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Abstract 

Frequently, the computer modelling of the natural and human-made environment requires localised 

weather files. Traditionally, the weather files are based on the observed weather at a small number 

of locations (14 for the UK). Unfortunately, both the climate and the weather are known to be highly 

variable across the landscape, so the small number of locations has the potential to cause large errors. 

With respect to buildings, this results in incorrect estimates of the annual energy use (sometimes by 

a factor of 2), or of overheating risk. Here we use a validated weather generator running on a 5x5 km 

grid to create probabilistic Test Reference Years (pTRYs) for the UK at 11,326 locations. We then 

investigate the spatial variability of these pTRYs and of annual energy estimates and temperatures in 

buildings generated by them, both now and in 2080. Further pTRYs targeted at understanding the 

impact of minimum and maximum temperatures are proposed and produced at the same locations. 

Finally, we place these pTRYs, which represent the first set of reference weather files at this spatial 

resolution in the world and that include the urban heat island effect, into a publicly accessible 

database so researchers and industry can access them. 

 

Practical applications: 

Insufficiently localised weather data for building simulations has limited the accuracy of previous 

estimations of energy use and overheating risk in buildings. This work produces localised probabilistic 

Test Reference Years (pTRYs) across the whole UK for now and future climates. In addition, a new 

pTRY method has been proposed in order to overcome an unexpected shortcoming of traditional 

pTRYs in representing typical maximum and minimum temperatures. These current and future 

weather data will be of interest to various disciplines including those interested in low carbon design, 

renewable energy and climate resilience. 

 

Keywords 

Spatial variability, climate change, weather files, built environment  

  

                                                           
*Corresponding author: 
C Liu, University of Bath, Claverton Down, Bath, BA2 7AY, UK 
E-mail address: C.Liu2@bath.ac.uk  

mailto:C.Liu2@bath.ac.uk


2 
 

1. Introduction 

Global warming due to anthropogenic emissions has the potential for a series of adverse effects on 

human health, the built environment, agriculture and other systems. Thanks in part to the computer 

simulation of the future climate, some of these impacts have been studied. For instance, the risk of 

overheating, heat-related deaths and energy consumption in buildings1-15. These studies rely on high 

fidelity predictions of future weather, and such predictions are of equal importance to those 

interested in renewable energy productivity, crop yields, etc. today and under changing climate. 

Though there are uncertainties in any predictions due to limitations in modelling techniques and an 

imperfect understanding of the climate system, modelling with future climates is likely to be 

increasingly beneficial in studying climate related problems and avoiding climate related disasters, 

and hence in discussing resilience and creating policy. However in all cases there is the need for the 

underlying weather files to accurately reflect the variability of the climate across the landscape and 

include the impact of the urban environment on the temperature time series 1, 5, 16. Hence, localised 

reference weather years are required.  

Unfortunately, current and future weather years are unavailable at a high spatial resolution for any 

country. In the UK, for instance, the Chartered Institution of Building Services Engineers (CIBSE) 

provides Test Reference Years (TRYs) and Design Summer Years (DSYs) for use in building simulation 

only for fourteen UK sites, with for example the whole of Scotland being covered by only two files: 

one sited in Edinburgh and the other in Glasgow; and all buildings in Wales, even in upland areas, 

modelled as if they are located in coastal Cardiff. The reason for the small number of sites is largely 

due to the limited availability of reliable and long-term observed weather time series.  

The CIBSE TRYs were created for use in evaluation of building energy performance while the CIBSE 

DSYs were created for use in assessment of overheating risk and cooling loads. Levermore and 

Parkinson (2006) 17 proposed methods for creating the CIBSE TRYs and DSYs based on around 21 years 

of historical weather data collected between 1983 and 2005. Eames et al. (2015) 18 updated these 

CIBSE TRYs and DSYs based on around 30 years of observed weather data available until 2013. In 

addition, Eames et al. (2011) 19 created future probabilistic TRYs (pTRYs) and DSYs (pDSYs) using future 

synthetic weather data generated by the UKCP09 Weather Generator (WG) 20, 21. CIBSE released these 

future weather files for fourteen UK sites too. As demonstrated in Eames et al. (2012)’s 5 work for 

instance, fourteen sites are insufficient for accurate predictions of internal climate and energy use. 

Even the expansion to 45 locations through the PROMETHEUS project 19 is too few to investigate 

spatial variation in, for instance, energy demand, or the morbidity or mortality from overheating in 

the homes of the vulnerable. Satellite remote sensing datasets could be used for identifying spatial 

variation in land surface temperature (e.g. urban heat or cool island effect). However, it has been 

challenging to retrieve and validate satellite-derived land surface temperatures 22. Moreover, it has 

been hard to derive all the thermally related hourly weather variables from satellite remote sensing 

datasets that are required in the creation of building simulation weather files.  

In this work we use a validated weather generator driven by the outputs of a climate model to produce, 

for the first time, reference weather years on a 5x5 km grid across the UK, thereby giving examples of 

current and future weather at 11,326 locations. We then investigate the spatial variability of this 

weather and of the resultant expected annual energy use and temperatures in buildings, both now 

and in 2080.  
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2. Creation of pTRYs using the Spatial Urban Weather Generator  

2.1. Synthetic weather data  

The UKCP09 Weather Generator (WG) provides current and future synthetic weather data which have 

been used for creating building simulation weather files in previous studies 4, 19, 23-27. The UKCP09 WG 

is a stochastic tool that primarily generates the precipitation sequence based on the Neyman-Scott 

Rectangular Pulses model 28. Then, the precipitation sequence is used to produce the time series of 

the other weather variables based on inter-variable relationships observed from the baseline climate 

data over the control period (1961 to 1990).  

In this study, the Spatial Urban Weather Generator (SUWG)29, an updated version of the UKCP09 WG 

with improved capability to generate extreme weather and spatially correlated climate, was used to 

generate climate data for the whole of the UK. The SUWG generates daily weather variables for the 

control period in order to fit these to the observed statistics. Hourly weather variables are then 

downscaled from daily weather variables. Each run of the SUWG also generates future synthetic 

weather data which incorporate an estimate of climate change randomly sampled from 10,000 

UKCP09 probabilistic climate change projections. The probabilistic climate change projections were 

formed by regional and global climate models, i.e., multi-model ensembles 20. 

Unlike the UKCP09 WG, the SUWG also takes account of the impacts of land use (i.e. the urban fraction) 

and anthropogenic heat flux on the temperature time series, by making use of the urban 

anthropogenic components developed by McCarthy et al. (2012) 30. This means that the urban heat 

island (UHI) effect can be explored.  

A comparison of the outputs of the SUWG and the UKCP09 WG is presented in Table 1. Key differences 

are: 

 the UKCP09 WG can generate future weather data for seven future time slices under three 

emission scenarios, while the SUWG only produces these for five future time slices (the 2020s, 

2030s, 2040s, 2050s and 2080s) under the medium emission scenario (SRES A1B).  

 the UKCP09 WG does not provide wind speed directly, so the FAO Penman-Monteith equation 
31 for estimating the potential evapotranspiration (mm⋅day-1) needed to be rearranged to 

calculate the daily wind speed 19. The SUWG, on the other hand, includes wind speed. Then 

hourly wind direction can be obtained by using the method proposed by Eames et al. (2011) 
19. A complete set of weather variables required for the creation of EnergyPlus Weather (EPW) 

files, which have been commonly used in various dynamic building simulation packages such 

as EnergyPlus, DesignBuilder, IES<VE> and ESP-r, can be derived from the outputs of the 

SUWG using the method presented in previous works 27, 32-34.  
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Table 1. Comparison between the Spatial Urban Weather Generator (SUWG) and the UKCP09 Weather Generator (WG) 

  SUWG UKCP09 WG 

Emission scenarios Low (SRES B1)  ✔ 

Medium (SRES A1B) ✔ ✔ 

High (SRES A1FI) 
 

 ✔ 

Time slices Control year (1970s): 1961 - 1990 ✔ ✔ 

2020s:    2010 - 2039 ✔ ✔ 

2030s:    2020 - 2049 ✔ ✔ 

2040s:    2030 - 2059 ✔ ✔ 

2050s:    2040 - 2069 ✔ ✔ 

2060s:    2050 - 2079  ✔ 

2070s:    2060 - 2089  ✔ 

2080s:    2070 - 2099 
 

✔ ✔ 

Output variables    

Daily data 1.  Mean total daily precipitation (mm) ✔ ✔ 

 2.  Minimum daily temperature (°C) ✔ ✔ 

 3.  Maximum daily temperature (°C) ✔ ✔ 

 4.  Vapour pressure (hPa) ✔ ✔ 

 5.  Relative humidity (%) ✔ ✔ 

 6.  Wind speed (m⋅s-1) ✔  

 7.  Sunshine hours (hr) ✔ ✔ 

 8.  Diffuse irradiation (kWh⋅m-2) ✔ ✔ 

 9.  Direct irradiation (kWh⋅m-2) ✔ ✔ 

 10.Potential evapotranspiration (mm⋅day-1) ✔ ✔ 

    

Hourly data 1.  Mean total hourly precipitation rate (mm) ✔ ✔ 

 2.  Mean hourly temperature (°C) ✔ ✔ 

 3.  Vapour pressure (hPa) ✔ ✔ 

 4.  Relative humidity (%) ✔ ✔ 

 5.  Wind speed (m⋅s-1) ✔  

 6.  Sunshine hours (hr) ✔ ✔ 

 7.  Direct irradiation (Wh⋅m-2) ✔ ✔ 

 8.  Diffuse irradiation (Wh⋅m-2) ✔ ✔ 

2.2. Creation of pTRYs based on the synthetic weather data from the SUWG 

As the SUWG can provide spatially correlated current and future climate data, it has been possible to 

explore the spatial variability of external temperatures under changing climate. The SUWG was used 

to create building simulation weather files at 11,326 grid locations. To avoid bias in projected 

estimates, the SUWG was run 100 times per grid location by incorporating 100 estimates of randomly 

sampled probabilistic climate change projections into the control period, i.e., 1961 to 1990. Therefore, 

100 sets of 30-year long control year (1970s) and future climate (for the 2080s under medium emission 

scenario) data were generated at the same time for each grid location. The method proposed by 

Eames et al. (2011) 19 was deployed to produce probabilistic Test Reference Years (pTRYs) for the 

11,326 locations. With such a high resolution climate data, it has become possible to investigate 

influence of spatial variability of climate on buildings across the UK. As an example of the result, high-

resolution maps of the mean external temperature of the pTRYs as well as the mean internal 

temperature generated by them for the 2080s (2070 to 2099) are presented in Figure 3. 
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3. Reference building  

In order to explore the influence of the spatial variability of current and future climate on energy and 

thermal performance of buildings, dynamic thermal simulation for all 11,326 grid locations was carried 

out. As the idea was only to provide an example, a single building morphology was used: a south facing 

detached house - a typical UK dwelling architype. This was modelled using DesignBuilder (version 

5.0.3.007)35. Figure A-1 (see Append) shows the geometry, floor plan and glazing dimension of the 

building, which was based on the detached house found in BEPAC Technical Note 90/2 36 but with 

slightly modified dimensions to be in line with the latest English Housing Survey 37 at the time of writing 

this paper. 

Shading was included by assuming that east and west sides of the house were shaded by adjacent 

houses with the same building height while there was no shading to the rear of the house (i.e. north). 

Based on the Residential Design Guide 38, the distance between the adjacent houses was set to 2 m 

which is the minimum requirement for side access to rear gardens while the privacy distance between 

facing houses (i.e. to the south) was set to 27.5 m (see Figure A-2 in Append). The U-values suggested 

by RdSAP 2012 version 9.93 39 were used, see Table A-1 and Table A-2 in Append. 

DesignBuilder uses EnergyPlus40  as its simulation engine which provides two ventilation options: 

scheduled and calculated. The scheduled ventilation option was used in this study as it is less computer 

intensive and hence has a lower time burden, which was an advantage when simulating at 11,326 

locations. As the airtightness of existing UK dwellings has not been improved significantly over the 

past decades 41, 42, the background air infiltration rate was set to 0.7 ac/h in accordance with 

BRECSU43’s recommendation. This value was also suggested by Allen and Pinney (1990) for creating a 

thermal model of standard UK dwellings. The effective air change rates for conventional two-story 

residential buildings were obtained from the Standard Assessment Procedure (SAP version 9.92) 44. 

The recommended maximum effective air change rates when the house is naturally ventilated during 

summer are presented in Table A-3, while occupancy, equipment and lighting profiles are shown in 

Table A-4 (see Append). The number of occupants was assumed to be the number of bedrooms plus 

one, with the occupancy profile for a working couple with two children. Regarding natural ventilation 

during the cooling season (April to September), windows were assumed to be open during occupied 

hours when internal temperature exceeded 22°C, which is in line with the window opening rule used 

in CIBSE TM36 45, 46 as well as previous modelling based UK overheating studies 3, 47-49. During the 

heating season (October to March) radiators were turned on and off based on the heating set-point 

temperature of 20°C between 5 p.m. and 9 a.m. 

The annual gas use for space heating predicted from the thermal model of the reference house was 

124.6 kWh⋅m-2 for London (i.e. Gatwick Airport, 51°09' N, 0°) under the current climate. This is close 

to the UK household energy consumption for space heating (125.0 kWh⋅m-2)50. The annual electricity 

use of the reference building (floor area of 110 m2) was 4365 kWh which is also close to the electricity 

consumption of real detached houses with similar floor area (i.e. 4400 kWh for floor area between 

101 m2 and 150 m2) 51 in the UK. 

Table 2 presents indoor mean and maximum temperatures predicted from the thermal model of the 

reference house and those found from UK national survey on summertime overheating in 193 English 

homes 52. The indoor temperatures were monitored (08:00-22:00 for living rooms while 23:00-07:00 

for bedrooms between 22nd July and 31st August in 2007) across nine UK government office regions 

including North East, West Midlands, Yorkshire, South West, East Midlands, North West, East of 

England, South East and London 52. Due to the lack of localised weather data for the same monitoring 

period, the current CIBSE TRYs for the same regions were used in this study to examine whether or 
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not summertime temperatures of the reference house were representative. As shown in Table 2, the 

external mean and maximum temperatures averaged over the nine regions for the monitored period 

between 22nd July and 31st August in 2007, i.e., 𝑇𝑒𝑥
𝑚𝑒𝑎𝑛̅̅ ̅̅ ̅̅ ̅ and 𝑇𝑒𝑥

𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅ were 15.3°C and 27.0°C respectively. 

The monitored period was found to be the coolest summer between 1998 and 2007 52. Also, the 

monitored period was cooler than the CIBSE TRYs as evidenced by the fact that the mean and 

maximum temperatures of the CIBSE TRYs averaged over the same regions were 16.7°C and 28.2°C 

respectively. As can be seen in Table 2, the predictions (i.e., 𝑇𝑖𝑛
𝑚𝑒𝑎𝑛̅̅ ̅̅ ̅̅ ̅ and 𝑇𝑖𝑛

𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅ ) are slightly warmer than 

the monitored values, most likely because the survey was conducted during the cool summer of 2007, 

however they are very close and hence the thermal model of the reference house can be considered 

as reasonably representative. 

Table 2. Comparison between the monitored data 52 and predictions from the thermal model. Note all the values shown in 
this table were averaged over the nine UK government office regions: North East, West Midlands, Yorkshire, South West, 

East Midlands, North West, East of England, South East and London. ±values are standard deviations. 

Indoor 
Monitored data from UK national survey  

Predictions from the thermal model of the 
reference house in this study 

Living room Bedroom Living room Bedroom 

𝑇𝑖𝑛
𝑚𝑒𝑎𝑛̅̅ ̅̅ ̅̅ ̅̅  (°C) 21.8  ±0.4 21.6  ±0.5 22.6  ±0.6 21.2  ±0.6 

𝑇𝑖𝑛
𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅ (°C) 25.7  ±1.0 25.4  ±0.8 27.8  ±1.6 25.6  ±1.0 

Outdoor Measured data from UK national survey Current CIBSE TRYs 53 

𝑇𝑒𝑥
𝑚𝑒𝑎𝑛̅̅ ̅̅ ̅̅ ̅̅  (°C) 15.3  ±1.0 16.7  ±0.8 

𝑇𝑒𝑥
𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅ (°C)                                27.0*      28.2  ±1.7 

*Standard deviation of the external maximum temperatures was unavailable from the reference 52 

4. Spatial variability of the probabilistic Test Reference Years 

As mentioned in the introduction, it is well known that the annual heating energy use and summertime 

temperatures of UK homes vary across the landscape, especially in areas with large topographic 

differences 1, 5. As presented in Figure 1, the UK landscape indeed shows great topographic variation, 

and hence we would expect any TRY data set with high spatial resolution to show similar variation. In 

this section we examine the spatial variation in the mean external temperature of pTRY (𝑇𝑒𝑥
𝑚𝑒𝑎𝑛) and 

the mean summertime internal temperature (𝑇𝑖𝑛,𝑠
𝑚𝑒𝑎𝑛) and gas use for heating (kWh⋅m-2 per year) for 

the reference house.  

4.1. Adjusting external temperatures by using the environmental lapse rate 

In Figure 1, map A shows the spatial variability of the surface altitude at a 5 km by 5 km grid resolution 

across the UK landscape. The altitude datasets were derived from the Global Land One-km Base 

Elevation Project database 54. The database was aggregated to the same 5 km grid of the synthetic 

weather data generated by the SUWG for the UK. Map B shows the expected resultant spatial variation 

in temperature caused by this altitude, given by the environmental lapse rate (–0.6°C/100m). Map C 

shows the 14 CIBSE weather regions and the annual mean external temperature (𝑇𝑒𝑥
𝑚𝑒𝑎𝑛) as found in 

each CIBSE TRY. Comparing the map A and map C it is clear that 14 CIBSE TRYs are not sufficient to 

represent localised weather. Most commercial thermal modelling software allows the weather file to 

be adjusted for altitude by using the environmental lapse rate although it is unknown if most 

researchers or engineers do so. Map D in Figure 1 illustrates the impact of simply adjusting for altitude 

in this way. Although, much detail is added, artefacts can still be observed, such as the spatial 

discontinuity in the south east, again suggesting localised weather is needed.  
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Figure 1. A) Spatial variability of surface altitude of the UK at a 5 km resolution; B) expected decrease in hourly 
temperatures through the application of an environmental lapse rate of −0.6°C per 100m of altitude; C) the regions covered 
by the 14 current TRYs together with their annual mean temperatures; D) the effect of applying an environmental lapse rate 
of −0.6°C per 100m of altitude on current CIBSE TRYs. Quantile map classification was used, except for map C, so that each 
class contained approximately the same number of grids. 
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4.2. Spatial variability of external and internal mean temperatures 

Spatial variations in external (𝑇𝑒𝑥
𝑚𝑒𝑎𝑛) and internal summertime mean temperatures (𝑇𝑖𝑛,𝑠

𝑚𝑒𝑎𝑛) across 

the UK are presented in Figure 3. Summer is defined as April to September for the reference building. 

No heating was used during this period. The largest cities in the UK are marked and the urban heat 

island effect is clearly noticeable. For instance, 𝑇𝑒𝑥
𝑚𝑒𝑎𝑛 and 𝑇𝑖𝑛,𝑠

𝑚𝑒𝑎𝑛 for urban areas such as London, 

Birmingham and Manchester are respectively on average 1.5°C and 1.0°C warmer than rural areas.  

A classic technique for measuring spatial continuity is through a semivariogram (see Figure 2), i.e., an 

observation plot showing change in variability over increasing separation distances 55. A 

semivariogram uses semivariance (𝛾(ℎ)), which is a measure of spatial dependence of the values of 

attribute 𝑍 between two points on a surface, 𝑍(𝑥) and 𝑍(𝑥 + ℎ) with a separation defined by the lag, 

ℎ 56: 

 𝛾(ℎ) =  
1

2𝑁(ℎ)
∑ [𝑍(𝑥𝑖) − 𝑍(𝑥𝑖 + ℎ)]2

𝑁(ℎ)

𝑖=1
 (1) 

where 𝑁(ℎ) is the number of data pairs that are approximately separated by lag, ℎ. The distance 

where the semivariogram first flattens out (after which semivariance does not increase anymore) is 

termed the range, and the semivariance value at this point, the absolute sill. The nugget, which 

describes the variability at distances tending to zero, represents both small scale variability inherent 

in the studied process and measurement errors. It can therefore be used to explain the speckle, i.e., 

the variability between adjacent pairs of cells across the landscape. 

 

 

Figure 2. Semivariogram 

 

In our case, the attributes of interest (𝑍) are external and internal temperatures. We would expect 

locations near each other to be (on average) fairly similar (i.e., correlated). We set the sampling 

interval distance of the semivariogram, i.e., the lag (ℎ) to 10 km, a distance conveniently greater than 

that between adjacent grid locations. The resulting maps and semivariograms for 𝑇𝑒𝑥
𝑚𝑒𝑎𝑛 and 𝑇𝑖𝑛,𝑠

𝑚𝑒𝑎𝑛 

shown in Figure 3 are consistent with our assumptions. The ranges of the semivariogram for eastings 

for 𝑇𝑒𝑥
𝑚𝑒𝑎𝑛 and 𝑇𝑖𝑛,𝑠

𝑚𝑒𝑎𝑛 are seen to be similar, at approximately 75 km. The nugget for northings and 

eastings are 0.26 (°C2) and 0.18 (°C2) for 𝑇𝑒𝑥
𝑚𝑒𝑎𝑛 respectively; and 0.19 (°C2) and 0.13 (°C2) for 𝑇𝑖𝑛,𝑠

𝑚𝑒𝑎𝑛 

respectively. These values are negligibly small, which reflects the observation that the differences of 

annual average temperatures between adjacent grids appears small in most regions and the images 
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in Figure 3 appear free of speckle, suggesting that in most cases 5 km would seem to be a sensible 

resolution for the production of weather files for the UK.  

Returning to the temperature predictions, it is noticeable that the spatial variations in 𝑇𝑒𝑥
𝑚𝑒𝑎𝑛 shown 

in Figure 3 is similar to that found in the topographic variation presented in Figure 1 with an additional 

effect of latitude, as expected, suggesting that the spatial variability 𝑇𝑒𝑥
𝑚𝑒𝑎𝑛  is realistic. We can 

therefore conclude that pTRYs are suitable for assessing spatial variation in year-round average 

temperatures, building energy consumption, etc. 

As previously discussed, much of the variability found in the temperature time series across the UK is 

due to altitude. Figure 4A shows the same data as Figure 3A, but after removing the altitude effect (by 

applying the same environmental lapse rate), the perturbation caused by the major cities is now even 

more evident. Figure 4B shows rise in 𝑇𝑒𝑥
𝑚𝑒𝑎𝑛of pTRYs for the 2080s relative to the control period, i.e., 

1970s. It is clear that the expected rise is not uniform. Figure 4C presents absolute differences 

between the 𝑇𝑒𝑥
𝑚𝑒𝑎𝑛 shown in Figure 3A and that shown in Figure 1D, i.e., the error in 𝑇𝑒𝑥

𝑚𝑒𝑎𝑛 of the 

adjusted CIBSE TRYs. Though there would be an offset in the overall errors due to warmer climate in 

the 2080s, it can be inferred from the spatial variability of the error that using the adjusted CIBSE TRYs 

would lead to unrealistic spatial variation in 𝑇𝑒𝑥
𝑚𝑒𝑎𝑛 . For instance, the errors for major cities are 

significantly larger as the UHI effect was not considered in the adjusted CIBSE TRYs. Hence, building 

simulation with the current CIBSE TRYs will lead to inaccuracies especially for urban areas. 

Maps of gas use for heating (kWh⋅m-2 per year) for the 1970s and 2080s for the reference building are 

presented in Figure 5, which illustrate one possible use for such data. As presented in Figure 5B, the 

difference between the 1970s and 2080s is not uniform across the landscape. Compared to the 1970s, 

the heating energy in the 2080s was projected to be 23.5% lower on average (with a range from -14% 

to -39% across the landscape). The mean reduction of 23.5% is in line with estimations from previous 

studies 5, 57-59, however the wide range predicted once more points to the need to use high resolution 

weather files when setting local policy. 
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Figure 3. A) shows the spatial variation in the whole-year external mean temperatures of pTRY (i.e., 𝑇𝑒𝑥

𝑚𝑒𝑎𝑛of the 50th 
percentile TRYs for the 2080s); B) shows the resultant summertime internal mean temperatures (𝑇𝑖𝑛,𝑠

𝑚𝑒𝑎𝑛) found in the 

reference building; and C) and D) are their respective semivariograms. Quantile map classification was used so that each 
class contained approximately the same number of grids. 
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Figure 4. A) shows the mean temperature of pTRY (i.e., the 50th percentile TRYs for the 2080s) after removing the effect of 
altitude; B) shows the rise in temperature in the 2080s relative to the 1970s under a medium emission scenario; C) shows 
the difference between the 𝑇𝑒𝑥

𝑚𝑒𝑎𝑛shown in Figure 3A and in Figure 1D, i.e., the error caused by assuming only 14 locations, 
even if one adjusts for altitude.  

 

 

 

Figure 5. A) shows gas use for heating (kWh⋅m-2 per year) in the reference building for the control year (i.e., the 1970s) and 
for the 2080s; B) shows the reduction (%) in gas use for heating in the 2080s relative to the 1970s. 
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4.3. Limitation of pTRY in representing spatial variability of external maximum and minimum 

temperatures 

From the above, it would appear that the pTRYs based on the weather data generated from the SUWG 

reasonably reflect true spatial variability. This would indicate the potential to investigate how 

buildings might typically perform into the future, allowing the creation of highly localised policy that 

is both sensible and cost-effective.  

The spatial distribution of the maximum hourly temperature (i.e.,𝑇𝑒𝑥
𝑚𝑎𝑥 = max(𝑇1, 𝑇2, … 𝑇8760)) and 

minimum hourly temperature (i.e.,𝑇𝑒𝑥
𝑚𝑖𝑛 = min(𝑇1, 𝑇2, … 𝑇8760)) of the pTRY (the 50th percentile TRY 

for the 2080s) are shown in Figure 6. It is clear that the distribution of temperatures is unrealistic, with 

a highly speckled appearance, in contrast with the common sense expectation that two adjacent 

places would have similar maximum and minimum temperatures. This is confirmed by the nuggets 

found in the semivariograms, which are almost 10 times those of Figure 3: 2.84 (°C2) and 2.79 (°C2) for 

𝑇𝑒𝑥
𝑚𝑎𝑥 for northings and eastings respectively, and 1.58 (°C2) and 1.43 (°C2) for 𝑇𝑒𝑥

𝑚𝑖𝑛 respectively for 

northings and eastings. Thus, the pTRY is not suitable for use in mapping extremes. This is unsurprising 

as the method used to create a TRY is based on neither the maximum nor minimum one-hour 

temperature found in the time series.  

 

 

Figure 6. Spatial variation in the maximum and minimum temperatures (𝑇𝑒𝑥
𝑚𝑎𝑥 and 𝑇𝑒𝑥

𝑚𝑖𝑛) of pTRY (the 50th percentile TRY 
for the 2080s).  
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5. Creation of new pTRYs (pTRY-max and pTRY-min) at a 5 km by 5 km resolution 

Current and future probabilistic TRYs (pTRY) consist of the most average months, as selected by the 

FS statistic 17, 19. Hence the TRY method can ensure pTRYs are representative of the typical monthly 

situation. However, as shown above, there is no guarantee that any time series so generated will 

include a spatially consistent set of 𝑇𝑒𝑥
𝑚𝑎𝑥  and 𝑇𝑒𝑥

𝑚𝑖𝑛 . Therefore, these pTRYs are inappropriate in 

exploring the spatial variability of 𝑇𝑒𝑥
𝑚𝑎𝑥 and 𝑇𝑒𝑥

𝑚𝑖𝑛 across the landscape, or the impact of maximum or 

minimum temperatures on buildings or other systems. Hence we propose a new method for creating 

spatially consistent time series which contain realistic and typical maximum and minimum one-hour 

temperatures, and term these: pTRY-max and pTRY-min respectively. To be in line with the original 

TRY method, pTRY-max and pTRY-min are also composed of twelve months selected from potentially 

different sample years. Twelve months in the pTRY-max and pTRY-min were selected based on the 

maximum and minimum hourly temperatures respectively. For instance, the January which contained 

the typical maximum hourly temperature was selected from a set of 30 year-long climate data based 

on:  

 𝐷𝑖𝑓𝑓(𝑚, 𝑖) = 𝑎𝑏𝑠|  𝑇𝑚,𝑖
𝑚𝑎𝑥 − 𝑇𝑚,𝑁

𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅  | (2) 

 

and 𝑇𝑚,𝑁
𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅ =  

∑ 𝑇𝑚,𝑖
𝑚𝑎𝑥𝑁

𝑖=1

𝑁
 (3) 

 

where, 𝑇𝑚,𝑖
𝑚𝑎𝑥 is the maximum hourly temperature of a month 𝑚 in a sample year 𝑖 ∈  𝑁 (e.g., 𝑇𝐽𝑎𝑛,1

𝑚𝑎𝑥 =

max(𝑇1, 𝑇2, … 𝑇31×24) ) and 𝑁 is the length of the period in years (in our case 30 years), 𝑇𝑚,𝑁
𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅ is the 

averaged maximum hourly temperature over all Januaries from a set of 𝑁  year-long data, and 

𝐷𝑖𝑓𝑓(𝐽𝑎𝑛, 𝑖) is the absolute difference between them. The January with the least 𝐷𝑖𝑓𝑓(𝐽𝑎𝑛, 𝑖) was 

selected from each set. So, 100 Januaries could be selected from 100 sets of 30 year-long data 

generated by the SUWG. Then, the 100 Januaries were ranked based on ascending order of 𝑇𝑒𝑥
𝑚𝑎𝑥. 

Finally, the January, February and so on with the same percentile rank were concatenated to form a 

probabilistic TRY-max. That is, each calendar month of the pTRY-max contains a typical 𝑇𝑒𝑥
𝑚𝑎𝑥 for that 

month. Likewise, the probabilistic TRY-min has been created based on 𝑇𝑒𝑥
𝑚𝑖𝑛.  

Figure 7 presents the spatial variation in 𝑇𝑒𝑥
𝑚𝑎𝑥  for pTRY-max and the spatial variation in 𝑇𝑒𝑥

𝑚𝑖𝑛  for 

pTRY-min. From the map of 𝑇𝑒𝑥
𝑚𝑖𝑛 (on the right) it is clear that the coastline is warmer than inland; 

furthermore, as expected the UHI effect is much stronger compared to ones shown over the map of 

𝑇𝑒𝑥
𝑚𝑎𝑥 (on the left), and the map of 𝑇𝑒𝑥

𝑚𝑒𝑎𝑛 shown in Figure 6. Semivariances shown in Figure 7 are 

smaller than the ones shown in Figure 6 for the same lags. For instance, the semivariance for a distance 

of 100 km shown in Figure 7 is less than 2 (°C2) which is half of the semivariance shown in Figure 6. In 

addition, the nuggets of the semivariograms for easting are 0.28 (°C2) and 0.12 (°C2) for 𝑇𝑒𝑥
𝑚𝑎𝑥 and 

𝑇𝑒𝑥
𝑚𝑖𝑛 respectively, close to those given in Figure 3. That is, the spatial continuity for both 𝑇𝑒𝑥

𝑚𝑎𝑥 of 

pTRY-max and 𝑇𝑒𝑥
𝑚𝑖𝑛 of pTRY-min are dramatically improved compared to Figure 6, with adjacent cells 

having similar values. Maps and semivariograms for other weather variables can be found in Append. 

It should be noted that the purpose of pTRY-max and pTRY-min is not to allow the study of rare 

extreme conditions, e.g., heat waves and cold snaps, but to provide spatially consistent typical 

maximum and minimum conditions in line with the TRY philosophy, thereby allowing external and 

internal conditions at the typically coldest or hottest temperature to be studied. 
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Figure 7. Spatial variation in the maximum hourly temperatures of pTRY-max (on the left) and the minimum temperatures 
of pTRY-min (on the right) for the 2080s. 
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An important question, however, is that whether the 𝑇𝑒𝑥
𝑚𝑒𝑎𝑛 and 𝑇𝑖𝑛,𝑠

𝑚𝑒𝑎𝑛 of the pTRY-max and pTRY-

min are similar to that of pTRY. Figure 8 shows that the spatial variation in 𝑇𝑒𝑥
𝑚𝑒𝑎𝑛 of pTRY-max and 

pTRY-min are extremely similar to that of pTRY across the UK. It is encouraging that the spatial 

continuity, i.e., the nuggets and ranges of the semivariograms are almost identical. Figure 9 presents 

the spatial variation in 𝑇𝑖𝑛,𝑠
𝑚𝑒𝑎𝑛  for the reference building during the summer. Again, the spatial 

variation in 𝑇𝑖𝑛,𝑠
𝑚𝑒𝑎𝑛 for pTRY, pTRY-max and pTRY-min are similar across the landscape. Moreover, the 

differences of median 𝑇𝑒𝑥
𝑚𝑒𝑎𝑛 between them are less than 0.3°C as can be seen in Figure 10. Dynamic 

thermal simulations with pTRY, pTRY-max and pTRY-min have been carried out for all of the 11,326 

grid locations, and differences of median 𝑇𝑖𝑛,𝑠
𝑚𝑒𝑎𝑛 between them are negligible as can be seen from the 

data in Figure 10. Thus, it would appear that pTRY-max and pTRY-min well represent the year round 

average temperature, as well as the maximum and minimum temperatures (respectively). 

 

 

Figure 8. Spatial variation in the mean temperature (𝑇𝑒𝑥
𝑚𝑒𝑎𝑛 ) of pTRY, pTRY-max and pTRY-min for the 2080s. 
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Figure 9. Maps of summertime internal mean temperature (𝑇𝑖𝑛,𝑠
𝑚𝑒𝑎𝑛) of the reference building generated by pTRY, pTRY-max 

and pTRY-min for the 2080s. 

 

 

Figure 10. Comparison between pTRY, pTRY-max and pTRY-min. Boxplots constructed using temperatures of the 50th 
percentile TRY, TRY-max and TRY-min (on the left) and summertime internal temperatures generated by them (on the right) 
for all 11,326 grid locations.  
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6. Use of the files 

By providing pTRYs at 11,326 locations energy modellers and those looking at the performance of 

buildings can proceed for the first time knowing that they are using weather representative of the 

local situation. Others will be interested in how energy use in buildings or internal temperatures in 

free running buildings changes across the landscape. The pTRY can be used for assessing year-round 

energy performance of buildings under average conditions, while pTRY-max and pTRY-min might be 

used for looking at typical maximal and minimal conditions, for instance, in looking at how peak 

heating and cooling load changes across the landscape. One impressive aspect of these new files is 

the clear identification of an UHI. The weather files can be downloaded from a website 

(https://colbe.bath.ac.uk/) by providing a postcode or latitude and longitude of the location of interest. 

The following files can be downloaded: 1) typical years such as pTRY, pTRY-max, pTRY-min for the 

1970s, 2020s and 2080s, and 2) warmer than typical years represented by probabilistic Design Summer 

Years (pDSY) 19 and probabilistic Hot Summer Years (pHSY) 24 for the 1970s, 2020s and 2080s. 

7. Conclusion 

The aim of this work was to produce localised test reference years for building simulations across the 

whole of the UK and examine spatial variability and to discover if 5 km was a sensible resolution. For 

the first time, pTRYs were created for 11,326 grid locations based on approximately 30 TB of synthetic 

weather data generated by the updated SUWG which takes topographic effects into account. The 

SUWG has incorporated the urban anthropogenic component so that the synthetic weather data from 

the SUWG could be used to explore the UHI effect. Indicative dynamic thermal simulations for 11,326 

locations have also been carried out. The pTRYs show a realistic spatial distribution, as measured by 

their semivariograms. The UHI effect is clearly evident and the realistic spatial variation also makes 

sensible predictions in the spatial variation in the thermal performance of a reference building. Hence, 

we believe the pTRYs can be used to examine the spatial variability of conditions within buildings at 

an unprecedented resolution. The nuggets for northings and eastings are negligibly small, which 

reflects the reality that the differences of annual average temperatures between adjacent grids 

appear small in most regions, suggesting that 5 km is a sensible resolution for the production of 

weather files for the UK. 

One unanticipated finding was that pTRY showed limitations in mapping maximum and minimum 

hourly temperatures with poor spatial continuity and unrealistic differences between adjacent grids. 

Hence a new method was proposed to create new pTRY (i.e. pTRY-max and pTRY-min) for the study 

of peak heating and cooling loads and other situations requiring a one-hour metric. 

Although these files were produced for building thermal modelling, and to support national built 

environment policy, they are likely to be of interest to other disciplines including studies of renewable 

energy generation, crop yields and climate resilience.  
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Appendix 

Notation 

IPCC Intergovernmental Panel on Climate Change 

SRES Special Report on Emissions Scenarios 61 

CIBSE The Chartered Institution of Building Services Engineers 

CIBSE TRY CIBSE Test Reference Year 

UKCP09 The UK Climate Projections 2009 

SUWG The Spatial Urban Weather Generator, an updated version of the UKCP09 

Weather Generator 

pTRY Probabilistic Test Reference Year 

pTRY-max New probabilistic Test Reference Year containing a typical hourly maximum 

temperature  

pTRY-min New probabilistic Test Reference Year containing a typical hourly minimum 

temperature  
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Figure A-1. Geometry, floor plan and glazing dimensions of the detached house 

 

 

Figure A-2. Illustration of surrounding buildings. The distance between adjacent houses and the privacy distance between 
facing houses are in accordance with Residential Design Guide 38. 
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Table A-1. Construction details 

 Construction U-value (W⋅m2K) 

External wall 
 

105 
100  
105 

13  
 

mm 
mm 
mm 
mm 

 

brickwork outer leaf 
cavity ventilated 
brick, inner leaf 
plaster  

 

1.5 

Internal partition 13 
100 

13 
 

mm 
mm 
mm 

lightweight plaster  
lightweight concrete 
lightweight plaster 

 

1.1 
 
 

Internal floor 12.5 
50 
65 
25 

 

mm 
mm 
mm 

mm 

plasterboard (ceiling) 
air layer  
cast concrete 
wood block 

1.6 

 

Ground floor 500 
150 

50 
 

mm 
mm 
mm 

clay underfloor 
concrete roof/floor slab 
flooring screed 

 

1.1 

Pitched roof 
 

10 
- 

12.5 

mm 
- 

mm 

concrete roof tiles 
roof space 
plasterboard (ceiling) 

2.0 

Note: thermal conductivity, density and specific heat capacity of building materials can be found in CIBSE Guide A 62. 

 

Table A-2. Window and door characteristics 

 Construction U-value (W⋅m2K) 

Single glazing 6 
 

mm generic clear glass 4.8  
(SHGC=0.85) 

Wooden frame 20 mm wood 3.6 

Door 35 mm painted oak 2.8 

 

Table A-3. Effective air change rate (ach) for each zone 

Zones Cross ventilation Night-time ventilation The maximum air 
change rate (ach) 

Ground 
floor 

Living (30 m2) 

Possible 
Only possible during 
occupied hours for 

security issue 

4 
 

Dining (18 m2) 

Kitchen (8.75 m2) 

Hall (11.25 m2) 

First 
floor 

Main bedroom (25.5 m2) 
Internal doors are 

closed when 
occupied 

Possible 2.5 
Bedroom 2 (15.75 m2) 

Bedroom 3 (9.5 m2) 

Bathroom (5.6 m2) 
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Table A-4. Occupancy and equipment profiles 

Zones Number of 
occupants 

Metabolic rate 
(W/person) & 

Occupied hours 

Equipment (W) & 
Schedule 

Lighting 
schedule 

(15 W⋅m2) 

Hot water 
schedule 

(80 W) 
Living 2 108 

(seated) 
17:00-22:00 160 

(TV) 
17:00-18:00 
19:00-22:00 

17:00-22:00 - 

Dining 0 - - 60 
(Fridge) 

00:00-24:00 08:00-09:00 - 

Kitchen 0 - - 160 
1600 

(cooker) 

07:00-08:00 
18:00-1900 

07:00-08:00 
18:00-21:00 

00:00-24:00 

Hall 0 -  - - 07:00-08:00 
18:00-21:00 

- 

Main bedroom 2 72 
(sleeping) 

22:00-07:00 - - - - 

Bedroom 2 1 55 21:00-07:00 100 
(PC) 

- - - 

Bedroom 3 1 55 21:00-07:00 - - - - 

Bathroom 0 - - 20 07:00-08:00 
20:00-2100 

07:00-08:00 
20:00-2100 

00:00-24:00 

Note: the equipment and lighting schedules were modified from BEPAC Technical Note 90/2 36 to be in line with the latest 

survey on energy use in English homes 51; the main bedroom was for a couple (i.e. adults) while bedroom 2 and 3 were for 

children. 
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Figure A-3. Spatial variation in the external mean relative humidity (𝑅𝐻) of pTRY, pTRY-max and pTRY-min for the 2080s. 
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Figure A-4. Spatial variation in the mean wind speed (𝑊𝑆) of pTRY, pTRY-max and pTRY-min for the 2080s. 

 



25 
 

 

Figure A-5. Spatial variation in the whole-year global horizontal irradiation (𝐺𝐻𝑅) of pTRY, pTRY-max and pTRY-min for the 
2080s. 
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