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Jahr der Veröffentlichung der Dissertation auf TUprints: 2019
URN: urn:nbn:de:tuda-tuprints-89300
Tag der mündlichen Prüfung: 08.07.2019
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Kurzfassung

Diese Dissertation untersucht Random-Gossiping in drahtlosen Sensornetzwerken. Sen-

soren in drahtlosen Sensornetzwerken erzeugen Messdaten und kommunizieren diese so

miteinander, dass die gewünschte Aggregation der Messungen aller Sensoren erreich-

bar ist. Random-Gossiping ist ein dezentrales Kommunikationsparadigma für drahtlose

Sensornetzwerke. Wenn Random-Gossiping im Netzwerk angewendet wird, wacht ein

Sensor in zufälliger Weise auf und tauscht Nachrichten mit seinen Nachbarsensoren

aus. Kritische Probleme bei der Verwendung von Random-Gossiping für die Aggrega-

tion sind die nicht messbare Konvergenz, Verzerrung der Aggregation, die Konvergenz-

geschwindigkeit, die durch die Anzahl der Kommunikationen im Netzwerk gemessen

wird, und die mögliche Unterstützung mehrerer Anwendungen.

In dieser Dissertation wird ein Sensor als die Integration von Sensorik, Übertragung,

Berechnung und Speicherung modelliert. Die Ermöglichung der Kommunikation zwi-

schen Sensoren erfordert ein Cross-Layer-Design, um die Anforderungen an Effizienz

und geringen Stromverbrauch zu erfüllen. Um das Cross-Layer-Design zu erleichtern,

wird das Konzept des Indicating-Headers vorgeschlagen. Der Indicating-Header dient

als die gemeinsame Information, die den Aggregationsstatus der Messung eines be-

stimmten Sensors in der Nachricht eines anderen Sensors enthält. Daher ist eine direkte

Metrik der Konvergenz gegeben. Um die Verzerrung der Aggregation zu überwinden,

wird die Speicherkapazität jedes Sensors mit Hilfe der Indicating-Header genutzt. Ein

Sensor kann die zuvor in Speicher gespeicherten empfangenen Nachrichten verwenden,

um die Verzerrung der Aggregation zu reduzieren. Es wird gezeigt, dass eine Reduktion

der Verzerrung erzielbar ist, indem eine Teilmenge der Nachbarsensoren eines Sensors

ausgewählt wird, um die Kommunikation durchzuführen.

Um die Konvergenzgeschwindigkeit zu verbessern, werden die Indicating-Headers

beim Random-Gossiping vor der Übertragung der Nachrichten, die die Aggregations-

daten enthalten, kommuniziert. Die Information im Indicating-Header ermöglicht

dem Sensor, über die Notwendigkeit einer Nachrichtenkommunikation zu entschei-

den. Wenn er mit mehreren Nachbarsensoren kommuniziert, verwendet der Sensor

den Indicating-Header, um nur eine Teilmenge von Nachbarsensoren für die Kom-

munikation auszuwählen. Eine Verringerung der Anzahl von Kommunikationen wird

erreicht, während die Effizienz der Aggregation erhalten bleibt. Eine weitere Methode

zur Verbesserung der Konvergenzgeschwindigkeit wird vorgeschlagen, um Sensoren zu

koordinieren, die im Random-Gossiping mehrere Hops von dem Sensor entfernt sind.

Wenn die Einschränkung der Netzwerktopologie vorgenommen wird, dass der Sensor

und sein Nachbarsensor statisch bleiben, kann Random-Gossiping verbessert werden,
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indem die Kommunikation der Indicating-Headers reduziert wird. Darüber hinaus

können diese Sensoren, wenn sie sich an topologischen Engpasspositionen des Netzwerks

befinden, ihre Nachrichtenkommunikation verschieben, bis die Gruppen von Sensoren,

die sie ”überbrücken”, eine lokale Aggregation erreicht haben. Eine derartige Übertra-

gungsverzögerung, die auf diese Sensoren angewendet wird, reduziert weiter die Anzahl

von Kommunikationen im Netzwerk.

Wenn mehrere Anwendungen im Netzwerk ausgeführt werden, muss ein Unterschied

hinsichtlich der Anzahl der durchzuführenden Kommunikationen zwischen den Sen-

soren, die an einer bestimmten Anwendung beteiligt sind, und denen, die nicht beteiligt

sind, festgestellt werden. Eine Verfeinerung des Random-Gossiping wird vorgeschla-

gen, indem sechs verschiedene Szenarien in Bezug auf die Beteiligung eines Sensors und

seiner Nachbarsensoren in einer Anwendung betrachtet werden. Der Indicating-Header

wird verwendet, um den Sensoren zu ermöglichen, zwischen den sechs verschiedenen

Szenarien zu unterscheiden. Die Sensoren, die nicht an der Anwendung beteiligt sind,

benötigen nach der Verfeinerung weniger Kommunikationen, während mehr Kommu-

nikationen von den Sensoren, die an der Anwendung beteiligt sind, ausgeführt werden.

Hierbei wird die Gesamtzahl der Kommunikationen im Netzwerk beibehalten.
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Abstract

This thesis studies random gossiping in wireless sensor networks. Sensors in wireless

sensor networks generate measurement data and communicate it with each other such

that the desired aggregation involving the measurements of all sensors is achievable.

Random gossiping is a decentralized communication paradigm for wireless sensor net-

works. When random gossiping is applied in the network, a sensor wakes up in a random

manner and exchanges messages with its neighbor sensors. Critical problems of using

random gossiping for the aggregation are the unmeasurable convergence, the bias of

the aggregation, the convergence speed measured by the number of communications in

the network, and the support of multiple applications, potentially.

In this thesis, a sensor is modeled as the integration of sensing, transmission, com-

putation, and storage. The enabling of the communications among sensors requires

a cross-layer design to meet the efficiency and low power consumption requirements.

To facilitate the cross-layer design, the concept of indicating-header is proposed. The

indicating-header serves as the shared information containing the aggregation status

of the measurement of a particular sensor in the message of another sensor. There-

fore, a straightforward metric of the convergence is given. To overcome the bias of

the aggregation, the storage capacity at each sensor is explored with the help of the

indicating-headers. A sensor can use the previously received messages stored in the

memory to cancel the bias in the aggregation. An improvement of the bias cancellation

is shown to be achievable by selecting a subset of the neighbor sensors of a sensor to

perform the communications.

To improve the convergence speed, the indicating-headers are communicated in the

random gossiping before the transmission of the messages containing the aggregation

data. The information in the indicating-header enables the sensor to decide on the

necessity of message communications. When it communicates with multiple neighbor

sensors, the sensor uses the indicating-header to select only a subset of neighbor sensors

for communications. A reduction in the number of communications is achieved while

the efficiency of the aggregation is maintained. A further method to improve the

convergence speed is proposed to coordinate sensors that are multiple hops away from

the sensor in the random gossiping. When the constraint to the network topology is

made that the sensor and its neighbor sensors remain static, the random gossiping

can be improved by reducing the indicating-header communications. Moreover, when

sensors are at topological bottle-neck positions of the network, these sensors may defer

their message communications waiting for the groups of sensors that they are ”bridging”
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to have aggregation locally achieved. Such transmission deferment applied to these

sensors reduces further the number of communications in the network.

When multiple applications are running in the network, a difference in terms of the

number of communications to perform shall be made between the sensors that are in-

volved in a specific application and those that are not. A refinement of the random

gossiping is proposed by considering six different scenarios with respect to the involve-

ment of a sensor and its neighbor sensors in an application. The indicating-header is

used to enable sensors to distinguish between the six different scenarios. The sensors

which are not involved in the application require fewer communications after the re-

finement while more communications are performed by the sensors that are involved

in the application. Meanwhile, the total number of communications in the network is

maintained.
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Chapter 1

Introduction

1.1 Wireless sensor networks

In recent years, wireless sensor networks as a technology gain extensive focus from in-

dustry and academic studies since they behave as the foundation of the future Internet-

of-Things (IoT) [AIM10; XHL14], Industry 4.0 [Böh12] and concepts such as smart city

[SKP+11; ZBC+14].

Wireless sensor networks are composed of battery-powered sensors. Sensors communi-

cate using the wireless channel to transmit their own sensed data and receive sensed

data from other sensors [ASSC02; AMC07; CMH10; FKK10]. The sensed data of a

sensor is a measurement value or a detection output of physical events and quanti-

ties from its environment. This definition implies a considerable amount of possible

types of sensed data ranging from temperature, humidity to video, and audio recording

[ASSC02; AMC07]. The communication of the sensed data requires the networking of

sensors. A sensor which is networking with other sensors forming a network is de-

scribed as a ”sensor node”. On top of the networking of sensors, a wireless sensor

network computes a function which is known to all sensors in the network using all

the sensed data. This process is described as data aggregation. The data aggregation

could be performed by a defined sensor node or by the involvement of all sensor nodes.

Based on the given definitions, there are two primary aspects which shall be analyzed

for a wireless sensor network:

• How sensors are networking by defining how and with which other sensors a

sensor communicates.

• How a sensor network achieves data aggregations efficiently, concerning both the

time-to-convergence and the aggregation completeness.

Three metrics are usually considered to support the analysis:

• The network coverage [CW06] tells in general how to deploy a sensor network

with a large number of sensors.



2 Chapter 1: Introduction

• The network lifetime [ASSC02] provides insight into the energy cost of the com-

munications.

• The convergence speed [AYSS09] quantifies the time needed to achieve the data

aggregation.

Many early publications studied a wireless sensor network with simple downloading

where the data aggregation is completed only at a gateway node. The gateway node

listens to the sensed data from each sensor directly and performs the computing [Arn02;

CK03; Arn05; GK05].

The simple downloading requires a direct communication from each sensor node to

the gateway node, and it is difficult to extend a network since the extension requires

an increase of the transmit power of the sensor nodes which will be deployed with

a considerable distance to the gateway node. The coverage of the sensor network is

therefore limited.

The network lifetime of the sensor network in the simple downloading is a result of the

time duration that batteries of sensors can support communications between sensors

and the gateway. In simple downloading, sensors with a larger distance to the gateway

consume more energy for communications, resulting in a faster drain of their batteries.

The convergence speed of data aggregation in simple downloading depends on the

scheduling of the communications. The scheduling is typically done at the gateway

and consumes its computation power. Data aggregation requires the measurement

data of every sensor in the network. When the number of sensors increases, the time

required for data collection is also increasing.

In order to improve the network coverage while maintaining the network lifetime and

the convergence speed of data aggregation, the networking of sensors can be done in an

ad-hoc manner [ASSC02; GK05]. Similar to the simple downloading, a wireless ad-hoc

sensor network consists of sensors which generate measurement data and a gateway

which collects and aggregates all the data. In ad-hoc sensor networks, sensors can

communicate with each other, and data aggregations can be performed at sensors. A

sensor transmits a message to another sensor which is closer to the gateway topologi-

cally, then the receiver sensor aggregates data in the received message and transmits

a new message to another sensor. To facilitate the gateway to aggregate all data,

techniques such as routing and clustering are necessary to build a routing tree which

is rooted at the gateway and branched to all sensors in the network [AK04; RV06].

Because of such ad-hoc manner, the coverage of the sensor network can be expanded
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dynamically by introducing new sensors to the network. Since most sensors that are far

away only communicate with their neighbor sensors, a low transmit power is necessary

at sensors despite the increase of the number of sensors. Therefore, the network life-

time is improved. The convergence speed of data aggregation is no longer constrained

by scheduling and computation power at the gateway as the data aggregations are

performed along with the message communications between sensors. What is more,

the amount of data to aggregate at the same time can be reduced in comparison to the

simple downloading.

In general, sensors may have different kinds of measurements at the same time, e.g.,

temperature, humidity, video, and audio [AMC07]. The gateway of a wireless sensor

network may interest in collecting and aggregating different kinds of data using different

computations. Therefore, different computations with different types of measurement

data are required at sensors in the routing tree. This is named as multiple applications

running on a wireless sensor network [AA09].

1.2 Random gossiping

The construction and the maintenance of a routing tree in wireless ad-hoc sensor net-

works introduce a significant amount of overhead and require a high number of commu-

nications in wireless sensor networks with a high number of sensors [AK04]. In recent

years, another communication technique named random gossiping to support com-

munications and data aggregations in wireless sensor networks attracts tremendous

research focus. In comparison to the simple downloading and ad-hoc sensor network,

there is not a specified gateway in the network to collect and aggregate data. Instead,

every sensor collects and aggregates data, and the result of the data aggregation taking

data from all sensors in the network into account is available at all sensors. Random

gossiping requires no centralized scheduling and sensors in the network randomly wake

up and initiate communications with sensors in their neighbor. No routing tree is con-

structed in the network for transmitting messages. The concept of connectivity is used

in random gossiping to guarantee that every sensor can exchange messages with any

other sensor in the network via one or more communications.

As initially introduced, random gossiping is a decentralized algorithm to solve con-

sensus problems which calculates the average value of the measurement data from

all sensors in a wireless sensor network [BGPS04],[BGPS05],[BGPS06], [AYSS09]. It

is then extended in the signal processing field as a decentralized processing method
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[DBS11]. In those works, the principle of the random gossiping is to update the ag-

gregation data at a sensor by the weighted summation of its current aggregation data

and aggregation data received from its neighbor sensors. With proper tuning of the

weighting factors, the result of the aggregation data at each sensor will asymptotically

approach the desired output. For every weighted summation at a sensor, communica-

tions are needed between a sensor and its neighbor sensors. Therefore, the number of

communications determines the convergence speed of data aggregation of applications

that use random gossiping as a decentralized data aggregation method. Other works

such as [SBS12] propose an optimization problem to find the best topology for wireless

sensor networks so that the convergence speed is optimally achieved.

In general, random gossiping is a decentralized communication paradigm applicable

not only to wireless sensor networks. When there is no central node responsible for the

scheduling of communications in a network requiring all-to-all communications, random

gossiping is a proper candidate of communication strategies for the network. An exam-

ple of these networks is mobile networks where mobile phones can communicate with

each other via short-range communications using technologies such as Bluetooth instead

of via base stations. A message of any mobile phone can in principle be forwarded to

any other mobile phones using random gossiping. In other examples such as car-to-

car communications [KLS08] and social networking [LM09][RS11][CSA13][WVMX14],

random gossiping can also be used as a method when no center exists for scheduling

the communications in the network.

1.3 State-of-the-art

1.3.1 Introduction

This section provides a review of the state-of-the-art works that stand as the funda-

mentals of the work in this thesis. Three topics are covered in this section. In the

first topic, we review the random gossiping and its usage in wireless sensor networks

on computing the consensus of sensor data. The random gossiping mentioned in the

first topic is the communication paradigm considered throughout this thesis. The sec-

ond topic discusses divisible functions. The divisible functions help to generalize the

random gossiping to compute functions other than consensus. It is also the basis of

bias-cancellation introduced in this thesis. The third topic covers many current works

on running multiple applications in wireless sensor networks.



1.3 State-of-the-art 5

1.3.2 Random gossiping for consensus

The survey [HHL88] introduces gossiping as a way to solve the information dissem-

ination problem where every node in the network knows a piece of the information.

Hence communications are needed between these nodes to achieve the goal that every

node gets the complete information in the network, i.e., everybody knows everything.

The authors highlighted that the number of communications is more general to study

than the total time, which is consumed for achieving the goal of gossiping. Meanwhile,

principles based on graph theory can be used to reduce the necessary communications

between nodes in the network.

Gossiping is a solution of network communications with robustness, simplicity, and

scalability since a sensor in the network requires only the information from its di-

rect neighbor sensors [KSSV00]. The communication range of sensors in the network

determines the number of their neighbor sensors. In [KKD01], it is shown that the

communication range of every sensor in the network determines the convergence speed

of data aggregation.

Due to the absence of scheduling of the communications in networks where random

gossiping is used, the connection between two sensors in the network at a particular

time is probabilistic [KK02]. The probability of the connection can be determined by

one over the numbers of communications are needed until a connection between two

nodes is established. The work [KK02] considers a network where each node has a

message to share with all other nodes. A connection between two sensors is established

randomly to exchange messages. Based on a minimum spanning tree using a gossiping

mechanism for message delivery, the time that the given number of messages have been

exchanged is presented in this work.

The most successful application for random gossiping is to calculate the consensus in

wireless sensor networks. A consensus problem involves a) sensors with measurement

data and b) a mean value to be calculated and acquired at all sensors. In works

[KDG03][BGPS04], sensors communicate data directly with their neighbor sensors.

Every sensor generates new data by using the weighted summation of its own data

and the data it received from its neighbor sensors. A weighting factor shall be chosen

for the weighted summation at each sensor. It is proven that the consensus can be

asymptotically achieved by a correct choice of the weighting factors.

The convergence speed of data aggregation in random gossiping is in general slow due

to the lack of centralized scheduling. In the consensus problem, a large number of
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communications in the network are needed until the data at every sensor equals the

real mean value with a relatively small error [BGPS04]. In [BGPS05], the convergence

speed of the consensus using random gossiping is proved to be determined only by the

second largest eigenvalue of a doubly stochastic matrix, i.e., a matrix whose entries are

the probabilities of establishing a connection between two sensors. The sub-gradient

of the doubly stochastic matrix can be used to find the weighting factors to guarantee

the asymptotic achievement of the consensus [BGPS06].

To improve the convergence speed of the gossiping for consensus problems, the work

in [DSW08] combines random gossiping with location-based geographic routing if the

knowledge of sensor locations is available at each sensor a priori. A message containing

the measurement data is routed to a randomly chosen sensor in the network. The cost

of knowing the locations of every sensor is to update and communicate the location

information iteratively among sensors.

The convergence speed of consensus is improved when broadcast communication is used

in wireless sensor networks. In [AYSS09] one-way broadcast is performed from a sensor

to its neighbor sensors instead of the pairwise data exchange of sensors. A weighted

summation is applied at each neighbor sensor. In order to ensure the convergence of

the consensus, the weighting factor at each sensor shall be calculated.

With clustering techniques, sensors are grouped to form clusters based on parameters

such as the location of sensors. Combining random gossiping and clustering can also

improve the convergence speed of data aggregation for consensus problem [GBS12].

Data exchanges between clusters are assisted by the sensors which are overlapped by

several clusters.

The optimal convergence speed of data aggregation in consensus problems using ran-

dom gossiping is achievable when a topology optimization is performed [SBS12]. The

transmit power at every sensor is optimized to achieve the optimal topology for con-

sensus when the distances between every two sensors are known a priori. When the

distance information is unavailable, sensors can only use the same transmit power.

1.3.3 Divisible functions in wireless sensor networks

Besides the consensus problem, computing other applications using random gossiping

is of great interest to studies of wireless sensor networks. To combine the random

gossiping with computations other than consensus, a definition is needed for general
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functions that can be computed using a divide-and-conquer fashion such as consensus

for wireless sensor networks.

The functions that can be calculated in wireless sensor networks using a divide-and-

conquer fashion are defined as divisible functions which are introduced for ad-hoc wire-

less sensor networks using routing [GK05] [GK06]. The measurement data of sensors

are forwarded and aggregated along the routing tree using the divisible functions. In

this thesis, we use the concept of divisible functions as the foundation of our work in

random gossiping.

In [MS08], [SH08] and[DBS11], random gossiping is explored to calculate divisible

functions which can be approximated using methods of consensus. The design of the

random gossiping for these functions is ultimately the design and the update of the

weighting parameters at each sensor. For example, the application specified in [DBS11]

is the resource allocation in cognitive radio networks. A set of sensors exchange the

observed channel condition using random gossiping and react to the change of the

channel. The weighting factor at each sensor is determined and updated iteratively in

order to guarantee the convergence of the data of every sensor.

1.3.4 Multiple Applications in Wireless Sensor Networks

Recent works reveal that multiple applications can be running in one wireless sensor

network. A fundamental problem is the sharing of sensors in the network with different

applications. The recent works focus on scheduling or slicing as two major solutions.

In scheduling, the use of one sensor by one application is scheduled according to two

criteria.

• One criterion considered for scheduling is the resource usage of running one ap-

plication of a sensor. The resource can be the energy consumption of running

a given application [BS03] or the number of sensors required of one application

considering the location of the sensors [KMN11; KMN12]. The scheduling is per-

formed by an iterative injection of applications into the network. When injecting

one application, the requested additional resource, such as energy consumption

or the number of sensors, is estimated. This iterative procedure is carried out

until all the intended applications are injected.
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• Another criterion for scheduling is to auction based on the quality-of-service

(QoS) requirement of an application [EXR+11]. An application is scheduled

on one sensor only if the QoS can be fulfilled when it is running on the sen-

sor. According to QoS requirements, applications can be categorized as real-time

applications, delay-tolerant applications, or loss-tolerant applications [FKS11]

[GHSW11].

When using slicing, sensors in the network are divided into several subsets, where each

set supports only one application. Two main criteria are applied to divide the sensors.

• In a Quality of Monitoring criterion, sensors whose measurements of the same

physical phenomenon are highly correlated are divided into different subsets

[BSLR10; XSC+10]. An example is the temperature measuring of an area by

sensors. The measurements of two sensors which are geographically close to each

other have a higher correlation in comparison to the measurements of two sensors

which are far from each other.

• By computing the geographical area that a set of sensors covers, the subset

division of sensors can result in a balanced subset of sensors, i.e., each subset of

sensors has a similar coverage area. When applications are running on different

subsets of sensors, the coverage area of each application can also be balanced

[MZ10; SEH11; SEH12].

When there is a gateway in the wireless sensor network to collect and aggregate data

of different applications, a subset which is running one application may also forward

the data of another application. It is because a subset of sensors may not be able to

connect to the gateway without forwarding the data through another subset of sensors

after the slicing is done in the network [JHI07]. When a subset of sensors transmit the

data of another subset of sensors towards the gateway, data can be concatenated and

forwarded to the gateway [AA09].

If the slicing of the network is unbalanced, an optimal way to assign a subset of sensors

to an application can be done based on the requirement of an application on the

coverage [RRJ10].

In addition to these topics of multiple applications in a wireless sensor network as

mentioned above, sensor buffer management and security are also focused topics. When

multiple applications are running simultaneously on a wireless sensor network, the
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limited buffer at each sensor could be problematic. To reduce the buffer usage and

avoid the buffer overflow, techniques such as code dissemination can be used where

the common data such as the measurement or even the program code data could

be shared by different applications [LDZ+08]. Concerning the security problem of

multiple applications in a wireless sensor network, authors of [LCS13] propose to apply

the encryption to the aggregation data of the applications. With the encryption, an

application cannot access the content of other applications running on the same sensor.

1.4 Open Issue

In this section, open issues concerning applying random gossiping in wireless sensor

networks are listed with the foundation of the works reviewed in Section 1.3.

In Section 1.3, it shows that random gossiping has been mainly applied to solve con-

sensus problems in wireless sensor networks. In such a category of problems, the design

of random gossiping is to design the weighting factors at each sensor. However, using

random gossiping for computing an arbitrary divisible function has not been discussed.

Therefore, the following questions arise:

• How to apply random gossiping to wireless sensor networks to compute arbitrary

divisible functions which cannot be modeled by weighted summation?

• How to guarantee the convergence at every sensor such that the data aggregation

yields the desired results for general applications which do no use the weighted

summation?

Since random gossiping requires no scheduling of communications of sensors, it, in

general, requires a large number of communications until the convergence of the data

aggregation is achieved. Many works on random gossiping that we have reviewed in

Section 1.3 addressed this problem. However, all these works focused on improving the

convergence speed of data aggregation of the consensus problem. Therefore, the solu-

tion is not general. Moreover, there is no significant improvement in the performance

of those works. A problem then arises:

• How to improve the convergence speed of data aggregation for random gossiping

in general?
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In some wireless sensor networks, assumptions on the topology are made such as static

sensor locations. These assumptions lead to the following problem:

• How to make use of the assumptions on the topology to improve the performance

of random gossiping?

So far, using random gossiping in a wireless sensor network with multiple applications

is not a well-discussed topic. An interesting problem can be raised:

• How to apply random gossiping to wireless sensor networks that can support and

run multiple applications?

1.5 Contributions of the thesis

This section gives a brief statement of the main contributions which jointly or indi-

vidually addresses the open issues stated in Section 1.4. The contents are described

according to the order of the open issues presented in Section 1.4.

• Chapter 2 presents the network model of the wireless sensor network that is

applied throughout this thesis. In order to apply random gossiping to compute

divisible functions such that generic applications can be supported, we propose

a cross-layer design of wireless sensor networks to address the sharing of the

information crossing different layers. More importantly, the concept of Indicating-

Headers (I-Headers) is proposed in this chapter. I-Header serves as a message

header to record the aggregated data at each sensor. It is also shared information

in the cross-layer design.

• The concept of bias reduction in random gossiping is introduced in Chapter

3. Bias reduction is based on the concept of I-Headers introduced in Chapter

2. It uses the capability of sensors to store old messages and helps to achieve

the convergence of the data aggregation of using random gossiping for divisible

function calculation. In this chapter, two bias cancellation methods are proposed.

In the second method, the bias reduction considers as well the selection of a subset

of the neighbor sensors from a sensor to perform communications.
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• Chapter 4 addresses the reduction of the convergence time of data aggregation

using random gossiping in wireless sensor networks. Based on how to communi-

cate with neighbor sensors, the types of humble sensors and greedy sensors are

introduced. The algorithms used in random gossiping with I-Header and bias

reduction are proposed to reduce the convergence time. Moreover, we discuss the

possibility and introduce algorithms to combine random gossiping and routing

algorithms that are used in wireless ad-hoc sensor networks, in order to increase

the convergence speed of the data aggregation in the network.

• In Chapter 5, the assumption of a static topology of the wireless sensor network

is made. An improved random gossiping approach that makes use of a proposed

algorithm is given to reduce the convergence time of data aggregation by reduc-

ing the communications of I-Headers. We propose a method, called transmission

deferment, that enables particular sensors in the network to delay their com-

munications with their neighbors in order to achieve faster convergence of data

aggregation with fewer communications in the whole network.

• In Chapter 6, we consider wireless sensor networks that may support multiple

applications. Refined algorithms for random gossiping are proposed taking into

account that not all sensors are involved in an application. The proposed random

gossiping algorithm considers different scenarios based on whether and how many

neighbor sensors are involved in an application when a sensor communicates with

them. By doing this, the number of communications performed by the sensors

which are not involved in an application is reduced.

The conclusions of this thesis are in Chapter 7. A short outlook is provided for possible

future extensions of the works in this thesis.
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Chapter 2

Modeling of wireless sensor networks and

random gossiping

2.1 Introduction

In this chapter, this first topic covered is the model of sensors by introducing the

components of sensors and the network model of the wireless sensor networks where

we address topics of the deployment of sensors, the communication range, the neighbor

sensors and the connectivity of wireless sensor networks. The second topic discusses

random gossiping and divisible functions. The random gossiping will be generalized

such that it can be applied to applications with divisible functions in wireless sensor

networks. Thirdly, a cross-layer design of wireless sensor networks is presented. In the

cross-layer design, we discuss what information should be shared by different layers. As

a new contribution in this thesis, the concept of indicating headers in wireless sensor

networks is introduced. The indicating headers are used to share information across

different layers in the cross-layer design.

This chapter is organized as follows. In Section 2.2, the sensor model and the network

model are presented. Section 2.3 discusses random gossiping, divisible functions, and

the generalization of random gossiping to support the computation of divisible functions

in the wireless sensor networks. Section 2.4 introduces the cross-layer design of wireless

sensor networks and the concept of indicating headers which is used throughout the

remainder of this thesis. Parts of the contents of this chapter have been published by

the author of this thesis in [CKK13b].

2.2 Modeling of sensors and wireless sensor net-

works

2.2.1 Sensor and its components

Throughout this thesis, we use v to indicate a sensor in a wireless sensor network.

Each sensor in the wireless sensor network is assumed to consist of four components

according to their functionality, as shown in Figure 2.1.
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• Sensing component generates the measurement of one or more physical phenom-

ena by sensing the environment. The sensing component transforms the measure-

ment into measurement data, which is represented by a finite sequence of bits and

outputs it to the computing component. The measurement data that is trans-

formed from the measurement of a specific sensor v is called the measurement

data of sensor v.

• Transceiver component is responsible for transmitting frames of bits generated

from the computing component to other sensors or receiving frames of bits from

other sensors and forward to the computing component. In the remainder of

this thesis, a frame of bits that are transmitted and received between sensors is

named as a message.

• The memory component is to provide the capability of storage at the sensor. It

stores various kinds of data generated by the computing components, e.g., the

previously transmitted or received messages.

• The computing component is the central component of a sensor since it connects

the sensing, the memory, and the transceiver components. It configures the sens-

ing component to determine what phenomenon to measure, gets measurement

data from the sensing component, creates messages for transceiver components

and generates different kinds of data that could be stored in the memory compo-

nent. In this thesis, aggregation data denotes the output of computations, which

involves measurement data of at least one sensor. The message of a sensor is gen-

erated by the computing component, which encapsulates aggregation data and

other information such as message header which will be discussed later in this

chapter.

The arrows that connect components show internally in a sensor the direction of the

communications between each of them. The sensing component gets the configuration

from the computing component and sends the measurement data to it. The computing

component can send and receive messages from the transceiver component as well as

store and load data from the memory component.

2.2.2 Wireless sensor networks

Individual sensors can communicate wirelessly with each other using their transceiver

components. In this thesis, we define a wireless sensor network by a graph expressed

using a tuple G = (V, E). In the tuple, V is the set of sensors. If the wireless sensor
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Sensing

ComputingMemory Transceiver

Figure 2.1. Components of a sensor

network consists of N sensors, these sensors can be distinguished in the set V as

V = {v1, v2, · · · , vN}. We denote a sensor in network G by using vi ∈ V where i is an

integer number taking values from {1, 2, · · · , N}. Each sensor vi ∈ V is assumed to

be programmed with a unique ID, and no two sensors are sharing the same ID. In the

tuple, E is the set of all connections in the network.

Throughout this thesis, we assume that the wireless sensor network is in a finite squared

area geographically. Without loss of generality, let the bottom left corner of the finite

squared area be the origin of the Cartesian coordinate system. The location of a sensor

vi in the wireless sensor network is expressed by a tuple (x, y), where x is the location

on the x-axis and y is the location on the y-axis in the coordinate, as shown in Fig.

2.2.

Let a constant D denote the limit of the finite squared area that is limited in both

x-axis and y-axis. All N sensors in the wireless sensor network are uniformly randomly

deployed with the probability density function

p(x) =

{

1
D

for x ∈ [0, D]
0 otherwise

(2.1)

and

p(y) =

{

1
D

for y ∈ [0, D]
0 otherwise.

(2.2)
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Figure 2.2. Deployment of sensor vi

We assume that the wireless channels between sensors have only pathloss attenuation,

and every sensor vi ∈ V uses the same transmission power. Therefore, a sensor can

communicate with another sensor if their distance defined in the Cartesian coordinate

system is smaller than a threshold variable d, where d is defined as the communica-

tion range of sensors in the wireless sensor network. This assumption employs the

SNR-model that a sensor can correctly decode the information from another sensor

only when the Signal-to-Noise Ratio (SNR) of the received signal is larger than a given

threshold. We define one successful message communication such that a sensor trans-

mits a message and the targeted sensor or sensors successfully receive and decode the

message. Base on the assumption above, the successful communications between any

two sensors are only determined by the distance between them. If the distance dij

between sensor vi ∈ V and sensor vj ∈ V is smaller than the communication range d,

we say a connection between vi and vj , denoted by eij , exists. The set E of connections

in the graph G is therewith formally defined as E = {eij|dij < d, vi ∈ V, vj ∈ V}.

Neighbor sensors of a sensor vi are sensors whose distance to sensor vi is less than d.

We denote the set of neighbor sensors of sensor vi by the set Ni whose cardinality is

Ni. For every sensor vj ∈ Ni, the connection eij exists in E . A sensor vj ∈ Ni and the

sensor vi are neighbor sensors to each other. In Figure 2.3 as an example, sensor vi is

in the center of the dashed circle with a radius d. All sensors vj1 , vj2 and vj3 enclosed

with the dashed circle except vi are the neighbor sensors of sensor vi. Sensors vk1 , vk2
and vk3 that are outside the dashed circle are not neighbor sensors of vi. There are two

communication types from sensor vi to its neighbor sensors Ni, broadcast, and unicast.

In broadcast, sensor vi can transmit a message to all sensors in Ni using one successful

transmission. In contrast, in unicast, sensor vi communicates with only one sensor in

Ni in one successful transmission. Therefore, Ni successful transmissions are needed

in unicast such that vi can transmit its message to all sensors in Ni.
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Figure 2.3. Sensor vi and its neighbor sensors

A preparatory condition for our work in wireless sensor networks is to guarantee the

connectivity. The connectivity can be intuitively understood as the existence of a path

consisting of a set of intermediate sensors between any two sensors, where the two

sensors are not neighbor sensors to each other. However, the connectivity cannot be

guaranteed solely by making sure that every sensor vi ∈ V has a non-empty Ni.

A method to check the connectivity is to use the idea from the spectral graph theory

[Chu97]. Let A be a square matrix whose entry aij on the i-th row and j-th column is

1 if and only if the connection between sensor vi and vj in the network G exists, i.e.,

eij ∈ E . The diagonal elements inA are all zeros since we assume that a sensor shall not

be its own neighbor. Let another matrix D be a diagonal matrix whose i-th diagonal

entry equals Ni, the number of neighbor sensors of sensor vi. The Laplacian matrix of

the network L is defined by L = D −A. According to the spectral graph theory and

its corresponding applications, the connectivity of the network is guaranteed as long as

the second smallest eigenvalue of L, denoted by λ2, is greater than 0 [Chu97; SBS12].

Throughout this thesis, we always assume a connected wireless sensor network where

the communication range d is large enough to guarantee λ2 > 0.

2.3 Random gossiping

2.3.1 Introduction

Random gossiping is a decentralized communication paradigm for wireless sensor net-

works. In comparison to routing and clustering, random gossiping does not construct
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hierarchical infrastructures such as a routing tree or sensor clusters in wireless sensor

networks [BGPS06]. Communications in random gossiping are only local communi-

cations between sensors and their neighbor sensors. Therefore, random gossiping is

robust against link failure. If routing is applied in the network, link failure in the

routing tree will cause the failure of the data aggregation [AYSS09].

A slotted time structure is usually assumed in random gossiping [BGPS06]. In the

slotted time structure, a sensor wakes up when its randomly initiated timer times out.

If the timers at all sensors are asynchronous, the possibility of two sensors initiating

communications at the same time is zero. Therefore, we assume that only one sensor

in the wireless sensor network wakes up at a time and initiates communications with

its neighbor sensors. With this assumption, the interference is not considered in the

wireless sensor network using random gossiping.

2.3.2 Random gossiping for consensus

The most successful application of random gossiping is to calculate the consensus of

the measurement data of all sensors. Initially, all sensors vi ∈ V have their aggregation

data xi equal to their measurement data, i.e., xi = si. By applying random gossiping,

the aggregation data at each sensor in the wireless sensor network converges to the

mean value s̄ = 1
N

∑N

i=1 si of all measurement data asymptotically.

There are two different ways to perform random gossiping to calculate consensus in

wireless sensor networks. Firstly, as discussed in [BGPS04], [BGPS05] and [BGPS06],

sensor vi wakes up and initiates communication with only one of its neighbor sensors

vj ∈ Ni. A weight factor of 1
2
for the weighted summation is chosen such that after

communication, sensor vi and sensor vj update their aggregation data as xi :=
1
2
(xi+xj)

and xj :=
1
2
(xi + xj). It is proven both in [BGPS06] and [SBS12] that the convergence

time, measured in terms of the number of communications is upper and lower bounded

by values determined by the second smallest eigenvalue λ2 of the Laplacian matrix L.

The second way of using random gossiping to calculate consensus is the broadcast

random gossiping, which takes advantage of the broadcast nature of the wireless com-

munications [AYSS09]. When a sensor vi initiates the communications, it sends its

aggregation data xi to all its neighbor sensors vj ∈ Ni. All the neighbor sensors

vj ∈ Ni update their aggregation data by weighted summation with their own aggre-

gation data and the received aggregation data with the weighting factor being 1
2
, i.e.,

xj =
1
2
(xi+xj). The bound of the convergence time, which is measured in the number
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of communications until convergence as proven in [AYSS09] is determined as a function

of the number of sensors N .

2.3.3 Divisible functions

In order to extend the range of applications that random gossiping can support, we use

the concept of the divisible functions introduced in [GK05]. Intuitively, a divisible func-

tion specifies a type of function whose parameters can be aggregated gradually. Such

gradual aggregation enables a divide-and-conquer fashion of calculating the function

in wireless sensor networks [GK05].

An application in the wireless sensor network with N sensors can be defined by

using a set F of divisible functions. The set F contains N functions fl ∈ F ,

l = 1, 2, · · · , N where the subscript l means the function fl takes l input parame-

ters. Let S = {s1, s2, · · · , sN} denote the set of measurement data of all sensors.

If a partition of S divides the total N measurement data measured by the N sen-

sors, respectively, into L mutually exclusive sets, this partition can be denoted by

Π(S) = {S1,S2, · · · ,SL}, where Sl is the l-th set. The union of all sets fulfills

∪Li=1Si = S. (2.3)

Let a vector s collect all measurement data in S and let vector sSk denote all mea-

surement data in set Sk, the cardinality of set Sk is denoted by lk. The measurement

data in the vectors s and sSk are ordered according to the increment of the index of

the sensor where the measurement data is generated. In order to calculate a divisible

function fN(s), the function whose parameters are the data from each set flk(sSk) is

calculated at first, then a combination with an auxiliary function gΠ(S),

fN(s) = gΠ(S) (fl1(sS1), fl2(sS2), · · · , flL(sSL)) (2.4)

is performed to get fN(s) [GK05].

In (2.4), flk(sSk) can be calculated by further partitioning Sk. The partition can be

done until there is only one measurement data in each group.

Divisible functions cover most of the possible functions that applications in wireless

sensor networks may utilize, such as downloading, histogram, sum, average, mode,

max, min. In the following, we list the auxiliary functions for these commonly used

divisible functions that are mentioned in [GK05].
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• For downloading function, where fN(s) = s, the auxiliary function is

gΠ(S) (fl1(sS1), fl2(sS2), · · · , flL(sSL)) = [sS1 , sS2, · · · , sSL] . (2.5)

• The histogram function calculates the occurrence of measurement data falling

into a certain range, so-called a bin. Let (τ li , τ
u
i ] denote the range of the i-th

bin, i.e., fN(s) = [τ1(s), τ2(s), · · · , τχ(s)], where χ is the total number of bins

for the histogram calculation and τi(s) = |{j : sj ∈ (τ li , τ
u
i ]}| returns the number

of parameters in s that falls into the i-th bin. For the histogram function, the

auxiliary function is

gΠ(S) (fl1(sS1), fl2(sS2), · · · , flL(sSL)) = fl1(sS1) + fl2(sS2) + · · ·+ flL(sSL) .(2.6)

• The sum function fN(s) =
∑N

i=1 si has the auxiliary function

gΠ(S) (fl1(sS1), fl2(sS2), · · · , flL(sSL)) = fl1(sS1) + fl2(sS2) + · · ·+ flL(sSL) .(2.7)

• The auxiliary function of the average function fN (s) =
1
N

∑N

i=1 si is

gΠ(S) (fl1(sS1), fl2(sS2), · · · , flL(sSL)) (2.8)

=
1

l1 + l2 + · · ·+ lL
(l1fl1(sS1) + l2fl2(sS2) + · · ·+ lLflL(sSL))

• The mode function that gives the value occurs most frequently applies the his-

togram function to compute the output. The same auxiliary function as the

histogram function will be used to the mode function.

• The max function fN (s) = maxi si has an auxiliary function being identical to

the max function itself.

• The min function fN (s) = mini si has an auxiliary function being identical to the

min function itself.

2.3.4 Random gossiping for divisible functions calculations

When random gossiping is used to calculate an arbitrary divisible function, the weighed

summation cannot be used because the divisible function is not averaging the measure-

ment data, generally. The computations at each sensor follow (2.4). Therefore, instead

of approaching the desired results asymptotically as in consensus, the computation of

divisible functions finishes when all measurement data are taken into the computation,

as shown in Fig. 2.4.
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Figure 2.4. Termination of random gossiping to calculate divisible functions

If communications between sensors bring new measurement data which has not been

aggregated at a sensor, the aggregation is performed. When the aggregation has already

involved all measurement data at every sensor, the convergence of random gossiping is

achieved.

2.4 Cross-layer design and indicating headers

2.4.1 Cross-layer model

In order to support generic applications in wireless sensor networks where random

gossiping is applied, the communications of sensors should be independent on which

application is running in the wireless sensor network. However, information needs to

be shared between the application layer where divisible functions are computed to

aggregation and the network layer where sensors communicate their messages with

each other.

Figure 2.5 shows the cross-layer model considered in this thesis. The application layer

provides aggregation data to the network layer to construct messages for communi-
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Figure 2.5. Cross-layer model

cations between sensors. Meanwhile, the data aggregations in the application layer

modify the information that is shared with the network layer. The network layer

determines how communications should be carried out using the shared information.

When messages are received from other sensors, the network layer will update the

shared information accordingly and provide aggregation data encapsulated in the mes-

sage to the application layer. The application layer takes the shared information to

perform appropriate data aggregation.

Based on the discussions above, the following criteria shall be applied to the shared

information:

• the shared information should be involved when the data aggregation is applied

in the application layer,

• the shared information should be used by the network layer to decide what in-

formation to communicate between the sensor and its neighbor sensors, and

• the shared information should be generic for different kinds of applications.

2.4.2 Indicating headers

In this subsection, we introduce the concept of Indicating-Headers. Indicating-Headers

(I-Headers) serve as the cross-layer information between the application layer and the

network layer. We use I-Headers as the control information in wireless sensor networks

where random gossiping is applied. Figure. 2.6 depicts the cross-layer model with

I-Header.
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An I-Header is a fixed-length bit sequence paired with every message that is commu-

nicated between sensors. For a wireless sensor network with N sensors, the I-Header

of a message shall have N bits. The I-Header of the message currently computed at

sensor vi is denoted by Ii. If sensor vi has aggregated the measurement data generated

by the sensing component of sensor vj, j = 1, 2, · · · , N , the j-th bit in Ii, denoted by

Ii(j) is 1, otherwise 0. Throughout this thesis, we assume that the necessary encodings

for error protection are applied for the communications in the network. However, this

aspect will not be considered in the discussions due to the reason that the encoding

does not provide additional information to which are already provided in the message

and the I-Header at each sensor.

Based on this definition, the I-Header tells only whether the measurement data of a

sensor has been aggregated in the aggregation data encapsulated in the message without

showing the duplication. In random gossiping, this may lead to a so-called bias problem,

which will be addressed in the next chapter. Additionally, the I-Header of the message

currently computed at sensor vi will be changed as soon as new measurement data is

aggregated in the message.

We define a function Θ taking an I-Header as the parameter, and the output is a

set collecting the IDs of the sensors defined in Section 2.2 at which the measurement

data are generated. For example, if the I-Header of the current message at sensor

vi is Ii = [1, 0, 0, 1], the function output shall be Θ(Ii) = {1, 4}. It expresses that

the measurement data contained/aggregated in the current message is generated by

the sensors whose numerical IDs are 1 and 4 in the wireless sensor network under

consideration.

Generically, we denote the set Θ(Ii) by S i
i, i.e., S

i
i = Θ(Ii), where the superscript i

indicates that it is an index set in contrast to set Si which collects all the data that
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sensor vi has aggregated in its message. It is straightforward to see that function Θ

has an inverse function Θ−1, which takes a set of indices as the parameter and outputs

an I-Header, i.e., Ii = Θ−1(S i
i).

In this thesis, for a wireless sensor network with N sensors in total, the following

assumptions are made:

• Assumption 1: Each sensor has a unique numerical ID such that it can be dis-

tinguished from other sensors in the wireless sensor network.

• Assumption 2: There is a function that can map the sensor ID uniquely to a bit

position in the N -bit I-Header.

• Assumption 3: The mapping function is known by all sensors.

Under these assumptions, when sensor vi has not yet aggregated the measurement data

from other sensors in the network, applying the mapping function to the message of

sensor vi will result in its own ID i.

Per definition, the I-Header and the corresponding function Θ consider only sensor

networks with a fixed number of sensors. In practical applications of wireless sensor

networks, there are two possible cases which may invalidate this consideration, the

leaving of sensors and the joining of new sensors.

If a sensor disconnects from the wireless sensor network and the connectivity of the

network is still maintained, the following two sub-cases can be considered separately.

• If the disconnected sensor has already communicated with its neighbor sensors,

its measurement data will be preserved as it has been aggregated in the aggre-

gation data in the message of other sensors. In the I-Header of the neighbor

sensors which aggregated the measurement data of the disconnected sensor, the

corresponding bit of the disconnected sensor will be 1.

• If the disconnected sensor has not yet communicated with its neighbor sensors,

its data will be lost permanently. In this case, none of the sensors in the wireless

sensor network will aggregate the measurement data of the disconnected sensor.

According to the definition of the random gossiping, this situation may lead to

permanent communications in the network. In order to prevent this, the sensor

network shall provide a measure to stop the communication when the I-Headers

of the messages of all sensors in the network remain unchanged for some time.
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There are two strategies to handle the situation in the case of new sensors joining the

wireless sensor network.

• The first strategy assumes that the length of I-Headers designated to the wireless

sensor network should be larger than the number of sensors in the network. When

mapping the ID of a sensor in the network to a bit position in the I-Header, there

will be given bits in the I-Header being 0. These bit positions can be used for new

joining sensors as long as the total number of sensors after new sensors joining

the network is smaller than the length of the I-Headers.

• The second strategy ties the newly joined sensor to one of its neighbor sensors,

e.g., sensor vi. The joined sensor will communicate only with sensor vi. Sensor

vi becomes a delegate of the joined sensor to communicate with other sensors.

In this case, there is no extension in the I-Header requested. However, extra

information might be needed to indicate that the message of sensor vi contains

the aggregation data that aggregates the measurement data of two sensors. This

solution will not work if sensor vi has already communicated with other sensors,

i.e., data si has already been aggregated in the messages of other sensors. Since

vi is a delegate of the newly joining sensor, the aggregation data contained in the

message of sensor vi also aggregates the measurement data of the joining sensor.

When the other sensors in the network have already aggregated the measurement

data si, there will be two ”versions” of si in the network after new sensors joined

the network.

The two methods above provide potential solutions to handle the disconnection of

sensors or the joining of new sensors in the network.

Two assumptions are made in the remainder of this thesis:

• Assumption 4: There are no joining and leaving sensors in the wireless sensor

network.

• Assumption 5: The total number of sensors denoted by N is the maximum num-

ber of sensors the ID sequence, as well as the function Θ can support.

With I-Headers, the communications in wireless sensor networks can be categorized

into the communications of application messages and the communications of the I-

Headers. Control information in I-Header is exchanged in the network and provides
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the information for the network to control the behavior of each sensor. Additionally,

meaningless communications of application messages are reduced. This reduction is

beneficial when the size of the messages exceeds the size of the I-Header significantly.

It becomes useful in realistic cases when sensors are designed to sense diverse kinds of

information ranging from temperature and humidity to video or audio clips.

Throughout this thesis, an additional assumption is made:

• Assumption 6: The size of the application messages is significantly larger than

the length of the I-Header.

2.5 Summary

In this chapter, the model of sensors and the model of wireless sensor networks have

been presented. We discussed random gossiping and its extension to calculate divisible

functions. More importantly, the cross-layer design and the concept of I-Headers have

been introduced which are the foundations of our work in the coming chapters. Last

but not least, six assumptions have been made which will be used in the remainder of

this thesis.
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Chapter 3

Bias reduction

3.1 Introduction

As discussed in Chapter 2, random gossiping requires a large number of communications

typically in order to achieve the convergence of data aggregation for computing a

function that takes the data from all sensors as parameters. Many works such as

[BGPS06] and [SBS12] propose methods to increase the convergence speed of data

aggregation by tuning the topology of the wireless sensor networks. These methods

have two problems:

• The algorithms are centralized off-line methods. Centralized solutions compro-

mise the robustness and the flexibility of random gossiping in wireless sensor

networks because the sensors are required to be deployed at the exact topolog-

ical positions that the algorithms assume. The off-line solutions imply that the

status of sensors in the wireless sensor network should be uploaded to a central

unit, and the optimized topology shall then be downloaded to all sensors after

the optimization is completed at the central unit. These are impractical solutions

for real-world wireless sensor networks.

• Each algorithm proposed in works such as [BGPS06] and [SBS12] provides opti-

mization to increase the convergence speed of data aggregation of only one type

of application, e.g., the consensus. The optimization algorithms take the mathe-

matical expression of the computation functions used in the data aggregation into

account, e.g., sum-and-divide in consensus. The resulting topology is therefore

only optimized to support a narrow spectrum of applications.

As a foundation to solve these problems, a cross-layer design is proposed in Chapter 2

for wireless sensor networks where random gossiping is applied. Specifically, the concept

of I-Header is introduced as the shared information between the application layer and

the network layer. The application layer uses the I-Header to perform the appropriate

data aggregation, and the network layer uses it to determine how communications

should be carried with other sensors. An I-Header is always paired with a message

that is communicated between sensors. Other sensors can know the aggregation data

contained in the message through the information given in the I-Header.
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The cross-layer design and I-Header are used to support the random gossiping for

applications where the computation functions are divisible functions. As mentioned

in Chapter 2, the I-Header tells only whether the measurement data of a sensor has

been aggregated in the aggregation data without showing the duplications. In random

gossiping, this can lead to bias. In this chapter, the concept of bias in random gossiping

is introduced. Algorithms for reducing and eliminating the bias are proposed for the

bias cancellation.

The remainder of this chapter is organized as follows. In Section 3.2, the definition

of the bias in random gossiping is given. Section 3.3 introduces a bias reduction algo-

rithm. An improved bias-reduction algorithm with joint sensor selections is discussed

in Section 3.4. Section 3.5 summaries this chapter. Parts of the content of this chapter

have been published by the author of this thesis in [CKK13b] and [CKK14a].

3.2 Bias in random gossiping

3.2.1 Definition of bias

In this section, the definition of the bias in random gossiping is introduced. A sensor

aggregates measurement data by receiving the messages from other sensors.

However, during the aggregation, the measurement data from a sensor may be aggre-

gated more than once. In this thesis, the bias can be formally defined as follows.

• The bias of the aggregation data at a sensor vi is defined as the total number of

duplicate measurement data sj , j = 1, 2, ..., N in the aggregation data.

For example, the aggregation data at sensor vi has aggregated measurement data si,

sj, and sk. The measurement data si has been aggregated twice, the measurement

data sj has been aggregated three times, and sk has only been aggregated once. The

bias of the aggregation data at sensor vi is 1 + 2 + 0.

Furthermore, we define the bias of a measurement data sj in the aggregation data at

sensor vi as the duplication of measurement data sj that has been aggregated at sensor

vi. In the example, in the aggregation data of sensor vi the bias of si is 1, the bias of

sj is 2, and the bias of sk is 0.
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In random gossiping, the bias of the aggregation at a sensor may vary continuously

during the communications of the messages containing aggregation data of other sen-

sors.

In this thesis, the following two situations which result in bias in the aggregation data

are considered. Figure 3.1 shows an example of the first situation. In the example,

the divisible function is flk(sSk) = sSk , and the arrows show the spreading of the

measurement data of sensor vi. The aggregation data of a sensor vi is spread to its

neighbor sensors vj and vk. As the aggregation and spreading continue, another sensor

vs in the wireless sensor network may receive messages from its neighbor sensors vl and

vm where si is aggregated at both sensors. As a result, a bias of the measurement data

si exists in the aggregation data at sensor vs.

f(si)

f(si)

f(si, sj)

f(si, sk)

f(si, sj, sl)

f(si, sk, sm)

f(si, si, sj, sk, sl, sm)vi

vj

vk

vl

vm

vs

Figure 3.1. Duplication by aggregation from different neighbor sensors

In the second situation, a sensor may receive aggregation data where its own measure-

ment data has been aggregated.

f(si)

vi

vj

vk

f(si, sj)

f(si, sj, sk)

f(si, si, sj, sk)

Figure 3.2. Duplicated data in gossiping protocol
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An example is shown in Fig. 3.2. Sensor vi sends its message containing the aggregation

data f(si) to one of its neighbor sensors. After communications among other sensors

in the wireless sensor network, sensor vi may receive from one of its neighbor sensors a

new message encapsulating an aggregation data, e.g., f(si, sj, sk), which has aggregated

the measurement data si it transmitted to its neighbor sensors previously. The data

aggregation at sensor vi will then result in bias in the aggregation data shown as

f(si, si, sj, sk) by the dashed line at sensor vi.

In these two situations, the bias happens at the sensor that performs the data aggre-

gation since this sensor does not know of the existence of the same measurement data

in the aggregation data from other sensors.

The I-Header contains the information to identify the existence of the measurement

data in the aggregation data of several sensors. Therefore, when the corresponding bits

are one in the I-Headers of more than one incoming messages of the sensor, there will

be bias when the sensor performs the data aggregation.

3.2.2 Multiset expression

To facilitate the expression of the data aggregation which yields bias, the concept of

multiset can be applied [KLT03] since it enables the existence of an element more than

once. Furthermore, the multiset can be combined with I-Header to enable the bias

reduction introduced later.

Using the concept of multiset, the set of measurement data aggregated in the aggrega-

tion data at sensor vi can be denoted by (S i
i, cSi), where the first element S i

i is so-called

underlying set of the multiset and the second element is the multiplicity which is a

function cSi : S
i
i → N≥1 mapping each element in S i

i to a non-zero integer value. If

measurement data sj of sensor vj is aggregated in the aggregation data at sensor vi,

i.e., si ∈ Si, index j is contained in the index set S i
i, i.e., i ∈ S i

i. Meanwhile, cSi(j) ≥ 1

indicates how many times data sj has been aggregated in the aggregation data at sensor

vi.

To quantify the bias, we now focus on a sensor vi and its neighbor sensors vj ∈ Ni. Let

mi denote the message that is to be communicated by sensor vi ∈ V. Let N S
i ⊆ Ni

denote a subset of the neighbor sensors of sensor vi which are intended to transmit

their messages mj , vj ∈ N S
i to vi. The corresponding set of measurement data in the

aggregation data encapsulated in message mj is Sj , and the index set is S i
j . When
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sensor vi receives the messages of every sensor in N S
i , and it performs data aggregation

to the aggregation data encapsulated in these messages, the set of measurement data in

the output aggregation data is S i′

i . The set of measurement data S i′

i is the accumulation

of all sets of measurement data Sj , vj ∈ N S
i and the set of measurement data Si of

sensor vi. Let m′
i denote the new message that encapsulates the output aggregation

data. The underlying set of the aggregation data in the message m′
i is

S i′

i = S i
i ∪ (∪vj∈N S

i
S i
j) (3.1)

and the multiplicity cS′
i
of a data index l ∈ S i′

i is

cS′
i
(l) = cSi(l) +

∑

vj∈N S
i

cSj(l). (3.2)

It shall be noticed that if the measurement data, e.g., sk, is not in a set Sl but is in

another set Sk, the summation in the multiplicity yields cSl(k) + cSk(k) = cSk(k).

If the index multiplicity cS′
i
(m) of the measurement data sm in S ′

i is greater than 1,

the bias of sm is

bm′
i
(sm) = cS′

i
(m)− 1. (3.3)

We quantify the bias bm′
i
of the aggregation data encapsulated in message m′

i by

bm′
i
=

∑

l∈S i′
i

bm′
i
(sm) =

∑

l∈S i′
i

(cS′
i
(l)− 1). (3.4)

3.3 Principle of bias reduction

The previous section defines the bias of the measurement data and the bias of ag-

gregation data. The detection of the bias can be enabled by applying Θ function to

I-Headers introduced in Chapter 2 to get the index set. In this section, the principle

of the bias cancellation and how to perform it at the sensor in wireless sensor networks

will be discussed.

Firstly, the detection of the bias is introduced in the context of the divisible functions

discussed in Chapter 2.

When sensor vi receives a message from sensor vj , the set of the measurement data

aggregated in the aggregation data encapsulated in the message is Sj , and the corre-

sponding index set is S i
j . The set of measurements in the aggregation data at sensor
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vi is Si, and the index set is S i
i. It is assumed that there is no bias of measurement

data in Si and Sj so far, the cardinalities of Si and Sj are li and lj , respectively. Let

the data set SB
ij denote the intersection of sets Si and Sj , i.e.,

SB
ij = Si ∩ Sj . (3.5)

If SB
ij is not an empty set, i.e., SB

ij 6= φ, the aggregation at sensor vi results in bias.

Hence, in the divisible function

fli+lj (sSi, sSj) = gΠ({Si,Sj})
(

fli(sSi), flj (sSj)
)

, (3.6)

there is measurement data being aggregated more than once.

Intuitively, in order to reduce the bias, the measurement data that has been aggregated

more than once has to be subtracted from the computation in (3.6). However, the

measurement data may not be available at a sensor in the form that it can be used

to subtract the bias directly from the aggregation data with bias. Quite the contrary,

the measurement data of bias may have been aggregated in some aggregation data

together with other measurement data. In the following, a method is proposed to

combine several aggregation data in order to subtract the measurement data for the

bias reduction.

We assume there are some aggregation data whose corresponding sets of measurement

data are Svi1 ,S
vi
2 , · · · . The superscript vi indicates that all the sets are available at

sensor vi. The availability is a result of the communication of sensor vi and its neigh-

bor sensors. Let a set Ψ vi = {Svi1 ,S
vi
2 , · · · ,S

vi
ψi
} collect ψi sets of measurement data

which are available at vi, where ψi is the number of data sets in Ψ vi. The corre-

sponding data vectors of the sets of measurement data included in Ψ vi are denoted by

sS
vi
1
, sSvi2 , · · ·sS

vi
ψi

. The aggregation data that outputs from aggregating the measure-

ment data in each set of Ψ vi are then denoted by flvi1 (sS
vi
1
), flvi2 (sS

vi
2
), · · · , flvi

φi

(sSvi
ψi

).

Let Υ denote a multiset operation which is either the union of two sets, ∪, or the

set-theoretic difference \. Applying the operations to all the sets of measurement data

given in set Ψ vi results in

Svi1 Υ1S
vi
2 Υ2 · · ·Υψi−1S

vi
ψi

= SB
ij , (3.7)

where the operation is Υi between the set Svii and the set Svii+1. The result given by

(3.7) considers all possible combinations to sets Svi1 , Svi2 , ..., Sviψi .
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Let Svi1→i denote the accumulated results from Svi1 to Svii , i.e. ψi = 1 in (3.7), corre-

spondingly, let sSvi1→i
be the accumulated data vector and flvi1→i

(sSvi1→i
) be the aggregation

date.

There are then two possible operations:

• When the operation Υi is a union ∪, the corresponding operation applied to the

aggregation data is

flvi1→i+l
vi
i+1

(sSvi1→i
, sSvii+1

) = gΠ({S
vi
1→i,S

vi
i+1})

(

flvi1→i
(sSvi1→i

), flvi
l+1

(sSvi
l+1

)
)

. (3.8)

It shall be noted that there could be duplications of measurement data in the

operations.

• When the operation Υi is a set-theoretic difference \, the corresponding operation

applied to the aggregation output is shall only be applied under two conditions:

– All data contained in the set Svii+1 is contained in Svi1→i, and

– there exists an inverse function g−Π({S
vi
1→i,S

vi
i+1}) which takes flvi1→i

(sSvi1→i
) and

flvi
l+1

(sSvi
l+1

) as input parameters and yields an aggregation with the data in

the data set Svi1→i \ S
vi
l+1.

When both conditions are fulfilled, the aggregation data output from the opera-

tion is

flvi1→i−l
vi
i+1

(sSvi1→i
, sSvii+1

) = g−Π({S
vi
1→i,S

vi
i+1})

(

flvi1→i
(sSvi1→i

), flvi
l+1

(sSvi
l+1

)
)

. (3.9)

If the conditions resulting in a valid corresponding set-theoretical difference are

not fulfilled, the given combination of the set of measurement data and the op-

erations are then not considered in the bias cancellation.

After applying the operations Υ to the data set in Ψ vi , the corresponding aggregation

output gives flBij (sSB
ij
). To reduce the bias in the computation (3.6), one can simply

apply

fli+lj−lBij (sSUB
ij

) = g−Π({{Si,Sj},SB
ij})(fli+lj(sSi , sSj), flBij(sSB

ij
)) , (3.10)

where the set of measurement date is SUB
ij = Si ∪ Sj , and the superscript UB implies

that it is an UnBiased version after the bias of the measurement data included in SB
ij
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is eliminated by the computation in (3.10). sSUB
ij

is the accumulated data vector of the

measurement data in SUB
ij . The cardinality of SUB

ij is denoted by lUB
ij which is equal to

li + lj − lBij .

We provide a toy example to demonstrate the operations in (3.7). Assuming that the

data set of the current message at sensor vi is Si = {s1, s2, s3, s4}, the data set of the

incoming message from sensor vj is Sj = {s3, s4, s5, s6}, the set Ψ vi contains four data

sets, Svi1 = {s1, s2, s3, s4}, S
vi
2 = {s1, s2, s4}, S

vi
3 = {s2, s4} and Svi4 = {s4} and the

data set SB
ij = Si ∩ Sj = {s3, s4}. Then the set of operations which are applied to Svi1 ,

Svi2 , Svi3 and Svi4 is

Svi1 \ Svi2 ∪ Svi3 \ Svi4 = SB
ij .

In Chapter 2, we list some examples of the divisible functions. When there exists dupli-

cation of data, not all the functions require a set Ψ vi and perform the bias-cancellation

stated in (3.7). It is because the duplication of measurement data does not impact the

computation result. For example, the max function fN(s) = maxi si and the min func-

tion fN (s) = mini si are not influenced by the bias because taking the max/min from

a data set Si is always equivalent to taking the max/min from the data set Si ∪ {sj}

when sj ∈ Si.

Other divisible functions such as downloading, histogram, sum, and average functions

will suffer from the duplication of measurement data. In order to perform the bias-

cancellation in (3.7) and its corresponding operations on the aggregation output, it

needs to be tested against the existence of an inverse function g−Π in order to apply

the equation for bias cancellation (3.10).

• Downloading function: the computation in (3.10) is

g−Π({{Si,Sj},SB
ij})(fli+lj (sSi, sSj), flBij (sSB

ij
)) (3.11)

= delete sSB
ij
from sSij .

• Histogram function: the computation in (3.10) is

g−Π({{Si,Sj},SB
ij})(fli+lj (sSi, sSj), flBij (sSB

ij
)) (3.12)

= fli+lj (sSi)− flBij (sSB
ij
).

• Sum function: the computation in (3.10) is

g−Π({{Si,Sj},SB
ij})(fli+lj (sSi, sSj), flBij (sSB

ij
)) (3.13)

= fli+lj (sSi)− flBij (sSB
ij
).
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• Average function: the computation in (3.10) is

g−Π({{Si,Sj},SB
ij})(fli+lj (sSi, sSj), flBij (sSB

ij
)) (3.14)

=
(li + lj)fli+lj(sSi)− lBijflBij (sSB

ij
)

li + lj − lBij
.

As shown above, to perform bias reduction consists of two steps. The first is to de-

termine the bias SB
ij , and the second is to perform the Υ operation to several sets of

measurement data collected in set Ψ vi. Equivalently, for the first one, one can find the

bias in the form of the index set S iB
ij = S i

i ∩ S i
j since the measurement data cannot

be explicitly retrieved and is always computed in aggregation data. For the second

one, the measurement data in each set Svii ∈ Ψ vi is aggregated in the aggregation data

encapsulated in a message which is, together with the I-Header, available at sensor vi.

Therefore, the conditions of applying the bias cancellation shown in (3.10) are

• sensor vi knows the I-Header of its own message mi and the message mj from

sensor vj ,

• sensor vi knows messages where the data set Svii ∈ Ψ vi is aggregated, and their

corresponding I-Headers,

• sensor vi knows a set of operations Υ which fulfills (3.7).

Based on the principle of the method mentioned above, a bias-cancellation algorithm

is proposed as shown in Algorithm 1.

Algorithm 1 Bias cancellation algorithm

1: Sensor vj sends its I-Header Ij and its message to sensor vi.
2: vi gets the index sets S i

i and S i
j by applying Θ(Ii) and Θ(Ij), respectively.

3: The indices of the data that leads to bias are S iB
ij = S i

i ∩ S i
j .

4: vi finds messages which data in data set Svii ∈ Ψ vi is aggregated and finds the set
of operations Υ using exhaust search.

5: vi computes flBij (sSB
ij
).

6: vi computes fli+lj (sSi, sSj).
7: vi computes fli+lj−lBij (sSUB

ij
) using (3.10).
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3.4 Sensor selection in bias reduction

3.4.1 Introduction

Bias reduction can be jointly considered with sensor selection when there are more

than one neighbor sensors transmitting messages to a sensor.

Figure 3.3 considers a sensor vi and its neighbor sensors where sensors vj , vk, vl and

vm transmit their messages to sensor vi successfully.

vi

vj vk

vl

vm

Figure 3.3. vi receives messages from more than one neighbor sensor

A straightforward extension of the bias cancellation introduced in the previous section

is to iteratively cancel the bias in the aggregation data after the aggregation with the

data in each incoming message. However, this may lead to a problem of redundant

message transmission. We consider here two examples using Figure 3.3, where sensor

vi receives messages from vj, vk, vl, and vm consecutively.

• In the first example, the set of measurement data in the aggregation data of

sensor vj and that of sensor vk fulfill Sj ⊃ Sk, the message transmission from

sensor vk is not necessary.

• In the second example, the corresponding data sets have the relation Sj∪Sk ⊆ Sl,

i.e., the measurement data aggregated in the message from sensor vl includes

all measurement data that is transmitted from sensor vj and vk, the message

transmission of sensors vj and vk will be redundant.
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In this section, a two-step solution is proposed to achieve the optimum performance for

bias cancellation when multiple neighbor sensors of sensor vi are intended to transmit

their messages to vi. The first step is to perform a selection of neighbor sensors of

sensor vi in order to find a subset of N S
i . The aggregation data of the selected sensors

will be taken into account in the data aggregation and the bias reduction at sensor

vi. The second step is to perform the bias reduction to the data aggregation at sensor

vi. The data aggregation considers the aggregation data from the selected neighbor

sensors and the aggregation data of sensor vi.

3.4.2 Selection of neighbor sensors

In the first step, we will solve the problem of selecting a subset of the neighbor sensors

whose aggregation data are considered in the data aggregation at sensor vi. A con-

straint of the solution is that all of the measurement data aggregated in the aggregation

data encapsulated in the message of neighbor sensors of vi shall be included after the

selection.

Let SR
i denote the underlying data set if the measurement data of all the data sets

Sj, vj ∈ N S
i are aggregated at sensor vi, i.e.,

SR
i = Si ∪ (∪vj∈N S

i
Sj) , (3.15)

where SR
i is called the reference data set of aggregation at sensor vi and as mentioned

in previous sections that if the measurement data of a sensor is in the underlying data

set, it only appears once. To facilitate the bias reduction algorithm which is going to

be introduced, SR
i is represented using multiset as (SR

i , 1), where 1 is an all-1-vector

with the length being the cardinality of SR
i . The data set SR

i includes all measurement

data that shall be aggregated when sensor vi receives messages from its neighbor sensor

regardless of the neighbor sensors selection. Therefore, SR
i gives the reference in such

a way that when sensor vi selects its neighbor sensors, the measurement data that

are aggregated in the aggregation data encapsulated in the messages of the selected

neighbors shall include all measurement data given in SR
i and sensor vi will observe

the complete set of measurement from its neighbor sensors.

It can be summarized from the two examples of where redundant messages are trans-

mitted, to select the neighbor sensors, the set of measurement data that are aggregated

in the aggregation data need to be compared. For simplicity, we set up a dictionary of

the comparison results between two sets of measurement data.
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Let rΘ be a function with two data sets Si and Sj as parameters and output an index

indicating the relation between two data sets:

rΘ(Si,Sj) =























1 for Si = Sj ,

2 for Si ⊃ Sj ,

3 for Si ⊂ Sj ,

4 else . (3.16)

When the result is 4, it indicates that both of the two data sets have new data to each

other.

The collection of all sets of measurement data of the messages at sensors in N S
i is

denoted by an ordered set Ψ
N S
i

i with Ψ
N S
i

i = {Sj|vj ∈ N S
i }. Let the sets of measurement

data in Ψ
N S
i

i be ordered according to the increase of the indices of the corresponding

sensors such that Ψ
N S
i

i (l), l = 1, 2, · · · , |N S
i | can be used to denote the l-th set of

measurement data in Ψ
N S
i

i which is from the l-th sensor in N S
i .

The proposed selection method of the neighbor sensors is based on the grouping. All

sets of measurement data in Ψ
N S
i

i will be grouped according to the comparison results

between the sets of measurement data.

Let P denote the set of groups generated by grouping the sets of measurement data in

Ψ
N S
i

i and let p denote the number of groups in P after grouping. Let Pj , j = 1, 2, · · · , p

denote the j-th group in P. In group Pj , let variable nPj denote the number of sets of

measurement data and let Pj(l), l = 1, 2, · · · , nPj denote the l-th set of measurement

data in Pj . The sets of measurement data in each group in P are ordered such that

the first set of a group is a superset of all other sets of measurement data in the same

group. The first step of grouping is to find the first set of measurement data of every

group in P. Let P1 denote the set collecting the first sets of measurement data of

all groups in P, i.e., P1 = {P1(1),P2(1), · · · ,Pp(1)}. The Algorithm 2 generates the

set P1 given the input of Ψ
N S
i

i . In Algorithm 2, whenever a set of measurement data

contains new measurement data that is not included in other sets of measurement data

which are already in P1, the set will be included in P1. Meanwhile, if a data set in P1

is tested as a subset of another data set, it will be eliminated from P1.

Algorithm 2 yields the set P1 as well as the number p of groups being the number of

data sets in P1. Since every set of measurement data which contains new measurement

data is included in P1, the union of all data sets in P1 is identical to SR
i satisfying

∪Sj∈P1Sj = SR
i . (3.17)



3.4 Sensor selection in bias reduction 39

Algorithm 2 Algorithm to find P1

1: P1 is initialized to be P1 = {Ψ
N S
i

i (1)}

2: for Sj in Ψ
N S
i

i do

3: join P1 := 0;
4: for Sk in P1 do

5: if rΘ(Sj ,Sk) = 1or = 3 then

6: join P1 := 0;
7: Stop current for-loop and start with the next Sj ;
8: else

9: if rΘ(Sj,Sk) ∈ {2} then

10: join P1 := 1;
11: P1 = P1 \ Sk;
12: else

13: join P1 := 1;
14: end if

15: end if

16: end for

17: if join P1 = 1 then

18: P1 = P1 ∪ {Sj};
19: end if

20: end for

The second step of the grouping is to assign the sets of measurement data in Ψ
N s
i

i to

the p groups using the algorithm shown in Algorithm 3 with the knowledge of P1. It

shall be noticed that every data set in P1 can be assigned to only one of the p groups.

However, the other data sets in Ψ
N S
i

i \ P1 can be assigned to more than one group.

For example, the data sets in Ψ
N s
i

i are {S1, · · · ,S6}, where S1 = {s1, s2, s3}, S2 =

{s2, s3, s4}, S3 = {s4, s5}, S4 = {s1, s2}, S5 = {s2} and S6 = {s3, s4}, respectively.

The reference data set of aggregation is SR
i = {s1, s2, s3, s4, s5}. Set P

1 is {S1,S2,S3}

according to Algorithm 2 and the result of the grouping by using algorithm in Algorithm

3 is P1 = {S1,S4,S5}, P2 = {S2,S5,S6} and P3 = {S3}.

After grouping of the data sets, one data set will be chosen from each group in P

together with the data set Si to test whether their union is equivalent to SR
i . If the

equivalence holds, the current selection data sets is a candidate for calculating the

function output, and the bias cancellation is performed based on the selected data set.

Let set C collect all these possible selections of the data sets, and let nC denote the

number of possible selections collected in C where each selection has p data sets chosen

from each group of P. Let set Cm, m = 1, 2, · · · , nC denote the m-th selection in C and

Cm(l), l = 1, 2, · · · , p denote the l-th data set in Cm. With the example above, we have

C = {C1, · · · , C4}, where C1 = {S1,S2,S3}, C2 = {S1,S6,S3}, C3 = {S4,S2,S3} and
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Algorithm 3 Algorithm for partitioning and grouping

1: for Sk in Ψ
N s
i

i \ P1 do

2: for Pj in P do

3: join group := 0;
4: join group END := 1;
5: for l = 1 to nPj do

6: if rΘ(Sk,Pj(l)) ∈ {1} then

7: join group := 0;
8: Stop the current for-loop and go to line 21
9: else

10: if rΘ(Sk,Pj(l)) ∈ {3} then

11: join group := 1;
12: else

13: if rΘ(Sk,Pj(l)) ∈ {2} then

14: join group := 1;
15: join group end := 0;
16: Stop the current for-loop and go to line 21
17: end if

18: end if

19: end if

20: end for

21: if join group = 1 then

22: if join group END = 0 then

23: Sk joins the group Pj at the last position, i.e., Pj(nPj + 1) = Sk;
24: else

25: Sk joins the group Pj at the l-th position;
26: end if

27: end if

28: end for

29: end for

C4 = {S4,S6,S3}, respectively.

Data aggregation of the set of the data sets in each selection will have a bias. Let Ψ be a

selection in C, i.e., Ψ ∈ C. The set of sensors whose data sets are included in Ψ is denoted

by N Ψ
i . Similar to (3.1) and (3.2), the underlying data set after vi has aggregated all

data sets in Ψ is SΨ = Si ∪ (∪vj∈NΨ
i
Sj), and the multiplicity of the measurement data

in SΨ is cSΨ (l) = cSi(l) +
∑

vj∈NΨ
i
cSj(l), where l ∈ S iΨ , and S iΨ is the index set

corresponding to SΨ . The bias of the output is then bm(SΨ ) =
∑

l∈S iΨ (cSΨ (l)− 1).

In this section, data sets from each neighbor sensor in N S
i are grouped to generate

possible selections. To select the neighbor sensors for message transmissions, all the

possible selections shall be tested against their performance of bias reduction given
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bias bm(SΨ ) before the bias reduction. This test will be explained in the subsequent

subsection.

3.4.3 Bias reduction with messages in the memory

In this section, we discuss the acquisition of the set of data set Ψ vi used by sensor vi

when vi performs bias cancellation.

As shown in Chapter 2, each sensor is equipped with memory capability to store various

kinds of data, e.g., the previously transmitted or received messages. In order to perform

the bias cancellation to reduce or eliminate the bias, we leverage the aspect to use the

messages that are stored in the memory of the sensor.

Let ψi denote the number of messages stored in the buffer of sensor vi. We denote

the messages and their I-Headers stored in the buffer by mvi
l and I

vi
l , respectively,

where l = 1, 2, · · · , ψi. The corresponding data sets of the stored messages are denoted

by Svi1 ,S
vi
2 , · · · ,S

vi
ψi
, which can be determined by applying the function Θ−1 to the

corresponding I-Header, i.e., Svil = Θ−1(Ivil ). Let Ψ
vi = {Svi1 ,S

vi
2 , · · · ,S

vi
ψi
} denote the

set which collects these data sets. Generally, not all data sets in Ψ vi need to be taken

to construct the set for bias reduction.

In the following definitions, all the set will be ordered sets in order to ensure the

indices, which are expressed by integer numbers, can be permuted to output different

combinations. Let Ω ⊆ Ψ vi be a set of data sets. Let Ω(i) be the i-th data set in

Ω, where i = 1, 2, · · · , |Ω|. Let ΛΩ be the set which collects all possible permutations

of data sets in Ω. For a permutation x ∈ ΛΩ, where x(j) gives the j-th index in

the permutation, Ωx gives the set where the data sets in Ω are ordered according to

the permutation defined in x, i.e., Ωx(j) = Ω(x(j)). For example, for the set Ω =

{S1,S2,S3}, one has ΛΩ = {{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}}. If

x = {3, 2, 1}, it results Ωx = {S3,S2,S1}.

For every Ωx, a set Υ is defined to collect the operation between data sets Ωx(i)

and Ωx(i + 1) sequentially. The operation is only limited to two set operations, the

union ∪ and the set-theoretic difference \. Since there are |Ωx| data sets in Ωx, the

number of operations in Υ is |Ωx| − 1. The result of the operation is a data set

SΩ
x

= Ωx(1)Υ (1)Ωx(2)Υ (2) · · ·Υ (|Ωx| − 1)Ωx(|Ωx|), where Υ (i) is the i-th operation

in Υ . The collection of all possible choices of Υ is denoted by
∐

. When applied to

bias-cancellation, admissibility of the operation Υ should be satisfied. The admissibility
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Algorithm 4 Check Admissibility of Υ

1: SΩ
x

= Ωx(1);
2: for (i = 1; i < |Ωx|; i = i+ 1) do
3: if Υ (i) is ∪ then

4: SΩ
x

= SΩ
x

∪Ωx(i+ 1);
5: cSΩx (l) = cSΩx (l) + cΩx(i+1)(l), ∀sl ∈ Ωx(i+ 1);
6: else

7: if Ωx(i+1)\SΩ
x

is an empty set φ and cSΩx (l)−cΩx(i+1)(l) > 0, ∀sl ∈ Ωx(i+1)
then

8: SΩ
x

= SΩ
x

\Ωx(i+ 1);
9: cSΩx (l) = cSΩx (l)− cΩx(i+1)(l), ∀sl ∈ Ωx(i+ 1);
10: else

11: SΩ
x

= φ;
12: STOP Current for-loop;
13: end if

14: end if

15: end for

holds when there is no operation Υ (i) subtracting a data resulting in a negative number

of the data in the data set. Algorithm 4 can check the admissibility.

If the Algorithm 4 returns an empty set SΩ
x

= φ, the failed admissibility results.

Otherwise, the algorithm returns a multiset whose underlying data set is SΩ
x

, and the

multiplicity is cSΩx . We define a proper combination of Ω as a tuple, which includes a

permutation and a sequenced operation set (x, Υ ). The remaining bias after performing

bias cancellation using Ω and (x, Υ ) is defined by

b(Ψ,Ω, x, Υ ) =
∑

l∈S iΩx

(cSΨ (l)− 1− cSΩx (l)), (3.18)

where S iΩx is the index set of the data set SΩ
x

.

The goal of bias reduction at sensor vi is to find the bias-reduction set Ωb ⊆ Ψ vi, the

subset of the data sets Ψb which includes in the message of the neighbor sensors of vi,

the optimal permutation xb of the data sets in Ωb, and the sequence of operations Υb
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which all result from the minimization problem given by

(Ψb, Ωb, xb, Υb) = min
Ψ,Ω,x,Υ

b(Ψ,Ω, x, Υ ) (3.19)

s.t.

Ψ ∈ C

cSΨ (l)− cSΩx (l) ≥ 1, ∀sl ∈ SΩ
x

Ω ⊆ Ψ vi

x ∈ ΛΩ

Υ ∈
∐

.

The minimization problem in (3.19) yields a combinatorial problem. Firstly, its com-

plexity analyzed. Assuming the number of data sets in Ω that is chosen from Ψ vi is no

more than ω̄, i.e., |Ω| ≤ ω̄, the number of possible choices is

ω̄
∑

k=1

(

ψi
k

)

. (3.20)

For a given 1 < ω ≤ ω̄, there will be ω − 1 operations of Υ chosen for generating the

bias-cancellation set. Considering the two choices of Υ , either being the union or being

the set minus, the total number of possible choices of the operations for a chosen ω

will be 2ω−1. Therefore, there will be in total

ω̄−1
∑

ω=2

2ω−1 (3.21)

possible admissibility checks needed.

To reduce the time taken at the runtime of a sensor when it receives messages from its

neighbor sensors, the number of computations that are needed to construct the bias

reduction set shall be reduced. It can be easily observed that it requires no knowledge

of the incoming messages at sensor vi to perform admissibility checks. Therefore, the

admissibility check of possible combinations of the messages in the memory can be

done at sensors before the message communications start. Storing the output of all

admissibility checks consumes memory of sensors, but it increases the speed of bias

cancellation.

To limit the required memory to store the messages, we use ψi to indicate the maximum

number of messages that sensor vi can store in its memory. Furthermore, ω̄ is defined as

combination depth to indicate the maximum number of data sets that can be combined
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when performing computation. We define the combination table T as the output of

admissibility checks.

To describe the algorithm of constructing T , we denote Ψ viω as the set of data sets

resulting from chosen ω data sets from Ψ vi and Ψ viω (l), l = 1, 2, · · · , ω is the l-th data

set in Ψ viω . The table T consists of two parts. In the first part, for every ω and

every possible set of data set Ψ viω , the union operations are applied. When the union

operations are applied to the data sets in Ψ viω , the underlying data set of the result is

denoted by Sviω , and the multiplicity is cSviω (j) =
∑ω

l=1 cΨviω (l)(j). All of the outputs are

inserted into T . The algorithm to construct the first part of T is given in Algorithm

5.

Algorithm 5 Construction of the first part of table T
1: for ω = 1 : ω̄ do

2: for every possible Ψ viω do

3: determine the underlying data set Sviω and the multiplicity cSviω (j)
4: T = T ∪ {Sviω }
5: end for

6: end for

In the second part of T , two data sets of the first part of T are chosen, and the set

minus should be applied. However, the admissibility should be checked to determine

whether the set minus operation can be applied. We denote ST1
1 and ST1

2 as the two

ordered chosen data sets from the first part of T . Their corresponding multiplicities are

c
S
T1
1

and c
S
T1
2
, respectively. The sets of data sets that are chosen from Ψ vi to construct

ST1
1 and ST1

2 are Ψ
S
T1
1

and Ψ
S
T1
2
, respectively.

Algorithm 6 Admissibility check for the construction of the second part of table T

1: for every pair of ST1
1 and ST1

2 do

2: if Ψ
S
T1
1

∩ Ψ
S
T1
2

6= ψ then

3: Admissibility check fails
4: else

5: if c
S
T1
1
(l)− c

S
T1
2
(l) < 0, ∀sl ∈ ST1

2 then

6: Admissibility check fails
7: else

8: T = T ∪ {ST1
1 \ ST1

2 }
9: c

S
T1
1 \S

T1
2

= c
S
T1
1

− c
S
T1
2

10: end if

11: end if

12: end for

The admissibility check given by Algorithm 6 fills T with the output of performing

the set minus to the two chosen data sets from the first part of T . After getting T , it
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is possible to select data set ST for performing the bias cancellation. We denote the

multiplicity of the data in the chosen ST by cST .

For better usage of the table T , the bias of the aggregation output SΨ is counted using

the name ”layers”. The number LSΨ of layers is the maximum bias of the data in SΨ ,

i.e.,

LSΨ = max
l
cSΨ (l)− 1 . (3.22)

In the k-th layer 0 < k ≤ LSΨ , the corresponding bias of data sl is

bkm(SΨ )(l) = 1, (3.23)

if cSΨ (l)−k > 0. For the k-th layer, a data set ST
k is chosen from T to perform the bias

cancellation. If there is bias remaining, it is accumulated in the next layer. Therefore,

the bias cancellation problem can be simplified as the choice of the ordered data sets

ST
1 ,S

T
2 · · · ,ST

L
SΨ

from T , which leads to

(Ψb,S
T
1,b, · · · ,S

T
L
SΨ

,b) = min
Ψ,ST

1 ,··· ,S
T
L
SΨ

b(Ψ,ST
1 , · · · ,S

T
L
SΨ
) (3.24)

s.t.

Ψ ∈ C
k

∑

j=1

(

bj
m(SΨ )(l)− cST

j
(l)

)

≥ 0, ∀sl ∈ SΨ .

It can be deduced that the complexity of the bias cancellation given in (3.24) is de-

pendent on the number LSΨ of layers of the bias. Additionally, LSΨ is relative to the

number of neighbor sensors that are transmitting messages to sensor vi.

3.5 Summary

In this chapter, the definition of bias using multiset expression has been introduced

in the context of random gossiping. The bias cancellation has been proposed as an

algorithm give by Algorithm 1. Furthermore, we have discussed the aspects to facilitate

and improve the bias cancellation. The neighbor sensors selection helps to choose

the neighbor sensors with the messages from whom the sensor performs aggregation.

Using the messages in the sensor memory, we are able to find the optimal data set to

perform the bias cancellation by solving an optimization problem. In this thesis, the

optimization will be done numerically by exhaustive search. The performance will be

evaluated using simulation in the next chapters.
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Chapter 4

Aggregation time reduction

4.1 Introduction

The discussions in this chapter focus on the reduction of communications in random

gossiping based wireless sensor networks.

As reviewed in Chapter 1, there are existing publications on the topic of improving

convergence speed for consensus problem using topology optimization, i.e., tuning the

connectivity between two sensors for every pair of sensors in the network. However,

this method requires global information, and so far can only serve as an off-line solu-

tion. Moreover, this optimization is only for applying the consensus to all the sensor

measurements.

Chapter 2 introduced a cross-layer model based on indicating-header (I-Header), which

is shared information between the application layer and the network layer. I-Header

can maintain the transparency of the two layers such that different applications can be

supported. Based on this, Chapter 3 covers the bias cancellation topic.

In this chapter, we discuss the possibility of reducing the number of message communi-

cations in random gossiping based wireless sensor networks. The protocols of random

gossiping using I-Headers for a dynamic wireless sensor network is introduced. Further-

more, we introduce multihop coordination in random gossiping as a method to further

reduce the number of message communications.

The remainder of the chapter is organized as follows. In Section 4.2, we discuss the

reduction of message communications in random gossiping in dynamic wireless sensor

networks. Multihop coordination is discussed in Section 4.3. The performance of the

proposed methods to reduce the aggregation time is given in Section 4.4. Section 4.5

concludes this chapter. Parts of the content of this chapter have been published by the

author of this thesis in [CKK13b], [CKK13a] and [CKK14a].
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4.2 Dynamic wireless sensor networks

4.2.1 Mobile sensors

We define sensors that may change their locations in wireless sensor networks as mobile

sensors. A dynamic wireless sensor network shall meet two conditions:

• Sensors in the network are mobile sensors.

• The neighbor sensors of a sensor may change.

It shall be noticed that all sensors in the wireless sensor network being mobile sensors

are not a sufficient condition of a dynamic wireless sensor network. If all sensors in the

wireless sensor network are mobile sensors, but they are geographically relative stable

when each sensor changes its location, the neighbor sensors of every sensor remain the

same. In this case, the wireless sensor network is not dynamic.

In other words, a sensor does not have constant neighborhood information in dynamic

wireless sensor networks. In this thesis, we assume that the sensors in a dynamic

wireless sensor network change their location only after the communications of a sensor

with its neighbor sensors being finished. Under this assumption, the sensor has a

constant neighbor condition when it communicates with its neighbor sensors. The

state machine in Figure 4.1 explains such process.

A sensor starts with neighbor discovery. Communications are only performed between

sensors after neighbor sensors have been determined. A sensor may change its location

after communications.

Depending on how a sensor is designated to interact with its neighbor sensors, we

categorize sensors into humble sensors and greedy sensors, where the words humble

and greedy indicate the number of neighbor sensors with which a sensor is going to

exchange its message. When a sensor is a humble sensor, it exchanges messages with

only one of its neighbor sensors, whereas a greedy sensor implies that a sensor will

exchange its messages with all of its neighbor sensors. We call a sensor network a

humble wireless sensor network when all the sensors in the network are humble sensors

and a greedy wireless sensor network when all the sensors in the network are greedy

sensors.

In the next two subsections, details of these two sensors and the corresponding random

gossiping algorithms are discussed.
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Commu-
nicate Move

Neighbor
discovery

Start

Figure 4.1. The state machine of sensors in dynamic wireless sensor networks

4.2.2 Random gossiping in humble wireless sensor networks

In humble wireless sensor networks, a sensor communicates its messages with only one

of its neighbor sensors each time when it initializes the communications. The following

problems need to be addressed according to the humble sensor definition.

• How does a sensor select one sensor from its neighbors to communicate?

• What is the characteristic of the network connectivity?

• What is the speed of convergence of the data aggregation in the network?

4.2.2.1 Neighbor sensor selection

For humble wireless sensor networks, we consider two ways to choose the neighbor

sensor when a humble sensor initializes the communication.

The first way originates from the consensus problem, which is discussed in Chapter

2. The neighbor sensors are chosen randomly as proposed in [BGPS06]. With this

neighbor selection method, one humble sensor vi which is taken randomly from V

initializes the communication at a time. The neighbor sensors of vi are collected in the
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set Ni with the cardinality Ni. When the selection of a sensor is equally probable, the

probability pi(vj) that sensor vj ∈ Ni is chosen to perform the communication is

pi(vj) =
1

Ni

, ∀vj ∈ Ni . (4.1)

The sensor selection in (4.1) chooses a neighbor sensor of vi to exchange messages in

a very simple way. However, it does not yield efficient communications. When sensor

vj is chosen randomly with probability pi(vj), if sensor vj ∈ Ni has the same set of

data aggregated, it is of a probability pi(vj that two redundant communications are

performed. If either sensor vi or sensor vj has new data aggregated for the other, it is

with a probability of pi(vj) that one redundant communication is performed. If both vi

and vj have new data for each other, we say there is no redundant communications has

been performed. Generally, a sensor has no information on whether its neighbor sensor

has aggregated specific measurement data. Therefore, the three cases have the same

probability to happen, i.e., 1/3. The average number of redundant communications is

nr =
1

3
∗ 2 +

1

3
∗ 1 +

1

3
∗ 0 = 1 . (4.2)

Meanwhile, if all sensors in Ni have the same distribution regarding the three cases,

the average number of redundant communications when sensor vi initializes the com-

munications is

∑

vj∈Ni

pi(vj) ∗ n
r = 1. (4.3)

In order to reduce the redundant transmission, we take advantage of I-Header that we

introduced in Chapter 2. The I-Header of sensor vi is Ii, which can be translated into

the corresponding data set Si by the function S i
i = Θ(Ii). Before message transmis-

sion, sensor vi broadcasts its Ii. The neighbor sensors in Ni receives Ii, perform the

transform using Θ(Ii) to get the index set S i
i. After the comparison between S i

i and

S i
j which is from Ij at sensor vj ∈ Ni, vj can feed back an acknowledgment to sensor

vi containing its ID and the result after comparison indicating whether the communi-

cation is necessary. When sensor vi receives that acknowledgment, a random neighbor

sensor selection can still be performed, but in average one unnecessary transmission can

be avoided since vi or the selected neighbor can always choose to avoid the transmission

based on the knowledge of the comparison.

The advantage of selecting a neighbor sensor randomly without using I-Header is its

simplicity and its low overhead. The overhead required for two sensors, vi and one of

its neighbor sensors vj ∈ Ni is merely their ID information and the overhead for syn-

chronization. With the I-Header transmission, extra overhead includes the I-Header
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transmission of sensor vi and the acknowledgment from sensors in Ni. The disadvan-

tage is that it does not take into account the amount of measurement data that can

be aggregated benefiting from communication. Therefore, we propose the neighbor

selection using I-Header information.

When using I-Header, our objective to select a neighbor sensor is to maximize the

mutual difference in the data set of sensor vi and the selected neighbor sensor. The

neighbor selection problem can be formulated as

vsj = arg max
vj∈Ni

|
(

S i
i ∪ S i

j

)

\
(

S i
i ∩ S i

j

)

|, (4.4)

where vsj is the selected sensor, and | · | returns the cardinality of the set. To implement

the selection in (4.4), Algorithm 4.2.2.1 is proposed.

Algorithm 7 Neighbor selection for humble sensors with maximization of mutual
difference
1: Sensor vi firstly broadcasts its I-Header Ii to all sensors in Ni

2: Neighbor sensors vj ∈ Ni receives Ii
3: vj performs the translation using S i

i = Θ(Ii)
4: vj computes cj = |

(

S i
i ∪ S i

j

)

\
(

S i
i ∩ S i

j

)

|
5: The computed output cj is transmitted back to sensor vi as an acknowledgement
6: Sensor vi receives all acknowledgments from sensors in Ni

7: The maximization in (4.4) is performed in order to select the sensor vsj .

4.2.2.2 Connectivity for humble wireless sensor networks

Connectivity in wireless sensor networks using random gossiping can be explained in

a way that the data of one sensor will be aggregated at any other sensors with finite

communication rounds. We verify the connectivity by two extreme scenarios:

• Scenario 1: the neighbor sensors of sensor vi in Ni are all connected, i.e., ∀vj ∈

Ni, ∀vk ∈ Ni \ {vj}, vk ∈ Nj, where Nj is the set of neighbor sensors of vj .

• Scenario 2: the neighbor sensors of sensor vi in Ni are all isolated to each other,

i.e., ∀vj ∈ Ni, ∀vk ∈ Ni \ {vj}, {vk} * Nj .
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Figure 4.2. Scenario 1: complete graph

4.2.2.2.1 Scenario 1 The first scenario corresponds to a complete graph, as shown

in Figure 4.2 constructed by sensor vi and its neighbor sensors in Ni. In this scenario,

all sensors are direct neighbors of all other sensors.

When applying the first sensor selection discussed previously without the involvement

of I-Headers, sensor vi chooses its neighbor for message communication randomly, every

neighbor sensor has a probability 1
Ni

of receiving a message from vi. When all sensors

are connected, any neighbor sensor vj having the data of sensor vi indicates that all

sensors in Ni may aggregate the data. Sensor vj may have received the data from

either sensor vi or another neighbor sensor of vi. Therefore, in humble wireless sensor

networks, the network has stochastic connectivity based on the communication range

model we discussed in Chapter 2.

In order to analyze the stochastic connectivity, we consider the case in Scenario 1 that

sensors in Ni can only be reached by other sensors in Ni as well as sensor vi in the

wireless sensor networks. We start with the analysis of the probability of how many

sensors within Ni ∪ {vi} has aggregated data after every communication. Because the

humble sensors will exchange messages with neighbor sensors, i.e., the sensor transmits

and receives from one of its neighbor sensors, the analysis is based on the link between

every two sensors. In a complete graph constructed by sensor vi and its Ni neighbor

sensors, the total number of links is

Ci =
(Ni + 1)Ni

2
. (4.5)

Therefore, the possibility that two specific sensors among Ni ∪ {vi} exchange their

messages is 1
Ci
. Using the example shown in Figure 4.2, we analyze the probability of

the number of sensors which have aggregated si. We use the term ”slot-i” indicating
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the i-th time that a sensor among Ni ∪ {vi} wakes up and let pi(k) indicates that at

the end of slot-i, there are k sensors has aggregated data si.

• Slot-1: there are at most 2 sensors that have aggregated si.

The possibility that two sensors have vi is

p1(2) =
Ni

Ci
, (4.6)

and the probability that only one sensor has si aggregated is

p1(1) =
Ci −Ni

Ci
. (4.7)

• Slot-2: at most 3 sensors can have aggregated si. We have

p2(3) = p1(2)
2(Ni − 1)

Ci
, (4.8)

p2(2) = p1(2)
Ci − 2(Ni − 1)

Ci
+ p1(1)

Ni

Ci
, (4.9)

p2(1) = p1(1)
Ci −Ni

Ci
. (4.10)

• Slot-3: si is available in 4 sensors. Their probabilities are

p3(4) = p2(3)
3(Ni − 2)

Ci
(4.11)

p3(3) = p2(3)
Ci − 3(Ni − 2)

Ci
+ p2(2)

2(Ni − 1)

Ci
(4.12)

p3(2) = p2(2)
Ci − 2(Ni − 1)

Ci
+ p2(1)

Ni

Ci
(4.13)

p3(1) = p2(1)
Ci −Ni

Ci
(4.14)

• Slot-4: si can be aggregated by 5 sensors, i.e., all sensors in Ni ∪ {vi}. The

probabilities are

p4(5) = p3(4)
4(Ni − 3)

Ci
(4.15)

p4(4) = p3(4)
Ci − 4(Ni − 3)

Ci
+ p3(3)

3(Ni − 2)

Ci
(4.16)

p4(3) = p3(3)
Ci − 3(Ni − 2)

Ci
+ p3(2)

2(Ni − 1)

Ci
(4.17)

p4(2) = p3(2)
Ci − 2(Ni − 1)

Ci
+ p3(1)

Ni

Ci
(4.18)

p4(1) = p3(1)
Ci −Ni

Ci
(4.19)
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• Slot-5: starting from slot-5, the maximum number of sensors within Ni ∪ {vi}

will be constantly 5. The probabilities are

p5(5) = p4(5) + p4(4)
4(Ni − 3)

Ci
(4.20)

p5(4) = p4(4)
Ci − 4(Ni − 3)

Ci
+ p4(3)

3(Ni − 2)

Ci
(4.21)

p5(3) = p4(3)
Ci − 3(Ni − 2)

Ci
+ p4(2)

2(Ni − 1)

Ci
(4.22)

p5(2) = p4(2)
Ci − 2(Ni − 1)

Ci
+ p4(1)

Ni

Ci
(4.23)

p5(1) = p4(1)
Ci −Ni

Ci
(4.24)

From the example with vi and its Ni = 4 neighbor sensors, a set of probabilities can be

derived for a general case where sensor vi has Ni neighbor sensors, which are collected

in Ni, and all sensors in Ni∪{vi} form a complete graph, i.e., ∀vj ∈ Ni∪{vi}, vj∪Nj =

Ni ∪ {vi}. Let pl(k) denote the probability that after the l-th communication round

among sensors in Ni∪{vi}, k sensors know data si. For l = 1, at maximum two sensors

will have aggregated data si with probabilities being

p1(2) =
Ni

Ci
(4.25)

p1(1) =
Ci −Ni

Ci
. (4.26)

For 2 ≤ l ≤ Ni, at maximum l+1 sensors will have aggregated si where the probabilities

are

pl(l + 1) = pl−1(l)
l(Ni − (l − 1))

Ci
(4.27)

pl(k) = pl−1(k)
Ci − k(Ni − (k − 1))

Ci
+

pl−1(k − 1)
(k − 1)(Ni − (k − 2))

Ci
, ∀1 < k < l + 1 (4.28)

pl(1) = pl−1(1)
Ci −Ni

Ci
. (4.29)

For l > Ni, the maximum number of sensors which can aggregate si is limited to Ni+1,
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and the probabilities distribution for different numbers are

pl(Ni + 1) = pl−1(Ni + 1) + pl−1(Ni)
Ni

Ci
(4.30)

pl(k) = pl−1(k)
Ci − k(Ni − (k − 1))

Ci
+

pl−1(k − 1)
(k − 1)(Ni − (k − 2))

Ci
, ∀1 < k < Ni + 1 (4.31)

pl(1) = pl−1(1)
Ci −Ni

Ci
. (4.32)

In Figure 4.3, the comparison is given for the probability that the number of sensors

has aggregated data si from the simulation (solid lines) using 10 sensors as Ni ∪ {vi},

and that from theoretical results (circle dot marker) from (4.25) to (4.32).
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Figure 4.3. Simulation (solid lines) and theoretical (circle dot marker) results of the
number of sensors k which has aggregated data si for humble sensors without the
assistance of I-Header, Ni + 1 = 10.

Observing the probabilities from (4.25) to (4.32), it can be concluded that when the

connectivity of the humble sensor vi and its humble neighbor sensors Ni follows a
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complete graph, the probability that after l-th wake-ups of sensors in Ni ∪ {vi} there

are k, k ≤ Ni+1 sensors aggregating the data si can be modeled using a Markov chain.

At l-th wake-up, the probability pl(k) consists of two parts. The first part is resulting

from that at l− 1-th wake-up, there is already k sensors aggregated si, and at the l-th

wake-up there is no new sensor aggregating si. The second part is from that at l−1-th

wake-up, there is k−1 sensors aggregated si, and at the l-th wake-up, there is one new

sensor aggregating si. The Markov Chain and the corresponding Transition Matrices

can be formulated as follows,

• the probability vector p1 is

p1 =

[

p1(1)
p1(2)

]

(4.33)

for 2 ≤ l ≤ Ni, the probability vector pl is of length l + 1 and can be written as

pl =











pl(1)
pl(2)
...

pl(l + 1)











(4.34)

for l > Ni, the probability vector pl is of fixed length Ni + 1 and

pl =











pl(1)
pl(2)
...

pl(Ni + 1)











(4.35)

• the transition matrix for the l-th wake up where 1 ≤ l ≤ Ni is of size (l+1)-by-l

and is written as

Tm
l =

















Ci−Ni
Ci

0 0 · · · 0
Ni
Ci

Ci−2(Ni−1)
Ci

0 · · · 0

0 2(Ni−1)
Ci

Ci−3(Ni−2)
Ci

· · · 0
...

...
...

. . .
...

0 0 0 · · · l(Ni−(l−1))
Ci

















(4.36)

the transition matrix for l > Ni is a square matrix of the constant size (Ni + 1),

given as

Tm
l =

















Ci−Ni
Ci

0 0 · · · 0 0
Ni
Ci

Ci−2(Ni−1)
Ci

0 · · · 0 0

0 2(Ni−1)
Ci

Ci−3(Ni−2)
Ci

· · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · Ni(Ni−(Ni−1))
Ci

1

















(4.37)
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From the Markov Chain, one could deduce the probability of pl without the input of

pl−1. Let a1 = Ni
Ci

and a−1 = Ci−Ni
Ci

be true, inductively al = l(Ni−(l−1))
Ci

and al =
Ci−l(Ni−(l−1))

Ci
will be true. In order to derive pl for the l-th wake-up, the number of

accumulated items in the l-th row need to be analyzed at first. Table 4.1 gives the

number of elements to be summed with the l-th wake-up listed in each row of the

transition matrix. In the r-th row, the first 1 appears when l = r − 1. The number

t(r, l) in the r-th row at l = k is t(r, l) = t(r, l − 1) + t(r − 1, l− 1), where l ≥ r.

row number l = 1 l = 2 l = 3 l = 4 l = 5 · · ·
1 1 1 1 1 1 · · ·
2 1 2 3 4 5 · · ·
3 0 1 3 6 10 · · ·
4 0 0 1 4 10 · · ·
5 0 0 0 1 5 · · ·
...

...
...

...
...

...
. . .

Table 4.1. Number of elements in summation of each row

Interestingly, Table 4.1 gives a Pascal’s Triangle whose elements can be determined by

the binomial expansion. Therefore, the number t(r, l) is given by the combination

t(r, l) =

(

l
r − 1

)

, (4.38)

where 1 ≤ r ≤ l + 1 and t(r, l) = 0 for all other cases.

For the l-th wake-ups with l ≤ Ni, the vector pl can be written as

pl =























(a−1)
l

a1

(

∑

i1+i2=l−1,i≥0(a−1)
i1(a−2)

i2

)

...
(
∏r−1

k=1 ak
)

(

∑

i1+i2+···+ir=l−r+1,ij≥0(a−1)
ii(a−2)

i2 · · · (a−r)ir
)

...
∏l

k=1 ak























, (4.39)

where r stands for the r-th row. It can be noticed that pl is a vector of length l + 1

when l ≤ Ni.



58 Chapter 4: Aggregation time reduction

When l > Ni, the vector pl has always length Ni + 1 and it is

pl =































(a−1)
l

a1

(

∑

i1+i2=l−1,i≥0(a−1)
i1(a−2)

i2

)

...
(
∏r−1

k=1 ak
)

(

∑

i1+i2+···+ir=l−r+1,ij≥0(a−1)
ii(a−2)

i2 · · · (a−r)ir
)

...
(

∏Ni−1
k=1 ak

)(

∑

i1+i2+···+iNi=l−Ni+1,ij≥0(a−1)
ii(a−2)

i2 · · · (a−Ni)
iNi

)

∏Ni
k=1 ak

(

1 +
∑l−Ni

m=1

∑

i1+i2+···+iNi=m,ij≥0(a−1)
ii(a−2)

i2 · · · (a−Ni)
iNi

)































. (4.40)

When the number of wake-ups is l → ∞, the (Ni+1)-th element of pl is approximating

1.

Since I-Header is not exchanged and used between sensors, every wake-up requires

two message transmissions. If I-Headers are exchanged, sensors can acknowledge their

aggregated measurement data with I-Headers.

To focus the behavior of the data from sensor vi, we assume that among sensors in

Ni∪{vi}, all other bits in their I-Header are the same except the bit for data si. Initially,

sensor vi has in its I-Header the bit for si being 1 and sensors in Ni have in their I-

Headers the bits for si being 0. When a sensor initializes a message communication

with its neighbors, I-Header helps to check whether new data is contained for each

other, as we have introduced in our neighbor sensor selection. After transmitting I-

Header from the sensor which initializes the communication to the neighbor sensors, an

acknowledgment is given if the communication of one direction is needed. Therefore,

the following three cases will happen.

• When both sides have aggregated data si, their I-Header will be identical under

our assumption. Therefore, no message transmission takes places.

• When one side has aggregated data si, the sensor which has aggregated data si

will transmit its message to the one which has not. Therefore, only one message

transmission takes places.

• When neither side has aggregated data si, under our assumption, their I-Headers

are also identical, so neither of two sensors will transmit messages.

Based on the analysis above, one can conclude that the probability that after l message

communications, the number of sensors k which have aggregated data si among sensors
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in Ni ∪ {vi} will be

pl(k) =

{

1 if k = l
0 if k 6= l

. (4.41)

In Figure 4.4, we show the probability that all sensors in Ni ∪ {vi} have aggregated

data si versus the number of message communications that are performed. As shown

in the figure, the involvement of I-Header when sensors exchange their messages can

significantly reduce the number of message communications that are performed.
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Figure 4.4. Probability of the number of communications required until all sensors in
Ni ∪ {vi} have aggregated data si, Ni + 1 = 10.

With the help of Figure 4.3 and 4.4, we demonstrate the connectivity of humble wireless

sensor networks by counting the number of wake-ups and the number of communica-

tions that are required for all sensors in Ni ∪ {vi} to aggregate data si from sensor vi

in the Scenario 1 exemplified in Figure 4.2.

4.2.2.2.2 Scenario 2 In Scenario 2, neighbor sensors of sensor vi can only exchange

messages with each other via sensor vi as they occupy no direct connections between
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each other. A star graph of sensors among Ni ∪ {vi} centered at sensor vi results. An

example is shown in Figure 4.5.

Figure 4.5. Scenario 2: star graph

In this scenario, the total number of connections among sensors Ni ∪ {vi} is

Ci = Ni. (4.42)

The connection between two sensors is enabled based on the probability that a neighbor

sensor of vi is selected. In the following, we apply similar ideas as in Scenario 1 to

analyze the connectivity when no I-Header is involved.

• Slot-1: the probability that two sensors can aggregate si is

p1(2) = 1 , (4.43)

based on the fact that among Ni connections Ni ∪ {vi}, there will always be one

connection activated.

• Slot-2: there will be at maximum 3 sensors which can aggregate data si. The

probabilities are

p2(3) =
Ni − 1

Ni

, (4.44)

p2(2) =
1

Ni

. (4.45)

• Slot-3: at maximum 4 sensor can aggregate si. The probabilities are

p3(4) = p2(3)
Ni − 2

Ni

, (4.46)

p3(3) = p2(3)
2

Ni

+ p2(2)
Ni − 1

Ni

, (4.47)

p3(2) = p2(2)
1

Ni

. (4.48)
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• Slot-4: data si can be aggregated at all 5 sensors. The probabilities are

p4(5) = p3(4)
Ni − 3

Ni

, (4.49)

p4(4) = p3(4)
3

Ni

+ p3(3)
Ni − 2

Ni

, (4.50)

p4(3) = p3(3)
2

Ni

+ p3(2)
Ni − 1

Ni

, (4.51)

p4(2) = p3(2)
1

Ni

. (4.52)

• Slot-5: data si can be aggregated at all 5 sensors among Ni ∪ {vi} with proba-

bilities being

p5(5) = p4(5) + p4(4)
Ni − 3

Ni

, (4.53)

p5(4) = p4(4)
3

Ni

+ p4(3)
Ni − 2

Ni

, (4.54)

p5(3) = p4(3)
2

Ni

+ p4(2)
Ni − 1

Ni

, (4.55)

p5(2) = p4(2)
1

Ni

. (4.56)

From the example of sensor vi and its Ni = 4 neighbor sensors constructing a star

neighbor topology, we can formulate the probabilities in general of sensor vi and Ni

neighbor sensors with a star topology. For the first link activation, i.e., l = 1, the

probabilities are

p1(2) = 1 (4.57)

p1(1) = 0 . (4.58)

For the l-th link activation, where 2 ≤ l ≤ Ni, among sensor vi and its neighbors in Ni

there will be at maximum l+ 1 sensors having aggregated data si. These l+ 1 sensors

are sensor vi and another l sensors in Ni. The probabilities are

pl(l + 1) = pl−1(l)
Ni − (l − 1)

Ni

, (4.59)

pl(k) = pl−1(k)
k − 1

Ni

+ pl−1(k − 2)
Ni − (k − 2)

Ni

, ∀2 < k < l + 1 (4.60)

pl(2) = pl−1(2)
1

Ni

. (4.61)
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For l > Ni, the probabilities are

pl(Ni + 1) = pl−1(Ni + 1) + pl1(Ni)
1

Ni

(4.62)

pl(k) = pl−1(k)
k − 1

Ni

+ pl−1(k − 2)
Ni − (k − 2)

Ni

, ∀2 < k < l + 1 (4.63)

pl(2) = pl−1(2)
1

Ni

. (4.64)

Figure 4.6 gives the probability that the measurement data si is aggregated at k sensors

after a given number of total wake-ups. The comparison is also given between the

results from the simulation with Ni = 10 and the results from (4.57) to (4.64).
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Figure 4.6. Simulation (solid lines) and theoretical (circle dot marker) results of the
number of sensors k which has aggregated data si for humble sensors without the
assistance of I-Header, star topology, Ni + 1 = 10.

Since the probability of the l-th link activation depends only on (l−1)-th link activation,

it can also be formulated using Markov Chain. The probability of the link activation

and the transition matrix are given as follows:
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• the probability vector p1 contains only p1(2) = 1 and the vector pl where 1 < l ≤

Ni contains l elements which are

pl =











pl(2)
pl(3)
...

pl(l + 1)











. (4.65)

When l > Ni is true, pl constantly contains Ni elements starting with pl(2). It

can be written as

pl =











pl(2)
pl(3)
...

pl(Ni + 1)











. (4.66)

• Let a2 =
Ni−1
Ni

and a−2 =
1
Ni

and let al =
Ni−(l−1)

Ni
and a−l =

l−1
Ni

. The transition

matrix from p1 to p2 is

Tm
2 =

[

a−2

a2

]

. (4.67)

The transition matrix from pl−1 to pl with 2 ≤ l ≤ Ni is

Tm
l =















a−2 0 0 · · · 0
a2 a−3 0 · · · 0
0 a3 a−4 · · · 0
...

...
...

. . .
...

0 0 0 · · · al















. (4.68)

For l > Ni, the transition matrix is a constant matrix with size Ni-by-Ni, which

is

Tm
l =















a−2 0 0 · · · 0 0
a2 a−3 0 · · · 0 0
0 a3 a−4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · aNi 1















. (4.69)

The vector pl without the dependence on pl−1 is the multiplication of the transition

matrices from Tm
2 to Tm

l . Therefore, for 2 ≤ l ≤ Ni we have

pl =























(a−2)
l

a2

(

∑

i2+i3=l−1,ij>0(a−2)
i2(a−3)

i3

)

...

(
∏r

k=2 ak)
(

∑

i2+i3+···+ir=l−r,ij>0(a−2)
i2(a−3)

i3 · · · (a−r)ir
)

...
∏l

k=2 ak























. (4.70)
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For l > Ni, the vector pl will be

pl =

























(a−2)
l

a2

(

∑

i2+i3=l−1,ij>0(a−2)
i1(a−3)

i2

)

...

(
∏r

k=2 ak)
(

∑

i2+i3+···+ir=l−r,ij>0(a−2)
i2(a−3)

i3 · · · (a−r)ir
)

...
∏Ni

k=2 ak

(

1 +
∑l−Ni

m=1

∑

i2+i3+···+iNi=m,ij>0(a−2)
i2(a−3)

i3 · · · (a−r)
iNi

)

























. (4.71)

Figure 4.7 compares the connectivity of Scenario-1, Scenario-2 without I-Header and

with I-Headers. With I-Headers, the number of communications needed to ensure

that all sensors among Ni ∪ {vi} have received si is a deterministic value. Without

I-Header, redundant communications are performed. Therefore, the total number of

communications needed is a probabilistic as shown in the figure.

Furthermore, using I-Headers ensures that the numbers of communications needed for

both scenarios are the same. However, without I-Headers, Scenario 1 and 2 will have

different performance as shown in the figure.

In scenario 1, the probability curve increases slower at the beginning comparing that

in scenario 2 due to that in a complete graph more redundant communication could

be performed without si being really communicated. After more communications are

performed, the performance becomes better in comparison to scenario 2 since more

sensors has aggregated si and it is more probable that si is communicated to a sensor

without si aggregated yet in a complete graph. This explains the crossing point in the

figure.

As mentioned previously, the connectivity in random gossiping can be understood as

the availability of data si at sensors other than vi with finite communication rounds. We

can conclude that introducing I-Headers gives better connectivity in humble wireless

sensor networks.

4.2.2.3 Convergence

The connectivity cannot directly reflect the convergence generally in wireless sensor

networks. When random gossiping is applied, there is no centralized architecture for

organizing the communications of sensors. We decompose the convergence analysis



4.2 Dynamic wireless sensor networks 65

 

 

Number of communications in Ni ∪ {vi}

P
ro
b
ab

il
it
y

W/O I-Header Scenario-1
W/O I-Header Scenario-2
With I-Header Scenario-1/2

0
0 20 40 60 80 100 120 140 160 180 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.7. Comparison of the probabilities of the numbers of communications required
until all sensors in Ni ∪ {vi} have aggregated data si, Ni + 1 = 10, for Scenario-1 and
Scenario-2.

into convergence analyses of measurement data si, i = 1, 2, ...N being aggregated at all

sensors in the network, we call it the convergence of data si.

When measurement data si is exchanged as a message among sensors, the data si

will be aggregated by more and more sensors in the network. If we define a function

whose input is the time and the output is the portion of sensors that have aggregated

data si in the network, the function is a monotonically increasing function. Therefore,

exchanging a message which has aggregated data si among sensors will always improve

the convergence in a way that there are new sensors receiving a message containing the

data si every time communication takes places.

There are two possible scenarios when communication is initialized in humble wireless

sensor networks. These two scenarios can be depicted as the example shown in Figure

4.8, where sensors vj , vj3, and vj4 are the ones which have already aggregated data si

and sensors vj1 and vj2 are the sensors which have not.

When I-Header is not involved in the random gossiping, a sensor, e.g., sensor vj, may
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vj

vj1

vj2

vj3 vj4

Figure 4.8. Two possible scenarios of a humble initiates communication. Red sensors
have aggregated data si, and green sensors have not.

choose either a red sensor or a green sensor to communicate. When sensor vj3 or

vj4 is chosen, this message communication is not beneficial to the convergence of the

measurement data si. We assuming there are in total N r
j red sensors which have

already aggregated the data si and N
g
j green sensors which have not yet aggregated si.

Apparently, N r
j + Ng

j = Nj holds, and the probability that there will be a beneficial

communication of data si performed by sensor vj is

pbj,si =
Ng
j

Nj

. (4.72)

In a humble wireless sensor network, a useful message communication of si will lead to a

new sensor having si aggregated. If one counts the number of beneficial communications

of si and the number of sensors that have already aggregated data si, their difference

is always 1. We see the convergence of data si as a procedure that the sensor which

has si and the sensor which does not have si interacts with each other. Let the set of

sensors which have si at a specific time be denoted by Vsi with the number being Vsi.

The sensors which have not aggregated si are V \ Vsi. Let ∂Vsi denote all connections

between sensors in Vsi and sensors in V \Vsi. A ratio
|∂Vsi |

|Vsi |
similar to Cheeger Constant

is used to approximate the bottleneck of a beneficial communication of data si. As

shown in Figure 4.9, sensors vi, vj, and vk have already aggregated si, sensors vl, vm,

and vn have not yet aggregated si. The value
|∂Vsi |

|Vsi |
is 2, indicating that among all

sensors in the Figure, the number of communications which may result in a new sensor

having si aggregated are twice as many as the ones which may not.

To continue with the analysis of the convergence, we consider a time slot when in the

network there are Vs sensors have aggregated data si. The possibility that there is a
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Figure 4.9. Demonstration of
|∂Vsi |

|Vsi |

new sensor aggregating data si is

p|Vs|+1 =
|∂Vsi |

|E|
, (4.73)

where |E| is the total number of connections between all sensors. According to the

geometric distribution, on average 1
p|Vs|+1

communications are required for a new sensor

to aggregate data si, when there are |Vs| sensors have already aggregated data si. Under

the assumption of independent communication initialization when a sensor wakes up

randomly, the average number of communications required for all sensors in the network

is

Csi =
N−1
∑

l=1

1

pl+1

, (4.74)

where

pl+1 =
|∂V lsi|

|E|
, (4.75)

and V lsi is the set of l sensors which have already aggregated data si. To approximate

|∂V lsi|, two extreme cases are considered to find a loose boundary of |∂V lsi|.

• A lower bound is given by the minimum |∂V lsi | when all sensors in V lsi are maxi-

mally connected to each other.

• A upper bound is given by the maximum |∂V lsi| when all sensors in V lsi are con-

nected in such a way that they form a path, i.e., except the head and the tail

sensor that connect only one other sensor in V lsi, every other sensor is connected

to another two sensors in V lsi.
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To facilitate the analysis, we assume also that every sensor in the network has in average

Nav neighbor sensors, where Nav is a variable dependent on the communication range

d. It shall be noticed that this assumption does not necessarily lead to a regular

graph where every sensor has the same number of neighbor sensors. Under these

two additional assumptions, in the first case where all sensors in V lsi are maximally

connected to each other, when Nav ≥ |V lsi|, every sensor in V lsi is connected to all other

|V lsi|−1 sensors in V lsi, and each sensor in V lsi connected only to the other Nav−|V lsi|+1

sensors outside of V lsi . Hence, we have

|∂V lsi | ≥ |V lsi|
(

Nav − |V lsi|+ 1
)

. (4.76)

When Nav < |V lsi|, it could be possible that some sensors in V lsi connect only to other

sensors in V lsi, and only a few sensors in V lsi connect to sensors which are not in V lsi.

The loose bound of |∂V lsi| is then

|∂V lsi| ≥ 1. (4.77)

For the second case, sensors in V lsi forms a path. Therefore, except the head and tail

sensors of the path which have maximum Nav − 1 neighbors being not in V lsi , other

sensors in the path have Nav − 2 neighbors which are not in V lsi. The loose bound is

hence given as

|∂V lsi | ≤ 2(Nav − 1) + (|V lsi| − 2)(Nav − 2). (4.78)

Equations from (4.76) to (4.78) provide a pair of loose bounds of the convergence of

data si, when all sensors are humble sensors and no I-Header is involved.

When I-Headers are in use, the convergence of si would be loosely lower bounded by

the number of sensors in the network. Here the bound is loose because redundant

transmissions of si may happen, when in a message there are other measurement data

need to be aggregated by the sensor that receives the I-Header.

4.2.3 Random gossiping in greedy wireless sensor networks

In greedy wireless sensor networks, a sensor communicates with all of its neighbor

sensors when it initializes the communications. In this subsection, we organize our

discussion with the following questions.

• How a greedy sensor communicates with its neighbor sensors?



4.2 Dynamic wireless sensor networks 69

• What is the connectivity of the network?

• What is the speed of convergence?

• What is the performance of bias cancellation with greedy sensors?

4.2.3.1 Greedy types

We use the name of greedy to describe that the sensor which initiates the communica-

tions are communicating with all its neighbor sensors. However, due to the one-to-many

communication type, the communications between a sensor and its neighbor sensors

require scheduling to adjust the timing of transmissions between the neighbor sensors

and the sensor which initiates the communications.

For the sensor which initiates the communications, it has two possible roles when it

communicates with its neighbor sensors. It can be either

• a greedy listener, which receives all messages sent from its neighbor sensors, or

• a greedy speaker which only broadcasts its own message to all its neighbor sensors

without receiving any messages.

vi

vi1
vi2

vi3
vi4

Figure 4.10. Sensor vi as a greedy listener

When a sensor vi is purely a greedy listener as shown in Figure 4.10, it triggers its

neighbor sensors vi1, vi2, vi3 and vi4 to send their messages without sending any message

back. If we only consider a time division mode of transmissions, the trigger that the
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vi

vi1
vi2

vi3
vi4

Figure 4.11. Sensor vi as a greedy speaker

sensor sent to its neighbor sensors should contain a scheduling information telling which

time slot a neighbor sensor should use to transmit its message.

For a purely greedy speaker as sensor vi shown in Figure 4.11, a broadcast is performed

by the sensor which initiates the communications, and no feedback message is trans-

mitted by the neighbor sensors vi1, vi2, vi3 or vi4. Only one message transmission is

needed in this situation.

A combination of the greedy listener and the greedy speaker is considered in this thesis.

When a sensor initiates communications with its neighbor sensors, it firstly triggers

the message transmissions from its neighbor sensors. After the sensor aggregates all

messages it received, it broadcasts the newly aggregated message to all of its neighbor

sensors.

4.2.3.2 Connectivity for greedy wireless sensor networks

Intuitively, greedy sensors have better connectivity than humble sensors in terms of

all neighbor sensors of sensor vi aggregating data si, due to the greedy many-to-one

communication type. It is valid for both greedy speaker case and the case with the

combination of greedy speaker and greedy listener. If sensor vi wakes up as a greedy

speaker, it broadcasts its message containing the aggregated data. Therefore, only

one broadcast transmission is necessary to aggregate data si regardless of whether

I-Header is used in the random gossiping. In comparison to the case of all humble

sensors, greedy sensors can offer better connectivity in terms of aggregate data si at

all neighbor sensors of vi.
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4.2.3.3 Convergence

Every time when a greedy sensor initiates communication, the data of the center sen-

sor will be available at all its neighbor sensors. In this case, the approach from the

analysis of the humble-sensors case cannot be used. To facilitate the analysis of greedy

sensors, all sensors are categorized into three scenarios. The first scenario includes the

sensors which have already aggregated data si, and all their neighbor sensors have also

aggregated data si. The second scenario includes sensors which either have already

aggregated si and they have neighbor sensors which have not aggregated data si, or

sensors which have not yet aggregated si but there are neighbor sensors of them have

si aggregated already. The third scenario contains the sensors which have not aggre-

gated si nor do their neighbor sensors. When sensors in the first scenario wake up and

initiate communications with their neighbors, the number of sensors which aggregate

si will not increase, so as the sensors in the third scenario. On the contrary, when the

sensors in the second scenario initiate the communications, there will be sensors in its

neighbor sensors, including itself becoming new sensors to have aggregated si.

The effect of the wake-up and communications in the network can be seen as the change

of the number of sensors in each of the three scenarios. If a sensor vj in the second

scenario wakes up and initiates communications with its Nj neighbor sensors, all Nj+1

sensors will all aggregate data si after the communications.

In Figure 4.12 a simple simulation is performed to demonstrate the change of the

number of sensors in each scenario using a sensor network with 100 sensors randomly

deployed in an area, and the communication range is set to achieve the minimum

connectivity. The Figure focuses on the aggregation of data si. The horizontal axis

gives the number of useful wake-ups with respect to data si. A useful wake-up indicates

that the center sensor and its neighbor sensors are of the second scenario. The vertical

axis gives the number of sensors in each scenario as the number of useful wake-ups

increases. The summed number of sensors at each number of useful wake-ups shall be

the total number of sensors in the network, i.e., 100 sensors. Such definition helps us to

avoid step-like curves in the figure since the wake-up of a sensor in the first scenario and

the third scenario will not lead to a change to the number of sensors in each scenario.

As shown in the Figure, the convergence is achieved with certainty when sensors in

the network are greedy sensors. In the depicted scenario, the number of sensors of the

second scenario is increasing to a maximum value of around 30. It decreases afterwards

since sensors fall into the first scenario as the number of useful wake-ups increases.
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Figure 4.12. Number of sensors of each scenario as aggregation continues

Generally speaking, the higher the largest number of sensors of the second scenario is,

the faster the convergence will be. It is because the number of sensors in the second

scenario determines in greedy sensor case how fast the sensors in the third scenario will

have the data aggregated. One way to achieve this is by increasing connectivity. In

Figure 4.13, the communication range is increased in comparison to that of the same

sensor network used in Figure 4.12. As a result, the network has larger connectivity.

As shown in Figure 4.13, the sensors of the second scenario reach a larger maximum

value with a smaller number of useful wake-ups. Additionally, a smaller number of

useful wake-ups is needed to achieve the convergence, i.e. all sensors are of the first

scenario which have aggregated si.

The curves at a larger number of useful wake-ups are not smooth due to the insufficient

number of simulations.

When I-Header is used, if a wake-up is not a useful one, i.e. sensors are either of

scenario 1 or scenario 3, no message communication will be initiated. Since in Figure

4.12 and Figure 4.13 only useful wake-ups are depicted, the changes in the number of

sensors in each scenario will be the same with I-Header applied.



4.3 Multihop coordination in random gossiping 73

 

 

N
u
m
b
er

of
se
n
so
rs

of
ea
ch

sc
en
ar
io

Number of useful wake-ups

Scenario 1
Scenario 2
Scenario 3

0
0 5

10

10 15

20

20 25

30

40

50

60

70

80

90

100

Figure 4.13. The number of sensors of each group as aggregation continues with larger
connectivity

4.3 Multihop coordination in random gossiping

As it is discussed in previous sections, random gossiping as a communication paradigm

with less topology and stability requirements provides a robust and flexible aggregation

method in wireless sensor networks where the aggregation output is finally available

to all sensors in the network. So far, the random gossiping is constrained that when

a sensor wakes up to initiate the communications, it only interacts with its one-hop

neighbor sensors. To reduce the number of communications in the network, in this

section, the random gossiping with multihop coordination is proposed to combine the

robust random gossiping and the routing-based aggregation method.

By using multihop coordination in random gossiping [CKK13a], communications are

extended from a sensor and its one-hop neighbor sensor to the sensors, which are

several hops away from the center. The motivation of such multihop coordination is

to increase aggregation efficiency. For one sensor in the network, it is most efficient

to set this sensor as the root and build a routing tree to connect all sensors in the
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network when it is about to aggregate all messages in the network. For a sensor

network with N sensors, when a tree is built with sensor vi being the root, it requires

N message communications until sensor vi aggregates all messages. Because the wake-

up is random without centralized scheduling, random gossiping cannot guarantee such

a small number of communications for sensor vi, even with the I-Header we have

introduced.

We define the depth δj(i) between sensor vi and sensor vj as the minimum number

of hops with which vi and vj are able to communicate. Furthermore, we define the

coordination depth ci of sensor vi as the maximum depth that sensor vi can coordinate

message exchanges with other sensors when vi wakes up. The coordination depth ci

can be determined by several realistic parameters, such as the priority of the sensor vi

in the network with respect to the running application, the buffer or memory size, the

computation power, et cetera. Given the coordination depth ci, sensor vi can exchange

messages with all sensors vj whose depth δj(i) is smaller than ci when vi wakes up to

initiate the communications. With N l
i denoting the set of sensors whose depth with

respect to vi is l, all sensors in ∪cil=1N
l
i are the possible sensors that can exchange

messages with vi when vi initiates the communications.

In order to coordinate sensors within multiple hops, we use query messages to construct

the tree rooted as sensor vi. In general, this query message contains the information

such as the root sensor vi and whether a sensor at certain depth should continue to

forward the query message. The latter can be realized by using a decremental counter

in the query message.

Since sensors within multiple hops are coordinated, we consider the failure of such

coordination to gain a better approximation of the realistic scenario in wireless sensor

networks. Due to the failure of communications, and the failure of the wake-ups, the

query message may not be received or responded by a sensor, namely, the coordination

failure. We model the rate of this coordination failure with a parameter which is

referred to as failure rate ri of sensor vi which indicates the probability that sensor vi

fails to receive query information or to respond to another sensor in the network.

4.3.1 Humble sensor case

In the case of a humble sensor, let Pi denote the path that is initiated by sensor

vi with the maximum possible depth being ci, and let Pi(0) = vi and Pi(l) denote

the root sensor and the sensor on the l-th hop of this path, respectively. The awake
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sensor vi broadcasts a query message to all its neighbor sensors in N 1
i . In this query

message, the information is contained that sensor vi asks all sensors in N 1
i for their

indicating headers and the information telling sensors in N 1
i that a path is going to

be constructed. Sensors in N 1
i receive this query information and respond to it with

failure rate rj, vj ∈ N 1
i . We denote the set of sensors inN 1

i who successfully receive and

respond to this requirement from vi by P (N 1
i ). Sensors vj ∈ P (N 1

i ) will send back their

indicating headers Ij. Sensor vi will choose the sensor which sends back its indicating

header and meanwhile results in the greatest bi-directional message differences to be

its next hop. The chosen sensor broadcasts the query information to N 2
i and chooses

its next hop. Such process continues until either the maximum coordination depth ci

is reached, or no more sensors respond to join the path when ci has not been reached.

In general, the criterion to choose the sensor for the l-th hop is given by

Pi(l) = arg max
vj∈P (N l

i )∩NPi(l−1)

IPi(l−1)XORb
Ij , (4.79)

where the operation XORb performs the XOR-operation to the bit-sequence in Ii and

Ij and gives the number of positive bits in the output. The algorithm for constructing

path Pi is given in Algorithm 8.

Algorithm 8 Algorithm of constructing a path initiated by sensor vi
1: Pi(0) = vi;
2: l = 1;
3: while l ≤ ci do

4: Pi(l − 1) broadcasts query messages to sensors in N l
i

5: Determine the set P (N l
i )

6: Determine Pi(l) with (4.79)
7: l = l + 1
8: end while

The achieved path depth is denoted by cαi , where c
α
i ≤ ci. We denote vi as the header of

path Pi and P(cαi ) as the tail sensor, respectively. Once the path Pi is constructed, the

transmission of the messages starts from the tail sensor. P(cαi ) transmits its message

to P(cαi − 1), sensor P(cαi − 1) aggregates it with its own message, and the combined

message is transmitted to P(cαi − 2). This procedure is done until sensor vi has the

aggregated message whose indicating header is

Ii = Θ
(

∪cil=0Θ
−1

(

IPi(l)

))

. (4.80)

Afterwards, sensor vi starts to transmit its message along the path Pi towards the

tail sensor until every sensor vj ∈ Pi updates the aggregated message using indicating

header Ij = Ii.
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4.3.2 Greedy sensor case

In the case that sensors in the network are greedy sensors, each sensor vi ∈ V will

attempt to coordinate a tree whose root is vi with the maximum depth ci. Let Ti be

the tree rooted at sensor vi. Ti(l) denotes the set of sensors whose depth with respect

to sensor vi is l and Ti(0) = vi. The father sensor of sensor vj in the tree Ti is denoted

by T f
i (vj). When sensor vi wakes up, it broadcasts a query message with its own

indicating header Ii. Sensors in N 1
i receive the query message and respond to it with

failure rate rj , where vj ∈ N 1
i . The set of sensors who successfully receive and respond

to the query is denoted by P (N 1
i ) and hence Ti(1) = P (N 1

i ). Each sensor in Ti(1)

continues this tree construction by forwarding the query message with its indicating

header. If a sensor vj whose depth with respect to vi is l, i.e., vj ∈ P (N l
i ), l = 2, · · · , ci,

receives query messages and indicating headers from several sensors, it decides itself

which sensor shall be its father sensor T f
i (vj). Let N

Ti
j = Nj ∩P (N

l−1
i ) denote the set

of sensors from which sensor vj receives indicating messages. The criterion of sensor

vj to choose its father sensor is given as

T f
i (vj) = arg max

vk∈N
Ti
j

IkXORb
Ij . (4.81)

The algorithm of constructing the tree Ti is given in Figure 9

Algorithm 9 Algorithm of constructing a tree initiated by sensor vi
1: Ti(0) = vi;
2: l = 1;
3: while l ≤ ci do

4: for vl ∈ Ti(l − 1) do
5: vl broadcasts query message to sensors in N l+1

i ∩ Nl

6: Determine the set P (N l+1
i ∩ Nl)

7: end for

8: for vm ∈ ∪vl∈Ti(l−1)P (N l+1
i ∩Nl) do

9: Determine N Ti
m

10: Determine T f
i (vj) with (4.81)

11: end for

12: l = l + 1
13: end while

The achieved tree depth is denoted by cβi , where cβi ≤ ci. The communication in

Ti starts with sensors in Ti(c
β
i ) transmitting their messages to their father sensors in

Ti(c
β
i − 1). After a sensor in Ti(c

β
i − 1) receives messages from all its children, it

forwards the aggregated messages to its father sensors. This procedure ends until



4.4 Performance and discussion 77

sensor vi receives messages from all its children. Sensor vi will have an aggregated

message whose indicating header is

Ii = Θ
(

∪vj∈TiΘ
−1 (Ij)

)

. (4.82)

Afterwards, sensor vi broadcasts its newly aggregated message which contains data

aggregated of all messages from sensors in Ti to Ti(1). Sensors in Ti(1) forward this

message to their children sensors. This procedure stops when all sensors in Ti have

received the message from vi. Every sensor vj ∈ Ti will now have an updated aggrega-

tion data with indicating header Ij = Ii. In both humble and greedy cases, we assume

that the sensors only suffer from failures in the phase of constructing paths or trees.

4.4 Performance and discussion

In this section, we demonstrate the behavior of the random gossiping and the using of

the I-Headers which have been discussed in this chapter.

In Figure 4.14, simulations are performed with N = 30 sensors randomly deployed in an

area, and the communication range is set for minimum connectivity of the network. A

comparison is given to the numbers of communications required until the convergence

of the network. In the figure, the blue curve is for the greedy sensors with I-Headers

used to reduce the number of message communications, and the red curve is for the

humble sensors with I-Headers. The performance of the random gossiping discussed

in [BGPS06], where sensors perform similar to greedy sensors, is shown in black. The

abscissa in Figure 4.14 is the number of message communications performed in the

network. The ordinate gives the probability of the network achieving convergence, i.e.,

all sensors have aggregated the measurement data of the entire network. A significant

reduction of message communications can be witnessed by using I-Headers in random

gossiping. Moreover, by comparing blue and red curves, a network with greedy sensors

requires fewer number of message communications in comparison to that with only

humble sensors.

In Chapter 2, the Assumption 6 is made that the size of the I-Headers is significantly

smaller than the length of the application messages. In Figure 4.14, the additional

communications for sensors to exchange the I-Headers have been neglected under this

assumption.

In Figures 4.15 and 4.16, we consider the impact I-Header transmission on the total

number of communications to understand the validity of Assumption 6. The symbol
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Figure 4.14. Comparison of the numbers of communications required until the gossiping
stops

η is used to denote the ratio between the bit length of the I-Header and the length of

the messages with the assumption that all aggregations will result in the same message

length in bits. By adding the number of communications of the I-Header times η to

the number of communications for the application messages, we include the effect of

I-Headers into our results.

In Figure 4.15, we demonstrate the impact of I-Headers with different η when sensors

are humble. Similar results can be seen in Figure 4.16 when sensors are greedy. Both

figures show that the gain in reducing the number of communications when considering

the effect of indicating header can still be obtained even with larger η. Furthermore,

the greedy sensor strategy is more efficient in terms of aggregation due to its faster

spreading of messages within vi ∪Ni for every vi.

Comparing results shown in Figure 4.15 and Figure 4.16, a network with greedy sensors

requires fewer communications than a network with only humble sensors for all cases

with different η.
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Figure 4.15. Impact of indicating headers with humble sensors. From left to right,
η = 0%, 5%, 10%, 15%, 20%, 25%, 30%

In the simulation of the multihop coordination in Section 4.3, N = 30 sensors are

randomly deployed in a two-dimensional squared area in the simulation.

In Figure 4.17 and 4.18, we depict the relationship between the maximum coordination

depth of all sensors in the network, i.e., ci, vi ∈ V and the achieved coordination depth

in the network under different failure rates ri of sensors for a network with only humble

sensors and greedy sensors, respectively. As shown in the figures, with both humble

and greedy sensor strategies, it is unlikely that the maximum coordination depth can

be achieved when the failure rate increases. In comparison, the greedy sensor strategy

results in a larger achieved coordination depth since all neighbor sensors who decide

not to reject the requirement will join the tree.

Figure 4.19 demonstrates the number of message communications in the network to

perform until the completeness of aggregation when all sensors are humble sensors,

i.e., a path is constructed when a sensor wakes up. As shown in the figure, when the

failure rate increases, more message communications are needed due to the failure of

communication. Meanwhile, increasing the maximum coordination depth decreases the
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Figure 4.16. Impact of indicating headers with greedy sensors. From left to right, η =
0%, 5%, 10%, 15%, 20%, 25%, 30%

number of required message communications. A significant reduction of the number of

message communications can be witnessed by increasing the coordination depth from

ci = 1 corresponding to the scheme in [CKK13b] to ci = 2. For coordination depths

ci > 3, the additional reduction by further increasing the maximum coordination depth

is small. When sensors in the network are greedy sensors, i.e., a tree is constructed

when a sensor wakes up, the performance of the number of message communications is

shown in Fig. 4.20. In comparison to humble sensors, fewer message communications

are needed with the greedy sensor strategy.

To consider the communications that have to be performed to exchange indicating

headers, we assume that the indicating header requires 10% of the message length. We

define equivalent communications as the sum of the number of message communications

and 0.1 times the number of communications for indicating headers. The performance

of the humble sensor case is shown in Fig. 4.21 and of the greedy sensor case is shown in

Figure 4.22, respectively. As shown in Figure 4.21, with the humble sensor strategy, a

larger coordination depth still results in a lower number of communications. However,

with the greedy sensor strategy, such benefit by increasing coordination depth can only
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Figure 4.17. Maximum coordination depth versus achieved coordination depth with fail-
ure rate for a network with only humble sensors. Along the direction of the arrow,
ri = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

be achieved with a small failure rate ri < 0.3. As seen in Figure 4.22, with a larger

failure rate, the number of equivalent communications for a larger coordination depth

is even worse compared to the case with smaller coordination depths.

4.5 Summary

This chapter discusses the reduction of the message communications in random gos-

siping with the support of the I-Headers introduced in Chapter 2. Except the con-

nectivity, no constraints are given to the network topology. Therefore, the random

gossiping applies also to a network with mobile sensors. Depending on how sensor ex-

changes messages with its neighbors, sensors are categorized into humble sensors and

greedy sensors. The random gossiping algorithms utilizing I-Headers are discussed for

both type of sensors. Furthermore, multihop coordination is introduced to increase
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Figure 4.18. Maximum coordination depth versus achieved coordination depth with fail-
ure rate for a network with only greedy sensors. Along the direction of the arrow,
ri = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

the speed of convergence by waking up more sensors at a time. In the simulations

results, the significant reduction of the messages communications is observed by using

the I-Headers in random gossiping. The further reduction in message communications

can be seen by using multihop coordination.
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Figure 4.20. The average number of message communications required in the network until
the aggregation is finished for greedy sensors. Along the arrow, the maximum coordination
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Figure 4.21. The average number of equivalent communications required in the network until
the aggregation is finished for humble sensors. Along the arrow, the maximum coordination
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Chapter 5

Aggregation time reduction in static

wireless sensor networks

5.1 Introduction

This chapter focuses on the further performance improvement of the random gossiping

algorithms that we have introduced in Chapter 4 in static wireless sensor networks.

The random gossiping proposed in Chapter 4 uses I-Headers to determine whether

message communications are necessary. A notable reduction in the number of message

communications is witnessed. Under the assumption that the length of I-Header is

much smaller than the length of the message, the equivalent message communication

that takes the transmission of I-Header into account is also reduced significantly in

comparison to the algorithm without using I-Header.

The discussion in this chapter considers a static constraint to the network topology of

the wireless sensor networks. A wireless sensor network is static when the neighbor

sensors of every sensor remain constant during the lifetime of the network.

Under the assumption of a static wireless sensor network, the proposed random gossip-

ing algorithm can be further improved. Firstly, the number of I-Header communications

can be reduced in static wireless sensor networks. This improvement is based on the

knowledge of the I-Header of a sensor at its neighbor sensors, which is only available

in static wireless sensor networks. A second improvement is achieved by introducing

the idea of transmission deferment. Transmission deferment postpones the communi-

cations of sensors at specific topology locations such that more measurement data can

be aggregated when they communicate with their neighbor sensors afterwards. Hence,

the convergence speed is increased for the whole network. In this chapter, both topics

will be discussed.

The remainder of the chapter is organized as follows. In Section 5.2, the I-Header

reduction in static wireless sensor networks is discussed. Section 5.3 introduces trans-

mission deferment. The performance and the conclusion are given in Section 5.4 and

Section 5.5. Parts of the content of this chapter have been published by the author of

this thesis in [CKK14a].
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5.2 I-Header transmission reduction in static wire-

less sensor networks

By introducing I-Headers to the random gossiping, sensors compare the I-Header it

receives from other sensors to detect the amount of new data that is contained in

the message of other sensors. The comparisons result in the reduction of the message

communications which contributes no new data to receiver sensors.

The cost of the reduction of message communications is a large number of communica-

tions to exchange I-Headers between sensors, especially in the random gossiping with

greedy sensors. An example is shown in Figure 5.1, the I-Header at each sensor is given

in the brackets. Two message communications are performed among the sensors with

three I-Header communications.

[101111]
[101011]

[101011]
[101011]

[101011]

Figure 5.1. Demonstration of large I-Header communications

An extreme case would be that all sensors in the figures have the same I-Header. Even

though no message communications are needed in this case, one I-Header shall be

transmitted whenever the center sensor wakes up and initiates the communications.

The unawareness of the data in the messages of sensors in the neighbor is the main

reason that I-Header exchanges are necessary. The random gossiping algorithm in

Chapter 4 allows changes of neighbor sensors of a sensor. Therefore, the I-Headers

are always communicated in order to choose the neighbor sensor to exchange their

messages and to perform bias-cancellation. Figure 5.2 shows an example of a wireless

sensor network where a ”bottleneck” exists between two sub-networks. The sensor
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vi is the ”bottleneck” which bridges two sub-networks. Sensors in each of the two

sub-networks have aggregated messages with the same I-Header. Therefore, before the

wake-ups of the bottleneck sensor initiating the communications, only I-Headers are

exchanged among sensors, and no messages are communicated.

vi

vl1

vl2

vl3

vr1

vr2

vr3

vr4

Figure 5.2. Demonstration of large I-Header communications with two sub-networks

In the two sub-networks, I-Headers are exchanged because sensors need to continuously

check if there are new data in the messages of the neighbor sensors even though no

new data has been aggregated.

Depending on how a sensor vi aggregates a new measurement data, two types of com-

munications are categorized in order to control the behavior of the sensor vi differently

in the considered algorithm.

• In a type-one communication, sensor vi wakes up and initiates the communi-

cations with its neighbor sensors, i.e., sensor vi communicates with its neighbor

sensors as a center. Sensor vi may aggregate new data by receiving messages from

its neighbor sensors. A message broadcast is done later by vi. Therefore, any

new data aggregated by the vi will eventually be aggregated by all its neighbor

sensors.

Sensor vi performs twice I-Header communications during a wake-up in the type-

one communication. In the first time, it broadcasts the I-Header to all its neighbor

sensors to inform all its neighbor sensors the measurement data it has aggregated

in the message. In the second time, vi broadcasts its I-Header after it aggregates

data from the messages transmitted by its neighbor sensors.

• In a type-two communication, sensor vi is waked up as a neighbor sensor. In

this type, vi may aggregate new data by receiving the broadcast message from
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the center. Therefore, only the center sensor, which is one neighbor sensor of vi,

knows the I-Header of vi.

Sensor vi performs at most only once the I-Header transmission during a wake-

up in a type-two communication. After vi received the I-header from the center

sensor, it sends its I-Header to the center if it has aggregated new data to the

center sensor.

Since the neighbor sensors of a sensor do not change in a static wireless sensor network,

the sensor can use its buffer to store the I-Headers of its neighbor sensors which have

been received from a previous I-Header communication. The stored I-Headers can be

reused at the sensor when it communicates with its neighbor sensors, and its neighbor

sensors have not aggregated any new data since their last communications.

With the categorization of the two types of communications and the capability of

a sensor storing I-Headers of its neighbor sensors, I-Header communications can be

reduced in static wireless sensor networks for both types of communications in three

aspects.

• In the random gossiping, the center sensor (it is in a type-one communication)

wakes up and initiates communications with its neighbor sensor. The first broad-

casting of the I-Header of the center can be avoided in its type-one communica-

tions if a sensor has not aggregated any new data since its last type-one commu-

nications. In terms of avoiding an I-Header communication, neighbor sensors use

the I-Header received in the last I-Header broadcasting of the center from their

buffer.

• Neighbor sensors which are involved in type-two communications receive or re-

cover the I-Header from the center. By comparison with the I-Header of their

own messages, I-Header transmission from the neighbor sensors to the center can

be avoided if their messages contain no new data to the center.

• After the center sensor aggregating the new data from the messages of the neigh-

bor sensors, the center sensor can decide whether an I-Header broadcast is nec-

essary by comparing its new I-Header and the I-Headers of its neighbor sensors.

If the new I-Header at the center sensor contains no new data to the neighbor

sensors, the transmission is omitted by the center sensor.

In all three cases, communications of I-Headers can be avoided. However, a message

indicating that I-Headers are to be transmitted or to be recovered still need to be

exchanged. This message exchange can be realized mainly in two ways:
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• to transmit a 1-bit message telling the receiver that the I-Header shall be covered

or will be transmitted, or

• to build an agreement between the transmitter and the receiver that at the par-

ticular phase of the random gossiping, if the receiver does not receive any message

in a given period of time a recover of I-Header is performed at the receiver.

The random gossiping algorithm with the reduction of I-Header communications in

static wireless sensor networks is given in Algorithm 10.

Algorithm 10 Random gossiping algorithm with I-Header reduction

1: vi initiates communications with its neighbor sensors in Ni;
2: vi informs sensors in Ni whether it has new data updated in the data set of Si of
vi since last type-one communication;

3: if there is new data updated in the data set of Si of vi since last type one commu-
nication then

4: vi broadcasts its I-Header Ii to all its neighbor sensors in Ni;
5: else

6: Sensors in Ni recover I-Header Ii that is received from the previous type-one
communication initiated by vi;

7: end if

8: for sensor vj in neighbor sensors Ni do

9: if message of vj contains data that is new to vi then
10: vj feed backs its Ij to vi;
11: else

12: if message of vi contains data that is new to vj then
13: vj informs vi that it requires message communication from vi;
14: else

15: vj transmits nothing;
16: end if

17: end if

18: end for

19: vi processes all feedbacks;
20: vi informs sensors in Ni which sensors need to send their messages;
21: All informed neighbor sensors transmit their messages;
22: vi computes the new aggregated data;
23: if new aggregated data at vi contains new data for sensors in Ni then

24: vi broadcasts the new I-Header Ii;
25: vi broadcasts the new message;
26: end if

When all the sensors in the static wireless sensor networks have the same I-Header, the

network is converged.
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5.3 Transmission deferment

Transmission deferment is a state of the sensor in which the sensor defers its message

communications. The goal of introducing transmission deferment is to reduce the total

number of message communications in a static wireless sensor network.

We show an example using a network with 9 sensors in total depicted in Figure 5.3.

There exists a bottleneck in the network at sensor vi, and therefore, the network can be

seen as a joint of two sub-networks. Using the random gossiping protocol we have intro-

duced in Chapter 4, the simulation shows that in average 15 message communications

are needed for the whole network to achieve convergence.

vi

vl1

vr1

vl2

vl3

vl4

vr2

vr3

vr4

Figure 5.3. Example of a network with 9 sensors

In comparison, if sensor vi defers its message communication until sensors in both

sub-networks connected by sensor vi have achieved local convergence of the messages,

i.e., the same I-Header at the four sensors in each sub-network, in total 13 message

communications are needed in the network instead of 15 message communications on

average without transmission deferment. In this example, transmission deferment at

sensor vi reduces the number of message transmissions.

In order to develop a generic protocol of random gossiping with transmission deferment,

it is assumed that when a sensor is in the state of transmission deferment,

• it can be woken up by other sensors. However, it shall only receive I-Headers,

and not transmit I-Headers nor communicate messages, and

• it will not wake up as a center sensor.

When a sensor is in transmission deferment, a deferment criterion needs to be checked

to determine whether the sensor shall remain in the state of transmission deferment.
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When a criterion is met at the sensor that is in transmission deferment state, the sensor

shall be able to wake up as a center sensor and to initiate messages communications

with its neighbor sensors. The following two possible criteria are given as examples:

• I-Header matching: The deferment stops when the sensor receives from its neigh-

bor sensors one or more I-Headers that match a pre-defined criterion, e.g., the

received I-Header is the same to one I-Header of a defined I-Header list, or the

received I-Header indicates that a pre-defined number of measurement data has

been aggregated in the message of that neighbor sensor.

• Wake counting: The deferment stops when the sensor has been woken up as a

neighbor sensor of other sensors for a given number of times.

In the example of Figure 5.3, the number of message communications reduced by

introducing the transmission deferment at sensor vi using the I-Header matching where

the pre-defined I-Header list contains two I-Headers equalling to the I-Headers of the

two converged sub-networks.

In addition to the deferment criteria, the condition is needed to determine which sensors

shall enter the state of transmission deferment.

We use the sensor network in Figure 5.3 as an example to address the condition. In

the network, sensor vi is a bottleneck connecting two sub-networks, and the number of

neighbor sensors of sensor vi is 2. Let I1 and I2 denote the I-Headers that sensor vi will

receive from its two neighbor sensors when the two sub-networks achieve their local

convergence. The correlation of I1 and I2, denoted by Corr(I1, I2) = I1(1) ∗ I2(1) +

I1(2) ∗I2(2)+ ...+I1(N) ∗I2(N), will be zero. In this example, the number N is given

by N = 9.

In order to consider the time used for the two sub-networks to achieve the local con-

vergence in the correlation function, the subscript n is introduced to the correlation

function. Corrn(I1, I2) will indicate the correlation function of the two I-Headers that

the red sensor receives after its n wake-ups. The correlation of I1 and I2 after infinite

wake-ups of the red sensor is given as limn→∞Corrn(I1, I2) = 0.

If sensor vi sends its own I-Header to both of its neighbor sensors as a trigger

of I-Header communications of the two sub-networks, the correlation result will be

limn→∞Corrn(I1, I2) = 1.



94 Chapter 5: Aggregation time reduction in static wireless sensor networks

This condition can be checked at the same time for several sensors in a static network as

long as these sensors have not exchanged the I-Headers received from those connected

sub-networks.

In a more practical situation, a sensor can enter the state of transmission deferment

when its number of neighbor sensors is Ndf and after ndf wake ups, the maximum

correlation function of the I-Headers received from any two neighbor sensors shall

be Cdf . These conditions can be abbreviated as (Ndf , ndf , Cdf)-condition for a sensor

entering transmission deferment state. The condition for sensor vi in the given example

is (2, 0, 0). In a static wireless sensor network, the condition can be determined based

on analyzing the network and find the bottleneck sensor that may connect two or more

sub-networks.

5.4 Performance and discussion

In the simulations, the number of sensors in the network is set to N = 50. These

50 sensors are randomly deployed in a squared area and the communication range is

adjusted with a value to guarantee the connectivity of the network.

Figure 5.4 compares the performance improvement of I-Header transmission reduction

for the sensors in the network in one WSN realization. The values of the black dots

are the numbers of I-Header transmission performed by the sensors without Algorithm

10. The red dots give the number after using the algorithm. The results show the

reduction of I-Header transmission observed at the individual sensor.

In Figure 5.5, the dashed lines show the average number of I-Header transmissions

per sensor without the I-Header transmission reduction, whereas the solid lines de-

pict the number of I-Header transmissions with the proposed algorithm. When the

communication range is increased, the gain by using the proposed algorithm decreases

since a larger communication range leads to faster convergence of the network, and the

number of I-Header transmissions reduces for both schemes. The performance of both

cases merges when the communication range reaches the value with which a sensor can

communicate directly to all other sensors in the network.

In Figure 5.6, we show the reduced bias in the given WSN realizations with the intro-

duced bias reduction algorithm purposed in Chapter 3. At maximum 14 bias (total

number of duplicated measurement data aggregated) per sensor on average can be
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Figure 5.4. Reduction of I-Headers Communications

reduced. When the communication range is increased such that each sensor can com-

municate directly to all other sensors, there is no bias reduction observed since it

requires only one gossiping communication for all sensor aggregate the measurement

of the entire network.

5.5 Summary

In this chapter, we consider wireless sensor networks where a static constraint on the

network topology is made. In the network, the neighbor sensors of every sensor remain

constant in the network lifetime. Firstly, algorithms are given to reduce the necessity

of I-Header communications by enabling sensors to remember the I-Headers of their

neighbor sensors. Secondly, the transmission deferment is discussed. It explores a

result that postponing a message communication of specific sensors at topologically

”bottleneck” locations can reduce the total message communications in the network to

achieve convergence.



 

 

A
ve
ra
ge

n
u
m
b
er

of
I-
H
ea
d
er

T
x

Communication Range

WSN Realization 1
WSN Realization 2
WSN Realization 3
WSN Realization 4

500 1000 1500
0
0

5

10

15

20

30

25

Figure 5.5. Number of I-Header communications vs. communication range



 

 

A
ve
ra
ge

re
d
u
ce
d
b
ia
s
p
er

se
n
so
r

Communication Range

WSN Realization 1
WSN Realization 2
WSN Realization 3
WSN Realization 4

500 1000 1500
0
0

2

4

6

8

10

12

14

Figure 5.6. Reduced bias by applying the bias reduction algorithm





99

Chapter 6

Random gossiping refinement with partial

application involvement

6.1 Introduction

In previous chapters, a refined random gossiping protocol is applied in wireless sensor

networks without central scheduling of the communications. The objective of the

refined random gossiping protocol is to aggregate the measurement data generated by

all sensors and to have the aggregation result available at all sensors. If an application

is defined by its type of measurement data and the computation that applies to the

measurement data, sensors we have considered in the previous chapters run only one

application.

When multiple applications are deployed in the network, one application may only in-

volve a part of sensors. In this chapter, partial application involvement means that only

a part of sensors in the network generate measurement data, perform computing with

these data, and are interested in the final computing result[CKK14b]. The convergence

is defined for an application in this case when all the sensors that are involved in an

application have aggregated all the measurement data that are generated by them.

The partial application involvement may apply to the following two situations.

1. The sensors are densely deployed in an area where each position is covered on

average by multiple sensors. Therefore, it does not require all sensor to perform

sensing and computation for one application.

2. The sensor networks are sliced into subsets where each subset supports one ap-

plication, exclusively.

We name those sensors that are involved in one application as ”application member

sensors”, and the sensors that are not involved in that application as ”non-application

member sensors. In both of the situations as mentioned above, if the application mem-

ber sensors are distributed in the network without being able to be directly connected,

it results in a disconnected network for the application member sensors. The connec-

tivity of the application member sensors can only be maintained by non-application
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member sensors assisting the communications. When assisting the communications

between application member sensors, the non-application member sensor will have to

transmit and receive messages. However, no computations will be performed, which is

different than the random gossiping that has been discussed in the previous chapter.

Due to this difference, a further refinement of the random gossiping is needed to enable

both application member sensor and non-application member sensor being co-existed

in one network. In this chapter, we propose the refinement by using the concept of

I-Header introduced in Chapter 2 to the random gossiping that has been discussed in

chapter 4. The targets of the refinement are to minimize

• the number of non-application member sensors that have to assist the communi-

cations between the application member sensors, and

• the number of communications performed by non-application member sensors.

Meanwhile, the total number of communications performed in the network shall not

be increased with the proposed refinement.

When using the I-Headers, sensors will treat the bits that correspond to the non-

application member sensors as ”irrelevant”. During the neighbor discovery phase, a

sensor can know whether another sensor in its neighbor is an application member sensor

or it is a non-application member sensor.

In Section 6.2 we discuss the categorizations of the two sensors and the corresponding

scenarios of the refined random gossiping. The detail of the refined random gossiping

is introduced in Section 6.3. Part of the content of this chapter has been published by

the author of this thesis in [CKK14b].

6.2 Scenario categorization

For a given application in a wireless sensor network, the total sensors can be divided into

two subsets. The set VA ⊂ V includes the sensors that are involved in the application

(application-member sensors), and the set VK = V\VA denote the sensors which are not

involved in the applications (non-application-member sensors). Let VB ⊆ VK denote

the non-application-member sensors which assist in the message communications. Let

NA, NK, and NB denote the number of sensors in VA, VK, and VB, respectively. The



6.2 Scenario categorization 101

ratio of NA/N is denoted by ηA, i.e., the number of application-member sensors to the

total number of sensors.

Furthermore, let TA and TB denote the number of communications performed by sensors

in VA and VB until the two objectives mentioned in Chapter 2 are achieved, respectively,

where T = TA + TB is the total number of communications.

In the refined random gossiping, it shall be ensured that TA is small such that the

application-member sensors can quickly have the computation output. Moreover, NB

and TB shall also be small such that only a few non-application-member sensors are

assisting in the communications performing only a limited number of communications.

Unlike the random gossiping discussed in previous chapters where sensors communicate

with their neighbor sensors and that whether a message shall be exchanged is purely

based on algorithms involving I-Headers, the refined random gossiping in this chapter

shall consider one more dimension of the problem: whether a sensor and its neighbor

sensors are application-member or non-application-member sensors. According to the

type of sensor which initiates the communications (center) and the types of its neighbor

sensors, we categorize our problem into six scenarios, as shown in Table 6.1.

Table 6.1. Scenarios categorization

Center sensor Neighbor sensors
Scenario 1 application-member application-member
Scenario 2 application-member application-member and

non-application-member
Scenario 3 application-member non-application-member
Scenario 4 non-application-member application-member
Scenario 5 non-application-member application-member and

non-application-member
Scenario 6 non-application-member non-application-member

• Scenario 1: In the first scenario, the center sensor, as well as all its neighbor

sensors, are application member sensors, as shown in Figure 6.1.

In this scenario, there are no non-application-member sensors involved. There-

fore, the random gossiping protocol discussed in the previous chapter can be

used.
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Figure 6.1. Scenario 1

• Scenario 2: The second scenario is shown in Figure 6.2 where the center sensor is

an application member sensor (solid circles), and the neighbor sensors are partly

application-member sensors (solid circles) and partly non-application-member

sensors (white circle).

Figure 6.2. Scenario 2, solid circles are application-member sensors, and white circles
are non-application-member sensors

To design the protocol in this scenario, we define four disjoint conditions that

may happen for the center sensor.

a The center sensor and its application-member neighbor sensors have mes-

sages to exchange.

b The center sensor and its application-member neighbor sensors have the
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same message. Therefore, no message exchange is needed between them.

c The non-application-member neighbor sensors have application messages to

transmit.

d The non-application-member neighbor sensors have no application messages

to transmit.

The conditions a and b determine whether the message communication between

the application-member center sensor and the application-member neighbor sen-

sors should be performed. Respectively, the following two questions need to be

answered.

1. How should the center application-member sensor communicate with its

application-member neighbor sensors?

2. Should the communication between the center application-member sensor

and its non-application-member neighbor sensors take place at the same

time?

The center sensor and its application-member neighbor sensors all generate data

and all interest in the data aggregation. Therefore, the random gossiping protocol

discussed in previous chapters can be applied. For the non-application-member

neighbor sensors, the objective is to minimize the number of communications

performed by them. To achieve this in this scenario, the best strategy to offer

is to wait until all reachable application-member sensors around it have finished

the data aggregation locally with their own application-member neighbor sen-

sor. Then the non-application-member sensor only helps the message exchanges

among several groups of application-member sensors instead of every individ-

ual application-member sensor in its neighbor. Therefore, the communication

between the center application-member sensor and its non-application-member

neighbor sensors should not be simultaneous.

The communication between the center sensor and the non-application-member

neighbor sensors consists of two more problems:

3. Should the application-member center sensor initiate the communication

between the center application-member sensor and the non-application-

member neighbor sensors?

4. Will the protocol be different for the case that the non-application-member

sensors have application messages received from other application-member

sensors or non-application-member sensors and the case that the non-

application-member sensors have no messages but can receive messages from

the application-member center sensor?
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If the application-member center sensor initiates the communication when the

non-application-member neighbor sensors have application messages, the center

sensor and its application-member neighbor sensors are able to aggregate more

data with fewer communications. It is because that the message from the non-

application-member neighbor sensors can transmit the message to the center

sensor and then the center sensor can broadcast to all neighbor sensors. However,

the non-application-member sensor may need to perform communications of the

same message considering that there may be other application-member sensors

as its neighbors. This will be revealed in the following scenarios.

If the non-application-member neighbor sensors have no messages, and the center

initiates the communications with them, messages will be sent to these non-

application-member neighbor sensors because of the broadcast. This can lead

to the problems that the non-application-member neighbor sensors may have to

transmit a significant number of messages received from the application-member

sensors, and all those messages should first be aggregated by application-member

sensors to reduce the times that non-application-member sensors receive and

transmit.

A solution would be a complete role changing concerning the communication ini-

tiation. The message transmission between non-application-member sensors and

the application-member sensors is initiated by non-application-member sensors

when they are the center sensors, as discussed in the following scenarios. Fur-

thermore, problems such as when and how the non-application-member sensors

initiate the communications will also be addressed.

• Scenario 3: In the third scenario, the center sensor is an application-member

sensor, and all its neighbor sensors are non-application-member neighbor sensors,

as shown in Figure 6.3.

In this scenario, the role played by non-application-member neighbor sensors is

clearly and intuitively to see. As a solely application-member neighbor sensor,

it requires the assistance of the non-application-member neighbor sensors to re-

lay its message to other application-member sensors and receive messages from

them. If a center application-member sensor initiates the communication, it may

greedily rely on its non-application-member neighbor sensors to communicate

messages (greedy sensor). This results in a large number of communications

by the non-application-member sensors. Additionally, one or more of the non-

application-member neighbor sensors may have no other neighbor sensors, and

then they cannot help to further forward the message.

• Scenario 4: In this scenario as shown in 6.4, the center sensor is a non-application-
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Figure 6.3. Scenario 3, solid circle is an application-member sensor, and white circles
are non-application-member sensors

member sensor and all its neighbor sensors are application member neighbor

sensors.

Figure 6.4. Scenario 4

To discuss how the center non-application-member sensor should involve in the

communication, we consider two extreme cases. In the first case, all application-

member neighbor sensors can reach each other. In this case, the center sensor

should not involve in the communications since the message can be exchanged

without the participation of the center sensor. In the second case, there is no

connection between any two application-member sensors. Therefore, the center

non-application-member sensor is the only ”bridge” for them to exchange mes-

sages. As shown in these two cases, how to utilize the non-application-member
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center sensor efficiently depends on the connectivity of its application-member

neighbor sensors. However, as we stated in previous chapters, such connectivity

information is not available at the sensor.

In order to avoid as much as possible the unnecessary messages communications

performed by the center non-application-member sensors, we develop a protocol

in the next section based on a so-called ”request” which is transmitted from

application-member sensors to non-application-member sensors.

• Scenario 5: Figure 6.5 shows scenario 5, where the center sensor is a non-

application-member sensor, and the neighbor sensors are mixed with both

application-member and non-application-member sensors.

Figure 6.5. Scenario 5

As a center node, the non-application-member may play many roles:

– The center non-application-member sensor can help its application-member

neighbor sensors to exchange their messages of the application.

– The center non-application-member sensor can forward the message from

the application-member sensors to non-application-member sensors.

– The center non-application-member sensor can forward the message from

the non-application-member sensors to application-member sensors.

Each of the three roles turns out requiring an individual solution. For the first

role, the center sensor can ignore the non-application-member sensors in its neigh-

borhood and behave as what is done in scenario 5 to ”bridge” messages exchanges

among the application-member sensors. For the second role, the center sensor

needs to negotiate with its non-application-member neighbor sensor to see if any
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sensor is free to receive the message that is to be forwarded from the application-

member sensor via the center sensor. In the third role, the center needs to help to

attract the message from the non-application-member sensor to the application-

member sensor if the message contains any new data to the application-member

sensor. Moreover, arbitration shall be done when the roles can be played at the

same time in one wake-up.

• Scenario 6: Last but not least, scenario 6 happens when the center sensor, as well

as all its neighbor sensors, are non-application-member sensors, as shown in 6.6.

Figure 6.6. Scenario 6

The first problem in this scenario is to determine the condition that the non-

application-member sensor should wake up as a center to initiate the communi-

cations. In general, there are only two states that happen at the non-application-

member sensor.

– It has an application message. In this state, the center intends to send its

message out to its neighbor(s).

– It does not have an application message. In this state, the only thing that

a sensor can do is to forward the message from one of its non-application-

member neighbor sensor to another non-application-member neighbor sen-

sor. However, as we have discussed in scenario 2, a non-application-member

sensor with an application message sends its message only when it wakes

up as a center. The non-application-member sensor in this state will not

wake-up as the center.

There is another problem in this scenario requires additional consideration when

designing the protocol. If all sensors in this scenario, including the center and all
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the neighbor sensors, have application messages, there will be a local deadlock and

no message can be forwarded. It is because non-application-member sensors will

not perform data aggregation. The solution can be to abandon the message or to

buffer the message in the memory. By abandoning the messages, the center can

behave as a sensor ready to help to forward the application messages. However, in

the case that a message has been forwarded through a sequence of transmissions,

to abandon the message implies that all the transmissions are wasted in terms of

energy and channel resource. When to buffer the message and then to behave as

a sensor ready for forwarding other application messages, it has to consider in the

protocol of how to deal with the message being buffered, and when to transmit

the buffered message.

In both Scenario 5 and Scenario 6, there is a common problem that the non-

application-member sensor may transmit a message more than once or transmit

a message which is ”older” than its previously transmitted messages. Here ”older”

means that the message contains less or the same measurement data than the

message which have been previously transmitted by this non-application-member

sensor. In order to overcome this problem, we enable memory capability at

non-application-member sensors. Different from the memory capability at the

application-member sensor that both I-Header of the message and the message

itself will be stored, a non-application-member sensor only stores I-Headers. The

stored I-Headers are used to avoid transmitting the same message more than

once and transmitting ”older” messages by the non-application-member sensors.

Details of how the non-application-member sensors store and reuse the I-Headers

are revealed in the next chapter.

6.3 Refined random gossiping protocol

In this section, protocols for the six different scenarios discussed in the previous section

are given. Meanwhile, the problems that arose in the six scenarios are solved.

As we introduced in Chapter 2, I-Header functions as a database shared across several

layers for a cross-layer consideration. In Chapter 3 and Chapter 4, we see the potential

that I-Header benefits the random gossiping in general function calculations in terms of

reducing the bias and reducing the number of message communication. In this chapter,

I-Header are used assist the communications not only between the application-member

sensors but also between a non-application-member sensor and an application-member

sensor as well as between non-application-member sensors.
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6.3.1 Protocol for scenario 1

In Scenario 1, the center sensor vAM,i, as well as the neighbor sensors vj ∈ NAM,i, are

all application-member sensors. As we discussed in the previous section, the random

gossiping protocol discussed in Chapter 4 can be applied in this scenario. The interac-

tions between the application-member sensors are based on I-Header communications

and comparisons. Recall the definition of the r function from previous chapters, we

have

r(Ii, Ij) =























1 for Si = Sj (6.1)

2 for Si ⊃ Sj (6.2)

3 for Si ⊂ Sj (6.3)

4 for all else . (6.4)

In Algorithm 11, we assume the application-member sensor vi wakes up as the center

sensor.

Algorithm 11 has been modified to match the context of the partial sensor involvement

and using the improved bias-cancellation discussed in Chapter 3.

6.3.2 Protocol for scenario 2

As have been discussed in the previous section, the application-member center sensor

initiates the communications with all its application-member neighbor sensors firstly.

The communications are guided using the protocol in Algorithm 11.

Since the message communications between non-application-member sensors and the

application-member sensors shall be initiated by the former, a strategy shall be given

about how and when the non-application-member sensors initiate the message com-

munications. Therefore, we propose a concept called request. The request is al-

ways sent from application-member sensors to non-application-member sensors after

the application-member sensor as a center finishes data aggregation with its neighbor

application-member sensors, i.e., the I-Header are the same at the application-member

sensor and all its application-member neighbor sensors, or in another word, the set of

data aggregated in their applications messages are the same.

For every sensor vj ∈ NK, we define a counter zj counting the number of received

request from its application-member neighbor sensors. The protocol for Scenario 2 is

given in Algorithm 12.
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Algorithm 11 Protocol for Scenario 1

1: vi initiates the communications with all sensors in NA
i

2: vi broadcast I-Header Ii to all sensors in NA
i

3: ∀vj ∈ NA
i compares received I-Header Ii with its own I-Header Ij and generates

r(Ii, Ij)
4: if r(Ii, Ij) ∈ {2, 4} then

5: vj transmits I-Header Ij to vi
6: else

7: if r(Ii, Ij) = 3 then

8: vj transmits information to vi, indicating that message at vi contains new data
to vj

9: else

10: vj does nothing
11: end if

12: end if

13: if vi receives any I-Header then
14: vi performs neighbor sensor selection based on all received I-Headers according

to (3.24), finding the subset of sensors N b
i and the bias-reduction set

15: vi informs sensors in N b
i transmitting their application message to vi

16: ∀vj ∈ N b
i transmits their application messages to vi

17: vi perform data aggregation and bias-cancellation generating a new message and
a new I-Header Ii

18: vi compares new I-Header Ii with the received I-Header, generating r(Ii, Ij) for
all vj having sent their I-Headers to vi

19: end if

20: if (vi receives any I-Header and there exist r(Ii, Ij) = 3) or vi received from any
vj indicating r(Ii, Ij) = 3 then

21: vi broadcasts its new I-Header Ii
22: vi broadcasts its new application message
23: ∀vj ∈ NA

i , vj compares received I-Header Ii with its own I-Header Ij and gen-
erates r(Ii, Ij)

24: if r(Ii, Ij) = 3 then

25: vj sets Ij = Ii and replaces its application message with the received applica-
tion message.

26: end if

27: end if

28: vi terminates the communications with NA
i

Algorithm 12 Protocol for Scenario 2

1: Perform protocols given in Algorithm 11
2: vi initiates communication with its non-application member neighbor sensors NK

i

3: ∀vj ∈ NK
i , zj = zj + 1

4: vi terminates communications with sensors in NK
i
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As shown above, the requests are aggregated at the non-application-member sensors

when they are sent by application-member sensors. The action on how to utilize the

aggregated requests by the non-application-member sensors are discussed in scenarios

4 and 5 when the non-application-member sensors wake up as center sensors.

6.3.3 Protocol for scenario 3

In Scenario 3, the center has only non-application-member neighbor sensors. When the

center initiates the communication, it only broadcasts a request to its non-application-

member neighbor sensors. The protocol for this scenario is given in Algorithm 13.

Algorithm 13 Protocol for Scenario 3

1: vi initiates communication with its non-application member neighbor sensors NK
i

2: ∀vj ∈ NK
i , zj = zj + 1

3: vi terminates communications with sensors in NK
i

6.3.4 Agency and feedback

Before we propose the protocols for Scenario 4, 5, and 6, we introduce two concepts to

assist in building the protocols.

The first concept is the so-called agency. In a static wireless sensor network, a non-

application-member sensor vNAM,i ∈ VB can be an agency when

• vNAM,i has no application-message,

• vNAM,i has at least one application-member neighbor sensor,

• All application-member neighbor sensors have the same application message, and

therefore have the same I-Header, and

• vNAM,i has at least one non-application-member neighbor sensor.

We use ai = 1 to denote if sensor vi is an agency sensor and ai = 0 if is not. When

sensor vNAM,i is an agency sensor, vNAM,i interacts with other non-application-member

sensors by using I-Header Ii.
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In principle, the objective to introduce the concept of agency is to reduce the message

communications that are performed by the non-application-member sensors. Agency

benefits this objective by introducing an efficient communication strategy for every

non-application-member sensor, which has both application-member neighbor sensors

and non-application-member neighbor sensors.

The non-application-member sensors are involved in the communication to assist the

message exchanges among application-member sensors. We can decompose this prob-

lem to that the non-application-member sensors should help application messages

exchanges among its neighbor application-member sensors and that it helps all its

neighbor application-member sensors to exchange application messages with other

application-member sensors which can only be reached via other non-application-

member sensors. Figure 6.7 shows a simple example.

v1

v2
v3

v4

Figure 6.7. Example of agency

In Figure 6.7, non-application-member sensors v1 and v4 assist the application-member

sensors in their neighbors for aggregation since the application-member sensors cannot

be directly connected. In order to assist the message exchanges between application-

member sensor in the neighbor of v1 and v4, other non-application-member sensors

such as v2 and v3 are involved.

When the non-application-member sensor helps application messages exchanges among

its neighbor application-member sensors, it forwards a message from one application-

member neighbor sensor to other application-member neighbor sensors if necessary. In

Scenario 5, we are dealing with this problem mainly. However, the non-application-

member sensor in Scenario 5 cannot be an agency according to the definition. The

function of an agency is to represent a set of application-member sensors which have

the same application message and I-Header by non-application-member sensors to inter-

act with other non-application-member sensors. From this point of view, the agency

extends the range of interaction of application-member sensors by using their non-

application-member neighbor sensors. In the example shown in Figure 6.7, sensor
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v1 is an agency for its neighboring application-member sensors to communicate the

application messages with sensor v2,

The limitation of using an agency is stated in its definition that it only works for static

wireless sensor networks. This condition can be relaxed under the assumption that

the network topology remains static during the time a non-application-member sensor

becoming an agency and then becoming a non-agency sensor.

The second concept is feedback. Feedback is used to categorize the information that

will be sent from neighbor sensors to the non-application-member center sensor for the

center sensor to decide the protocol process.

In previous chapters, neighbor sensors may transmit their I-Header, their (application)

message, and the information that they require the message from the center. The first

two does not belong to the feedback that we are proposing here. When the center sensor

vi is a non-application-member sensor, there are two cases when it has an I-Header:

• vi has an application message and therefore has an I-Header

• vi is an agency, therefore it has an I-Header.

In both cases, when vi wakes up and initiates the communications with its neighbor sen-

sors, it can broadcast its I-Header to all its neighbor sensors. A feedback transmission

is triggered by a neighbor sensor receiving an I-Header from the center non-application-

member sensor. The categorization of the feedback depends

• whether the neighbor sensor is an application-member sensor or a non-

application-member sensor,

• whether the neighbor sensor has an application message or has no application

message,

• whether the neighbor sensor has already transmitted a message that includes all

data referred in the received I-Header, and

• what the relation is between the received I-Header and its I-Header at the neigh-

bor sensor.
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To clarify the third bullet, let εvj denote a function at the non-application-member

neighbor sensor vj of vi taking the received I-Header Ii as a parameter. Function εvj

compares Ii to all the stored I-Headers I
vj
l ∈ Ψ vj at sensor vj and tells whether the

data set Si = Θ−1(Ii) of the application message at sensor vi contains new data to

the data set S
vj
l = Θ−1(I

vj
l ). If there is new data contained, i.e., r(Ij, I

vi
l ) ∈ {2, 4},

the result of the function is εvj (Ii) = 1. Otherwise, the function result is εvi(Ij) = 0.

Intuitively, the function resulting in εvj (Ii) tells whether the data set Si contains new

data that has never been contained in the data set of the message that sensor vj has

transmitted.

To clarify the fourth bullet, a tree is given in Figure 6.8 to list all possible cases that

a neighbor sensor of a non-application-member sensor can be.

vj ∈ Ni

vj ∈ NA
i vj ∈ NK

i

r(Ii, Ij)

r(Ii, Ij)

r(Ii, Ij)

= 1

= 1

= 1

= 2

= 2

= 2

= 3

= 3

= 3 = 4

= 4

= 4 mj 6= φ mj = φ

aj = 1 aj = 0

ǫvj (Ii) = 1 ǫvj (Ii) = 0

NA
j = φ NA

j 6= φ

Figure 6.8. A condition tree to list of all possible cases based on the categorization
conditions

Based on this tree in Figure 6.8, we can categorize the four types of feedback. Only

if a neighbor sensor meets any of the situations for generating feedbacks, the neighbor

sensor will expect I-Header or message transmissions from the center sensor from the

center. The four feedback types T1, T2, T3, and T4 are given by tracing from the top

of the tree to bottom by using colon ”:” for each step down:

T1. vj ∈ Ni: vj ∈ NA
i : r(Ii, Ij) = 2 OR r(Ii, Ij) = 4;
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T2. vj ∈ Ni: vj ∈ NK
i : mj 6= φ: r(Ii, Ij) = 2;

T3. vj ∈ Ni: vj ∈ NK
i : mj = φ: ǫvj (Ii) = 1: aj = 1:r(Ii, Ij) = 2 OR r(Ii, Ij) = 4;

T4. vj ∈ Ni: vj ∈ NK
i : mj = φ: ǫvj (Ii) = 1: aj = 0: NA

j = φ;

For all other cases, no feedback is generated.

If sensor vj gives T1 feedback, it is an application-member sensor. When the incoming

I-Header indicates the existence of new data at the center sensor, the T1 feedback is

sent, showing its interest in the incoming application message.

T2 feedback indicates that the non-application-member sensor vj has an ”older” mes-

sage whose data set is a subset of the data set of the application message indicated by

the I-Header transmitted by the center sensor.

When a neighbor sensor vj sends T3 feedback, it is an agency sensor. The agency

sensor compares the I-Header of the center with the stored I-Header in its memory

and results in a positive result ǫvj (Ii) = 1 indicating that there is new data which is

not contained in any message that the neighbor has transmitted. Then it compares

the received I-Header with the I-Header of the application-member sensor that it as

an agency represents. If the comparison detects new data, the interest in the message

will be given as T3 feedback from the agency sensor to the center.

T4 feedback is, on the other hand, sent by a non-agency sensor without application

message. The sensor itself has no application-member neighbor sensors. When a non-

application-member sensor having application-member neighbor sensors has no appli-

cation message, and itself is not an agency sensor, it indicates that the application-

member neighbor sensors of this non-application-member sensor have not finished the

aggregation. It could be possible that after the aggregation being finished in its

application-member neighbor sensors, the I-Header of the message indicates that it con-

tains no less data than the I-Header received by the non-application-member sensor. To

reduce the number of communications carried by the non-application-member sensors,

this situation should be overcome by letting the discussed non-application-member sen-

sor stay silence until the aggregation is finished among its application-member neighbor

sensors.

6.3.5 Protocol for scenario 4

As discussed above, in Scenario 4, the center sensor helps its neighbor application-

member sensors to exchange messages if necessary. Application-member sensors send
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a request to vi when they are waking up as the center. When vi has received from

every of its application-member neighbor sensor a request, i.e., zi = NA
i , it initiates

the communications. The protocol is given in Algorithm 14. Additionally, Algorithm

15 shows how sensor vi find a neighbor sensor vj , which contains the newest data.

Algorithm 14 Protocol for Scenario 4

1: if zi = NA
i then

2: vi initiates communication with its application-member neighbor sensors NA
i

3: For all sensor vj ∈ NA
i , vj sends its I-Header Ij to sensor vi

4: if ∃vj , vk ∈ NA
i , vj 6= vk such that r(Ij, Ik) 6= 1 then

5: vi applies algorithm 2 in Chapter 3 to find P1

6: vi finds a vj according to the Algorithm 15
7: Ii = Ij

8: vi informs vj to send its message mj

9: vj sends its message to vi, mi = mj

10: vi broadcast I-Header Ii to all sensors in NA
i

11: vi broadcast application message mi to ∀vj ∈ NA
i

12: ∀vj ∈ NA
i , vj aggregates message mi, performs bias-cancellation and updates

its own message mj and its own I-Header Ij
13: vi updates its memory which stores the I-Header by Ψ vi = Ψ vi ∪ Ij, vi clear its

message mi = φ, its I-Header Ii = 0 and resets the counter of received request
zi = 0

14: else

15: vi resets the counter of received request zi = 0
16: end if

17: vi terminates communications with sensors in NK
i

18: end if

Algorithm 15 Algorithm to find vj which contains most new data

1: for S i
l ∈ P1 do

2: kl = 0
3: for S i

m ∈ P1 \ S i
l do

4: S i
l−m = S i

l ∪ S i
m \ S i

m

5: kl−m is the number element in S i
l−m

6: if kl−m > kl = 0 then

7: kl = kl−m
8: end if

9: end for

10: end for

11: Find vj corresponding to the S i ∈ P1 which results in the maximum kl
12: Return vj
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6.3.6 Protocol for scenario 5

In Scenario 5, the center sensor is a non-application-member sensor with mixed

application-member and non-application-member neighbor sensors. As discussed in

the previous section, there are two tasks for the center sensor. The first is similar to

the center sensor in Scenario 4 that the center helps its neighbor application-member

sensors to exchange messages. The second is when all the application-member neighbor

sensors have all aggregated the same data in their messages, the center sensor helps to

forward this message to its non-application-member neighbor sensor(s) such that other

application-member sensors can also receive this message.

There are two situations when a center sensor vi in Scenario 5 wake up to initiate

communications with its neighbor sensors. The first situation is that vi has an appli-

cation message which it received from another non-application-member sensor aiming

to forward the message to other application-member sensors such as the application-

member neighbor sensors of vi. The second situation is when vi receives enough number

of Request from its application-member neighbor sensors. In this situation, vi has no

message. The protocol of Scenario 5 is given in Algorithm 16.

As seen in the protocol for Scenario 5, when the non-application-member center has

messages, it interacts with all neighbor sensors that could potentially benefit from

receiving the message of the center. When there is no message, it firstly acts as a

sensor in Scenario 4. If all its neighbor application-member sensors have the same

message, it becomes an agency sensor. As an agency sensor, it firstly interacts with

other non-application-member neighbor sensors which can directly benefit from the

message, i.e., the sensor with a message or another agency sensor. If there are no such

neighbor sensors, it chooses a non-application-member sensor without messages and

forwards the message from the application-member sensor to it. By doing this, the

non-application-member sensors have less possibility to receive a message if they have

currently no application message or they are not agencies.

6.3.7 Protocol for scenario 6

In Scenario 6, all sensors, including the center and its neighbor sensors, are non-

application-member sensors. We may refer this scenario to the cases where messages

are exchanged among application-member sensors which are isolated by intermediate

non-application-member sensors. According to the rules we set in the previous section,

the non-application-member sensor does not send a message if it does not wake up as
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a center sensor. Therefore, one situation that the center sensor initiates the communi-

cations is that it has an application message. In the previous section, we have already

pointed out a problem of ”deadlock”, that all sensors, including the center and all the

neighbor sensors, have messages. We proposed a method that the center sensor may

buffer its current message and behaves as a sensor ready for forwarding other applica-

tion messages. Therefore, the second case that the center initiates the communications

will be that the center has no message, but it has a message stored in the buffer. The

algorithm for Scenario 6 is given in Algorithm 17.

6.4 Performance and discussions

In this section, we provide performance result through simulation and comparison

against the benchmark scenario of our proposed protocols.

6.4.1 Benchmark

In order to test the proposed protocols given in the previous section, a benchmark

for comparison is needed. The partial sensor involvement focuses on that only a part

of sensors in the network are involved in the application, i.e., application-member

sensors, to generate measurement and have interest in the function output. The sensors

which are not involved in the application only help the message exchanges among the

application-member sensors. The objectives of designing our protocol are to minimize

the number of involved non-application-member sensors and to minimize the number of

communications that are performed by those involved non-application-member sensors.

We design a benchmark scenario for comparison considers the following aspects:

• there are application-member sensors and non-application-member sensors in the

wireless sensor network,

• the differences between application-member sensors and non-application-member

sensors are that 1) the application-member sensors generate measurement data

and the non-application-member sensors do not generate data, 2) the application-

member sensors interest in the computation output,
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• non-application-member sensors perform the computation and communication in

the same way as the application-member sensor except that they do not initiate

the communication when they have no application messages,

• The stop criterion is that all the application-member sensors have aggregated the

measurement from all the application-member sensors in the network.

The benchmark considers the same application situations without utilizing the pro-

tocols we have been discussed in the previous section. Therefore, the protocols can

be tested by comparing the two metrics, the number involved non-application-member

sensor and the number of communications performed by the involved non-application-

member sensors.

6.4.2 Performance

In the simulations, we consider a WSN with N = 100 sensors randomly deployed

in a 1000-by-1000 squared area. The abbreviation RRG indicates Refined Random

Gossiping proposed in this chapter. The performance is compared to the random

gossiping (RG) proposed in Chapter 5. In the RG, the same sensors as the application-

member sensors in the RRG generate measurement data, and the others generate

no data. In contrast to RRG, all non-application-member sensors in the RG behave

like application-member sensors, i.e., using the protocol defined in Scenario 1. The

objectives of RG are 1) to compute the same divisible function as RRG and 2) to let

the application-member sensors know the function output. For both approaches, the

communications stop when all application-member sensors have the aggregated output

function.

In Figure 6.9, the comparison is given by showing the number of communications in

total T , the number of communications performed by application-member sensors TA

and the number of communications performed by non-application-member sensors TB

with respect to the communication range d. The ratio ηA of application-member sensors

in the network is 0.2

In the Figure 6.9 d varies from the minimum value (approximately 200) that leads

to a connected network to the value with which all sensors are connected to all the

other sensors (the diagonal distance of the squared area). With almost the same

total number T , the number TB of communications for the non-application-member

sensors using RRG is significantly reduced in comparison to that using RG. However,
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Figure 6.9. Number of communications vs. communication range d.

the price paid for such improvement is a higher number TA of communications by

application-member sensors. When increasing the communication range, a sensor has

more neighbor sensors. Therefore, the probability that application-member sensors can

directly communicate increases, which results in a decreased number of communications

for both application-member sensors and non-application-member sensors.

Figure 6.10 compares for RG and RRG by showing the number of communications for

different ratios ηA of the number of application-member sensors over the total number
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Figure 6.10. Number of communications vs. ηA

of sensors with a fixed communication range d = 270. As it is shown in the Figure,

RRG outperforms RG in terms of the number of communications TB performed by

non-application-member sensors.

Figure 6.11 compares RG and RRG by the number of involved non-application-member

sensors NB in the message communications with respect to different communication

ranges d. Figure 6.12 gives the comparison by the number of involved non-application-

member sensors NB with respect to the ratio ηA. In both Figures, the reduction of
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Figure 6.11. Number of involved non-application-member sensors NB vs. communica-
tion range d

the involvement of non-application-member sensors are observed by using the RRG

proposed in this chapter in comparison to the referred random gossiping protocols.

6.5 Summary

In this chapter, we propose a refined random gossiping protocol for wireless sensor net-

works where only part of the sensors are involved in the application, i.e., only a subset
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Figure 6.12. Number of involved non-application-member sensors NB vs. Ratio ηA

of the sensors generates measurement data and is interested in the function output

with the measurement data as parameters. Sensors are categorized into application-

member sensors and non-application member sensors depending on their involvement

in the application. Non-application-member sensors need to assist in the communi-

cations between application-member sensors. Our newly proposed refined protocol

minimizes the number of involved non-application-member sensors and the number

of their communications. Depending on the type of neighbor sensors, communication

protocols for six different scenarios are discussed. Performance evaluations show the

reduction of the number of communications performed by the non-application-member

sensors as well as the number of non-application-member sensors that are involved in
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the proposed protocols in comparison to the approach where all sensors communicate

with each other as application-member sensors considered in our previous work.



Algorithm 16 Protocol for Scenario 5
1: if mi 6= φ then

2: vi initiates the communications with its neighbor sensors in Ni

3: vi broadcast its I-Header Ii to all its neighbor sensors Ni

4: Sensors in Ni sends feedback to vi if a feedback information is generated
5: if vi receives any T1, T2 or T3 feedback then

6: vi broadcast its message mi to sensors vj ∈ Ni which sent T1, T2 or T3 feedback
7: For vj which sent T1 feedback, it aggregates the received message, performs bias-

cancellation and updates its I-Header
8: For vj which sent T2 feedback, it replaces its message with the received message

and replaces its I-Header with the I-Header of its received message
9: For vj which sent T3 feedback, it replaces its I-Header with the I-Header of its

received message and set αj = 0
10: end if

11: vi updates its memory which stores the I-Header by Ψ vi = Ψ vi∪Ij , vi clears its message
mi = φ, its I-Header Ii = 0 and resets the counter of request zi = 0

12: else

13: if zi = NA
i then

14: vi initiates the communications with its neighbor sensors in NA
i

15: For all sensor vj ∈ NA
i , vj sends its I-Header Ij to sensor vi

16: if ∃vj, vk ∈ NA
i , vj 6= vk such that r(Ij , Ik) 6= 1 then

17: If vi is no more an agency sensor if it was, αi = 0
18: Execute steps 5-13 in Algorithm 14
19: else

20: vi is set to be an agency αi = 1, its I-Header is Ii = Ij which is equal to any
I-Header of its application-member neighbor sensor

21: vi broadcast its I-Header Ii to all sensors in NK
i

22: Sensor vj ∈ NK
i send feedback to vi if the feedback is generated

23: if vi receives any T2 and T3 feedbacks then
24: vi selects an vj ∈ NA

i arbitrarily, vj sends its message to vi
25: vi broadcast the message to a sensor in vj ∈ NK

i which sent T2 and T3 feedback

26: For vj which sent T2 feedback, it replaces its message with the received message
and replaces its I-Header with the I-Header of its received message

27: For vj which sent T3 feedback, it replaces its I-Header with the I-Header of its
received message and set αj = 0

28: else

29: if vi receives T4 feedbacks then
30: vi selects an vj ∈ NA

i arbitrarily, vj sends its message to vi
31: vi randomly chooses one vj which sent T4 feedback
32: vi sends its message to vj, vj updates its message and its I-Header Ij = Ii

33: end if

34: end if

35: vi updates its memory which stores the I-Header by Ψ vi = Ψ vi ∪ Ij , vi clear its
message mi = φ and resets the counter of received request zi = 0

36: end if

37: end if

38: end if
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1: if mi = φ and There is a message mS
i in the buffer then

2: vi loads the message mS
i from its buffer and set mi = mS

i

3: vi sets its I-Header Ii as the I-Header of message mi

4: vi clears its buffer for storing the message mS
i = φ

5: end if

6: if mi 6= φ or There is a message mS
i in the buffer then

7: vi initiates the communications with its neighbor sensors in Ni

8: vi broadcasts its I-Header Ii to all its neighbor sensors Ni

9: Sensors in Ni sends feedback to vi if feedback information is generated
10: if vi receives no feedback from Ni then

11: if mS
i = φ then

12: vi buffers its message such that mS
i = mi and clear its message mi = φ

13: end if

14: else

15: if vi receives any T2 or T3 feedback from Ni then

16: vi broadcasts the message to a sensor in vj ∈ Ni which sent T2 or T3
feedback

17: For vj which sent T2 feedback, it replaces its message with the received
message and replaces its I-Header with the I-Header of its received message

18: For vj which sent T3 feedback, it replaces its I-Header with the I-Header of
its received message and set αj = 0

19: vi updates its memory which stores the I-Header by Ψ vi = Ψ vi ∪ Ij , vi clear
its message mi = φ

20: else

21: if vi receives any T4 feedback from Ni then

22: vi randomly chooses one vj which sent T4 feedback
23: vi sends its message to vj , vj updates its message and its I-Header Ij = Ii

24: vi updates its memory which stores the I-Header by Ψ vi = Ψ vi ∪ Ij , vi
clear its message mi = φ

25: end if

26: end if

27: end if

28: end if
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Chapter 7

Conclusions

In this chapter, a summary is given for this thesis.

This thesis presents our works on random gossiping in wireless sensor networks for

divisible function calculations. Random gossiping is a decentralized communication

protocol with which all sensors in the network can aggregate the measurements of all

the other sensors.

Previous works on random gossiping focus on computing a weighted summation of the

measurements of all sensors. The first problem in this thesis is to extend the random

gossiping to compute general divisible functions not limited to the weighted summation.

For a decentralized protocol, to ensure the convergence of the computation as well as

to improve the speed of the convergence become critical problems. This is because

there is no centralized scheduling in the network to create a sequential communication

order for the data from a sensor to reach all other sensors within a given number of

transmissions. The lack of centralized control in the network brings the additional

problem of a biased aggregation, i.e., the measurement of a sensor may be aggregated

multiple times by other sensors. When the relative position of a sensor regarding its

neighbor sensors does not change in the network, the network has a static topology. A

problem can be raised on random gossiping to make use of this topology condition to

improve its convergence speed. Moreover, when multiple applications are running in

a wireless sensor network, how to refine the random gossiping to support the multiple

applications becomes a problem.

In this thesis, the foundation to solve these problems is the indicating header (I-Header)

introduced in Chapter 2. Each message communicated by a sensor in the network is

paired with an I-Header. An I-Header provides the information of a message on whether

the message has aggregated the measurement of a particular sensor in the network.

Therefore, a sensor can determine whether its message contains measurements of all

sensors in the network, i.e., the convergence of the data aggregation is achieved, by

using the I-Header paired with the message.

The I-Header itself contains no information regarding the aggregation bias. In Chapter

3, algorithms are proposed to reduce the aggregation bias at each sensor. The algo-

rithms use the storage of sensors to keep some messages as well as the I-Headers of
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the messages that have been previously communicated by a sensor and its neighbor

sensors. When a sensor communicates with more than one neighbor sensor, the neigh-

bor sensor selection is also considered as a part of the bias reduction algorithm. The

I-Header provides the required information for sensors to perform the bias reduction

algorithms.

Exchanging I-Headers among sensors can improve the convergence speed. In Chapter

4, protocols are given to describe how to integrate the I-Headers into random gossiping

communications. The protocols are addressed based on the categorization of humble

sensors and greedy sensors that are distinguished by how a sensor communicates with

its neighbors. A humble sensor always exchanges its message with only one of its neigh-

bor sensors at a time, whereas a greedy sensor exchanges its message with all of its

neighbor sensors. A significant reduction in the number of message communications

can be observed using the random gossiping protocols with I-Headers compared to the

case without I-Headers. Furthermore, in Chapter 4, discussions are provided about the

multihop coordination of random gossiping. The multihop coordination uses I-Headers

to extend the sensor-neighbor communications to sensor-multihop-neighbor communi-

cations with a particular failure rate of the coordination. According to the performance

analysis, multihop coordination of random gossiping improves the convergence speed

significantly.

In Chapter 5, wireless sensor networks are considered with static topology when ap-

plying random gossiping. When the topology of the network is static, the neighbor

sensors of a sensor do not change. Under this condition, algorithms are proposed to

reduce the number of I-Header communications. Furthermore, the analysis shows that

sensors at the topology bottleneck position of the network with static topology can

apply transmission deferment to reduce the number of message communications in the

network further.

In Chapter 6, the random gossiping is extended to support multiple applications in a

wireless sensor network. The underlying assumption is that only a part of the total

sensors in a network generates the measurements for an application and are interested in

the aggregation results. Protocol refinement is proposed based on six different scenarios

which are distinguished by whether a sensor and its neighbor sensors are involved in the

application or not. The performance analysis shows that while maintaining the total

number of communications, the refined protocol reduces the number of communications

performed by sensors that are not involved in a specific application.

This thesis shows the benefit of introducing I-Headers and the gain in performance

in terms of convergence speed and bias in the network. The main reason for the
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improvement is the joint consideration of the network layer and the application layer.

There are potential future works which can consider lower layers involving the network

channel capacity analysis such as our works in [CKK+12a] and [CKK+12b]. Other

potential future works may consider the coding of the message as well as the coding

of the I-Header. The coding involves the entropy analysis of the I-Header itself. In a

situation where the size of an I-Header is similar to that of a message, if the redundancy

contained in the I-Headers can be reduced, the communication effort in the network

for exchanging I-Headers will be reduced.

The area of wireless sensor networks is an enriching area for researches. Random

gossiping and the use of I-Headers proposed in this thesis can also potentially be applied

together with other cross-layer optimization approaches and computation offloading.
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List of Acronyms

I-Header Indicating-Header

IoT Internet-of-Things

QoS Quality-of-Service

RG Random Gossiping

RRG Refined Random Gossiping

SNR Signal-to-Noise Ratio

WSN Wireless Sensor Network
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List of Symbols

A square matrix containing the connectivity among sensors

aij entry on the i-th row and the j-th column of A

bm′
i
(sm) bias in m′

i of measurement data sm

C set collects all possible selections when select a group in P

Cm m-th selection in C

Cm(l) l-th data set in Cm

cSi multiplicity of measurement data in multiset

cSi(j) multiplicity of data sj being aggregated

D maximum value of a finite square area

D diagonal matrix whose i-th diagonal entry equals N

d communication range of every sensor in the network

dij distance between the i-th sensor and the j-th sensor in a wireless
sensor network

E set contains all connections between sensors in a wireless sensor net-
work

eij connection between sensor vi and sensor vj

F set of divisible function

fl function in set F with l input parameters

G wireless sensor network expressed using a graph

gΠ(S) auxiliary function of the divisible function with partition Π(S)

Ii Indicating-Header of sensor vi

Ii(j) j-th bit in Ii

L Laplacian matrix of a network

LSΨ maximum bias of the data in in SΨ

lk cardinality of set Sk

mvi
l l-th message stored in sensor vi

m′
i new message at sensor vi after aggregation

N total number of sensors in a wireless sensor network

NA number of application member sensors

NB number of sensors in VB

Ni set of neighbor sensors of sensor vi

Ni number of sensors in Ni

NK number of non-application member sensors

N≥1 set of non-zero integer value
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Nav average number of neighbor sensors of each sensor in network

N S
i subset of the neighbor sensors of sensor vi that intends to transmit

data to vi

N Ψ
i set of sensors whose data set are in Ψ

nC number of possible selections in C

nPj number of sets of measurement data in Pj

P set of groups generated by grouping sets of measurement data in Ψ
N S
i

i

Pj j-th group in P

Pj(l) l-th set of measurement data in Pj

P1 set collecting the first sets of measurement data of all groups in P

p number of groups in P

rΘ function output index of the relation for comparing two data sets

S set of measurement data of all sensors

Sl l-th set of sensors’ measurements after partition

SB
ij intersection of sets Si and Sj

S iB
ij set contains bias with operation of S i

i ∩ S i
j

S i
i underlying set of measurement data in multiset

S i′

i set of measurement data in accumulation of measurement data of sen-
sor in N S

i and measurement data of sensor vi

(S i
i, cSi) multiset for data aggregation at sensor vi

SR
i reference data set of aggregation at sensor vi

ST data set selected to perform bias cancellation

SUB
ij unbiased version of SB

ij

Svil l-th set measurement data of which the aggregation is available at
sensor vi

Svi1→i set accumulates from Svi1 to Svii

sS
vi
l

data vector of set of measurement data of Svil

s vector collects all measurement data in S

sS
vi
1→i

data vector corresponding to Svi1→i

s̄ mean value of all sensors’ measurement data

sSk vector collects all measurement data in set Sk

si measurement data of sensor vi

T combination table

T total number of message communications performed in network

TA number of message communications performed by sensors in VA

TB number of message communications performed by sensors in VB
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V set contains all sensors in a wireless sensor network

VA set of application member sensors

VB set of non-application member sensors which assist communications

VK set of non-application member sensors

V lsi a set of l sensors which have already aggregated data si

v sensor in a wireless sensor network

vi i-th sensor in a wireless sensor network

vs selected sensor

x, y coordinate position in a finite area

xi aggregation data of sensor vi

Θ map function from Indicating Header to sensor ID

ΛΩ set collects all possible permutations of data sets in Ω

λ2 second smallest eigenvalue of L

Π(S) partition of S

τ li lower boundary of a value range

τui upper boundary of a value range

Υ a multiset operation which is either union of set-theoretic difference

Υi operation between set Svii and set Svii+1

φ empty set

Ψ selection in C

Ψ
N S
i

i ordered set collects all set of measurement data of the messages at
sensors in N S

i

Ψ
N S
i

i (l) l-th set of measurement data in Ψ
N S
i

i

Ψ vi set collects ψi sets of measurement data which are available at vi

ψi number of messages stored in buffer of sensor vi

Ω set of data set in Ψ vi

Ω(i) i-th data data set in Ω

Ωb bias reduction set

Ωx permutation defined by one possibility in ΛΩ
∐

collection of all possible choices of Υ
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[Böh12] T. M. Böhler,
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