have Pr[G3(A)] =
Q · Pr[G4(A)].

Proof. This is a direct corollary of Lemma 6.22.

Lemma 6.23. For every PPT adversary A running Game 5, there exists a PPT
simulator S such that Pr[Bad5] ≤ AdvDLS (λ).

Proof. This is a direct corollary of Theorem 4.15.

Lemma 6.24. An efficient adversary A winning Game 5 in Theorem 6.19, can be
used to break the CDH assumption.

Proof. We will now show how to construct a simulator S which uses an effi-
cient adversary A against Game 5 to solve the CDH problem. Let bgp =
(p,G1,G2,GT , g1, g2, e) ← G(1λ) be a bilinear group of order p. The simulator
S is given g1, g

a
1 , g

b
2, where a, b

$← Zp, and intends to compute gab1 .
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6 Adding Computational Privacy to Homomorphic Authenticators

Initialization: Let Q be the number of datasets in which the adversary makes
signature queries. The adversary gives the simulator all messages {m(i,l)}ni=1,
for l ∈ [Q] on which it makes signature queries.

Setup : The simulator S chooses n, T ∈ N. Additionally, it fixes a regular sig-
nature scheme Sig = (KeyGenSig, SignSig, VerSig) and a pseudorandom func-
tion Φ : K × {0, 1}∗ → Zp. It chooses sj $← Zp uniformly at random
for j ∈ [T ] and sets Hj = (ga1)sj . It outputs the public parameters pp =
(λ, n, T, bgp, Sig,Φ, H1, . . . , HT ). Note that since the s : j are uniformly sam-
pled from Zp and the Hj are uniformly random from the grpup G1 of order p,
the public parameters are perfectly indistinguishable.

KeyGen : The simulator S chooses a random seed K $← K for the pseudorandom
function Φ. It computes keys for the regular signature scheme (skSig, pkSig)←
KeyGenSig(1λ).
Then, it chooses ri $← Zp for i ∈ [n] and sets Rτi = gri1 · (ga1)

∑T

j=1 sjmi,µ[j].
It gives vk = (pkSig, Rτ1 , . . . Rτn) to the adversary. Since the sj are chosen
uniformly at random this is perfectly indistinguishable form an honestly
generated verification key.

Queries: Let l be a counter for the number of datasets queried by A (initially,
it sets l = 1). For every new queried dataset ∆, simulator S creates a list
L∆ of tuples (τ,m), which collects all the label/message pairs queried by the
adversary on ∆.
Moreover, whenever the l-th new dataset ∆l is queried and l 6= µ, S does
the following: On query (τ,m) the simulator S computes z ← R(∆l). as
well as σ∆l

← SignSig(∆l||Z). Then, it computes Λ← (Rτ ·
∏T
j=1H

m[j]
j )z and

returns the signature σ = (σ∆l
, Z,Λ). Note that these are exactly the same

as honestly generated signatures.
If l = µ S does the following: On query (τ,m) the simulator S chooses u $← Zp
uniformly at random and sets Z =

(
gb2
)u
, as well as σ∆µ ← SignSig(∆µ||Z).

Then the simulator S computes Λ =
(
gb1
)urτ and returns the signature σ =

(σ∆µ , Z,Λ). Note that we have

Λ = (grτ1 )ub =
(
g
rτ−
∑T

j=1 asjm[j]+
∑T

j=1 asjm[j]
1

)ub
=
Rτ ·

T∏
j=1

H
m[j]
j

z

and thus the simulated signatures are perfectly indistinguishable from honestly
generated signatures.

Forgery: Let (P∗∆∗ ,m∗, σ∗) be the forgery returned by the adversary A. Parse
σ∗ = (σ∗∆∗ , Z∗,Λ∗)) and P∗∆∗ = (f∗, τ1, . . . , τn,∆∗). The simulator evaluates
the function f ∗ over the dataset identified by ∆∗, i.e. it computes m̂ =
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6.3 A CDH Based Linearly Homomorphic Signature Scheme

f ∗(m1,µ, ...,mn,µ) and σ̂ = (σ̂∆, Ẑ, Λ̂)← Eval(ek, f ∗, σ1, . . . , σn). Note that we
have ∏T

j=1H
m̂[j]
j 6= ∏T

j=1H
m∗[j]
j , since bad5 = false and therefore also ∑T

j=1 sj ·
m̂[j] 6= ∑T

j=1 sj ·m∗[j].
It returns (Λ̂ · (Λ∗)−1)(

∑T

j=1 sj(m
∗[j]−m̂[j]))−1

as a solution. Let R = ∏n
i=1R

fi
τi
.

Since we have Ver(vk,P∗∆∗ ,m∗, σ∗) = 1 by assumption and Ver(vk,P∗∆∗ , m̂, σ̂) =
1 due to Propositions 6.14 and 6.15, we have:

Λ̂ =
R · T∏

j=1
H
m̂[j]
j

ub =
(
Rub · (ga1)ub(

∑T

j=1 sjm̂[j])
)

= Rub · g
(
∑T

j=1 sjm̂[j])uab
1

Λ∗ =
R · T∏

j=1
H
m∗[j]
j

ub = Rub(ga1)ub(
∑T

j=1 sjm
∗[j]) = Rubg

(
∑T

j=1 sjm
∗[j])uab

1

Therefore, we have

Λ̂ · (Λ∗)−1 = (Rub · g
u(
∑T

j=1 sj ·m̂[j])ab
1 ) · (R−ub · g

−u(
∑T

j=1 sj ·m
∗[j])ab

1 )

= g
(
∑T

j=1 sj ·m̂[j])uab
1 · g

−(
∑T

j=1 sj ·m
∗[j])uab

1 = g
ab(u

∑T

j=1 sj(m̂[j]−m∗[j]))
1

which yields

(Λ · (Λ∗)−1)
1

u
∑T

j=1 sj(m̂[j]−m∗[j]) = (gba1 )
u
∑T

j=1 sj(m̂[j]−m∗[j])

u
∑T

j=1 sj(m̂[j]−m∗[j]) = gab1

As we have shown above ∑T
j=1 sj(m∗[j] − m̂[j]) 6= 0 and therefore we have

Pr[Adv(S)] = Pr[G5(A)], which proves the statement.

Implementation
We now report on the experimental results of a Rust implementations of Construc-
tion 6.13. The measurements are based on an implementation by Rune Fiedler and
Lennart Braun. As a pairing group the BLS curve [15] BLS12-381 [27] is used.

The following measurements were executed on an Intel Core i7-4770K (Haswell)
processor running at 3.50 GHz.

We present the runtimes of the individual subalgorithms of linearly homomorphic
authenticator scheme presented in Construction 5.3.

We first present the runtimes influenced by the dimension T of vectors m ∈ ZTp
given as messages in Table 6.1. Then, we present the runtimes influenced by the
number of inputs n messages in Table 6.2.
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Dimension Setup Auth EffVer
32 6128 10563 13971
64 12313 19860 23576
128 24308 38563 42148
256 49046 75955 79691
512 97483 150746 154182

Table 6.1: Runtimes of CDH− LinAuth 4.13 in µs

Inputs KeyGen Eval VerPrep
256 49064 76465 74882
512 98237 152511 149454
1024 196331 305536 299514
2048 392655 6106054 598618
4096 784895 12212208 1197337

Table 6.2: Runtimes of CDH− LinAuth 4.13 in µs

6.4 CDH Based Linearly Homomorphic
Authenticated Encryption

In this section, we show how our linearly homomorphic signature scheme can be
used to instantiate such a LAEPuV scheme LAE = (AKeyGen, AEncrypt, AEval,
AVerify, ADecrypt) when using bilinear groups of composite order. In [25] it is
shown how to construct even asymmetric bilinear groups of composite order n = pq.
Note that previous instantiations of LAEPuV schemes can only sign messages in
Zn, i.e. vectors of length 1, while we show the first use of LAEPuV for vectors of
polynomial length.

Construction 6.25.

AKeyGen(1λ, n, T ): On input a security parameter λ, an integer n, and an integer
T , it chooses two (safe) primes p, q and computes the modulus N ← p · q.
It runs G(1λ) to obtain a bilinear group bgp = (N,G1,G2,Gt, g1, g2, e) of
composite order and samples n + T elements R1, . . . , Rn, h1, . . . hT

$← G1
uniformly at random. Additionally, it fixes a regular signature scheme Sig =
(KeyGenSig, SignSig, VerSig) and a a pseudorandom function Φ : K × {0, 1}∗ →
ZN . The algorithm chooses a random seed K,K ′ $← K for the pseudorandom
function Φ. It computes keys for the regular signature scheme (skSig, pkSig)←
KeyGenSig(1λ). Furthermore it chooses an element g ∈ Z∗N2 of order N as well
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6.4 CDH Based Linearly Homomorphic Authenticated Encryption

as a hash function H : {0, 1}∗ → Z∗N2. It returns the key pair (sk, pk) with
sk = (skSig, K, p, q) and pk = (bgp, H, pk′, g, {hj}Tj=1, {Ri}ni=1).

AEncrypt(sk,∆, τ,m): On input a secret key sk, a dataset identifier ∆, an input
identifier τ ∈ T , and a message m ∈ ZTN , it chooses βj

$← ZN2 uniformly at
random for j ∈ [T ]. It computes the ciphertext C[j]← gm[j] · β[j]N mod N2,
computes S[j] ← H(∆||τ ||j) and computes (a[j], b[j]) ∈ ZN × Z∗N such that
ga[j] · b[j]N = C[j]S[j] mod N2 using the factorization of N (see [84] for a
detailed description). It generates the parameters for the dataset identified
by ∆, by running z ← ΦK(∆) and computing Z = gz2. It binds Z to the
dataset identifier ∆ by using the regular signature scheme, i.e. it sets σ∆ ←
SignSig(∆||Z). Then, it computes Λ← (Rτ ·

∏T
j=1 h

−a[j]
j )z and returns the the

ciphertext c = (C, a, b, σ∆, Z,Λ).
AEval(pk,P∆, {ci}ni=1): On input a public key pk, a multi-labeled program P∆,
and a set of ciphertexts ci, it parses P∆ = (f, τ1, . . . , τn,∆) and
ci = (Ci, ai, bi, σ∆,i, Zi,Λi). If Zi 6= Z1 for any i ∈ [n], it aborts. Otherwise, it
sets

C ←
n∏
i=1

Cfi
i mod N2 a←

n∑
i=1

fiai mod N

b[j]←
n∏
i=1

bi[j]fi mod N2, for j ∈ [T ] Λ←
n∏
i=1

Λfi
i mod N

It returns the ciphertext c = (C, a, b, σ∆,1, Z1,Λ).
AVerify(pk,P∆, c): On input a public key pk, a multi-labeled program P∆, and a ci-

phertext c, it parses P∆ = ((f1, ..., fn), τ1, . . . , τn,∆) and c = (C, a, b, σ∆, Z,Λ).
The algorithm checks whether the following equations hold:
VerSig(pkSig, σ∆,∆||Z) = 1 e

(
R ·∏T

j=1 h
−a[j]
j , Z

)
= e (Λ, g2), and ga[j] · b[j]n =

C[j]∏n
i=1H(∆|τi|j)fi mod N2. If all checks are satisfied, it returns ‘1′. Oth-

erwise, it returns ‘0′.
ADecrypt(sk,P∆, c): Returns ⊥ if AVerify(pk,P∆, c) = 0. Otherwise, it computes

(m,β) such that gm[j]β[j]N = C[j] mod n2 and return m.

We will explicitly show this combination of primitives is still correct. The first
instantiation of a LAEPuV scheme described in [43] was indeed not correct as it
suffered from false positives as shown in [98].

Theorem 6.26. The LAEPuV scheme LAE is correct in the sense of Definition
2.20.

Proof. We fix a random key pair (sk, pk)← AKeyGen(1λ, n, T ),
with sk = (sk′, K, p, q) and pk = (bgp, H, pk′, g, {hj}Tj=1, {Ri}ni=1).
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1. If g ∈ Z∗N2 has order N then the map: Zn × Z∗N → Z∗N2 , (a, b) 7→ ga · bN is
an isomorphism (see [84]). If AVerify(pk,P∆, c) = 1 holds then we have in
particular ga[j] · b[j]n = C[j]∏k

i=1H(∆||τi||j)fi mod N2, where each ga[j] · b[j]n
and H(∆||τi||j)fi is an element of Z∗N2 . Since this is a group so is every C[j]
which means every Paillier decryption yields a valid message m.

2. We choose messages mi
$← ZTN as well as a dataset identifier ∆ ∈ {0, 1}∗

and a multi-labeled program P∆ = ((f1, . . . , fn), τ1, . . . , τn,∆). Let ci ←
AEncrypt(sk,∆, i,mi) and c← AEval(pk,P∆, {ci}ni=1).
By definition we have c = (C, a, b, σ∆, Z,Λ). Where for each j ∈ [T ] we have

C[j] =
n∏
i=1

(
gmi[j]βi[j]N

)fi = g
∑n

i=1 fimi[j]
(

n∏
i=1

βi[j]fi
)N

mod N2

ga[j] · b[j]N = g
∑n

i=1 fiai[j] ·
(

n∏
i=1

bi[j]fi
)N

=
n∏
i=1

(
C[j]fi ·H(∆||τi||j)fi

)
= C ·

n∏
i=1

(H(∆||τi||j)fi) mod N2

z = ΦK(∆), Z = gz2, σ∆ = SignSig(∆||Z).

Λ =
n∏
i=1

Λfi
i =

 n∏
i=1

Rfi
i ·

T∏
j=1

h
−
∑n

i=1 fiai[j]
j

z =
R · T∏

j=1
h
−a[j]
j

z

Therefore we have AVerify(pk,P∆, C) = 1 and due to the first equation Paillier
decryption of C[j] yields ∑n

i=1 fimi[j] for each j ∈ [T ].

We now show the security of Construction 6.25 by applying the generic results
of Catalano et al. [43].

Theorem 6.27. ([43]). In the random oracle model, if the DCR Assumption
(see Def. 2.44), the DL assumption (see Def. 2.36) the co−DHP ∗ Assumption
(see Def. 2.39) hold and H is a random oracle the LAEPuV scheme LAE is a
LH-IND-CCA secure (see Definition 2.21) LAEPuV scheme.

Proof. This is a direct corollary of Theorem 2.24 and Theorem 6.19.

Theorem 6.28. ([43]) Construction 6.25 is LH-Uf-CCA secure according to Defi-
nition 2.22.

Proof. This is a direct corollary of Theorem 2.25 and Theorem 6.19.
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Time-consuming computations are commonly outsourced to the cloud. Such infras-
tructures attractively offer cost savings and dynamic computing resource allocation.
In such a situation, it is desirable to be able to verify the outsourced computa-
tion. The verification must be efficient, by which we mean that the verification
procedure is significantly faster than verified computation itself. Otherwise, the
verifier could as well carry out the computation by himself, negating the advantage
of outsourcing.

Often, not only the data owner is interested in the correctness of a computation;
but also third parties, like insurance companies in the case of medical data. In
addition, there are scenarios in which computations are performed over sensitive
data. For instance, a cloud server may collect health data of individuals and compute
aggregated data. Hence the requirement for efficient verification procedures for
outsourced computing that are privacy-preserving, both for computation inputs
and for computation results.
Growing amounts of data are sensitive enough to require long-term protection.

Electronic health records, voting records, or tax data require protection periods
exceeding the lifetime of an individual. Over such a long time, complexity-based
confidentiality protection is unsuitable because algorithmic progress is unpredictable.
In contrast, information-theoretic confidentiality protection is not threatened by
algorithmic progress and supports long-term security.
In Chapters 5 and 6 we presented authenticator based solutions that address

verifiability and privacy to certain degrees. The schemes in Chapter 5 achieve
information-theoretic input privacy with respect to the verifier, while the schemes
in Chapter 6 achieve computational input and output privacy with respect to the
servers. In Chapter 4 we presented the first solution to achieve complete information-
theoretic privacy (input and output privacy with respect to the verifierinput and
output privacy with respect to the servers). To this end we used our novel function-
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dependent commitment scheme (FDC), which combines the privacy properties
of commitments with the verifiability properties of homomorphic authenticators.
In this chapter we discuss how to add the privacy properties of FDCs to known
homomorphic authenticator schemes in order to makes them suitable even when
sensitive data are processed.

Contribution. In this chapter, we investigate the relation between homomorphic
authenticators and FDCs. Our contribution is threefold.

First, we show how every FDC can be transformed into a homomorphic authenti-
cator scheme, showing that FDCs are at least as powerful schemes as homomorphic
authenticators. To this end, we explicitly construct the algorithms making up
a homomorphic authenticator scheme, using only the algorithms from the input
FDC. We then derive both authentication correctness and evaluation correctness
for the homomorphic authenticator scheme output by our transformation. The
proof relies on the correctness of the input FDC scheme. For security, we derive
the unforgeability of the resulting homomorphic authenticator scheme from two
conditions on the underlying FDC: its own unforgeability, and its bindingness.
Regarding bandwidth, we prove that the output homomorphic authenticator scheme
is succinct if the input FDC scheme is succinct.
Second, we show how an FDC can be generically constructed from a structure-

preserving homomorphic authenticator scheme, assuming the additional existence of
a homomorphic commitment scheme and of a separate classical commitment scheme.
We require the commitment space of the homomorphic commitment scheme to
be a subset of the structure preserved by the homomorphic authenticator scheme.
The message space of the classical commitment scheme allows labeled programs as
admissible inputs, unlike the homomorphic commitment scheme. We show that
if the two underlying commitment schemes are binding, then the resulting FDC
inherits this bindingness. Furthermore, we prove that the output FDC inherits the
unconditional hiding from the underlying homomorphic commitment scheme. The
correctness of the output FDC is shown to follow from three assumptions on the
input homomorphic authenticator scheme: authentication correctness, evaluation
correctness and efficient verification. Regarding security, we prove that unforge-
ability is also inherited. This is done by showing that a simulator can forward
adversary queries in the FDC security experiment to queries in the homomorphic
authenticator experiment. The resulting forgery can be used to compute a forgery
in the other experiment. For performance, we show that if the input scheme is
succinct, respectively efficiently verifiable, then the output FDC is also succinct,
respectively has amortized efficiency. Our transformation enables the use of certain
existing homomorphic authenticator schemes in particularly privacy-sensitive set-
tings. Applying this transformation enables information-theoretic output privacy.
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This allows interested third parties to verify the correct computation of a function
without even needing to learn the result.

Finally we apply the latter transformation to two schemes discussed in this
Thesis, thereby presenting the first FDC for quadratic functions as well as the first
multi-key FDC.

Organization. In this chapter we investigate the relation between homomorphic
authenticators and the FDCs introduced in Chapter 4. We show how to transform
any FDC into a homomorphic authenticator (Sec. 7.1). Afterwards we show how
to construct FDCs from homomorphic commitments and structure-preserving
homomorphic authenticators (Sec. 7.2). We then apply the latter transformation
to two variants of the schemes described in Chapter 5. In Sec. 7.3 we use this
transformation to obtain a multi-key FDC for linear functions. We then too show
how to combine this FDC with secret sharing to derive a verifiable computing
scheme with complete information-theoretic privacy. In Sec. 7.4 we use the same
transformation to obtain an FDC for multivariate polynomials of degree 2. We then
show how to combine this FDC with secret sharing to derive a verifiable computing
scheme with complete information-theoretic privacy.

Publications. This chapter is based on publication [S7].

Related Work. Catalano et al. [43] showed a transformation for linearly homomor-
phic signatures that adds computational privacy. This is described in Chapter 6. In
this chapter, however, we address a transformation that adds information-theoretic
privacy properties. Libert et al. [78] already presented a structure-preserving linearly
homomorphic signature scheme. In this chapter further structure-preserving homo-
morphic authenticator schemes are presented. The first supports linear functions
over data authenticated by multiple keys, the second quadratic functions.

7.1 Homomorphic Authenticators from FDCs
In this section, we begin to investigate the relation between FDCs and homomorphic
authenticators. In particular we show how any correct FDC can be transformed
into a homomorphic signature scheme and show how it inherits properties from the
underlying FDC.
We begin by describing a transformation that constructs the algorithms of a

homomorphic authenticator scheme from the algorithms of an FDC.
We describe a transformation Φ, that on input an FDC scheme FDC = (Setup,

KeyGen, PublicCommit, PrivateCommit, FunctionCommit, Eval, FunctionVerify,
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PublicDecommit) outputs a homomorphic authenticator scheme HAuth = (HSetup,
HKeyGen, Auth, HEval, Ver).

Construction 7.1.

HSetup(1λ) : On input a security parameter λ, this algorithm runs pp← Setup(1λ).
It outputs the public parameters pp.

HKeyGen(pp) : On input the public parameters pp it runs (sk, pk)← KeyGen(pp).
It outputs the secret key sk, the evaluation key ek = 0 as well as the verification
key vk = pk.

Auth(sk,∆, τ,m) : On input a secret key sk, a dataset identifier ∆, an input
identifier τ , and a message m, it chooses randomness r $← R uniformly at
random. It runs A ← PrivateCommit(sk,m, r,∆, τ). It sets M = m and
outputs the authenticator σ = (M, r,A).

HEval(f, {σi}i∈[n], ek) : On input an function f : Mn → M, a set {σi}i∈[n] of
authenticators, and an evaluation key ek (in our construction, no evalua-
tion key is needed), the algorithm parses σi = (Mi, ri, Ai). It runs A∗ ←
Eval(f, A1, . . . , An), and sets M∗ = f(M1, . . . ,Mn) as well as r∗ = f̂(m1, . . . ,

mn, r1, . . . , rn), where f̂ ∈ F can be derived from f if the FDC scheme is
correct in the sense of Def. 4.7. It sets σ = (M∗, r∗, A∗) and outputs σ.

Ver(P∆, vk,m, σ) : On input a multi-labeled program P∆, a verification key vk, a
message m ∈M, and an authenticator σ , the algorithm parses σ = (M, r,A)
and P∆ = (P ,∆). It checks if m = M . If not it outputs ‘0’, else it runs
C ← PublicCommit(m, r) as well as F ← FunctionCommit(vk,P). It runs
b← FunctionVerify(vk, A, C, F,∆). It outputs b.

This shows how to formally transform any correct FDC scheme into a homo-
morphic authenticator scheme. We will now show how the properties of such a
homomorphic authenticator scheme are derived from those of the FDC scheme.

For homomorphic authenticators, correctness comes in two flavors. Both authen-
ticators created directly with a secret signing key as well as those derived by the
homomorphic property should verify correctly. Both properties are derived from
the FDC’s correctness.

Proposition 7.2. If FDC satisfies correctness in the sense of Def. 4.7, then
Construction 7.1 achieves authentication correctness in the sense of Def. 2.5)and
evaluation correctness in the sense of Def. 2.6.

Proof. Let τ ∈ T be an arbitrary label and ∆ ∈ {0, 1}∗ be an arbitrary dataset
identifier. We consider the multi-labeled identity program P∆ = Iτ,∆. Let
m ∈M be an arbitrary message, and σ ← Auth(sk,∆, τ,m). By construction, we
know that σ = (M, r,A),with M = m, where A ← PrivateCommit(sk,m, r,∆, τ).
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By correctness of the FDC, we know that FunctionVerify(pk, A, C, F,∆) = 1
for C ← PublicCommit(m, r) and F ← FunctionCommit(pk, Iτ ). Now we have
Ver(Iτ,∆, vk,m, σ) = 1, and HAuth achieves authentication correctness.

Let λ be an arbitrary security parameter, pp ← HSetup(1λ), (sk, ek, vk) ←
HKeyGen(pp), ∆ ∈ {0, 1}∗ an arbitrary dataset identifier and {(Pi,mi, σi)}i∈[N ]
any set of program/message/authenticator triples such that Ver(Pi,∆, vk,mi, σi)
= 1 for all i ∈ [N ]. Let m∗ = g(m1, . . . ,mN),P∗ = g(P1, . . . ,PN), and σ∗ =
HEval(g, {σi}i∈[N ], ek). We parse σi = (Mi, ri, Ai) and σ∗ = (M∗, r∗, A∗). We set
Ci ← PublicCommit(mi, ri) and Fi ← FunctionCommit(pk,Pi). By construction, we
know that FunctionVerify(pk, Ai, Ci, Fi,∆) = 1, as well as M∗ = f(M1, . . . ,MN),
r∗ = ĝ(m1, . . . ,mN , r1, . . . , rN ), where ĝ ∈ F can be derived from g since the FDC
scheme is correct in the sense of Def. 4.7. We set C∗ ← PublicCommit(m∗, r∗) and
F ∗ ← FunctionCommit(pk,P∗). By assumption, mi = Mi hence M∗ = m∗. Since
FDC satisfies correctness, we know that FunctionVerify(pk, A∗, C∗, F ∗,∆) = 1 and
thus Ver(P∗∆, vk,m∗, σ∗) = 1.

Next, we investigate the relation between the unforgeability notions of FDCs and
homomorphic authenticators. We can show that an FDC that is both unforgeable
and binding can be transformed into an unforgeable homomorphic authenticator.

Proposition 7.3. If FDC is unforgeable in the sense of Def. 4.10 and binding in
the sense of Def. 4.3, then Construction 7.1 is unforgeable in the sense of Def. 2.11.

Proof. Assume we have a PPT adversary A that can produce a successful forgery
during the security experiment HomUF− CMAA,HAuth (see Def. 2.9), we then show
how a simulator S can use A to win the security experiment EXPUF−CMA

A,FDC (see
Def. 4.9).
EXPUF−CMA

A,FDC :
Setup: Simulator S receives the public parameters pp from the challenger of the
experiment EXPUF−CMA

A,FDC . It gives pp to the adversary A.
Key Generation: Simulator S receives pk from the challenger of the experiment
EXPUF−CMA

A,FDC . It sets ek = 0, vk = pk, and outputs (ek, vk) to the adversary
A.
By construction, ek = 0.

Queries: When A asks queries (∆, τ,m) S chooses r ∈ R uniformly at random
and queries (∆, τ,m, r) to receive an authenticator A. It sends the authenti-
cator σ = (m, r,A) to A. Note that σ is perfectly indistinguishable from a
response to a query (∆, τ,m) during HomUF− CMAA,HAuth.

Forgery: A returns a forgery (P∗∆∗ ,m∗, σ∗). S parses σ∗ = (M∗, r∗, A∗). It com-
putes the correct results m̂ = f ∗(m1, . . . ,mn), r̂ = f̂ ∗(m1, . . . ,mn, r1, . . . , rn).
It computes C∗ ← PublicCommit(m∗, r∗) and then checks whether C∗ =
PublicCommit(m̂, r̂). If not, it returns (P∗∆∗ , A∗, C∗)
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We either find a collision (m∗, r∗) and (m̂, r̂) for the bindingness, or produce a
forgery since a type 1, 2, 3 forgery in experiment HomUF− CMAA,HAuth corresponds
exactly to a type 1, 2, 3 forgery in experiment EXPUF−CMA

A,FDC .
Therefore we have Pr[HomUF− CMAA,HAuth(λ) = 1] ≤ Pr

[
EXPUF−CMA

A,FDC (λ) = 1
]

+ Pr
[
EXPBind

A,Com(λ) = 1
]
.

We now analyze this transformation with respect to its efficiency. A trivial
construction of a homomorphic authenticator scheme is to (conventionally) sign
every input, and during HEval to simply concatenate all authenticators along with
the corresponding values. Verification then consists of checking every input value,
and then redoing the computation. This naive solution is obviously undesirable in
terms of bandwidth, efficiency and fails to provide privacy guarantees.
Succinctness guarantees that a homomorphically derived authenticator is still

small, thus keeping bandwidth requirements low.
We show that the homomorphic authenticators derived by our transformation

inherits this property from the underlying FDC.

Proposition 7.4. If FDC is succinct in the sense of Def. 4.11, then Construc-
tion 7.1 is succinct in the sense of Def. 2.7.

Proof. By assumption, the size of the output of PrivateCommit and Eval depends
at most logarithmically on n. By construction, the size of authenticators thus
depends at most logarithmically on n.

7.2 From Structure-Preserving Homomorphic
Authenticators to FDCs

In this section, we discuss how to construct an FDC from (homomorphic) com-
mitment schemes and structure-preserving homomorphic signatures schemes over
the commitment space. We show how the properties of the resulting FDC depend
on the underlying homomorphic signature scheme and commitment scheme. Note
that we do not require all the properties of structure-preserving authenticators. In
fact, our transformation can be to any homomorphic commitment scheme with
commitment space contained within a homomorphic authenticator scheme, which
is homomorphic with respect to the operations in the commitment space.
Assume the homomorphic authenticator scheme HAuth = (HSetup, HKeyGen,

Auth, HEval, Ver) is structure-preserving over some structure X . Let Com be a
homomorphic commitment scheme Com = (CSetup,Commit,Decommit,CEval) with
message spaceM and commitment space C ⊂ X . We also assume the existence
of an ordinary commitment scheme Com′ = (CSetup′,Commit′,Decommit′) with
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message space F × T n, so labeled programs are admissible inputs. One can always
split up Ver into (VerPrep, EffVer) as follows.

VerPrep(P , vk) : On input a labeled program P and a verification key vk, the
algorithm sets vkP = (P , vk). It returns vkP .

EffVer(vkP , C, σ,∆): On input a concise verification key vkP , a message C, an
authenticator σ, and a dataset identifier ∆ ∈ {0, 1}∗, the algorithm parses
vkP = (P , vk). It runs b← Ver(P , vk, C, σ,∆) and returns b.

We now show how to construct an FDC.

Construction 7.5.

Setup(1λ) takes the security parameter λ as input. It runs CK← CSetup(1λ),
CK′ ← CSetup′(1λ) as well as pp′ ← HSetup(1λ). It sets pp = (CK,CK′, pp′)
and outputs pp. We implicitly assume that every algorithm uses these public
parameters pp, leaving them out of the notation.

KeyGen(pp) takes the public parameters pp as input and runs (sk′, ek, vk) ←
HKeyGen(pp). It sets sk = (sk′, ek), pk = (ek, vk) and outputs the secret-public
key pair (sk, pk).

PublicCommit(m, r) takes as input a message m and randomness r and runs
(C, d)← Commit(m, r). It outputs the commitment C.

PrivateCommit(sk,m, r,∆, τ) takes as input the secret key sk, a message m,
randomness r, an identifier τ and a dataset identifier ∆. It runs (C, d) ←
Commit(m, r), A′ ← Auth(sk, τ,∆, C) and outputs A = (A′, ek).

FunctionCommit(pk,P) takes as input the public key pk and a labeled program P.
It parses pk = (ek, vk) and runs vkP ← VerPrep(P , vk). It chooses randomness
rP

$← R uniformly at random and runs (CP , dP)← Commit′(P , rP). It outputs
the function commitment F = (vkP , CP).

Eval(f, A1, . . . An) takes as input a function f and a set of authenticators
A1, . . . , An. It parses Ai = (A′i, eki) for all i ∈ [n]. Afterwards, it runs
Â← HEval(f, {A′i}i∈[n], ek1). It outputs A∗ = (Â, ek1).

FunctionVerify(pk, A, C, F,∆) takes as input a public key pk, an FDC containing
an authenticator A and a commitment C, a function commitment F as well
as a dataset identifier ∆. It parses F = (vkP , CP), and A = (A′, ek). It runs
b← EffVer(vkP , C, A′,∆) and outputs b.

PublicDecommit(m, r, C) takes as input message m, randomness r, and com-
mitment C. It runs (C, d)← Commit(m, r) as well as b← Decommit(m, d, C)
and outputs b.

This shows how to formally obtain an FDC scheme from a structure-preserving
HA scheme and a commitment scheme. We will now show how the properties of
such an FDC scheme are derived from those of underlying primitives.
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We first look at the commitment properties — hiding and binding. In our
transformation, these are inherited from the underlying commitment schemes.

Proposition 7.6. Construction 7.5 is binding in the sense of Def. 4.3 if Com and
Com′ used in the construction are binding commitment schemes.

Proof. Obviously, if Com is binding then PublicCommit is binding. We parse a
function commitment as F = (vkP , CP). Note that CP is by assumption a binding
commitment, thus FunctionCommit is also binding.

Proposition 7.7. Construction 7.5 is target binding in the sense of Def. 4.5 if
Com and Com′ used in the construction are target binding commitment schemes.

Proof. Obviously, if Com is target binding then PublicCommit is target binding.
We parse a function commitment as F = (vkP , CP). Note that CP is by assumption
a target binding commitment, thus FunctionCommit is also target binding.

The hiding property of FDCs (see Def. 4.6) is different from the context hiding
property of homomorphic authenticators (see Def. 2.18). On a high level, the context
hiding property guarantees that authenticators to the output of a computation do
not leak information about the inputs to the computation. In contrast, the hiding
property of FDCs guarantees that even the authenticators to the inputs do not
leak information about the inputs to the computation. In [90] this property was
used to combine an FDC with secret sharing to construct an efficient verifiable
multi-party computation scheme. This gain in privacy in one of the major benefits
of FDCs over homomorphic authenticators in cases of sensitive data used as inputs
to a computation.

Proposition 7.8. If Com is (unconditionally) hiding, then Construction 7.5 is
(unconditionally) hiding in the sense of Def. 4.6.

Proof. If Com is (unconditionally) hiding, then the probabilistic distributions over
the sets {Commit(m, r) | r $← R} and {Commit(m′, r′) | r′ $← R} are perfectly
indistinguishable for all m,m′ ∈ M. This is independent of any τ ∈ T and any
∆ ∈ {0, 1}∗. Hence the probabilistic distributions over sets {Auth(sk,∆, τ, C) | C ←
Commit(m, r), r $← R} and {Auth(sk,∆, τ, C ′) | C ′ ← Commit(m′, r′), r′ $← R}
are perfectly indistinguishable for all m,m′ ∈ M, τ ∈ T ,∆ ∈ {0, 1}∗. Since
{Auth(sk,∆, τ, C) | C ← Commit(m, r), r $← R} = {PrivateCommit(sk,m, r,∆, τ) |
r

$← R} for all m ∈ M, τ ∈ T ,∆ ∈ {0, 1}∗ the probabilistic distributions over
{PrivateCommit(sk,m, r,∆, τ) | r $← R} and {PrivateCommit(sk,m′, r′,∆, τ) | r′ $←
R} are also (perfectly) indistinguishable. The case of PublicCommit is trivial.

134



7.2 From Structure-Preserving Homomorphic Authenticators to FDCs

Next, we investigate the homomorphic property of such an FDC. We can show
that if the homomorphic authenticator scheme HAuth satisfies both correcntess
properties — authentication and evaluation, and furthermore supports efficient
verification, then the transformed FDC is also correct.

Proposition 7.9. If HAuth achieves authentication (see Def. 2.5), evaluation
correctness (see Def. 2.6), and efficient verification (see Def. 2.8), then Construc-
tion 7.5 is correct in the sense of Def. 4.7 with overwhelming probability.

Proof. Let λ be any security parameter, pp ← Setup(1λ), (sk, pk) ← KeyGen(pp),
and let ∆ ∈ {0, 1}∗ be an arbitrary dataset identifier. Let m ∈M be an arbitrary
message and r ∈ R arbitrary randomness.
We set A ← PrivateCommit(sk,m, r,∆, τ), C ← PublicCommit(m, r), as well as
FI ← FunctionCommit(pk, Iτ ), where Iτ is the labeled identity program. Then
we have A = Auth(sk,∆, τ, C). By the authentication correctness of HAuth,
we know that Ver(Iτ,∆, vk, C, σ) = 1. Since HAuth achieves efficient verifica-
tion, EffVer(vkIτ , C, σ,∆) = 1 with overwhelming probability. By construction,
FunctionVerify(pk, A, C, FI ,∆) = 1.
Let {mi, σi,Pi)}i∈[N ] be any set of tuples (parsed as σi = (ri, Ai)) such that for

Ci ← PublicCommit(mi, ri), Fi ← FunctionCommit(pk,Pi), FunctionVerify(pk, Ai,
Ci, Fi,∆) = 1. This implies EffVer(vkPi , Ci, σi,∆) = 1, thus Ver(Pi,∆, vk, Ci, σi) = 1
with overwhelming probability.
Then let m∗ = g(m1, . . . ,mN ), r∗ = ĝ(m1, . . . ,mN , r1, . . . rN ), P∗ = g(P1, . . . ,PN ),
C∗ ← PublicCommit(m∗, r∗), F ∗ ← FunctionCommit(pk,P∗), A∗ ← Eval(f, A1, . . .,
AN), and σ∗ = (r∗, A∗). From the homomorphic property of Com, we have
C∗ = CEval(g, C1, . . . , CN). By the evaluation correctness of HAuth we have
Ver(P∗, vk, C∗, σ∗) = 1. Thus EffVer(vkP∗ , C∗, σ∗,∆) = 1 with overwhelming
probability, due to the correctness property of efficient verification (see Def. 2.8).
By construction, FunctionVerify(pk, A∗, C∗, F ∗, ∆) = 1.

We now look at the essential security property of an FDC — unforgeability. We
show how an adversary that can break the security experiment for FDCs can be
used to break the security experiment for homomorphic authenticators. On a high
level, we show that a simulator can forward the queries used by the adversary in
the FDC experiment, as queries in the homomorphic authenticator experiment and
uses the resulting forgery in the one experiment to compute a forgery in the other.

Proposition 7.10. If HAuth is unforgeable in the sense of Def. 2.11, then Con-
struction 7.5 is unforgeable in the sense of Def. 4.10.

Proof. Assume we have a PPT adversary A that can produce a successful forgery
during the security experiment EXPUF−CMA

A,FDC , we then show how a simulator S can
use A to win the security experiment HomUF− CMAA,HAuth.

135



7 Adding Information-Theoretic Privacy to Homomorphic Authenticators

Setup: Simulator S receives the public parameters pp′ from the challenger of
the experiment HomUF− CMAA,HAuth. It runs CK ← CSetup(1λ), CK′ ←
CSetup′(1λ). It sets pp = (CK,CK′, pp′) and outputs pp to the adversary A.

Key Generation: Simulator S receives (ek, vk) from the challenger of the ex-
periment HomUF− CMAA,HAuth. It sets pk = (ek, vk) and outputs pk to the
adversary A.

Queries: When A ask queries (∆, τ,m, r), S computes (C, d)← Commit(m, r)
and queries (∆, τ, C) to receive an authenticator σ. It sets A = σ and replies
to the query with the private commitment A. This is the exact same reply to
a query in experiment EXPUF−CMA

A,FDC .
Forgery: The adversary A returns a forgery (P∗∆∗ ,m∗, r∗, A∗). S computes

(C∗, d∗)← Commit(m∗, r∗) and outputs (P∗∆∗ , C∗, A∗).
A type 1, 2, 3 forgery in experiment EXPUF−CMA

A,FDC corresponds to a type 1, 2, 3
forgery in experiment HomUF− CMAA,HAuth. Thus S produces a forgery with the
same probability as A.

We now analyze an FDC obtained by our transformation with respect to its
efficiency properties. On the one hand we have succinctness, which guarantees
that authenticators are short, so bandwidth requirements are low. On the other
hand, we show how the FDC inherits amortized efficiency, i.e. efficient verification
after a one time preprocessing from the efficient verification of the underlying
homomorphic authenticator scheme.

Proposition 7.11. If HAuth is succinct in the sense of Def. 2.7, then Construc-
tion 7.5 is succinct in the sense of Def. 4.11.

Proof. By assumption, HAuth produces authenticators whose size depends at
most logarithmically on the data set size n. By construction, the output size
of PrivateCommit and Eval thus depends at most logarithmically on n.

Proposition 7.12. If HAuth is efficiently verifiable in the sense of Def. 2.8, then
Construction 7.5 achieves amortized efficiency in the sense of Def. 4.12.

Proof. Let t(n) be the runtime of f(m1, . . . ,mn). We recall that FunctionVerify
parses a function commitment F = (vkP , CP) and runs EffVer(vkP , C, A,∆). By
assumption, the runtime of EffVer is o(t(n)). Thus the runtime of FunctionVerify is
also o(t(n)).

7.3 A Multi-Key FDC
We now seek to apply the transformation described in Section 7.2 (Construction 7.5)
to a further suitable homomorphic authenticator scheme. We recall that in Chapter 5
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we presented a multi-key homomorphic authenticator scheme (Construction 5.3).
In the following, we present a slight variation of that scheme that, together with a
a generalized Pedersen commitment scheme, will be used in our transformation.
We recall that Construction 5.3 on its own provided information-theoretic input
privacy with respect to the verifier. By applying our transformation and combining
the resulting FDC with a suitable secret sharing scheme we obtain a verifiable
computing scheme that provides both information-theoretic input and output
privacy with respect to the verifier and information-theoretic input and output
privacy with respect to the servers. This allows for use cases where this kind of
complete privacy is required.

7.3.1 A Structure Preserving Multi-Key Linearly Homomorphic
Authenticator Scheme

We will now showcase a structure preserving variant of our construction MKLin (see
Construction) 5.3). More precisely, we will provide a homomorphic authenticator
very similar to Construction 5.3. The main difference is the domain of the inputs to
Auth. In MKLin messages were elements of ZTp . In this variant, messages are taken
from G1. In the original MKLin the component A is computed using ∏T

j=1Hjm[j].
Note that we have (H0

0 ·
∏T
j=1Hjm[j], 0)← Commit(m, 0). So the original MKLin

can be seen as taking non-randomized (and therefore not hiding) commitments
as inputs. In the following we will detail the more general case of randomized
commitments, Commit(m, r), where r $← Zp is taken uniformly at random. The
second difference to MKLin is the lack of an S component which we used to make
the scheme context hiding. Due to the randomization of the commitment this is
not required in this variation.

Construction 7.13 (SP−MKLin).

Setup(1λ) : On input a security parameter λ, this algorithm chooses the param-
eters k, n, T ∈ Z, a bilinear group bgp = (p,G1,G2,GT , g1, g2, e) $← G(1λ).
It sets the message space M = G1. Then it chooses the tag space T = [n],
and the identity space ID ⊂ {0, 1}∗. Additionally it fixes a pseudorandom
function Φ : K × {0, 1}∗ → Zp, as well as a conventional signature scheme
Sig = (KeyGenSig, SignSig, VerSig) with signature space Σ contained in the bilin-
ear group. More precisely we have Σ ⊂ Gl1

1 ×Gl2
2 ×GlT

T for some (l1, l2, lT ) ∈ N3
0.

It outputs the public parameters pp = (k, n, T, ID, bgp,Φ, Sig, λ).
KeyGen(pp) : On input the public parameters pp, the algorithm chooses K $← K
uniformly at random. It runs (skSig, pkSig) ← KeyGenSig(1λ). It chooses
x1, . . . , xn, y

$← Zp uniformly at random. It sets hi = gxit for all i ∈ [n],
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as well as Y = gy2 . It sets sk = (K, skSig, x1, . . . xn, y), ek = ∅, vk =
(pkSig, h1, . . . , hn, Y ) and outputs (sk, ek, vk). Each client has its own iden-
tity id and performs KeyGen(pp) individually, and hence obtains its own key
tuple (skid, ekid, vkid).

Auth(sk,∆, l,M) : On input a secret key sk, a dataset identifier ∆, a label l =
(id, τ), and a message M ∈ G1, the algorithm computes z = ΦK(∆), sets
Zid = gz2 and binds this parameter to the dataset by signing it, i.e. it computes
σ∆,id ← SignSig(skSig, Zid||∆). Then it chooses r ∈ Zp uniformly at random
and sets R = gr1. It parses l = (id, τ) and computes Aid =

(
gxl+r1 ·M

) 1
z , where

xl is the xτ created during KeyGen by identity id, and Cid = M
1
y . It sets

Λ = {(id, σ∆,id, Zid, Aid, Cid)} and outputs σ = (Λ, R).
Eval(f, {(σi, eksi)}i∈[n]) : On input an function f : Mn → M and a set {(σi,

eksi)}i∈[n] of authenticators and evaluation keys (in our construction, no
evaluation keys are needed, so this set contains only authenticators), the
algorithm parses f = (f1, . . . fn) as a coefficient vector. It parses each σi
as (Λi, Ri) and sets R = ∏n

i=1 R
fi
i . It sets LID = ⋃n

i=1{idi}. It chooses
(σ∆,id, Zid) $← {(σ, Z) | ∃ A,C | (id, σ∆, Z, A,C) ∈ ⋃n

i=1 Λi}. Then it com-
putes Aid =

n∏
i=1

idi=id

Afii , Cid =
n∏
i=1

idi=id

Cfi
i , and sets Λid = {id, σ∆,id, Zid, Aid, Cid}.

Set Λ = ⋃
id∈LID Λid. It returns σ = (Λ, R).

Ver(P∆, {vkid}id∈P ,M, σ) : On input a multi-labeled program P∆, a set of ver-
ification key {vkid}id∈P , corresponding to the identities id involved in the
program P, a message M ∈ G1, and an authenticator σ , the algorithm
parses σ = (Λ, R). For each id such that (id, σ∆,id, Zid, Aid, Cid) ∈ Λ it
takes pkSig,id from vkid and checks whether VerSig(pkSigid, Zid||∆, σ∆,id) = 1
holds, i.e. whether σ∆,id is a valid signature on (Zid||∆). If any check
fails it returns ‘0’. Otherwise it checks whether the following equations
hold: ∏

id∈P e (Aid, Zid) = ∏n
i=1 h

fi
li
· ∏id∈P e (Cid, Yid) · e (R, g2), as well as

e (∏id∈P Cid, g2) = e (M, g2). If they do, it outputs ‘1’, otherwise it outputs ‘0’.
Theorem 7.14. The construction 7.13 is linearly homomorphic and structure
preserving over the structure bgp if Sig has a message space Σ for which the
following holds: There exists (l1, l2, lT ) ∈ N3

0 such that Σ ⊂ Gl1
1 ×Gl2

2 ×GlT
T .

Proof. First we see that message are elements of G1. Signature components lie
either in G1, G2 or GT if the signature components produced by Sig lie in G1, G2
or GT .

Second we show that authentication correctness in the sense of Def. 2.5 holds for
construction 7.13 as well.
To that end we let λ be an arbitrary security parameter, pp ← Setup(1λ) be

arbitrary public parameters, (sk, ek, vk) ← KeyGen(pp) an arbitrary key triple,
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l ∈ ID × T an arbitrary label, ∆ ∈ {0, 1}∗ an arbitrary dataset identifier, and
M ∈ G1 an arbitrary message. Furthermore let σ ← Auth(sk,∆, l,M). We parse
σ = (Λ, R) and Λ = (id, σ∆, Z, A,C).
By construction we have σ∆,id ← SignSig(skSig, Zid||∆) and if Sig is a correct

signature scheme then VerSig(pkSig,id, Zid||∆, σ∆) = 1 holds. We have by construction

e (A,Z) = e
((
gxl+r1 ·M

) 1
z , gz2

)
= e (gxl1 ·M, g2)

= gxl+rt · e
(
M

1
y
m[j], gy2

)
= hl · e (C, Y ) · e (R, g2)

as well as e (C, Y ) = e
(
M

1
y , gy2

)
= e (M, g2), and thus Ver(Il,∆, vk,M, σ) = 1 holds.

Third we show that evaluation correctness in the sense of Def. 2.6 holds for con-
struction 7.13 as well. To that end we let λ be an arbitrary security parameter, pp←
Setup(1λ) be arbitrary public parameters, {(skid, ekid, vkid)← KeyGen(pp)}id∈ID be
a set of arbitrary key triples, and ∆ ∈ {0, 1}∗ an arbitrary dataset identifier.
Let g : MN →M be an arbitrary linear function given by its coefficient vector
(g1, . . . , gN). Let {(Pi,Mi, σi)}i∈[N ] be an arbitrary set of program/message/au-
thenticator triples, such that Ver(Pi,∆, vk,Mi, σi) = 1.

Let M∗ = g(M1, . . . ,MN),P∗ = g(P1, . . . ,PN), and σ∗ = Eval(g, {(σi, eki)}i∈[n]).
Since we have Ver(Pi,∆, vk,Mi, σi) = 1 for all i ∈ [n], in particular VerSig(pkSig,id,

Zid||∆, σ∆,id) = 1 holds for all id ∈ Pi.
Like in Proposition 5.5 we make use of the following notation: We write id ∈ P

if for P = (f, l1, . . . , ln) there exists an i ∈ [n] such that li = (id, τi) for some input
identifier τi.
We have ⋃Ni=1{id ∈ Pi} = {id ∈ P∗}. Therefore we also have VerSig(pkSigid,

Zid||∆,σ∆,id) = 1 for all id ∈ P∗. We parse σi = (Λi, Ri).
If Ver(Pi,∆, vk,Mi, σi) = 1, holds, then in particular

∏
id∈Pi,∆

e (Aid,i, Zid) =
n∏
k=1

h
fi,k
li,k
· e

 ∏
id∈Pi,∆

Cid,i, Yid

 · e (Ri, g2)

holds as well as e
(∏

id∈Pi,∆ Cid,i, g2
)

= e (M, g2) for all i ∈ [N ]. Without loss of
generality let {id ∈ Pi,∆} = {id ∈ Pj,∆} for all i, j ∈ [n]. Let fk for k ∈ [n]
denote the coefficients such that for P = (f, l1, . . . , ln) = g(P1, . . . ,PN) we have
f(m1, . . . ,mn) = ∑n

k=1 fkmm. Then we have fk = ∑N
i=1 gifi,k. We have

N∏
i=1

 ∏
id∈Pi,∆

e (Aid,i, Zid,i)
gi =

N∏
i=1

 n∏
k=1

h
fi,k
li,k
·
∏

id∈Pi,∆
e (Cid,i, Yid) · e (Ri, g2)

gi

and
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∏
id∈P∗∆

e (A∗id, Z∗id) =
N∏
i=1

 ∏
id∈Pi,∆

e (Aid,i, Zid,i)
gi

=
N∏
i=1

 n∏
k=1

h
fi,k
li,k
·
∏

id∈Pi,∆
e (Cid,i, Yid) · e (Ri, g2)

gi

=
n∏
k=1

hfklk ·
∏

id∈P∗∆

e (C∗id, Y ∗id) · e (R∗, g2)

We also have ∏id∈P∗ e (C∗id, Yid) = ∏
id∈P∗ e

(∏N
i=1C

gi
i,id, Yid

)
= e

(
N∏
i=1

M gi
i , g2

)
= e (M∗, g2)

Thus all checks of Ver() pass and Ver(P∗∆, vk,M∗, σ∗) = 1 holds.
Finally it is an immediately corollary of Theorem 5.9 as well as Lemma 5.10

- 5.16, that no security reduction requires knowledge of messages m in Zp but
can be computed knowing group element M = gm1 ∈ G1. Note that one of the
modifications compared to MKLin (see Construction 5.3) authenticators are of the
form σ = (Λ, R) and not of the form σ = (Λ, R, S). In Lemma 5.14 we dealt
with a case, where A produced a forgery which contained a modification of the S
component. As here no S component exists such a forgery is trivially impossible
and we do not need to apply Lemma 5.14.

We recall that in Section 7.2 we showed how to obtain an FDC by combining
a structure preserving homomorphic authenticator scheme with a conventional
commitment scheme. We have now constructed a modification of our scheme MKLin
(see Construction) 5.3) that is structure preserving.

We will provide the commitment scheme this can be combined with to obtain an
FDC.
Construction 7.15.

Setup(1λ) : On input a security parameter λ this algorithm chooses a bilinear
group bgp = (p,G1,G2,GT , g1, g2, e) $← G(1λ) as well as H0, . . . , HT

$← G1
uniformly at random. It sets CK = (bgp, H0, . . . , HT ). This is implicitly used
in all the following algorithms.

Commit(m, r) : On input a message m ∈ ZTp , and randomness r ∈ Zp, it com-
putes C = Hr

0 ·
∏T
j=1H

m[j]
j . It outputs the commitment C as well as the

decommitment d = r.
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Decommit(m, d, C) : On input a message m ∈ ZTp , decommitment d = r ∈ Zp,
and a commitment C ∈ G1 it checks whether whether C = Hd

0 ·
∏T
j=1H

m[j]
j . If

the equation holds it outputs ‘1’, else it outputs ‘0’.
Note that Commit and Decommit are identical to PublicCommit and PublicDecommit
from Construction 4.13. Therefore the scheme also satisfies the same basic commit-
ment properties - it is binding, hiding, and homomorphic.
Proposition 7.16. The commitment scheme 7.15 is a binding commitment scheme
under the DL assumption (see Def. 2.36).
Proof. This is an immediate corollary of Theorem 4.15.
Proposition 7.17. The commitment scheme 7.15 is unconditionally hiding.
Proof. This is an immediate corollary of Theorem 4.16.

Proposition 7.18. The commitment scheme 7.15 is linearly homomorphic.
Proof. If we have N commitments C1, . . . , CN , N messages m1, . . . ,mN and de-
commitments d1, . . . dN such that Ci = Hdi

0 ·
∏T
j=1H

mi[j]
j holds for all i ∈ [N ], f is

an arbitrary linear function given by its coefficient vector (f1, . . . fN) and we set
C = ∏N

i=1C
fi
i , m = ∑N

i=1 fimi, and d = ∑N
i=1 fidi, then we have

C =
N∏
i=1

Cfi
i

=
N∏
i=1

Hdi
0 ·

T∏
j=1

H
mi[j]
j

fi

= H
∑N

i=1 fidi
0 ·

T∏
j=1

H
∑N

i=1 fimi[j]
j

= Hd
0 ·

T∏
j=1

H
m[j]
j .

Therefore Decommit(m, d, C) = 1 holds.

7.3.2 Multi-Key FDC Combined with Secret Sharing
We will now describe in detail the verifiable computing scheme we get by applying
our transformation 7.5 to our homomorphic authenticator scheme from Construc-
tion 7.13, and combining it with Shamir secret sharing. This results in a scheme
with both information-theoretic input and output privacy with respect to the
verifier and information-theoretic input and output privacy with respect to the
servers.
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Construction 7.19.

VKeyGen(1λ,P) : On input a security parameter λ and the description of a
linear function f given as a labeled program P = (f, τ1, . . . , τn), it runs pp←
Setup(1λ), (sk′, pk)← KeyGen(pp), as well as
F ← PublicCommit(pk,P). It sets sk = (sk′,P), ek = P, vk = (pk, F ) and
returns (sk, ek, vk).

ProbGen(sk, x): On input the secret key sk and x = (m1, . . . ,mn,∆) consisting of
a tuple of n messages mi ∈ ZTp for i ∈ [n] and a dataset identifier ∆ ∈ {0, 1}∗,
it chooses r1, . . . , rn

$← Zp uniformly at random. It applies Shamir secret
sharing to each message entry mi[j] for all i ∈ [n], j ∈ [T ] as well as to
all ri for i ∈ [n], i.e. it computes (s1(mi[j]), . . . , sN(mi[j])) ← SShare(mi[j])
for all i ∈ [n], j ∈ [T ], as well as (s1(ri), . . . , sN(mi)) ← SShare(ri) for
all i ∈ [n]. It runs Ai ← PrivateCommit(sk,mi, ri,∆, τ). Additionally, it
chooses k∗ ∈ [N ]. This will identify the distinguished shareholder that will
perform operations on authenticators. k∗ can be chosen according to a clients
preferences. It outputs the shares sk(mi[j]) as well as sk(ri) giving sk(mi[j])
to shareholder k and sk(ri) to shareholder k for for i ∈ [n], j ∈ [T ], k ∈ [N ],
and additionally outputs A1, . . . , An to shareholder k∗. It sets ρx = 0 and
σx = (∆, {Ai, sk(mi[j]), sk(ri)}i∈[n],j∈[T ],k∈[N ]). It outputs (σx, ρx).

Compute(ek, σx) : On input an evaluation key ek and an encoded input σx, the
algorithm parses ek = (f, τ1, . . . , τn) with f a linear function given by its co-
efficient vector (f1, . . . , fn) and σx = (∆, {Ai, sk(mi[j]), sk(ri)}i∈[n],j∈[T ],k∈[N ]).
Each shareholder k computes sk(m∗[j]) = ∑n

i=1 fi ·sk(mi[j]) as well as sk(r∗) =∑n
i=1 fi · sk(ri). They set sk(m∗) = (sk(m∗[1]), . . . , sk(m∗[T ])).

Additionally k∗ runs A∗ ← Eval(f, A1, . . . , An). It sets σy = (∆, A∗, {sk(m∗),
sk(r∗)}k∈[N ]) and outputs σy.

Verify(vk, ρx, σy) : On input a verification key vk, a decoding value ρx and an
encoded value σy, it parses vk = (pk, F ), σy = (∆, A∗, {sk(m∗), sk(r∗)}k∈[N ]).
It chooses a subset B ⊂ [N ] with |B| = t. It creates the reconstruction
vector (w1, . . . , wt) derived from B (see Sec. 2.4 for details). It computes
m∗ = ∑

k∈B wksk(m∗) as well as r∗ = ∑
k∈B wksk(r∗). Then, it runs C∗ ←

PublicCommit(m∗, r∗). Finally, it runs b ← FunctionVerify(pk, A∗, C∗, F,∆).
If b = 0 it outputs ⊥, else it outputs m∗.

Note that this is mostly analogous to Construction 4.27.
We now look at the basic properties of this construction. A first and obvious

requirement is correctness, showing that any honest execution of the algorithm
leads to verifiers accepting a correct result.

Proposition 7.20. Construction 7.19 is a correct verifiable computing scheme ins
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the sense of Def. 2.30

Proof. Let f be an arbitrary linear function, x = (m1, . . . ,mm,∆) be an arbitrary in-
put. Let f be described as a labeled program P = (f, τ1, . . . , τn). Let (sk, ek, pk)←
VKeyGen(1λ,P), (σx, ρx)← ProbGen(sk, x), and σy ← Compute(ek, σx).

Let y = ∑n
i=1 fimi. We parse σx = (∆, {Ai, sk(mi[j]), sk(ri)}i∈[n],j∈[T ],k∈[N ])

and σy = (∆, A∗, {sk(m∗), sk(r∗)}k∈[N ]). Following Verify we compute C∗ =∏
k∈B sk(C∗)wk . Then we have

C∗ =
∏
k∈B

sk(C∗)wk

=
∏
k∈B

(PublicCommit(sk(y), sk(r∗)))wk

=
∏
k∈B

(
PublicCommit(sk(

n∑
i=1

fimi), sk(
n∑
i=1

firi))
)wk

=
∏
k∈B

(
PublicCommit(

n∑
i=1

sk(fimi),
n∑
i=1

sk(firi))
)wk

.

By the correctness of our FDC scheme (see Propositions 5.5 and 7.9) we have
therefore Verify(vk, ρx, σy) = 1.

Next we consider the case of third party verifiers and show that this construction
is even publicly verifiable.

Proposition 7.21. Construction 7.19 is a publicly verifiable computing scheme.

Proof. Note, that ρx = 0 by definition. Obviously this does not need to be kept
secret. We have vk = (pk, F ), where pk is the public key of the FDC scheme and
F is a function commitment. Both values are public.

Now we formally show that this combination of our FDC with Shamir secret
sharing does indeed lead to secure verifiable computing scheme. The security
essentially follows from the unforgeability of the underlying FDC and its binding
property.

Proposition 7.22. Construction 7.19 is an adaptively secure verifiable computing
scheme in the sense of Def. 2.33.

Proof. Assume we have a PPT adversary A that can produce a successful forgery
during the security experiment EXPAdaptVerify

A [VC, f, λ] (see Def. 2.33), we then show
how a simulator S can use A to either win the security experiment EXPUF−CMA

A,FDC
(see Def. 4.9) or the security experiment EXPBind

A,Com(λ) (see Def. 4.2).
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Setup Simulator S runs pp ← HSetup(1λ) and outputs pp. It chooses an
arbitrary linear function f described as a labeled program P = (f, τ1, . . . , τn).
Let x = (m1, . . . ,mn,∆) be an arbitrary input, let f be an arbitrary linear
function and let (sk, ek, vk)← VKeyGen(1λ,P).

Key Generation: Simulator S runs (sk′, ek, vk)← KeyGen(pp). By construction,
ek = 0. Furthermore it runs F ← PublicCommit(pk,P). It sets sk = (sk′,P),
ek = P , vk = (pk, F ) and returns (sk, ek, vk).

Queries: When A queries x = (m1, . . . ,mn,∆) S does the following. It chooses
r1, . . . , rn

$← Zp uniformly at random, and queries for (∆, τi,mi, ri) for i ∈ [n],
receiving Ai. It runs {sk(mi[j])}k∈[N ] ← SShare(mi[j]) for i ∈ n, j ∈ [T ]
as well as {sk(ri)}k∈[N ] ← SShare(ri) and outputs σx = (∆, {Ai, sk(mi[j]),
sk(ri)}i∈[n],j∈[T ],k∈[N ]). Note that this is the identical response to an honest
evaluation of ProbGen.

Forgery: A returns σ∗y . S parses σ∗y = (∆, A∗, {sk(m∗), sk(r∗)}k∈[N ]). It chooses
a subset B of size t and runs m∗ ← SReconstruct(B, {sk(m∗)}k∈B), as well as
r∗ ← SReconstruct(B, {sk(r∗)}k∈B).
It computes m̂ = ∑n

i=1 fimi as well as r̂ = ∑n
i=1 firi. Then, it sets Ĉ ←

PublicCommit(m̂, r̂) and C∗ ← PublicCommit(m∗, r∗). It checks, whether C∗ =
Ĉ. If it holds (m∗, r∗), (m̂, r̂) wins the binding experiment EXPBind

A,Com(λ) (see
Def. 4.2). If C∗ 6= Ĉ, it sets P∗∆∗ = (P ,∆∗) and outputs (P∗∆∗ , A∗, C∗). If
Verify(vk, ρx, σy) 6= ⊥, then (P∗∆∗ , A∗, C∗) is a type 2 forgery as defined in
Def. 4.8.

If we have EXPAdaptVerify
A [VC, f, λ] = 1, then in particular we have σ∗y = (∆, A∗,

{sk(C∗)}k∈[N ]) such that for C∗ = ∏
k∈B sk(C∗)wk we have

FunctionVerify(pk, A∗, C∗, F,∆) = 1, which implies a forgery in EXPUF−CMA
A,FDC (λ).

Therefore the claim follows from Theorem 5.9 Proposition 7.10, as well as
Proposition 7.16.

Furthermore we can show that our construction preserves efficient verification.
After a one time function-dependent preprocessing verification can indeed be faster
than a computation of the function itself.

Proposition 7.23. Construction 7.19 is a verifiable computing scheme that achieves
amortized efficiency in the sense of Def. 2.35.

Proof. This is an immediate corollary of Propositions 5.7 and 7.12.

Finally we show that our verifiable computing scheme achieves complete infor-
mation theoretic privacy. Over the following four propositions we prove that it
offers information-theoretic input privacy with respect to the servers, information-
theoretic output privacy with respect to the servers, information-theoretic input
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privacy with respect to the verifier and information-theoretic output privacy with
respect to the verifier which have each been defined in Section 3.1.

Proposition 7.24. Construction 7.19 achieves information-theoretic input privacy
with respect to the servers in the sense of Def. 3.1 against an adversary corrupting
at most t− 1 shareholders.

Proof. Setup:
Let f be a linear function given by its coefficient vector (f1, . . . , fn) and P =

(f, τ1, . . . , τn) and ∆← {0, 1}∗ a dataset identifier.
Let (m1, . . . ,mn)← ZTp and (m′1, . . . ,m′n)← ZTp be any two tuples of messages.

Setting x0 = (m1, . . . ,mn,∆) and x1 = (m′1, . . . ,m′n,∆), let σxi ← ProbGen(sk, xi)
for i ∈ {0, 1}.
The adversary A chooses a subset B ⊂ [N ] of size |B| = t− 1.
We assume k∗ ∈ B. If the adversary does not corrupt k∗ the claim immediately

follows from the hiding property of Shamir secret sharing [97].

Thus the adversary obtains and seeks to distinguish
(x0, x1,∆, {Ai, sk(mi[j]), sk(ri)}i∈[n],j∈[T ],k∈B)

and
(x0, x1,∆, {A′i, sk(m′i[j]), sk(r′i)}i∈[n],j∈[T ],k∈B).

By the hiding property of Shamir secret sharing
(x0, x1,∆, {Ai, sk(mi[j]), sk(ri)}i∈[n],j∈[T ],k∈B) is perfectly indistinguishable from
(x0, x1,∆, {Ai, Rijk |Ai ← PrivateCommit(sk,mi, ri,∆, τi), Rijk

$← Zp}i∈[n],j∈[T ],k∈B).
Obviously this is perfectly indistinguishable from (x0, x1,∆, {Ai, R′ijk | Ai ←
PrivateCommit(sk,mi, ri,∆, τi), R′ijk

$← Zp}i∈[n],j∈[T ],k∈B), as this is just another
sampling of randomness. By the hiding property of the FDC (see Proposi-
tion 7.3.1), this is perfectly indistinguishable from (x0, x1,∆, {A′i, R′ijk | A′i ←
PrivateCommit(sk,m′i, r′i,∆, τi), R′ijk

$← Zp}i∈[n],j∈[T ],k∈B). Again by the hiding prop-
erty of Shamir secret sharing this is perfectly indistinguishable from
(x0, x1,∆, {A′i, sk(m′i[j]), sk(r′i)}i∈[n],j∈[T ],k∈B). This completes the proof.

Proposition 7.25. Construction 7.19 achieves information-theoretic output pri-
vacy with respect to the servers in the sense of Def. 3.2 against an adversary
corrupting at most t− 1 shareholders.

Proof. Setup: This setup is identical to Proposition 7.24.

Let σyi ← Compute(ek, σxi) for i ∈ {0, 1} and y0 = ∑n
i=1 fimi, y1 = ∑n

i=1 fim
′
i,

r = ∑n
i=1 firi, r′ =

∑n
i=1 fir

′
i.

We parse σy0 = (∆, A, {sk(y0), sk(r)}k∈[N ]) and σy1 = (∆, A′, {sk(y1), sk(r′)}k∈[N ]).
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Thus the adversary obtains and seeks to distinguish (y0, y1,∆, A, {sk(y0), sk(r)}k∈B)
and (y0, y1,∆, A′, {sk(y1), sk(r′)}k∈B).

By the hiding property of Shamir secret sharing (y0, y1,∆, A, {sk(y0), sk(r)}k∈B)
is perfectly indistinguishable from (y0, y1,∆, {A,Rk, Sk | Rk, Sk

$← G1}k∈B). Ob-
viously this is perfectly indistinguishable from (y0, y1,∆, {A,R′k, S ′k | R′k, S ′k

$←
G1}k∈B) as this is just another sampling of randomness. By the hiding prop-
erty of the FDC (see Proposition 7.3.1), this is perfectly indistinguishable from
(y0, y1,∆, {A′, R′k, S ′k |R′k, s′k

$← G1}k∈B). Again by the hiding property of Shamir se-
cret sharing this is perfectly indistinguishable from (y0, y1,∆, A′, {sk(y1), sk(r′)}k∈B).
This completes the proof.

Proposition 7.26. Construction 7.19 achieves information-theoretic input privacy
with respect to the verifier in the sense of Def. 3.3.

Proof. Let f be a linear function given by its coefficient vector (f1, . . . , fn) and
P = (f, τ1, . . . , τn) and ∆← {0, 1}∗ a dataset identifier.
Let m1, . . . ,mn ← ZTp and m′1, . . . ,m′n ← ZTp be two tuples of messages. such

that ∑n
i=1 fimi = ∑n

i=1 fim
′
i.

Setting x0 = (m1, . . . ,mn,∆) and x1 = (m′1, . . . ,m′n,∆), let σxi ← ProbGen(sk, xi).
Let σyi ← Compute(ek, σxi) for i ∈ {0, 1} and y = ∑n

i=1 fimi, r = ∑n
i=1 firi, and

r′ = ∑n
i=1 fir

′
i. By assumption we have y = ∑n

i=1 fim
′
i.

We parse σy0 = (∆, A, {sk(y), sk(r)}k∈[N ]) and σy1 = (∆, A′, {sk(y), sk(r′)}k∈[N ]).
Thus the adversary obtains and seeks to distinguish (x0, x1,∆, A, {sk(y), sk(r)}k∈B)
and (x0, x1,∆, A′, {sk(y), sk(r′)}k∈B).
Note that an adversary A that can distinguish (x0, x1,∆, A, {sk(y), sk(r)}k∈B)

and (x0, x1,∆, A′, {sk(y), sk(r′)}k∈B) immediately implies an adversary A′ that can
distinguish (x0, x1,∆, y, r) and (x0, x1,∆, y, r′). Since both r and r′ are distributed
uniformly at random as linear combinations of uniformly randomly chosen values,
these are perfectly indistinguishable.

Proposition 7.27. Construction 7.19 achieves information-theoretic output pri-
vacy with respect to the verifier in the sense of Def. 3.4.

Proof. Let f be a linear function given by its coefficient vector (f1, . . . , fn) and
P = (f, τ1, . . . , τn) and ∆← {0, 1}∗ a dataset identifier.

We first show correctness in the sense of Def. 3.4. We provide the three additional
algorithms.

HideCompute(ek, σx) : On input an evaluation key ek and an encoded input
σx, the algorithm parses σx = (∆, {Ai, sk(mi[j]), sk(ri)}i∈[n],j∈[T ],k∈[N ]). Each
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shareholder k computes sk(m∗[j]) = ∑n
i=1 fi · sk(mi[j]), as well as sk(r∗) =∑n

i=1 fi · sk(ri). They run sk(C∗)← PublicCommit(sk(m∗), sk(r∗)). Addition-
ally, k∗ runs A∗ ← Eval(f, A1, . . . , An).
It sets σ̃y = (∆, A∗, {sk(C∗)}k∈[N ]) and outputs the encoded version σ̃y.

HideVerify(vk, σ̃y) : On input a verification key vk = (pk, F ) and an encoded
value σ̃y, it parses σ̃y = (∆, A∗, {sk(C∗)}k∈[N ]). It chooses a subset B ⊂ [N ]
with |B| = t. It creates the reconstruction vector (w1, . . . , wt) derived from B
(see Sec. 2.4 for details). Then, it runs C∗ ← PublicCommit(m∗, r∗). Finally,
it runs b← FunctionVerify(pk, A∗, C∗, F,∆). If b = 0 it outputs ⊥, else it sets
σ̂y = (∆, A∗, C∗) and outputs σ̂y.

Decode(vk, ρx, σ̂y, σy) : On input a verification key vk, a decoding value ρx =
0, and encoded values σ̂y, σy, it parses σy = (∆, A∗, {sk(m∗), sk(r∗)}k∈[N ])
and σ̂y = (∆, A∗, C∗). It computes m∗ = ∑

k∈B wksk(m∗) as well as r∗ =∑
k∈B wksk(r∗), and runs b← PublicDecommit(C∗,m∗, r∗). If b = 0 it outputs
⊥ else it returns m∗.

Now we show privacy in the sense of Def. 3.4.
Let m1, . . . ,mn ← ZTp and m′1, . . . ,m′n ← ZTp be two tuples of messages.
Setting x0 = (m1, . . . ,mn,∆) and x1 = (m′1, . . . ,m′n,∆), let σxi ← ProbGen(sk, xi).
Let σyi ← Compute(ek, σxi) for i ∈ {0, 1} and y0 = ∑n

i=1 fimi, y1 = ∑n
i=1 fim

′
i.

We parse σy0 = (∆, A, {sk(C)}k∈[N ]) and σy1 = (∆, A′, {sk(C ′)}k∈[N ]).
Note that an adversary A that can distinguish (y0, y1,∆, A, {sk(C)}k∈[N ]) and

(y0, y1,∆, A′, {sk(C ′)}k∈[N ]) immediately implies an adversary A′ that can dis-
tinguish (y0, y1,∆, A, C) and (y0, y1,∆, A′, C ′). However, (y0, y1,∆, A, C) and
(y0, y1,∆, A′, C ′) are perfectly indistinguishable by the hiding property of the
FDC (see Theorem 7.3.1).

7.4 Turning CHQS into an FDC
We now seek to apply the transformation described in Section 7.2 (Construction 7.5)
to suitable homomorphic authenticator schemes. We recall that we presented CHQS
(Construction 5.17) in Chapter 5 a homomorphic signature scheme supporting
multivariate polynomials of degree 2. In the following, we present a slight variation
of that scheme that, together with a novel homomorphic commitment scheme,
will be used in our transformation. We recall that CHQS on its own provided
information-theoretic input privacy with respect to the verifier. By applying our
transformation and combining the resulting FDC with a suitable secret sharing
scheme we obtain a verifiable computing scheme that provides information-theoretic
input and output privacy with respect to the verifier and information-theoretic
input and output privacy with respect to the servers.
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7 Adding Information-Theoretic Privacy to Homomorphic Authenticators

7.4.1 A New Homomorphic Commitment Scheme
We will now describe a new commitment scheme which we will use for our transfor-
mation described in Sec. 7.2. Similar to CHQS, this commitment is graded. On
a high level we provide two ways of committing to a message. One leading to so
called level-1 commitments, the other to level-2 commitments. This leads to a
homomorphic property beyond linear evaluation. Our homomorphic evaluation will
in particular allow to evaluate two level-1 commitments to m1 and m2 respectively
to produce a level-2 commitment to m1m2.
Construction 7.28.

Setup(1λ) : On input a security parameter λ this algorithm chooses a bilinear
group bgp = (p,G1,G2,GT , g1, g2, e) $← G(1λ) as well as H $← G1 uniformly
at random. It sets CK = (bgp, H). This is implicitly used in all the following
algorithms.

Commit1(m, y, r, r′) : On input a message m ∈ Zp, and randomness (y, r, r′) ∈
Z3
p, it computes c = m + yr, C = gm1 ·Hr · gyr

′

1 , Y = gy1 , as well as R = gr2,
R′ = gr

′
2 . It outputs the level-1 commitment Com = (c, C, Y ) as well as the

decommitment d = (R,R′).
Commit2(m, y, r, r′) : On input a message m ∈ Zp, and randomness (y, r, r′) ∈

Z3
p, it computes C = gm1 ·Hr · gyr

′

1 , Y = gy1 , as well as R = gr2, R′ = gr
′

2 . It
outputs the level-2 commitment Com = (C, Y ) as well as the decommitment
d = (R,R′).

Decommit1(m, d, Com) : On input a message m ∈ Zp, decommitment d =
(R,R′) ∈ G2

2, and a level -1 commitment Com = (c, C, Y ) ∈ Zp ×G2
1 it checks

whether e (gc1, g2) = e (gm1 , g2) · e (Y,R) and e (C, g2) = e (gm1 , g2) · e (H,R) ·
e (Y,R′). If both equations hold it outputs ‘1’, else it outputs ‘0’.

Decommit2(m, d, Com) : On input a message m ∈ Zp, decommitment d =
(R,R′) ∈ G2

2, and a level -2 commitment Com = (C, Y ) ∈ G2
1 it checks

whether e (C, g2) = e (gm1 , g2) · e (H,R) · e (Y,R′). If the equation holds it
outputs ‘1’, else it outputs ‘0’.

The security of this scheme is based on the following variation of the DDH
assumption.
Definition 7.29 (Augmented Decisional Diffie Hellmann Problem). Let G be a
generator of asymmetric bilinear groups and let bgp = (p,G1,G2,GT , g1, g2, e) $←
G(1λ). We say the augmented decisional Diffie Hellman assumption (aug-DDH)
holds in bgp if, for every PPT adversary A, we have
|Pr

[
A(bgp, gx1 , g

y
1 , g

1
x
2 , g

xy
2 ) | x, y $← Zp

]
− Pr

[
A(bgp, gx1 , g

y
1 , g

1
x
2 , g

z
2) | x, y, z $← Zp

]
|

= negl(λ)
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By the master theorem of [21] this assumption holds in the generic group model.
We will now prove the basic properties of this scheme. First we show the target

binding property. This ensures that any commitment created by a simulator can
only be opened to the original message by any computationally bounded adversary.

Proposition 7.30. The commitment scheme 7.28 is a target binding commit-
ment scheme in the sense of Def. 4.5 under the augmented DDH assumption (see
Def. 7.29) and the dba1 assumption (see Def. 2.40).

Proof. To prove this statement we will describe two games with the adversary
A and we show that the adversary A wins, i.e. the game outputs ‘1’ only with
negligible probability. Following the notation of [37], we write Gi(A) to denote that
a run of game i with adversary A returns ‘1’. We use flag values badi, initially set
to false. If at the end of the game any of these flags is set to true, the game simply
outputs ‘0’. Let Badi denote the event that badi is set to true during game i.
Game 1: This game is just the security experiment 4.4 between an adversary A
and a challenger C.

Game 2: This game is the same as game 1 except for the following change. C
runs (Com, d)← Commit1(m, y, r, r′) during the security experiment 4.4 and
parses d = (R,R′). C parses d′ returned by A as (S, S ′). It checks whether
R = S. If this holds it sets bad2 = true.

We obviously have |Pr[G1(A)] − Pr[G2(A)]| ≤ Pr[bad2 = true]. We first show
that any adversary that breaks the target binding property while bad2 = true
implies a solver for the augmented DDH problem (see Def. 7.29). We show how a
simulator S can use such an adversary. S takes as input bgp, gα1 , g

1
α
2 , g

β
1 , g

γ
2 . It sets

bgp′ = (p,G1,G2,GT , g
α
1 , g2, e).

It sets H = g1 and gives the commitment key (bgp′, H) to A.
It chooses y $← Zp uniformly at random and sets Y = gy1 . It chooses an arbitrary

message m ∈ M ⊂ Zp, and randomness r, r′ $← Zp. It sets c = m+ yr as well as
C = (gα1 )m · (gα1 )r · gyr

′

1 . Furthermore it sets R =
(
g

1
α
2

)r
, R′ = gr

′
2 and d = (R,R′).

This is perfectly indistinguishable from an honest execution of the algorithm to A.
Note that we have

e (C, g2) = e ((gα1 )m , g2) · e (H,R) · e (Y,R′)

It gives (C,m, d) to the adversary A.
The adversary A returns (m′, d′) with m 6= m′. S parses d′ = (S, S ′) ∈ G2

2.
If A wins the security game we have

e (C, g2) = e
(
(gα1 )m

′
, g2
)
· e (H,S) · e (Y, S ′) .
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Dividing the equations and using the fact that R = S we obtain

1 = e
(
(gα1 )m−m

′
, g2
)
· e
(
Y,
R′

S ′

)
or equivalently

1 = e
(
(gα1 )m

′−m , g2
)
· e
(
g1,

R′

S ′

y)
.

Since we know that m 6= m′ we have gα2 =
(
R′

S′

) y
m′−m .

We now have γ = αβ if and only if

e (g1, g
γ
2 ) = e

gβ1 ,
(
R′

S ′

) y
m′−m


holds.

Now it remains to show that any adversary winning Game 2 can be used to solve
the DBP1 problem (see Def. 2.40).
We show how a simulator S can use such an adversary.
S takes as input (p,G1,G2,GT , g1, g

x
1 , g2, e). It seeks to compute G,Gx ∈ G2

such that 1 = e (g1, G) · e (gx1 , Gx).
It sets H = gx1 as wellas bgp = (p,G1,G2,GT , g1, g2, e) and gives the commitment

key (bgp, H) to A.
It chooses y $← Zp uniformly at random and sets Y = gy1 . It chooses an arbitrary

message m ∈ M ⊂ Zp, and randomness r, r′ $← Zp. It sets c = m+ yr as well as
C = gm1 · gr1 ·Hr · gyr

′

1 . Furthermore it sets R = gr2, R′ = gr
′

2 and d = (R,R′). The
output ((c, C, Y ), (R,R′)) is perfectly indistinguishable from an honest execution
of Commit1 (see Construction 7.28 ) to A. Note that we have

e (C, g2) = e (gm1 , g2) · e (H,R) · e (Y,R′)

It gives (C,m, d) to the adversary A.
The adversary A returns (m′, d′) with m 6= m′. S parses d′ = (S, S ′) ∈ G2

2.
If A wins the security game we have

e (C, g2) = e
(
gm
′

1 , g2
)
· e (H,S) · e (Y, S ′) .

Dividing the equations yields

1 = e
(
gm−m

′

1 , g2
)
· e
(
H,

R

S

)
· e
(
Y,
R′

S ′

)
or equivalently

150



7.4 Turning CHQS into an FDC

1 = e

(
g1, g

m−m′
2 · R

′

S ′

y)
· e
(
gx1 ,

R

S

)

We know that R 6= S. Therefore G = gm−m
′

2 · R′
S′
y and Gx = R

S
is a valid solution

for the DBP1 problem.

Next we investigate the hiding property of our scheme. Note, that this will be the
basis of the hiding property of the FDC we construct and thus ultimately allow us to
achieve information-theoretic input privacy with respect to the verifier, information-
theoretic output privacy with respect to the verifier, and information-theoretic
input and output privacy with respect to the servers.

Proposition 7.31. The commitment scheme 7.28 is unconditionally hiding.

Proof. If r $← Zp is chosen uniformly at random then {m + yr | r $← Zp} is
uniformly distributed over Zp for every m ∈ Zp and every y ∈ Z∗p. If r′ $← Zp is
chosen uniformly at random then {gr′1 | r′

$← Zp} is uniformly distributed over G1.
Therefore {gm1 ·Hr · gyr

′

1 |r′
$← Zp} is uniformly distributed over G1 for all m ∈ Zp,

y ∈ Z∗p, r ∈ Zp.
So in particular {m+r, gm1 ·Hr ·gyr

′

1 |r, r′
$← Zp} and {m′+ys, gm

′
1 ·Hs ·gs′1 |s, s′

$←
Zp} are both uniformly distributed over Zp×G1 for every possible choice of m,m′ ∈
Zp. They are therefore identically distributed and perfectly indistinguishable.

Finally, we how the homomorphic property of our scheme. We recall that in our
scheme CHQS (Construction 5.17) we described homomorphic evaluation for graded
authenticators by using six subalgorithms (Add1, Mult, Add2, cMult1, cMult2, Shift).
In this chapter we will follow this structure.

In Proposition 7.32 we describe these algorithms for the homomorphic evaluation
of (ordinary ) commitments. In Construction 7.33 we describe these algorithms for
FDCs. Finally, in Construction 7.35 we describe these algorithm for a verifiable
MPC scheme. For easy of notation we will denote these algorithms by the same
name, where the exact procedure depends on the objects (commitmetns, FDCs,
encoded inputs) given to the algorithm.

Proposition 7.32. The commitment scheme 7.28 allows for the homomorphic
evaluation of quadratic multivariate polynomials.

Proof. We now show the correctness of the following six subalgorithms.
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7 Adding Information-Theoretic Privacy to Homomorphic Authenticators

Add1: On input two level-1 commitments Comi = (ci, Ci, Y ) for i = 1, 2, it sets
c = c1 + c2, C = C1 ·C2, and outputs the level-1 commitment Com = (c, C, Y ).

cMult1: On input a level-1 commitment Com′ = (c′, C ′, Y ) and a scalar a ∈ Zp it
sets c = ac′, C = (C ′)a and outputs the level-1 commitment Com = (c, C, Y ).

Mult: On input two level-1 commitments Comi = (ci, Ci, Y ) for i = 1, 2, it sets
C = Cc2

1 and outputs the level-2 commitment Com = (C, Y ).
Add2: On input two level-21 commitments Comi = (Ci, Y ) for i = 1, 2, it sets
C = C1 · C2, and outputs the level-2 commitment Com = (C, Y ).

cMult2: On input a level-2 commitment Com′ = (2C ′, Y ) and a scalar a ∈ Zp it
sets C = (C ′)a and outputs the level-2 commitment Com = (C, Y ).

Shift: On input a level-1 commitment Com′ = (c′, C ′, Y ), it sets C = C ′ and
outputs the level-2 commitment Com = (C, Y ).

We will now deal with the correctness of each subalgorithm.
Add1: If we have two level-1 commitments Comi = (ci, Ci, Y ) for i = 1, 2,
messages, m1,m2 decommitments d1, d2 with d1 = (R,R′) and d2 = (S, S ′)
such that

e (gc11 , g2) = e (gm1
1 , g2) · e (Y,R)

e (C1, g2) = e (gm1
1 , g2) · e (H,R) · e (Y,R′)

e (gc21 , g2) = e (gm2
1 , g2) · e (Y, S)

e (C2, g2) = e (gm2
1 , g2) · e (H,S) · e (Y, S ′)

all hold, then we have

e (gc1, g2) = e
(
gc1+c2

1 , g2
)

= e (gm1
1 , g2) · e (Y,R) · e (gm2

1 , g2) · e (Y, S)
= e

(
gm1+m2

1 , g2
)
· e (Y,RS)

as well as
e (C, g2) = e (C1 · C2, g2) = e (C1, g2) · e (C2, g2)
= e (gm1

1 , g2) · e (H,R) · e (Y,R′) · e (gm2
1 , g2) · e (H,S) · e (Y, S ′)

= gm1+m2
1 · e (H,RS) · e (Y,R′S ′) .

If we set d = (RS,R′S ′), we therefore have for Com = (c1 + c2, C1 · C2, Y ),
Decommit1(m1 +m2, d, Com) = 1.

cMult1: If we have a level-1 commitment Com′ = (c′, C ′, Y ) and a ∈ Zp, a
message m and decommitment d′ = (R,R′) such that

e
(
gc
′

1 , g2
)

= e (g1m, g2) · e (Y,R)
e (C ′, g2) = e (gm1 , g2) · e (H,R) · e (Y, S)
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all hold, then we have

e (gc1, g2) = e
(
gac
′

1 , g2
)

= e (gam1 , g2) · e (Y,Ra)

as well as

e (C, g2) = e
(
C ′

a
, g2
)

= e (gam1 , g2) · e (H,Ra) · e
(
Y,R′

a
)
.

If we set d = (Ra, R′a), we therefore have for Com = (ac′, C ′a, Y ),
Decommit1(am, d, Com) = 1.

Mult: If we have two level-1 commitments Comi = (ci, Ci, Y ) for i = 1, 2,
messages m1,m2, decommitments d1, d2 with d1 = (R,R′) and d2 = (S, S ′)
such that

e (gc11 , g2) = e (gm1
1 , g2) · e (Y,R)

e (C1, g2) = e (gm1
1 , g2) · e (H,R) · e (Y,R′)

e (gc21 , g2) = e (gm2
1 , g2) · e (Y, S)

e (C2, g2) = e (gm2
1 , g2) · e (H,S) · e (Y, S ′)

respectively hold, then we have

e (C, g2) = e (Cc2
1 , g2)

= e (gm1c2
1 , g2) · e (H,Rc2) · e

(
Y,R′

c2
)

= e (gm1m2
1 , g2) · e (Y, S) · e (H,Rc2) · e

(
Y,R′

c2
)

= e (gm1m2
1 , g2) · e (H,Rc2) · e

(
Y,R′

c2 · S
)
.

If we set d = (Rc2 , R′c2 · S) we therefore have for Com = (Cc2
1 , Y ),

Decommit2(m1 ·m2, d, Com) = 1.
Add2: If we have two level-2 commitments Comi = (Ci, Y ) for i = 1, 2, messages,
m1,m2 decommitments d1, d2 with d1 = (R,R′) and d2 = (S, S ′) such that
e (C1, g2) = e (gm1

1 , g2) ·e (H,R) ·e (Y,R′), and e (C2, g2) = e (gm2
1 , g2) ·e (H,S) ·

e (Y, S ′) respectively hold, then we have

e (C, g2) = e (C1 · C2, g2) = e (C1, g2) · e (C2, g2)
= e (gm1

1 , g2) · e (H,R) · e (Y,R′) · e (gm2
1 , g2) · e (H,S) · e (Y, S ′)

= gm1+m2
1 · e (H,RS) · e (Y,R′S ′) .

If we set d = (RS,R′S ′), we therefore have for Com = (C1 · C2, Y ),
Decommit2(m1 +m2, d, Com) = 1.
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cMult2: If we have a level-1 commitment Com′ = (c′, C ′, Y ′) and a ∈ Zp, a
message m and decommitment d′ = (R,R′) such that e (C ′, g2) = e (gm1 , g2) ·
e (H,R) · e (Y,R′) holds, then we have

e (C, g2) = e
(
C ′

a
, g2
)

= e (gam1 , g2) · e (H,Ra) · e
(
Y,R′

a
)
.

If we set d = (Ra, R′a), we therefore have for Com = (C ′a, Y ),
Decommit2(am, d, Com) = 1.

Shift: If we have a level-1 commitment Com′ = (c′, C ′, Y ′), a message m and de-
commitment d′ = (R,R′) such that e

(
gc
′

1 , g2
)

= e (gm1 , g2) · e (Y,R), and
e (C ′, g2) = e (gm1 , g2) · e (H,R) · e (Y,R′) hold, then we have e (C, g2) =
e (C ′, g2) = e (gm1 , g2) · e (H,R) · e (Y,R′). If we set d = (R,R′), we there-
fore have for Com = (C ′, Y ), Decommit2(m, d, Com) = 1.

7.4.2 A Structure Preserving Variant of CHQS
We will now discuss how CHQS (see Construction 5.17) can be interpreted as
structure preserving over the structure (Zp ×G2

1) with the homomorphic structure
detailed in Prop. 7.32. Note that we are extending the notion of the structure
preserving property analogously to Libert et al. [78]. More precisely, we will
provide a homomorphic authenticator very similar to Construction 5.17. The
main difference is the domain of the inputs to Auth. In CHQS messages were
elements of Zp. In this variant, messages are taken from Zp ×G1. In the original
CHQS the message m ∈ Zp is a part of the authenticator and the component Λ is
computed using gm1 . Note that we have Commit1(m, y, 0, 0) = (m, gm1 , g

y
1). So the

original CHQS can be seen as taking non-randomized (and therefore not hiding)
commitments as inputs. In the following we will detail the more general case of
randomized commitments, Commit1(m, y, r, r′) = (c, C, gy1), where r, r′ $← Zp are
taken uniformly at random.
Construction 7.33 (Sp-CHQS).

Setup(1λ): On input a security parameter λ the algorithm runs G(1λ) to obtain
a bilinear group bgp = (p,G1,G2,GT , g1, g2, e). It chooses n ∈ N. Addition-
ally, it fixes a regular signature scheme Sig = (KeyGenSig, SignSig, VerSig) with
signature space Σ contained in the bilinear group. More precisely we have
Σ ⊂ Gl1

1 ×Gl2
2 ×GlT

T for some (l1, l2, lT ) ∈ N3
0. Then, it fixes a pseudorandom

function Φ : K × {0, 1}∗ → Zp. It chooses H $← G1 uniformly at random. It
outputs the public parameters pp = (λ, n, bgp, H, Sig,Φ).
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KeyGen(pp) : On input public parameters pp it chooses x, y $← Zp uniformly at
random. It sets h2 = gx2 . It samples tτi , kτi

$← Zp uniformly at random for
all i ∈ [n] and sets Fτi = g

tτi
2 , as well as fτi = g

ytτi
t , fτi,τj = g

tτikτj
t , for all

i, j ∈ [n]. Additionally the algorithm chooses a random seed K $← K for the
pseudorandom function Φ. It computes keys for the regular signature scheme
(skSig, pkSig) ← KeyGenSig(1λ). It sets sk = (skSig, K, x, y, {tτi}ni=1, {kτi}ni=1),
ek = 0 and vk = (pkSig, h2, {Fτi , fτi}ni=1, {fτi,τj}ni,j=1).

Auth(sk,∆, τ,m,M): On input a secret key sk, a dataset identifier ∆, an input
identifier τ ∈ T , and a message (m,M) ∈ Zp×G1, the algorithm generates the
parameters for the dataset identified by ∆, by running z ← ΦK(∆) and comput-
ing Z = g

1
z
2 . Z is bound to the dataset identifier ∆ by using the regular signature

scheme, i.e. it sets σ∆ ← SignSig(∆||Z). It chooses r, s ∈ Zp uniformly at ran-
dom. Then it computes Λ← g

z(xm+(y+s)tτ+r)
1 , Λ←Mxz · gz((y+s)tτ+r)

1 , R← gr1,
Sτ ← gs1, as well as Tτ ← gym−kτ1 . It sets T = {(τ, Sτ , Tτ )} and then returns
the signature σ = (m,σ∆, Z,Λ, R, T ).

Eval(ek, f, σ1, . . . , σn): Inputs are a public evaluation key ek, an arithmetic cir-
cuit f of degree at most 2, and signatures σ1, . . . , σn, where (w.l.o.g.) σi =
(mi, σ∆,i, Zi,Λi, Ri, Ti). The algorithm checks if the signatures share the same
public values, i.e. if σ∆,1 = σ∆,i and Z1 = Zi for all i = 2, . . . , n, and the sig-
nature for each set of public values is correct and matches the dataset identifier
∆, i.e. VerSig(pkSig, σ∆,i,∆i||Zi) = 1 for any i ∈ [n]. If this is not the case, the
algorithm rejects the signature. Otherwise, it proceeds as follows. We describe
this algorithm in terms of six different procedures (Add1,Mult,Add2, cMult1,
cMult2, Shift) allowing to evaluate the circuit gate by gate.

Add1: On input two level-1 signatures σi = (mi, σ∆, Z,Λi, Ri, Ti) for i = 1, 2
it computes as follows: m = m1 +m2, Λ = Λ1 · Λ2, R = R1 ·R2, and
Sτ = Sτ,1 · Sτ,2 as well as Tτ = Tτ,1 · Tτ,2 for all (τ, ·) ∈ T1 ∩ T2, Sτ =
Sτ,i as well as Tτ = Tτ,i for all τ such that (τ, ·) ∈ T1∆T2, and T =
{(τ, Sτ , Tτ )} for all (τ, ·) ∈ T1 ∪ T2. It outputs a level-1 signature σ =
(m,σ∆, Z,Λ, R, T ).

Mult: On input two level-1 signatures σi = (mi, σ∆, Z,Λi, Ri, Ti) for i = 1, 2
and the public verification key vk, it computes as follows: Λ = Λm2

1 ,
R = Rm2

1 , S ′τ1 = Sm2
τ1 ·

∏
τ2∈T2 Tτ2, for all τ1 ∈ T1, and L = {(τ, S ′τ )} for

all τ ∈ T1. It outputs a level-2 signature σ = (m,σ∆, Z,Λ, R,L).
Add2: On input two level-2 signatures σi = (σ∆, Z,Λi, Ri,Li) for i = 1, 2,
it computes as follows: Λ = Λ1 · Λ2, R = R1 · R2, Sτ = Sτ,1 · Sτ,2 for
all (τ, ·) ∈ L1 ∩ L2, Sτ = Sτ,i for all τ such that (τ, ·) ∈ L1∆L2, and
L = {(τ, Sτ )} for all (τ, ·) ∈ L1 ∪ L2. It outputs a level-2 signature
σ = (σ∆, Z,Λ, R,L).
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cMult1: On input a level-1 signature σ′ = (m′, σ∆, Z,Λ′, R′, T ′) and a con-
stant c ∈ Zp, it computes as follows: m = cm′, Λ = Λ′c, R = R′c,
Sτ = S ′τ

c, Tτ = T ′τ
c for all (τ, S ′τ , T ′τ ) ∈ T ′, and T = {(τ, Sτ , Tτ )}τ∈T . It

outputs a level-1 signature σ = (m,σ∆, Z,Λ, R, T ).
cMult2: On input a level-2 signature σ = (σ∆, Z,Λ′, R′,L′) and a constant
c ∈ Zp, it computes as follows: Λ = Λ′c, R = R′c, Sτ = S ′cτ for all
(τ, S ′τ ) ∈ L′, and L = {(τ, Sτ )} for all (τ, S ′τ ) ∈ L′. It outputs a level-2
signature σ = (σ∆, Z,Λ, R,L).

Shift: On input a level-1 signature σ′ = (m′, σ∆, Z,Λ′, R′, T ′), it sets Λ = Λ′,
R = R′, and L = {(τ, Sτ )}τ∈T ′. It outputs a level-2 signature σ =
(σ∆, Z,Λ, R,L). Shift simply describes how to derive a level-2 signature
from a level-1 signature.

Ver(vk,P∆,M, σ): On input a public evaluation key vk, level-2 message M , a
(level-1 or -2) signature σ, a multi-labeled program P∆ containing an arithmetic
circuit f of degree at most 2, the algorithm parses (without loss of generality)
σ = (σ∆, Z,Λ, R,L). IF Ver receives as input a level-1 message (m,M) ∈
Zp ×G1 it applies Shift on both (m,M) and σ before verification.
It then checks whether the following conditions hold:
1. VerSig(pkSig, σ∆,∆||Z) = 1

as well as

e (Λ, Z) = e (R, g2) · e (M,h2) ·
n∏

i,j=1
f
ci,j
i,j ·

n∏
j=1

f
cj
j ·

∏
(τ,·)∈L

e (Sτ , Fτ )

where ci,j and cj are the coefficients in P∆.
If both conditions hold respectively, it returns ‘1’. Otherwise, it returns ‘0’.

Theorem 7.34. SP-CHQS (see 7.33) is structure preserving over the structure
(bgp × Zp) with the homomorphic structure detailed in Proposition 7.32 if Sig
produces signatures in bgp.

Proof. First we see that both inputs and signatures lie in bgp× Zp if the signature
space Σ of Sig lies in bgp, i.e. there exists a tuple (l1, l2, lT ) ∈ N3

0, such that
Σ ⊂ Gl1

1 ×Gl2
2 ×GlT

T .
Second we show that authentication correctness in the sense of Def. 2.5 holds for

SP-CHQS as well.
To that end we let λ be an arbitrary security parameter, pp ← Setup(1λ) be

arbitrary public parameters, (sk, ek, vk) ← KeyGen(pp) an arbitrary key triple,
τ ∈ T an arbitrary label, ∆ ∈ {0, 1}∗ an arbitrary dataset identifier, and (m,M) ∈
Fp ×G1 an arbitrary message. Furthermore let σ ← Auth(sk,∆, τ,m). We parse
σ = (m,σ∆, Z,Λ, R, T ). As both (m,M) and σ are level-1 , we apply Shift to obtain
the message M and the signature σ′ = (σ∆, Z,Λ, R,L). with L = {(τ, Sτ )}τ∈T ′ .
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If Sig is a correct signature scheme we have VerSig(pkSig, σ∆,∆||Z) = 1. Then we
have

e (Λ, Z) = e
(
Mxz·g

(y+s)tτ+r)
1 , g

1
z
2

)
= e

(
Mx · g(y+s)tτ+r

1 , g2
)

= e (M, gx2 ) · g(y+s)tτ+r
t

= e (M,h2) · fτ · e (R, g2) · e (S, Fτ )

Therefore all checks of Ver pass.
Third we show that evaluation correctness in the sense of Def. 2.6 holds for

SP-CHQS as well. To that end we let λ be an arbitrary security parameter,
pp ← Setup(1λ) be arbitrary public parameters, (sk, ek, vk) ← KeyGen(pp) an
arbitrary key triple, and ∆ ∈ {0, 1}∗ an arbitrary dataset identifier.
We show the evaluation correctness of the six procedures (Add1, Mult, Add2,

cMult1, cMult2, Shift). So we take any two program/message/authenticator triples
{(Pi,Mi, σi)}i∈[2], such that Ver(vk,Pi,∆,Mi, σi) = 1.

Add1: Since we have Ver(vk,Pi,∆, (mi,Mi), σi) = 1 for i = 1, 2, we know that
VerSig(pkSig, σ∆,i,∆||Zi) = 1 for i = 1, 2. So with Z = Z1, σ∆ = σ∆,1 we
also have VerSig(pkSig, σ∆,∆||Z) = 1. We also have M1 · M2 = g(M1,M2).
Furthermore we have

e (Λ, Z) = e (Λ1 · Λ2, Z1)
= e (Λ1, Z1) · e (Λ2, Z2)
= e (R1, g2) · e (M1, h2) · f1 · e (S1, F1) · e (R2, g2) · e (M1, h2) · f2 · e (S2, F2)
= e (R1 ·R2, g2) · e (M1 ·M2, h2) · f1 · f2 · e (S1, F1) · e (S2, F2)
= e (R, g2) · e (M1) · f1 · f2 · e (S1, F1) · e (S2, F2)

hence all checks of Ver(vk,P ,M, σ) pass.
Mult: Since we have Ver(vk,Pi,∆, (mi,Mi), σi) = 1 for i = 1, 2, we know that

VerSig(pkSig, σ∆,i,∆||Zi) = 1 for i = 1, 2. So with Z = Z1, σ∆ = σ∆,1 we also
have VerSig(pkSig, σ∆,∆||Z) = 1. For ease of Notation we consider the case
where Ti each contains only a single entry. We also have Mm2

1 = g(M1,m2).
Furthermore we have

e (Λ, Z) = e (Λm2
1 , Z1) = e (Λ1, Z1)m2

= e (Rm2
1 , g2) · e (Mm2

1 , h2) · fm2
1 · e (Sm2

1 , F1)
= e (Rm2

1 , g2) · e (Mm2
1 , h2) · fm2

1 · e (Sm2
1 , F1) · e (T2, F1) · f1,2 · f−m2

1

= e (R, g2) · e (M,h2) · f1,2 · e (Sm2
1 · T2, F1)

= e (R, g2) · e (M,h2) · f1,2 · e (S, F1)
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hence all checks of Ver(vk,P ,M, σ) pass.
Add2: Since we have Ver(vk,Pi,∆,Mi, σi) = 1 for i = 1, 2, we know in particular
that VerSig(pkSig, σ∆,i,∆||Zi) = 1 for i = 1, 2. So with Z = Z1, σ∆ = σ∆,1
we also have VerSig(pkSig, σ∆,∆||Z) = 1. We also have M1 ·M2 = g(m1,m2).
Furthermore we have

e (Λ, Z) = e (Λ1 · Λ2, Z1) = e (Λ1, Z1) · e (Λ2, Z2)
= e (R1, g2) · e (M1, h2) · f1 ·

∏
(τ,·)∈L1

e (Sτ,1, Fτ )

· e (R2, g2) · e (M2, h2) · f2 ·
∏

(τ,·)∈L2

e (Sτ,2, Fτ )

= e (R, g2) e (M1 ·M2, h2) · f1 · f2
∏

(τ,·)∈L
e (Sτ , Fτ )

hence all checks of Ver(vk,P ,M, σ) pass.
cMult1: Since we have Ver(vk,P ′∆, (m′,M ′), σ′) = 1, we know in particular
that VerSig(pkSig, σ

′
∆,∆||Z ′) = 1. So with Z = Z ′, σ∆ = σ′∆ we also have

VerSig(pkSig, σ∆,∆||Z) = 1. We also have M = M ′c = g(M ′). Furthermore we
have

e (Λ, Z) = e
(
Λ′c, Z ′

)
= e (Λ′, Z ′)c

= e
(
R′

c
, g2
)
· e
(
M ′c, h2

)
· f ′c · e

(
S ′
c
, F
)

= e (R, g2) · e (M,h2) · f · e (S, F )

hence all checks of Ver(vk,P ,M, σ) pass.
cMult2: Since we have Ver(vk,P ′∆,M ′, σ′) = 1, we know in particular that

VerSig(pkSig, σ
′
∆,∆||Z ′) = 1. So with Z = Z ′ and σ∆ = σ′∆ we also have

VerSig(pkSig, σ∆,∆||Z) = 1. We also have M = M ′c = g(M ′). Furthermore we
have

e (Λ, Z) = e
(
Λ′c, Z ′

)
= e (Λ′, Z ′)c

= e
(
R′

c
, g2
)
· e
(
M ′c, h2

)
· f ′c · e

(
S ′
c
, F
)

= e (R, g2) · e (M,h2) · f · e (S, F )

hence all checks of Ver(vk,P ,M, σ) pass.
Shift: Since we have Ver(vk,P ′∆, (m′,M ′), σ′) = 1, we know in particular that

VerSig(pkSig, σ
′
∆,∆||Z ′) = 1. So with Z = Z ′ and σ∆ = σ′∆ we also have

VerSig(pkSig, σ∆,∆||Z) = 1. We also have M = M ′ = g(m′,M ′). Furthermore
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we have

e (Λ, Z) = e (Λ′, Z ′)
= e (R′, g2) · e (M ′, h2) · f ′ · e (S ′, F )
= e (R, g2) · e (M,h2) · f · e (S, F )

hence all checks of Ver(vk,P ,M, σ) pass.
Therefore SP-CHQS also satisfies evaluation correctness.
Finally it is an immediate corollary of Theorem 5.22 as well as Lemma 5.23 -

5.28, that no security reduction requires knowledge of messages m in Zp, but can
be computed knowing group element M = gm1 ∈ G1.

7.4.3 Combining SP-CHQS with Secret Sharing
We will now describe in detail the linear secret sharing based MPC we will combine
with our Construction 7.33. Following the approach of Beaver [17] multiplications
will be handled using preprocessing. This approach is used in modern MPC schemes
(see e.g. [53]) as well as audit schemes for MPC (see e.g. [16, 91]. This combination
of a secret sharing scheme with our FDC, obtained by applying transformation 7.5
to our homomorphic authenticator scheme from Construction 7.33 and our com-
mitment scheme from construction 7.28, results in a verifiable computing scheme
that provides both information-theoretic input and output privacy with respect to
the verifier and information-theoretic input and output privacy with respect to the
servers.

Construction 7.35.

VKeyGen(1λ,P) : On input a security parameter λ and the description of a
function f given as a labeled program P = (f, τ1, . . . , τn), it runs pp ←
Setup(1λ), (sk′, pk) ← KeyGen(pp), as well as F ← PublicCommit(pk, P). It
chooses y $← Zp uniformly at random. It sets Y = gy1 . It sets sk = (sk′, y,P),
ek = P, vk = (pk, Y, F ) and returns (sk, ek, vk).

Preprocessing: The shareholders jointly generate M triples of t-reconstructing
shares sk(aj), sk(bj), sk(cj), reconstructing to to (aj, bj], cj) ⊂ Fp for j ∈ [M ]
such that for each the equation aj · bj = cj holds (see, e.g. [52] for a detailed
description of how to generate such shares).

ProbGen(sk, x): On input the secret key sk and x = (m1, . . . ,mn,∆) consisting of
a tuple of n messages mi ∈ Zp for i ∈ [n] and a dataset identifier ∆ ∈ {0, 1}∗,
it chooses r1, . . . , rn

$← Zp uniformly at random, as well as r′1, . . . , r′n
$← Zp
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uniformly at random. It runs {s(mi)}k∈[N ] ← SShare(mi) for all i ∈ [n]. as
well as {s(ri)}k∈[N ] ← SShare(ri) for all i ∈ [n] and {s(r′i)}k∈[N ] ← SShare(r′i)
for all i ∈ [n]. It sets sk(Ri) = g

sk(ri)
2 for all i ∈ [n], k ∈ [N ] and sk(R′i) =

g
sk(r′i)
2 for all i ∈ [n], k ∈ [N ].

It runs Ai ← PrivateCommit(sk,mi, y, (ri, r′i),∆, τ), as well as
Comi ← PublicCommit(sk,mi, y, (ri, r′i)), It chooses k∗ ∈ [N ]. This will iden-
tify the distinguished shareholder that will perform operations on authenticators.
k∗ can be chosen according to a clients preferences. It outputs the shares sk(mi),
sk(Ri) , sk(R′i) as well as ci for i ∈ [n] to shareholder k for k ∈ [N ]. Ad-
ditionally it outputs A1, . . . , An, Com1, . . . , Comn to shareholder k∗. It sets
ρx = 0 and σx = (∆, {Ai, Comi, ci, sk(mi), sk(Ri), sk(R′i)}i∈[n],k∈[N ]). It outputs
(σx, ρx).

Compute(ek, σx) : On input an evaluation key ek and an encoded input σx, the
algorithm parses ek = (f, τ1, . . . , τn) with f a multivariate poylnomial of degree
2, given by an arithmetic circuit and σx = (∆, {Ai, Comi, ci, sk(mi), sk(Ri),
sk(R′i)}i∈[n],k∈[N ]). Each shareholder k follows the circuit gate by gate:

Add1: On input shares (sk(mi), ci, sk(Ri), sk(R′i)) for i = 1, 2, it computes
sk(m) = sk(m1) + sk(m2), c = c1 + c2, sk(R) = sk(R1) · sk(R2), and
sk(R′) = sk(R′1) · sk(R′2).

cMult1: On input shares (sk(m′), c′, sk(S), sk(S ′)) and a constant α ∈ Zp, it
computes sk(m) = α · sk(m′), c = α · c′, sk(R) = sk(S)α, and sk(R′) =
sk(S ′)α.

Mult: On input shares (sk(mi), ci, sk(Ri), sk(R′i)) for i = 1, 2, it takes mul-
tiplicative shares sk(a), sk(b), sk(c) and does the following:

Each shareholder k computes the following
sk(δ) = sk(m1)− sk(a)
sk(ε) = sk(m2)− sk(b)

The shareholders jointly choose a subset B ⊂ [n] of size |B| ≥ t and
run

δ ← SReconstruct(B, {sk(δ)}k∈B)
ε← SReconstruct(B, {sk(ε)}k∈B)

Each shareholder k computes sk(m) = sk(c) + εsk(m1) + δsk(m2)− δε,
as well as sk(R) = sk(R1)c2, and sk(R′) = sk(R′1)c2 · sk(R′2).

Add2: On input shares (sk(mi), sk(Ri), sk(R′i)) for i = 1, 2, it computes
sk(m) = sk(m1) + sk(m2), sk(R) = sk(R1) · sk(R2), and sk(R′) = sk(R′1) ·
sk(R′2).
Note, that such shares are the output of multiplication gates.

cMult2: On input shares (sk(m′), sk(S), sk(S ′)), and a constant α ∈ Zp, it
computes sk(m) = α · sk(m′), sk(R) = sk(S)α, and sk(R′) = sk(S ′)α.
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Shift: On input shares (sk(m), c, sk(R), sk(R′)), it returns (sk(m), sk(R),
sk(R′)).

The final outputs are sk(m∗), sk(R), sk(R′).
Additionally k∗ runs A∗ ← Eval(f, A1, . . . , An), as well as Com∗ ← CEval(f ,
C1, . . . , Cn). It sets σy = (∆, A∗, C∗, {sk(m∗), sk(r∗)}k∈[N ]) and outputs σy.

Verify(vk, ρx, σy) : On input a verification key vk, a decoding value ρx and an
encoded value σy, it parses vk = (pk, F ), ρx = 0, σy = (∆, A∗,C∗, {sk(m∗),
sk(R), sk(R′)}k∈[N ]). It chooses a subset B ⊂ [N ] with |B| ≥ t. It creates the
reconstruction vector (w1, . . . , wt) derived from B (see Sec. 2.4 for details).
It computes m∗ = ∑

k∈B wksk(m∗), as well as R = ∏
k∈B sk(R)wk and R′ =∏

k∈B sk(R′)wk . Finally, it runs b ← FunctionVerify(pk, A∗, Com∗, F,∆). If
b = 0 it outputs ⊥ else it runs b′ ← PublicDecommit(Com∗,m∗, Y, R,R′). If
b′ = 0 it outputs ⊥, else it outputs m∗.

We now look at the basic properties of this construction. A first requirement is
obviously correctness, showing that any honest execution of the algorithm leads to
verifiers accepting a correct result.

Proposition 7.36. Construction 7.35 is a correct verifiable computing scheme in
the sense of Def. 2.30

Proof. Let f be an arbitrary circuit of multiplicative depth 2, x = (m1, . . . ,mm,∆)
be an arbitrary input. Let f be described as a labeled program P = (f, τ1, . . . , τn).
Let (sk, ek, pk) ← VKeyGen(1λ,P), (σx, ρx) ← ProbGen(sk, x), σy ← Compute(ek,
σx). as well as y = f(m1, . . . ,mn).

We follow the circuit gate by gate, and show that correctness holds at every step.
Add1: We have sk(m) = sk(m1) + sk(m2) = sk(m1 +m2), c = c1 + c2, sk(R) =
sk(R1) · sk(R2) = sk(R1 ·R2), and sk(R′) = sk(R′1) · sk(R′2) = sk(R′1 ·R′2). This
is correct as a corollary of Proposition 7.32.

cMult1: We have sk(m) = α · sk(m′), c = α · c′, sk(R) = sk(S)α, and sk(R′) =
sk(S ′)α. This is correct as a corollary of Proposition 7.32.

Mult: We have sk(m) = sk(m1 ·m2) as after the preprocessing stage the share-
holders hold t-reconstructing shares sk(a), sk(b), sk(c), such that a · b = c
holds. We have

sk(m) = sk(c) + εsk(m1) + δsk(m2)− δε
= sk(ab) + (m2 − b)sk(m1) + (m1 − a)sk(m2)− (m1 − a)(m2 − b)
= sk(ab) + sk(m1m2 −m1b) + sk(m1m2 −m2a)−m1m2 +m1b+m2a− ab
= sk(m1m2 + ab− ab+m1b−m1b+m2a−m2a)
= sk(m1m2)
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Furthermore we have sk(R) = sk(R1)c2 , and sk(R′) = sk(R′1)c2 · sk(R′2). This
is correct as a corollary of Proposition 7.32.

Add2: We have sk(m) = sk(m1) + sk(m2) = sk(m1 + m2), sk(R) = sk(R1) ·
sk(R2) = sk(R1 · R2), and sk(R′) = sk(R′1) · sk(R′2) = sk(R′1 · R′2). This is
correct as a corollary of Proposition 7.32.

cMult2: We have sk(m) = α ·sk(m′), sk(R) = sk(S)α, and sk(R′) = sk(S ′)α. This
is correct as a corollary of Proposition 7.32.

Shift: This is trivially correct as a corollary of Proposition 7.32.
Additionally k∗ runs A∗ ← Eval(f, A1, . . . , An) as well as Com∗ ← Eval(f , Com1,

. . ., Comn). We parse σy = (∆, A∗, Com∗, {sk(m∗), sk(R), sk(R′)}k∈[N ]), as the
output of the final gate. We set m∗ = ∑

k∈B wksk(m∗), as well as R = ∏
k∈B sk(R)wk

and R′ = ∏
k∈B sk(R′)wk . We have PublicDecommit(Com∗, Y,m∗, R,R′) = 1 as

a corollary of Proposition 7.32. By the correctness of our FDC scheme (see
Theorem 4.14) we have therefore Verify(vk, ρx, σy) = 1.

Next we consider the case of third party verifiers and show that this construction
is even publicly verifiable.

Proposition 7.37. Construction 4.27 is a publicly verifiable computing scheme.

Proof. Note, that ρx = 0 by definition. Obviously this does not need to be kept
secret. Since we have vk = (pk, F ), where pk is the public key of the FDC scheme
(see 4.13) and F is a function commitment. Both values are public.

Now we formally show that this combination of our FDC with the linear secret
sharing scheme described above does indeed lead to secure verifiable computing
scheme. In order to provide this security reduction we will define a sequence of
games, each dealing with a specific type of forgery. In a series of Lemmata we
will bound the distance between those games and finally show that this leads to a
negligible advantage for the adversary to produce an incorrect result, that would
falsely be accepted as correct.

Theorem 7.38. Construction 7.35 is an adaptively secure verifiable computing
scheme in the sense of Def. 2.33.

Proof. To prove Theorem 7.38, we define a series of games with the adversary
A and we show that the adversary A wins, i.e. the game outputs ‘1’ only with
negligible probability. Following the notation of [37], we write Gi(A) to denote that
a run of game i with adversary A returns ‘1’. We use flag values badi, initially set
to false. If at the end of the game any of these flags is set to true, the game simply
outputs ‘0’. Let Badi denote the event that badi is set to true during game i.
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Game 1 is the security experiment EXPAdaptVerify
A [VC, f, λ] (see Def. 2.33)

between an adversary A and a challenger C.
Game 2 is is defined as Game 1, except for the following change: Whenever A
returns a forgery σy, C parses σy = (∆, A∗, C∗, {sk(m∗), sk(S), sk(S ′)}k∈[N ]). It
runs σ̂y = (∆, Â, Ĉ, {sk(m̂), sk(R), sk(R′)}k∈[N ]) ← Compute(ek, σx) honestly.
Then, it chooses a subset B ⊂ [N ] with |B| = t. It creates the reconstruction
vector (w1, . . . , wt) derived from B (see Sec. 2.4 for details). It computes
m∗ = ∑

k∈B wksk(m∗), as well as S = ∏
k∈B sk(S)wk and S ′ = ∏

k∈B sk(S ′)wk .
It also computes m̂ = ∑

k∈B wksk(m̂), as well as R = ∏
k∈B sk(R)wk and

R′ = ∏
k∈B sk(R′)wk .

It runs b′ ← PublicDecommit(Ĉ,m∗, Y, (S, S ′)). If b′ = 1 it sets bad2 = true.
In Lemma 7.39, we show that any adversary A for which Bad2 occurs implies
an adversary breaking either the aug-DDH assumption (see Def. 7.29) or the
dpa1 assumption (see Def. 2.40).
Finally in Lemma 7.40 we show that that any adversary A that wins Game 2
implies an adversary winning experiment EXPUF−CMA

A,FDC (see Def. 4.9).

Lemma 7.39. We have Pr[Bad2] ≤ Advdpa1
S (λ) + Advaug−DDHS (λ).

Proof. Assume we have a PPT adversary A that can produce a successful forgery
during Game 2 such that Bad2 occurs. We then show how a simulator S can use
A to break either the augmented DDH assumption (see Def. 7.29) or the dba1
assumption (see Def. 2.40).
Analogously to Prop. 7.30, we distinguish between two cases:
Case 1: We have R = S in Game 2.
Case 2: We have R 6= S in Game 2.
We first consider case 1:
S takes as input bgp, gx1 , g

1
x
2 , g

y
1 , g

z
2.

Setup S chooses an arbitrary quadratic function f described as a labeled
program P = (f, τ1, . . . , τn).
It chooses y $← Zp uniformly at random and sets Y = gy1 .
It sets bgp′ = (p,G1,G2,GT , g

x
1 , g2, e), It sets H = g1. Additionally, it fixes a

regular signature scheme Sig = (KeyGenSig, SignSig, VerSig) with signature space
Σ ⊂ bgp and a pseudorandom function Φ : K × {0, 1}∗ → Zp. It outputs the
public parameters pp = (λ, n, bgp′, H, Sig,Φ).
Then, it chooses x $← Zp uniformly at random. It sets h2 = gx2 . It samples
tτi , kτi

$← Zp uniformly at random for all i ∈ [n] and sets Fτi = g
tτi
2 , as well

as fτi = g
ytτi
t , fτi,τj = g

tτikτj
t , for all i, j ∈ [n]. Additionally the algorithm
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chooses a random seed K
$← K for the pseudorandom function Φ. It com-

putes keys for the regular signature scheme (skSig, pkSig) ← KeyGenSig(1λ).
It sets pk = (pp, pkSig, h2, {Fτi , fτi}ni=1, {fτi,τj}ni,j=1). It honestly runs F ←
PublicCommit(pk,P). It chooses y $← Zp uniformly at random and sets Y = gy1 .
It ek = P , vk = (pk, Y, F ) and returns (ek, pk) to the adversary A.
Queries When A queries x = (m1, . . . ,mn,∆) S does the following:
It chooses ri, r′i

$← Zp uniformly at random for i ∈ [n]. and sets ci = mi + yri

as well as Ci = (gx1 )mi · (gx1 )ri · gyr
′
i

1 for i ∈ [n]. Furthermore it sets Ri =
(
g

1
x
2

)ri
,

R′ = g
r′i
2 and di = (Ri, R

′
i) for i ∈ [n]. Note that this is perfectly indistin-

guishable from an honest execution of PublicCommit(sk,mi, y, (ri, r′i)). It then
performs the rest of ProbGen honestly. This is perfectly indistinguishable from
an honest execution of the algorithm to A.
Forgery The adversary A returns σ∗y . Simulator S parses σ∗y = (∆, A∗, Com∗,
{sk(m∗), sk(R), sk(R′)}k∈[N ]). It chooses a subset B ⊂ [N ] with |B| = t to
reconstruct the message and decommitments, i.e. it runs
m∗ ← SReconstruct({sk(m∗)}k∈B), R← SReconstruct({sk(R)}k∈B), and R′ ←
SReconstruct({sk(R′)}k∈B).
S runs σ̂y ← Compute(ek, σx) honestly and parses σ̂y = (∆, Â, ˆCom, {sk(m̂),
sk(S), sk(S ′)}k∈[N ]) Since we have Bad2 = true we have ˆCom = Com∗. We
parse Com∗ = (C∗, Y ). By assumption we have

e (C∗, g2) = e
(
gm
∗

1 , g2
)
· e (gx1 , R) · e (gy1 , R′) = e

(
gm
∗

1 , g2
)
· e
(
H,R · (R′)

x
y

)
as well as

e (C∗, g2) = e
(
gm̂1 , g2

)
· e (gx1 , S) · e (gy1 , S ′) = e

(
gm
∗

1 , g2
)
· e
(
H,S · (S ′)

x
y

)
Dividing those two equations and using the fact that R = S (since we consider
case 1) yields

1 = e
(
(gx1 )m−m

′
, g2
)
· e
(
Y,
R′

S ′

)
or equivalently

e
(
(gx1 )m

′−m , g2
)
· e
(
g1,

R′

S ′

y)

Since we know that m 6= m′ we have gx2 =
(
R′

S′

) y
m′−m .

We now have z = xy if and only if

e (g1, g
z
2) = e

gy1 ,
(
R′

S ′

) y
m′−m


holds.
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This shows that case 1 implies a solver for the aug-DDH problem.
We now consider case 2:
S takes as input (p,G1,G2,GT , g1, g

x
1 , g2, e). It seeks to compute G,Gx ∈ G2

such that 1 = e (g1, G) · e (gx1 , Gx).
Setup S chooses an arbitrary quadratic function f described as a labeled
program P = (f, τ1, . . . , τn).
It sets H = gx1 (taken from the input) and runs the rest of VKeyGen honestly
returning (ek, vk) to the adversary A.
Queries When A queries x = (m1, . . . ,mn,∆) S does the following:
It chooses ri, r′i

$← Zp uniformly at random for i ∈ [n]. and sets ci = mi + yri
as well as
Ci = gmi1 · Hri · gyr

′
i

1 for i ∈ [n]. Furthermore it sets Ri = gri2 , R′ = g
r′i
2 and

di = (Ri, R
′
i) for i ∈ [n]. Note that this is perfectly indistinguishable from

an honest execution of PublicCommit(sk,mi, y, (ri, r′i)). It then performs the
rest of ProbGen honestly. This is perfectly indistinguishable from an honest
execution of the algorithm to A.
Forgery The adversary A returns σ∗y. S parses σ∗y = (∆, A∗, Com∗, {sk(m∗),
sk(R), sk(R′)}k∈[N ]). It chooses a subset B ⊂ [N ] with |B| = t and runs
m∗ ← SReconstruct({sk(m∗)}k∈B), R← SReconstruct({sk(R)}k∈B), and R′ ←
SReconstruct({sk(R′)}k∈B).
S runs σ̂y ← Compute(ek, σx) honestly and parses σ̂y = (∆, Â, ˆCom, {sk(m̂),
sk(S), sk(S ′)}k∈[N ]) Since we have Bad2 = true we have ˆCom = Com∗. We
parse Com∗ = (C∗, Y ).
By the correctness of our algorithm we have

e (C, g2) = e (gm1 , g2) · e (H,R) · e (Y,R′)

If A wins the security game we have

e (C, g2) = e
(
gm
′

1 , g2
)
· e (H,S) · e (Y, S ′) .

Dividing the equations yields

1 = e
(
gm−m

′

1 , g2
)
· e
(
H,

R

S

)
· e
(
Y,
R′

S ′

)
or equivalently

1 = e

(
g1, g

m−m′
2 · R

′

S ′

y)
· e
(
gx1 ,

R

S

)
We know that R 6= S (case 2). Therefore G = gm−m

′

2 · R′
S′
y and Gx = R

S
is a

valid solution for the DBP1 problem.
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7 Adding Information-Theoretic Privacy to Homomorphic Authenticators

Lemma 7.40. For every PPT adversary A running Game 2, there exists a PPT
simulator S such that Pr[Bad2] ≤ HomUF− CMAA,CHQS(λ).

Proof. Assume we have a PPT adversary A that can produce a successful forgery
during the security experiment EXPAdaptVerify

A [VC, f, λ] (see Def. 2.33), we then
show how a simulator S can use A to win the security experiment EXPUF−CMA

A,FDC
(see Def. 4.9).

Setup Simulator S runs pp← HSetup(1λ) and outputs pp. It chooses an arbi-
trary quadratic function f described as a labeled program P = (f, τ1, . . . , τn).
Let be an , x = (m1, . . . ,mm,∆) be an arbitrary input. Let (sk, ek, pk) ←
VKeyGen(1λ,P).
Key Generation Simulator S runs (sk′, ek, vk) ← KeyGen(pp). By construc-
tion we have ek = 0. Furthermore it runs F ← PublicCommit(pk,P) . It sets
sk = (sk′,P), ek = P , vk = (pk, F ) and outputs (ek, pk) to the adversary A.
Queries When A queries x = (m1, . . . ,mn,∆) S does the following. It chooses
r1, . . . , rn

$← Zp uniformly at random, as well as r′1, . . . , r′n
$← Zp uniformly at

random. It computes Comi ← PublicCommit(mi, y, ri, r
′
i) for all i ∈ [n], and

queries for (∆, τi,mi, y, ri, r
′
i) for i ∈ [n], receiving Ai. It runs {sk(mi}k∈[N ] ←

SShare(mi) for i ∈ n as well as as well as {s(ri)}k∈[N ] ← SShare(ri) for all
i ∈ [n] and {s(r′i)}k∈[N ] ← SShare(r′i) for all i ∈ [n]. It sets sk(Ri) = g

sk(ri)
2

for all i ∈ [n], k ∈ [N ] and sk(R′i) = g
sk(r′i)
2 for all i ∈ [n], k ∈ [N ]. It outputs

σx = (∆, {Ai, Comi, sk(mi), sk(Ri), sk(R′i)}i∈[n],k∈[N ]). Note that this is the
identical response to an honest evaluation of ProbGen.
Forgery A returns σ∗y.
S parses σ∗y = (∆, A∗, Com∗, {sk(m∗), sk(R), sk(R′)}k∈[N ]). It sets P∗∆∗ =
(P ,∆∗) It runs ˆCom← CEval(f, Com1, . . . , Comn) Since we have Bad2 = false
we have Com∗ 6= ˆCom. Therefore (P∗∆∗ , A∗, C∗) is a type 2 forgery as defined
in Def. 4.8 if and only if Verify(vk, ρx, σy) = y, and y 6= f(x).

Thus the claim follows from Proposition 7.10 and Theorem 5.22.

Furthermore we can show that our construction preserves efficient verification.
After a one time function-dependent preprocessing verification can indeed be faster
than a computation of the function itself.

Proposition 7.41. Construction 7.35 is a verifiable computing scheme that achieves
amortized efficiency in the sense of Def. 2.35 for all f with super linear runtime in
n.
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7.4 Turning CHQS into an FDC

Proof. As a corollary of Propositions 5.20 and 7.12 an evaluation of FunctionVerify
has runtime O(n). Therefore, our construction achieves amortized efficiency for
suitably large n.

Finally we show that our verifiable computing scheme achieves complete infor-
mation theoretic privacy. Over the following four propositions we prove that it
offers information-theoretic input privacy with respect to the servers, information-
theoretic output privacy with respect to the servers, information-theoretic input
privacy with respect to the verifier, and information-theoretic output privacy with
respect to the verifier which have each been defined in Section 3.1.
Proposition 7.42. Construction 7.35 achieves information-theoretic input privacy
with respect to the servers in the sense of Def. 3.1 against an adversary corrupting
at most t− 1 shareholders.
Proof. Setup:
Let f be a multivariate polynomial of degree 2 and P = (f, τ1, . . . , τn) and

∆← {0, 1}∗ a dataset identifier.
Let m1, . . .mn ← ZTp and m′1, . . .m′n ← ZTp be two tuples of messages.
Setting x0 = (m1, . . .mn,∆) and x1 = (m′1, . . .m′n,∆), let σxi ← ProbGen(sk, xi).
The adversary A chooses a subset B ⊂ [N ] of size |B| = t− 1.
We assume k∗ ∈ B. If the adversary does not corrupt k∗ the claim immediately

follows from the hiding property of Shamir secret sharing [97].

Thus the adversary obtains and seeks to distinguish (x0, x1, ∆, {Ai, sk(mi[j]),
sk(ri)}i∈[n],j∈[T ],k∈B) and (x0, x1, ∆, {A′i, sk(m′i[j]), sk(r′i)}i∈[n],j∈[T ],k∈B).
By the hiding property of Shamir secret sharing

(x0, x1,∆, {Ai, sk(mi[j]), sk(ri)}i∈[n],j∈[T ],k∈B)
is perfectly indistinguishable from

(x0, x1,∆, {Ai, Rijk |Ai ← PrivateCommit(sk,mi, ri,∆, τi), Rijk
$← Zp}i∈[n],j∈[T ],k∈B).

Obviously this is perfectly indistinguishable from
(x0, x1,∆, {Ai, R′ijk |Ai ← PrivateCommit(sk,mi, ri,∆, τi), R′ijk

$← Zp}i∈[n],j∈[T ],k∈B),
as this is just another sampling of randomness. By the hiding property of the FDC
(see Proposition 7.31), this is perfectly indistinguishable from
(x0, x1,∆, {A′i, R′ijk |A′i ← PrivateCommit(sk,m′i, r′i,∆, τi), R′ijk

$← Zp}i∈[n],j∈[T ],k∈B).
Again by the hiding property of Shamir secret sharing this is perfectly indistin-
guishable from
(x0, x1,∆, {A′i, sk(m′i[j]), sk(r′i)}i∈[n],j∈[T ],k∈B). This completes the proof.

Proposition 7.43. Construction 7.35 achieves information-theoretic output pri-
vacy with respect to the servers in the sense of Def. 3.2 against an adversary
corrupting at most t− 1 shareholders.
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Proof. Setup: This setup is identical to Proposition 7.42.

Let σyi ← Compute(ek, σxi) for i ∈ {0, 1} and y0 = ∑n
i=1 fimi, y1 = ∑n

i=1 fim
′
i,

r = ∑n
i=1 firi, r′ =

∑n
i=1 fir

′
i.

We parse σy0 = (∆, A, {sk(y0), sk(r)}k∈[N ]) and σy1 = (∆, A′, {sk(y1), sk(r′)}k∈[N ]).
Thus the adversary obtains and seeks to distinguish (y0, y1,∆, A, {sk(y0), sk(r)}k∈B)
and (y0, y1,∆, A′, {sk(y1), sk(r′)}k∈B).
By the hiding property of Shamir secret sharing (y0, y1,∆, A, {sk(y0), sk(r)}k∈B) is
perfectly indistinguishable from (y0, y1,∆, {A,Rk, Sk | Rk

$← G1}k∈B). Obviously
this is perfectly indistinguishable from (y0, y1,∆, {A,R′k, S ′k | R′k

$← G1}k∈B). as
this is just another sampling of randomness. By the hiding property of the FDC
(see Proposition 7.31), this is perfectly indistinguishable from
(y0, y1,∆, {A′, R′k, S ′k | R′k

$← G1}k∈B). Again by the hiding property of Shamir se-
cret sharing this is perfectly indistinguishable from (y0, y1,∆, A′, {sk(y1), sk(r′)}k∈B).
This completes the proof.

Proposition 7.44. Construction 7.35 achieves information-theoretic input privacy
with respect to the verifier in the sense of Def. 3.3.

Proof. Let f be a multivariate polynomial of degree 2, P = (f, τ1, . . . , τn) and
∆← {0, 1}∗ a dataset identifier.

Let m1, . . .mn ← ZTp and m′1, . . .m′n ← ZTp be two tuples of messages. such that
f(m1, . . . ,mn) = f(m′1, . . . ,m′n).

Setting x0 = (m1, . . .mn,∆) and x1 = (m′1, . . .m′n,∆), let σxi ← ProbGen(sk, xi).
Let σyi ← Compute(ek, σxi) for i ∈ {0, 1} and y = f(m1, . . . ,mn),
Let di = (ci, Ri, R

′
i) and d′i = (c′i, Si, S ′i) for all i ∈ [n] and d = f ′(d1, . . . , dn),

d′ = f ′(d′1, . . . , d′n) following Compute. By assumption we have y = f(m′1, . . . ,m′n).
We parse σy0 = (∆, A, {sk(y), sk(d)}k∈[N ]) and σy1 = (∆, A′, {sk(y), sk(d′)}k∈[N ]).
Thus the adversary obtains and seeks to distinguish (x0, x1,∆, A, {sk(y), sk(d)}k∈B)
and (x0, x1,∆, A′, {sk(y), sk(d′)}k∈B).
Note that an adversary A that can distinguish (x0, x1,∆, A, {sk(y), sk(d)}k∈B)

and (x0, x1,∆, A′, {sk(y), sk(d′)}k∈B) immediately implies an adversary A′ that can
distinguish (x0, x1,∆, y, d) and (x0, x1,∆, y, d′). Since both d and d′ are distributed
uniformly at random, these are perfectly indistinguishable.

Proposition 7.45. Construction 7.35 achieves information-theoretic output pri-
vacy with respect to the verifier in the sense of Def. 3.4.

Proof. Let f be a linear function given by its coefficient vector (f1, . . . fn) and
P = (f, τ1, . . . , τn) and ∆← {0, 1}∗ a dataset identifier.
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7.4 Turning CHQS into an FDC

We first show correctness in the sense of Def. 3.4. We provide the three additional
algorithms.

HideCompute(ek, σx) : The computation algorithm takes the evaluation key ek
and the encoded input σx. k∗ runs A∗ ← Eval(f, A1, . . . An) as well as C∗ ←
ComEval(Com1, . . ., Comn) It sets σ̃y = (∆, A∗, C∗) and outputs the encoded
version σ̃y.

HideVerify(vk, σ̃y) : On input a verification key vk = (pk, F ) and an encoded value
σ̃y, it parses σ̃y = (∆, A∗, C∗}k∈[N ]). Then, it runs b← FunctionVerify(pk, A∗,
C∗, F , ∆). If b = 0 it outputs ⊥, else it sets σ̂y = (∆, A∗, C∗) and outputs σ̂y.

Decode(vk, ρx, σ̂y, σy) : It takes as input the verification key vk, a decoding value
ρx = 0, and encoded values σ̂y, σy. It parses σy = (∆, A∗, {sk(m∗), sk(d∗)}k∈[N ]),
σ̂y = (∆, A∗, C∗). It computes m∗ = ∑

k∈B wksk(m∗). Then it parses sk(d∗) =
(sk(R∗), sk(S∗)), and computes R∗ = ∏

k∈B sk(R∗)wk , S∗ = ∏
k∈B sk(S∗)wk .

Finally, it sets d∗ = (R∗, S∗) and runs b ← PublicDecommit(C∗,m∗, d∗). If
b = 0 it outputs ⊥ else it returns m∗.

Now we show privacy in the sense of Def. 3.4.
Let m1, . . . ,mn ← ZTp and m′1, . . . ,m′n ← ZTp be two tuples of messages.
Setting x0 = (m1, . . .mn,∆) and x1 = (m′1, . . .m′n,∆), let σxi ← ProbGen(sk, xi).
Let σyi ← Compute(ek, σxi) for i ∈ {0, 1} and y0 = f(m1, . . . ,mn), y1 = f(m′1, . . .,
m′n).
We parse σy0 = (∆, A, C) and σy1 = (∆, A′, C).
Note that an adversary A seeks to distinguish (y0, y1,∆, A, C) and (y0, y1,∆, A′, C ′).
However, (y0, y1,∆, A, C) and (y0, y1,∆, A′, C ′) are perfectly indistinguishable by
the hiding property of the FDC (see Proposition 7.31).
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8 Conclusion

Summary of our contributions. This thesis provides the first solutions for verifi-
able computing providing complete information-theoretic privacy. We recall that
in the setting of publicly verifiable computations we consider input-output privacy
with respect to both server and verifier. This allows a data owner to keep its
sensitive data private while still benefiting from outsourced computations. Within
this thesis we presented the first schemes to achieve such complete privacy in an
information-theoretic sense, allowing verifiable computation to be used even for
highly sensitive data.
To this end, we introduced the framework of function-dependent commitments

as a building block to achieving even information-theoretic privacy with respect
to both verifier and server when using verifiable computing. We then focused on
homomorphic authenticators fine-tailored to specific computations that already
achieve information-theoretic input privacy with respect to the verifier. In particular
we considered the setting of multi-key homomorphic authenticators, where multiple
data owners provide data, authenticated under multiple keys. Furthermore, we
considered multivariate polynomials of degree two. Afterwards we focused on adding
computational privacy to linearly homomorphic authenticators under the LAEPuV
framework (see Chapter 6), thereby constructing the first concrete instantiations
without false negatives. This resulted in two schemes (Con. 6.9 and Con. 6.25) with
computational privacy. Finally, in Chapter 7 we looked at a transformation for
certain homomorphic authenticators turning them into FDCs and thereby adding
information-theoretic privacy. We then applied this transformation to schemes
developed in this thesis. This, along with a direct construction of an FDC in
chapter 4, resulted in three schemes with complete information-theoretic privacy,
one fine-tailored towards linear functions, another targeted at quadratic functions,
and a final one, aimed at linear functions evaluated over inputs from multiple data
owners.
In table 8.1 we compare our novel schemes to existing authenticator-based

verifiable computing schemes (note that we use the abbreviations introduced in
table 3.1). Here we can see that our constructions are the first to provide complete
privacy and even complete information-theoretic privacy. Furthermore, our schemes
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8 Conclusion

can be built from bilinear maps (or the RSA assumption), avoiding primitives like
SNARKs, that are only known to exist under strong, non-falsifiable assumptions.

Scheme Function Class A PrS Primitives E VER PrV
[12] Poly. of Degree 2 S × Bilinear Maps A × ×
[104] Poly. of Fixed Degree S × Multilinear Maps A × ×
[58] Poly of Degree 2 S I Bilinear Maps A × ×
[37] Linear S × Bilinear Maps A X I(inf.)
[41] Poly of Fixed Degree S × Multilinear Maps A X NA
[36] Poly of Fixed Degree S × RSA A X NA
[75] D D I/O HE/HEA D D D
[59] Arithm. Circuits S × Lattices A X ×
[76] D S × SNARKs A X D
Con. 6.9 Linear S I/O RSA × X I/O
Con. 6.25 Linear S I/O Bilinear Maps A X I(inf)/O
Con. 4.27 Linear S I/O(inf.) Bilinear Maps A X I/O (inf.)
Con. 7.35 Poly of Degree 2 S I/O(inf.) Bilinear Maps A X I/O (inf.)
Con. 7.19 Linear (Multi-Key) S I/O(inf.) Bilinear Maps A X I/O (inf.)

Table 8.1: New authenticator-based verifiable computing schemes. Properties: ad-
versary (A), privacy w.r.t server (PrS), efficiency (E), public verifiability
(VER), privacy w.r.t verifier (PrV)

Directions for future work. Many of the schemes presented in this work make
use of cryptographic bilinear maps. One natural generalization of bilinear maps are
multilinear maps. Assuming secure instantiations of such multilinear maps exist,
applying our transformation to multilinear map based homomorphic authenticators
would lead to FDCs supporting generic arithmetic circuits of bounded depth. This
obviously allows for verifiable computations of a broader class of functions. In
this work we did not consider constructions based on non-falsifiable assumptions,
so in particular we did not consider homomorphic authenticators derived from
SNARKs. Building FDCs for these constructions is another research challenge that
could allow for FDCs supporting a broader class of functions, without the need
for new cryptographic primitives, but at the cost of stronger assumptions. Finally,
we note that our Construction 7.5 was formulated using the existing framework of
structure-preserving authenticators. It does however not explicitly require all the
properties of structure-preserving authenticators. In fact, our transformation can
be applied to any homomorphic commitment scheme where the commitment space
is contained within the message space of a homomorphic authenticator scheme.
Thus constructing novel homomorphic commitment and authenticator schemes can
lead to new, possibly even more powerful FDC schemes. For instance, Gorbunov et
al. [70] presented a lattice-based fully homomorphic commitment scheme, where the
commitments are matrices over finite fields and homomorphic evaluations involve
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both matrix multiplications and additions. Finding a homomorphic authenticator
scheme supporting this specific operation would allow us to derive an FDC beyond
the group setting.
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