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Abstract

Temporal hierarchies have been widely used during the past few years as they are capable

to provide more accurate coherent forecasts at different planning horizons. However, they

still display some limitations, being mainly subject to the forecasting methods used for gen-

erating the base forecasts and the particularities of the examined series. This paper deals

with such limitations by considering three different strategies: (i) combining forecasts of

multiple methods, (ii) applying bias adjustments and (iii) selectively implementing temporal

hierarchies to avoid seasonal shrinkage. The proposed strategies can be applied either sep-

arately or simultaneously, being complements to the method considered for reconciling the

base forecasts and completely independent from each other. Their effect is evaluated using

the monthly series of the M and M3 competitions. The results are very promising, displaying

lots of potential for improving the performance of temporal hierarchies, both in terms of

accuracy and bias.

1 Introduction

Hierarchical forecasting has attracted the attention of the forecasting community the past few

years for two reasons. First, forecasting using hierarchies can enhance the forecasting perfor-

mance. Suitably selecting the optimal level of aggregation or even optimally combining across

multiple levels can reduce the forecast error significantly. Second, and possibly more impor-

tantly, hierarchical forecasting renders the forecasts coherent across all hierarchical levels.

Even if performance improvements were negligible, the property of coherency is very attrac-

tive from a managerial point of view, as it allows aligned decision making across the different

functions of an organisation. The literature has shown that these benefits apply to both cross-

sectional (product or geographical) [1, 2] and temporal (time) hierarchies [3].

Temporal hierarchies, as well as hierarchical reconciliation in general, base their efficiency

on the well-known benefits of forecast combination. Forecasts are produced at the various

aggregation levels to form the base, non-coherent forecasts. These base forecasts are then

combined using optimal weights based on ordinary or weighted least squares estimators. The

product is a new set of forecasts that is coherent across all levels. The above describes a combi-

nation function that is limited across the various hierarchical levels. It is still not clear,
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however, if the performance benefits arise because of the forecast combination itself or because

of the fact that these forecasts are produced at different hierarchical levels. While different

forecasting methods may be used on different aggregation levels, the literature has not consid-

ered the combination of multiple forecasting methods for each aggregation level. We attempt

to shed some light on the importance of combining across aggregation levels versus combining

methods for each aggregation level versus performing a double combination both across meth-

ods and aggregation levels.

One important assumption of forecast reconciliation is that the base forecasts produced at

the various aggregation levels are unbiased. However, this is seldom the case in practice.

Numerous past studies have based their findings on real data sets and have not accounted for

the actual bias of the forecasts (for example, see [3–5]). We empirically explore the effects of

the bias of the base forecasts on the accuracy and bias of the final reconciled forecasts by

appropriately applying empirical bias-adjustment strategies.

A potential drawback of considering temporal hierarchies, is that the reconciled forecasts

tend to be much smoother than the original data due to the effect of averaging across multiple

aggregation levels. This is particularly the case for seasonal series, as both seasonal and non-

seasonal forecasts may be combined to provide the reconciled ones. Although extrapolating

just the original series and using the bottom-up method afterwards to construct reconciled

forecasts can mitigate this issue and provide reasonable results, it is still unclear when such an

alternative should be preferred over temporal hierarchies. Thus, we empirically investigate the

effect of seasonal shrinkage by introducing an heuristic rule that identifies cases where the sea-

sonal components of the examined series could be inadequately captured by temporal hierar-

chies, making appropriate decisions.

In summary, our contribution is threefold:

• We evaluate the performance of combination across methods to produce the base hierarchi-

cal forecasts and we contrast any improvements from forecast combination across methods

with the improvements of forecast combination across aggregation levels.

• We consider the case of forecast bias and we empirically bias-adjust the base forecast prior

to hierarchical reconciliation. Bias adjustment of the base forecasts is expected to lead to less

biased final reconciled forecasts but also to improve their accuracy.

• We explore the effect of seasonal shrinkage and selectively apply temporal hierarchies for

forecasting based on the seasonal significance of the original series, as well as that of the rest

of the temporal levels. Selectively applying temporal hierarchies (thus, avoiding excess sea-

sonal shrinkage) can potentially improve forecasting accuracy by properly capturing the sea-

sonality component.

The rest of the paper is organised as follows. Section 2 presents the background research and

advances in hierarchical forecasting as well as the identified research gaps. In Section 3, we pres-

ent the three proposed strategies to improve the performance of temporal hierarchies. In Sec-

tion 4, we evaluate the proposed strategies by applying temporal hierarchical forecasting on a

large collection of real series. The results are analysed on the basis of two error measures. Lastly,

Section 5 concludes the study, presents its limitations and explores avenues for future research.

2 Background research

2.1 Hierarchical forecasting

Often, business data are arranged in hierarchical structures. Such structures decompose

company units into different divisions, geographical areas and functions, in which case the
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structure is known as cross-sectional hierarchies [1, 4]. An example of a three-level cross-sec-

tional hierarchy is depicted in Fig 1, where the sales of a company are disaggregated into

two categories, with the first category consisting of two products and the second category

consisting of three more products. Alternatively, hierarchical structures can be used to rep-

resent data depicted in different frequencies, in which case such structures are known as

temporal hierarchies [3]. An example of a three-level temporal hierarchy is displayed in

Fig 2, where the yearly data are disaggregated into two semesters and, consequently, into

four quarters.

One property of organising the data in hierarchical structures is that the summation con-

strains hold for all the actual (observed) data. This means that the sum of the units of the prod-

ucts 1 and 2 in the cross-sectional hierarchy of Fig 1 equals to the units of the category 1.

Similarly, the sum of the past data of all quarters within a year (Fig 2) equals to the respective

yearly data. In fact, if one knows the values of the bottom-level data only, then it is trivial to

derive the values of any other node. Assuming that the vector yb holds the bottom level data,

then the data for all nodes within a hierarchy is given by y = Syb, where S is a summing matrix

of order m × n, where m is the total number of nodes in the hierarchy and n is the number of

nodes at the bottom level of the hierarchy. For the hierarchy depicted in Fig 1 (m = 8 and

Fig 1. A cross-sectional hierarchy.

https://doi.org/10.1371/journal.pone.0223422.g001

Fig 2. A temporal hierarchy.

https://doi.org/10.1371/journal.pone.0223422.g002
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n = 5), the summing matrix is

S ¼

1 1 1 1 1

1 1 0 0 0

0 0 1 1 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

: ð1Þ

However, the summation constrain does not hold in the case of the forecasts that have been

produced independently for each level. A simple solution would be to use the forecasts that

have been produced on a single level and then derive (either by summation or by appropriate

disaggregation) the forecasts of all other nodes, without forecasting them directly. To this

direction, early studies on cross-sectional hierarchical forecasting compared approaches such

as bottom-up, top-down and middle-out [6–10]. A disadvantage of using a single hierarchical

level to compute forecasts is that data on a particular level might be too noisy or too aggregated

to provide useful information for forecasting purposes. Also, focusing on one aggregation level

does not allow for the full exploitation of the information provided from hierarchical struc-

tures. Studies comparing bottom-up with top-down approaches have been inconclusive with

regards to the superiority of the one over the other. Interestingly, until quite recently a ‘bot-

tom-up’ approach was considered the de facto approach in the temporal dimension, with fore-

casts being produced at the frequency in which the data have been collected.

A better solution would be to produce forecasts at all hierarchical levels and suitably com-

bine them so that the forecasts across the various aggregation levels are coherent. Combining

point forecasts across different cross-sectional [1, 2, 4, 11, 12], temporal [3, 13–19] as well as

cross-temporal [20–22] aggregation levels has been extensively studied in the literature. More

recently, studies have examined the case of probabilistic and density hierarchical forecasts as

opposed to point forecasts [5, 23]. Two important insights from this stream of research is that

(i) forecast accuracy improves if forecasts from different aggregation levels are suitably com-

bined and (ii) coherent forecasts across aggregation levels allow for aligned decision making,

both in terms of functions within a company (operations versus strategy) and horizons (short

and long-term).

The coherent forecasts at all nodes of the hierarchy can be calculated as

~y ¼ SðS0W � 1SÞ� 1S0W � 1ŷ, where ŷ are the base (non-coherent) forecasts that have been pro-

duced independently at each node, S is the summing matrix and W is the covariance matrix of

the base forecast errors. One challenge with this calculation is the estimation of W. Earlier

studies [1, 4] made a simplifying assumption about the in-sample forecasts errors, setting

W = I, thus avoiding its estimation. Effectively, the coherent forecasts were calculated assum-

ing ordinary least squares (OLS) estimator. Later, [2] showed that W is unidentifiable and

examined the performance of weighted least squares (WLS) via different estimators, including

variance scaling and a trace minimisation approach. A simple estimator for W was proposed

by [3], who suggested a structural scaling so that W = diag(S1), where 1 is a unit column vector

Improving the forecasting performance of temporal hierarchies
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of size n (the number of nodes at the bottom level of the hierarchy). This estimator is easy to

use as it depends only on the data structure while it is independent of the data and the forecast-

ing methods. Moreover, its application showed superior performance on the temporal case

compared to other variance-based estimators [3].

2.2 Research gaps

Regardless of the choice of estimator, in order for the coherent forecasts, ~y, to be unbiased, the

base forecasts, ŷ, must also be unbiased. However, previous studies took for granted the unbi-

asedness of the base forecasts. In this study, we examine the effects of biased and unbiased base

forecasts on hierarchical forecast reconciliation and propose two simple bias-adjustment

approaches to further enhance the improvements on forecast accuracy as a result of hierarchi-

cal reconciliation.

Furthermore, previous studies examined the problem of hierarchical reconciliation by com-

bining forecasts across hierarchical aggregation levels that have been produced using just one

forecasting method per node. However, the forecasting literature has suggested that combina-

tion across different forecasting methods can also improve forecast accuracy and minimise

uncertainty [24–27] even if simple equal-weighted combinations are considered [28] poten-

tially by excluding extreme values [29]. We re-evaluate the performance of hierarchical fore-

casting by adding the forecasting method dimension, to the cross-sectional and temporal

dimensions. Effectively, we suggest that the base forecasts should not be derived from a single

method but a combination of methods and we empirically investigate the value-added of this

additional level of combination.

Finally, we propose selectively applying temporal hierarchies to avoid damping the seasonal

component of the series, a strategy that help us deal with the undesirable effect of averaging

both seasonal and non-seasonal forecasts across different temporal levels. The study of [20]

has shown that seasonally adjusting the series before applying temporal hierarchies mitigates

the effect of seasonal shrinkage, leading to more reasonable as well as more accurate forecasts

by exploiting the benefits of temporal aggregation while omitting its drawbacks. However,

adjusting the data beforehand limits the potential of temporal aggregation in a sense that, if the

forecasts of the rest of the levels are also seasonal, there is no reason discarding them a-priory.

In this respect, we suggest selecting traditional forecasting over temporal hierarchies only if

there is enough evidence that the aggregated data are non-seasonal, while the original data are

strongly seasonal.

3 Strategies for improving the performance of temporal hierarchies

The present study proposes three strategies for improving the performance of temporal hierar-

chies, that is (i) combining forecasts of different methods for generating the base forecasts at

each level of the hierarchy, (ii) adjusting the base forecasts so that their bias is mitigated and

(iii) avoiding shrinking seasonality. Note that the proposed strategies can be applied either sep-

arately or simultaneously. Moreover, these are complements to the method considered for rec-

onciling the base forecasts, being completely independent from each other. In this study, we

apply these three strategies together with the WLS estimator which implements structural scal-

ing (WLSS) for reconciling the hierarchy, given its reported superiority over other alternatives,

such as the hierarchy variance (WLSH) and the series variance (WLSV) estimators [3].

3.1 Combining forecasts from multiple methods

Combining forecasts has long been considered an effective strategy for improving forecasting

performance [30–32]. Many studies have investigated the reasons behind its success,

Improving the forecasting performance of temporal hierarchies
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proposing interesting alternatives for implementing it in practice [33]. Moreover, the forecast

combination puzzle [34] has been both explored [35, 36], providing useful insights. More

recently, the results of the M4 Competition [37] reconfirmed the benefits of combining and

highlighted some innovative ways for its exploitation.

The superiority of combining forecasts generated by various forecasting methods over indi-

vidual ones indicates that no single method can adequately capture the patterns of any possible

type of series. Each method is good at capturing different time series components, meaning

that combinations allow us to effectively capture greater and more complex patterns of series.

Thus, combining accurate, as well as diverse, uncorrelated forecasts, results to far more robust

extrapolation solutions that extract valuable information from the data originally provided,

canceling at the same time the errors of the individual methods considered [38].

Temporal hierarchies imply one smart way of combining forecasts. Different information is

extracted at each aggregation level where the signals of various time series components are

either strengthened or attenuated [14]. Moreover, as the base forecasts are combined, both

modelling and data uncertainty is mitigated, leading to more accurate and robust results [3].

However, when a single forecasting method is considered across all aggregation levels, it is

still possible for some of the time series components to be inadequately captured. On the other

hand, if various forecasts were to be averaged at each level, the benefits of combining would be

further emphasised. This becomes evident if we observe that by introducing n forecasts per

aggregation level, the base forecasts used for computing the reconciled ones grow n times in

numbers. Thus, utilising multiple forecasting methods for generating the base forecasts not

only helps us extract more information from the series, but also indirectly enhances the benefi-

cial effects of combining by expanding the number and heterogeneity of the forecasts used by

the reconciliation framework.

Undoubtedly, there are many ways for combining forecasts of different forecasting meth-

ods. The most common way is to average them using equal weights or other simple operators

like the median, the mode or the trimmed mean [39, 40]. Such combinations are easy to apply

and display minimum computational requirements as the weights derive from the forecasts

alone, having zero dependencies from the historical performance of the examined methods.

Moreover, it has been repeatedly shown that simple combinations provide similar or even

more accurate results than complex approaches, being also more robust in nature [41]. This

was also the case in the M4 Competition where the top performing combination method [42],

determining the weights through a complex machine learning algorithm, did not provide

much better forecasts than a much simpler approach that considered the median of four stan-

dard statistical methods [29].

In this regard, this first strategy involves the estimation of the simple, equally weighted aver-

age of two, diverse and easy to compute base forecasts, i.e., the utilisation of the most efficient

combination scheme reported in the literature. Of course, it is up to the decision maker to

select a more complex combination scheme than the one described above. We should note,

however, that the forecasts produced by this scheme are basically the input of the method that

will be considered for reconciling them, also implying a combination. As a result, any differ-

ence reported between such combination schemes are expected to be negligible. Our choice

can be further supported by taking into account the trade-off between computational require-

ments and accuracy improvements [43]. In order for an improvement to be meaningful, it

must come with a reasonably low additional computational cost. Temporal aggregation is a

computationally expensive process on its own, meaning that further increasing its cost for

achieving minor accuracy improvements is probably impractical. This is relevant both when

dealing with long, high-frequency series, where generating forecasts individually is computa-

tionally expensive, and short, low-frequency ones, where generating forecasts individually is

Improving the forecasting performance of temporal hierarchies
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computationally cheap but possibly comparably expensive if considered for numerous series

[44].

Finally, we should note that the reconciliation methods found in the literature adjust the

base forecasts using linear operators. In this respect, reconciling the average forecasts of meth-

ods A and B is practically equivalent to reconciling the forecasts of method A and method B

individually and then averaging them. For reasons of simplicity, in this study we adopt the first

approach which requires reconciling the forecasts just once.

3.2 Bias adjustments

A key factor for optimally reconciling the base forecasts of a hierarchy is to estimate their

covariance matrix. For some time, performing such a task was avoided and simpler alterna-

tives, such as the ordinary least squares (OLS), were used instead to approximate its results

[1]. However, it was recently shown that the covariance matrix is not identifiable and that an

estimator which minimises the variances of the reconciled forecast errors can be exploited

for constructing unbiased reconciled forecasts [2]. Yet, in order for the reconciled forecasts

to be unbiased, the base forecasts must be unbiased as well. Undoubtedly, this assumption is

rarely fulfilled in practice, meaning that the reconciliation performed might be far from

optimal.

We will not pretend that generating unbiased forecasts is a trivial task, nor do we believe

that any forecasting method is capable of producing perfectly unbiased results. Nevertheless,

in our point of view, mitigating the bias of the base forecasts through appropriate adjustments

is a promising strategy for improving the performance of temporal hierarchies by better fulfill-

ing the assumptions made by the reconciliation frameworks utilised.

Producing unbiased base forecasts may also come with additional benefits, such as

improved forecasting accuracy. The bias-variance decomposition, according to which the

Mean Square Error (MSE) is decomposed into a bias (B) and a variance (V) term, is a funda-

mental concept in forecasting [45], expressed as

MSE ¼ B2 þ V: ð2Þ

The bias represents the consistent distance observed between the forecasts and the true val-

ues. The larger the distance, the higher the bias of the forecasts and vice-versa. On the other

hand, the variance represents the variation of the forecasts around their mean. Similarly, as the

variation of the forecasts increases for different realisations of the error terms, the variance

becomes higher and vice-versa.

Observe that it is possible for two completely different forecasts, the first one characterised

by little bias but much variance and the second one by much bias but little variance, to display

exactly the same level of accuracy. However, given two forecasts of the same variance, the less

biased forecast will be also the more accurate one. Thus, in our case, for any base forecast pro-

vided, we can assume that there is an offset value, i.e. a bias, which deteriorates forecasting

accuracy and if effectively adjusted can lead to more accurate results, although maintaining its

original variance.

Unfortunately, the research done in the field of forecasting for implementing bias adjust-

ments is rather limited. Most of the research focuses on judgmental adjustments [46, 47]

which are not applicable in our case, or model-specific parameter corrections [48] that can not

be adopted within generalised forecasting frameworks. However, [49] describe some practical

alternatives, indicating some simple, yet effective approaches for performing this task. In the

present study we expand these alternatives by considering both additive and multiplicative

Improving the forecasting performance of temporal hierarchies
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bias adjustments, which are defined as

ŷanþh¼ ŷnþh þ
1

n

Xn

i¼1

yi � ŷi ð3Þ

ŷmnþh¼ ŷnþh �
1

n

Xn

i¼1

yi
ŷi
; ð4Þ

where yi is the actual values of series y at point i, ŷi is the respective forecast, h is the forecasting

horizon, n is the number of the data points available in-sample and ŷai and ŷmi are the additively

and multiplicatively adjusted forecasts respectively.

Note that in both cases, the out-of-sample forecasts are adjusted based on the average bias

observed in-sample. Thus, the main assumption made by the proposed strategy is that the

extent of bias reported while fitting the forecasting method will remain the same when extrap-

olating the series in the future. The only difference between the two approaches is that additive

adjustments assume that the bias is a constant, while the multiplicative ones that the bias is a

ratio.

Observe also that the factors used for adjusting the original forecasts can be estimated using

other operators than the mean. For instance, the median or the mode could be used to mitigate

the effect of extreme residuals and provide more indicative results.

3.3 Avoiding seasonal shrinkage

When applying temporal hierarchies on time series, the produced forecasts tend to be much

smoother than the original data as aggregating across multiple temporal levels acts as a moving

average filter [20, 50]. This can highly affect the component of seasonality which, in contrast to

those of level and trend, can only be estimated only for a particular subset of aggregation levels.

For instance, monthly series are predicted across six different levels (annual, semi-annual,

four-monthly, quarterly, bi-monthly and monthly) for which the forecasts of the highest level

(yearly) will be definitely non-seasonal. Taking also into consideration that seasonality is less

likely to be observed at high aggregation levels, where the original curvatures are shrank, it is

possible for more levels to derive non-seasonal forecasts, leading to damped seasonality.

In general, seasonality shrinkage is considered an effective practice for improving forecast-

ing accuracy, especially when dealing with short series and noisy data where estimation of sea-

sonality involves greater uncertainty [51, 52]. The same stands for temporal hierarchies where

different types of seasonality may be identified across different aggregation levels, providing a

better representation of seasonal variations [3]. However, the beneficial effect of shrinkage

may not always stand in practice, particularly when the original data are strongly seasonal but

the aggregated ones are not. In such cases, unnecessarily damping the seasonal component will

lead to inaccurate results.

In order to deal with this problem, this last strategy involves an heuristic rule for avoiding

seasonal shrinkage, as follows:

• The existence of seasonality is examined across all aggregation levels.

• If the series is not seasonal in the original frequency, then temporal hierarchies are applied.

• If the series is seasonal in the original frequency, then temporal hierarchies are applied only

if at least half of the aggregated levels are seasonal. Otherwise, the base forecasts of the lowest

level of the hierarchy are used for extrapolation, being reconciled for the rest of the levels

through the bottom-up method.
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There are a lot of options available in the literature for testing whether a series is seasonal or

not. The simplest solution would probably be to perform a seasonality test based on the auto-

correlation significance of the mth term of the ACF, where m is the frequency of the series.

This approach has been applied to adjust the data for seasonality in the theta method [53, 54]

as well as in the recent M4 forecasting competition [37]. According to this test, a series is iden-

tified as seasonal at the (1 − α)% confidence level when

jACFmj > q1� a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2
Pm� 1

i¼1
ACFi

2

n

s

; ð5Þ

where n is the number of observations in the series (in-sample size), ACFk is the autocorrela-

tion function at lag k and q is the quantile function of the normal distribution. We opt for a

confidence level of 90% (α = 0.1, q0.95 = 1.645), in line with past research (see the references

above).

An alternative would be to fit different models to the series, both seasonal and non-seasonal

ones, and decide whether the data is seasonal based on the model that reported the best in-

sample performance. For example, this is a trivial task for the case of exponential smoothing

family of models which assumes no, additive or multiplicative seasonality [55], as well as the

AutoRegressive Integrated Moving Average (ARIMA) models which include seasonal

differencing or not [56]. Thus, using forecasting models as proxies for identifying significant

seasonality, relevant conclusions can be reached.

In order to mitigate the uncertainty present when testing for seasonality, we proceed by

combining both the approaches presented above, deciding based on the majority of the

reported results. Thus, for each series, the ACF test is performed and the “optimal” exponential

smoothing and ARIMA models are identified. Then, in order for a series to be classified as sea-

sonal, at least two of the following must be true:

• Eq 5 is true.

• The identified “optimal” exponential smoothing model has a seasonal component (either

additive or multiplicative).

• The identified “optimal” ARIMA model involves seasonal differencing (the order of

differencing is irrelevant).

Note that each of the criteria used above is good for capturing a different type of seasonality,

meaning that combining their results makes selection more generic and robust. For example,

the ACF test examines the existence of a deterministic seasonality, exponential smoothing

assumes either an additive or multiplicative process for a linear or exponential change in the

seasonality, while ARIMA pinpoints a stochastic seasonal component.

4 Empirical evaluation

4.1 Design

To empirically evaluate the three strategies proposed in Section 3, we use the monthly time

series from the two most cited forecasting competitions, the M [57] and the M3 [58]. The M

competition involves 617 monthly series, while the M3 1,428, resulting into a test sample that

consists of 2,045 series in total. From the competitions’ datasets we decided to use only the

series of the highest frequency, excluding the yearly and quarterly ones, given that the benefi-

cial effects of temporal aggregation are more likely to be observed when information from

multiple aggregation levels is combined [3].
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In order to enable direct comparisons with published results, we maintain the in-sample of

the series unchanged and use its whole length for training the forecasting methods. The fore-

casting horizon at the monthly frequency (first aggregation level) is h1 = 18, which corresponds

to what was requested by the organisers of the competitions. We construct temporal hierarchies,

as proposed by [3], by aggregating the monthly series to bi-monthly, quarterly, four-monthly,

semi-annual and annual levels. Each temporal hierarchy covers 12 periods in the monthly fre-

quency. In order to cover all 18-months of the forecasting horizon in the monthly frequency,

we produce forecasts for two temporal hierarchies ahead (24 monthly forecasts, equal to 2

years). Finally, we use the first hk = bh1/kc periods of each frequency to evaluate the perfor-

mance, where b�c is the floor function and k is the aggregation level (k = 3 for quarterly data).

For each series and at each aggregation level, we independently generate base forecasts

using the automated algorithms for ExponenTial Smoothing (ETS) [55] and ARIMA [56]

models, as well as their simple, equally weighted COMBination (COMB). The first two meth-

ods, ETS and ARIMA, are widely utilised in the forecasting literature during the last few years,

especially in studies focused on hierarchical forecasting, and are capable of providing the

“best” exponential smoothing and ARIMA model, respectively, indicated through information

criteria. The last method, COMB, is introduced to assess the effect of the first strategy proposed

in this paper for improving the performance of hierarchical forecasting through forecast com-

binations. All forecasts are generated using the forecast package for R [59].

The base forecasts are first reconciled by applying the Bottom-Up (BU) method. In this

scenario, the base forecasts estimated at the lowest level of the hierarchy (monthly data) are

aggregated to provide forecasts for the rest of the temporal levels. Given the simplicity of the

method and the fact that it does not consider information from frequencies other than the one

originally available, BU forms a natural benchmark that allows fair comparisons with the strat-

egies proposed in this study.

Base forecasts are then adjusted to mitigate bias. Both ADDitive (ADD) and MULtiplicative

(MUL) bias adjustments are considered using the median operator. Note that similar results

are obtained when using the mean operator and, therefore, these are not presented for reasons

of brevity. Another reason of using the median operator instead of the mean, is that the latter

reported slightly less accurate results for the case of the additive adjustments, in contrast to the

former which worked equally well both for additive and multiplicative adjustments. We pro-

ceed by generating reconciled forecasts using the WLSS estimator.

Finally, we evaluate the last strategy proposed in this study by selectively applying temporal

hierarchies to avoid excessive seasonality damping, as described in Section 3.3. The automatic

selection algorithms of ETS and ARIMA utilised for generating the base forecasts are also

exploited for examining the existence of seasonality, together with the traditional ACF test.

Based on this strategy, temporal hierarchies are not applied to 150 out of the 2045 series in the

sample.

The forecasts are evaluated both in term of forecasting accuracy (closeness of actual values

and forecasts) and bias (consistent differences between actual values and generated forecasts).

We use the Mean Absolute Scaled Error (MASE) [60] and the Absolute value of the Scaled

Mean Error (ASME) [16] which permit averaging forecasting performance across time series

of different scales. For both MASE and ASME, lower values are better. The MASE and the

ASME are defined as

MASE ¼
1

h

Pnþh

t¼nþ1

jyt � ŷtj

1

n� m

Pn

i¼mþ1

jyt � yt� mj
; ð6Þ
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ASME ¼
1

h

Pnþh

i¼nþ1

yt � ŷt

�
�
�
�

�
�
�
�

1

n

Pn

i¼1

yi
; ð7Þ

where yt is the actual value of series Y at point t, ŷt is the respective forecast of the method

being evaluated, h is the forecasting horizon at each frequency, n is the number of the

data points available in-sample and m is the data frequency, i.e., 12 for monthly, 6 for bi-

monthly, 4 for quarterly, 3 for four-monthly, 2 for semi-annual and 1 for annual levels. Note

that depending on the original length of the series and the temporal level examined, different

n and h values are considered. The results are summarised both for each aggregation level

and in total by averaging the performance computed for the six individual aggregation

levels.

Finally, we would like to note that the results based on MASE are directly comparable with

those based on the symmetric Mean Absolute Percentage Error (sMAPE), the measure origi-

nally used in the M3 Competition to evaluate forecasting accuracy and a common choice in

the forecasting literature. Given the similarity of the results, as well as the drawbacks of

sMAPE [61], we proceed by reporting only the MASE results.

4.2 Results

Tables 1 and 2 summarise the results for the MASE and ASME measures, respectively. The

first row of each method (ETS, ARIMA and COMB) presents the results of the BU reconcilia-

tion, that is used as benchmarks for measuring the effect of the strategies proposed in this

paper for improving the performance of hierarchical forecasting: (i) Combining forecasts of

multiple methods, (ii) applying bias adjustments and (iii) avoiding seasonal shrinkage. The fol-

lowing rows present the performance of the WLSS reconciled forecasts. Each column of the

tables represents an aggregation level, while the last column provides the average performance

across all aggregation levels. Entries in bold highlight the most accurate forecasting approach

per case.

Before proceeding with the evaluation of the three strategies proposed in this paper, we

should first highlight that these are complements to the WLSS temporal aggregation, a frame-

work which has been proven to significantly improve the base forecasts provided to it as input.

Thus, further improving the performance of the framework becomes a promising, yet chal-

lenging task. This becomes evident in Fig 3 which presents the percentage differences between

the WLSS reconciled forecasts and the base ones. The improvements are provided per aggrega-

tion level for the three forecasting methods examined in this study, both in terms of accuracy

and bias. Observe that the accuracy of all the methods is enhanced at all aggregation levels,

ranging from 1.8% to 5.4%. The improvements are higher at the highest temporal levels and

are gradually declined as the frequency of the data increases. This is due to the limited sample

of the low frequency series, which become more predictable as information from high fre-

quency series becomes available. On the other hand, high frequency series are benefited by

incorporating the trend component of the data which is easier to capture at high aggregation

levels. Significant improvements are also observed for the case of bias, ranging from 4.3% to

7.9%. However, in contrast to accuracy, bias improvements are relatively stable across all

aggregation levels, indicating that combining information from multiple levels helps us stabi-

lise the bias globally. It is also notable that the improvements of temporal aggregation are

greater for the less accurate/more biased methods. Thus, although its utilisation is always
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recommended, accurate/unbiased base forecasts are less likely to be substantially improved

than inaccurate/biased ones.

The results presented in Tables 1 and 2 demonstrate that forecasting using COMB results

in significant forecast accuracy and bias improvements for all aggregation levels over both ETS

and ARIMA forecasts. The improvements are larger for ARIMA compared to ETS as ARIMA

provides less accurate and more biased base forecasts than ETS. Moreover, the improvements

reported are relatively constant across the six aggregation levels, indicating that COMB leads

to consistent better forecasts regardless the data frequency examined. Observe also that COMB

is beneficial both for the BU and WLSS reconciliation methods, verifying that combining fore-

casts from different methods is a strategy that can effectively enhance temporal hierarchies no

matter what kind of reconciliation methods are being used. Thus, we conclude that combining

forecasts from different aggregation levels and forecasting methods concurrently, results in

more accurate and less biased forecasts than the base forecasts generated for each aggregation

level separately or the reconciled forecasts generated using single forecasting methods. The

improvements of using COMB instead of ETS or ARIMA individually are visualised in Fig 4

and are presented per aggregation level for the BU and WLSS reconciliation methods, both in

terms of accuracy and bias. As seen, the accuracy improvements range from 1.2% to 4.8%,

with the bias improvements reaching up to 7.8%. Note that combining forecasts of different

forecasting methods displays similar or even greater percentage improvements over

Table 1. Forecasting performance in terms of accuracy for the 2,045 monthly series of the M and M3 competitions. The results are averaged across all series, both per

aggregation level and across all levels. Additive (ADD), multiplicative (MUL) or none bias adjustments were considered. Results are also reported when temporal hierarchi-

cal forecasting is applied selectively to avoid seasonal shrinkage.

Forecasting

method

Reconciliation

method

Bias

adjustment

Avoiding seasonal

shrinkage

Annual Semi

annual

Four

monthly

Quarterly Bi

monthly

Monthly Average

ETS BU None No 1.005 1.051 0.961 0.983 0.962 0.928 0.982

WLSS None No 0.959 1.015 0.931 0.956 0.937 0.909 0.951

WLSS MUL No 0.936 0.999 0.915 0.941 0.922 0.896 0.935

WLSS ADD No 0.935 0.998 0.914 0.940 0.921 0.895 0.934

WLSS None Yes 0.945 1.007 0.922 0.948 0.929 0.902 0.942

WLSS MUL Yes 0.921 0.991 0.907 0.933 0.915 0.889 0.926

WLSS ADD Yes 0.920 0.990 0.905 0.932 0.914 0.888 0.925

ARIMA BU None No 1.025 1.080 0.981 1.009 0.982 0.944 1.004

WLSS None No 0.970 1.025 0.938 0.962 0.938 0.908 0.957

WLSS MUL No 0.960 1.017 0.932 0.955 0.932 0.903 0.950

WLSS ADD No 0.958 1.016 0.930 0.954 0.931 0.902 0.948

WLSS None Yes 0.966 1.024 0.937 0.961 0.938 0.907 0.955

WLSS MUL Yes 0.957 1.017 0.932 0.955 0.932 0.903 0.949

WLSS ADD Yes 0.955 1.015 0.930 0.954 0.931 0.902 0.948

COMB BU None No 0.978 1.028 0.936 0.961 0.938 0.905 0.958

WLSS None No 0.948 1.000 0.916 0.940 0.918 0.889 0.935

WLSS MUL No 0.930 0.988 0.906 0.929 0.908 0.880 0.924

WLSS ADD No 0.929 0.988 0.905 0.929 0.908 0.880 0.923

WLSS None Yes 0.937 0.994 0.909 0.933 0.913 0.884 0.928

WLSS MUL Yes 0.919 0.982 0.899 0.923 0.903 0.876 0.917

WLSS ADD Yes 0.918 0.982 0.899 0.923 0.903 0.876 0.917

The most accurate forecasting approach per temporal aggregation level is highlighted in bold.

https://doi.org/10.1371/journal.pone.0223422.t001
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combining forecasts of different aggregation levels. Therefore, the first strategy proposed in

Section 3.1 adds considerable value to temporal hierarchies.

Regarding the effect of bias adjustments, the results show that modifying the base forecasts

to mitigate bias, either in an additive or in a multiplicative way, also leads to improvements in

forecasting performance. The percentage differences for the additive bias adjustments are visu-

alised in Fig 5 (the percentage differences for multiplicative adjustments are very similar).

These range from 0.6% to 2.5% for MASE and from 1.2% to 1.8% for ASME. Hence, we con-

clude that applying bias adjustments to the base forecasts before reconciling them results in

forecasts that are not only less biased, but also more accurate. Observe that the accuracy

improvements are larger at the higher aggregation levels, especially the annual level, while the

bias improvements are relatively stable. Therefore, the second strategy proposed in Section 3.2

is also shown to considerably enhance the forecasting performance of temporal hierarchies.

The results of Tables 1 and 2 indicate that the last strategy proposed in Section 3 also has a

positive effect on forecasting accuracy and bias, improving further the performance of tempo-

ral hierarchies. This effect is visualised in Fig 6 which reports the percentage differences of

original WLSS and selective application of temporal hierarchies to avoid seasonal shrinkage,

either considering additive bias adjustments, or not. The improvements reach up to 1.6% and

0.8% for the case of MASE and ASME, respectively, being larger for the highest levels of the

hierarchy.

Table 2. Forecasting performance in terms of bias for the 2,045 monthly series of the M and M3 competitions. The results are averaged across all series, both per aggre-

gation level and across all levels. Additive (ADD), multiplicative (MUL) or none bias adjustments were considered. Results are also reported when temporal hierarchical

forecasting is applied selectively to avoid seasonal shrinkage.

Forecasting

method

Reconciliation

method

Bias

adjustment

Avoiding seasonal

shrinkage

Annual Semi

annual

Four

monthly

Quarterly Bi

monthly

Monthly Average

ETS BU None No 0.092 0.111 0.105 0.111 0.111 0.111 0.107

WLSS None No 0.086 0.103 0.098 0.104 0.104 0.104 0.100

WLSS MUL No 0.085 0.103 0.097 0.103 0.103 0.103 0.099

WLSS ADD No 0.084 0.102 0.096 0.102 0.102 0.102 0.098

WLSS None Yes 0.085 0.103 0.098 0.103 0.103 0.103 0.099

WLSS MUL Yes 0.085 0.102 0.097 0.103 0.103 0.103 0.099

WLSS ADD Yes 0.084 0.101 0.096 0.102 0.102 0.102 0.098

ARIMA BU None No 0.097 0.118 0.111 0.118 0.118 0.119 0.114

WLSS None No 0.090 0.109 0.103 0.109 0.109 0.109 0.105

WLSS MUL No 0.090 0.107 0.102 0.108 0.108 0.108 0.104

WLSS ADD No 0.089 0.107 0.101 0.107 0.107 0.108 0.103

WLSS None Yes 0.090 0.109 0.103 0.109 0.109 0.109 0.105

WLSS MUL Yes 0.089 0.107 0.102 0.108 0.108 0.108 0.104

WLSS ADD Yes 0.089 0.107 0.101 0.107 0.108 0.108 0.103

COMB BU None No 0.090 0.109 0.103 0.109 0.109 0.109 0.105

WLSS None No 0.086 0.104 0.098 0.104 0.104 0.104 0.100

WLSS MUL No 0.085 0.103 0.097 0.103 0.103 0.103 0.099

WLSS ADD No 0.085 0.102 0.097 0.103 0.103 0.103 0.099

WLSS None Yes 0.086 0.103 0.098 0.103 0.103 0.103 0.099

WLSS MUL Yes 0.085 0.102 0.097 0.102 0.103 0.103 0.099

WLSS ADD Yes 0.084 0.102 0.096 0.102 0.102 0.102 0.098

The most unbiased forecasting approach per temporal aggregation level is highlighted in bold.

https://doi.org/10.1371/journal.pone.0223422.t002
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Fig 3. Forecasting performance improvements reported for applying WLSS reconciliation instead of BU. The improvements

(percentage differences) are estimated per aggregation level for the ETS (red), ARIMA (green) and COMB (blue) methods, both in terms

of accuracy (MASE) and bias (ASME).

https://doi.org/10.1371/journal.pone.0223422.g003

Fig 4. Forecasting performance improvements reported for using a combination of forecasts instead of individual ones. The

improvements (percentage differences) are estimated per aggregation level, both in terms of accuracy (MASE) and bias (ASME).

Comparisons of COMB are presented independently for ETS (red) and ARIMA (green), both for applying the BU (solid) and WLSS
(dashed) reconciling methods.

https://doi.org/10.1371/journal.pone.0223422.g004
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Fig 5. Forecasting performance improvements reported for applying additive bias adjustments instead of original WLSS
reconciliation. The improvements (percentage differences) are estimated per aggregation level for the ETS (red), ARIMA (green) and

COMB (blue) methods, both in terms of accuracy (MASE) and bias (ASME). A similar graph is obtained for the case of multiplicative

bias adjustments.

https://doi.org/10.1371/journal.pone.0223422.g005

Fig 6. Forecasting performance improvements reported for selectively applying temporal hierarchies to avoid seasonal shrinkage.

The improvements (percentage differences) are estimated per aggregation level for the ETS (red), ARIMA (green) and COMB (blue)

methods, both in terms of accuracy (MASE) and bias (ASME). The WLSS estimator is used for reconciliation, either considering additive

bias adjustments “BA” (dashed) or not (solid). A similar graph is obtained for the case of multiplicative bias adjustments.

https://doi.org/10.1371/journal.pone.0223422.g006
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Next, we attempt to disentangle the effects of the three strategies described in Section 3,

assuming an additive bias-adjustment. Table 3 presents the average performance improve-

ments when each strategy is applied separately as well as if two or more strategies are consid-

ered together. Improvements are measured based on the WLSS hierarchical combinations

when a single method (ETS or ARIMA) was used to produce the base forecasts. We observe

that combining across methods (and not just aggregation levels) brings the largest improve-

ments (around 2% on average), followed by the bias-adjustment strategy (on average 1.5%

improvement). Performance improvements are similar for both forecast accuracy (MASE)

and bias (ASME). We observe minimal interactions between the strategies, with the average

improvement of multiple strategies applied at the same time being roughly equal to the sum of

the average improvements when each strategy was considered separately.

To sum up, when the average performance of the forecasts is considered across all temporal

levels, the combination of the three strategies proposed in this study lead to notable improve-

ments, enhancing significantly the results of standard temporal aggregation methods. For

example, for the case of ETS, the accuracy is improved by 6.6% and 3.6% when the BU or the

WLSS method is considered for reconciling the base forecasts, respectively. Accordingly, the

bias of the methods is improved by 8% and 1.6%. The results are even better for the case of the

ARIMA, where the accuracy is improved by 8.7% and 4.2% for the BU and the WLSS method,

respectively, while the bias by 13.6% and 6.5%.

In order to verify that the improvements of the proposed strategies in terms of absolute

forecasting performance are statistically significant, we apply Multiple Comparisons from the

Best (MCB). MCB tests if the average ranking of each forecasting approach is significantly dif-

ferent than the others [62]. The null hypothesis of this test is rejected when the intervals of two

approaches do not overlap, suggesting that their ranked performances are statistically different.

The analysis is done using the average MASE reported for each series across all temporal levels.

The three strategies are tested both separately and together against the two benchmarks (ETS

and ARIMA) when the WLSS reconciliation method is considered. The results are presented

in Fig 7.

We observe that the combination of the three strategies (last panel) results in the best

ranked performance which is also statistically different to that of the two benchmarks. It is also

evident that combining across methods, as well as applying bias adjustments, leads to signifi-

cantly better forecasts. On the other hand, although avoiding seasonal shrinkage leads to better

forecasts compared to the two benchmarks, the differences reported are not statistically signifi-

cant. Yet, given that this strategy is applied only to a limited number of series (7.3% of the

examined series), it is difficult to draw clear conclusions about its true potential. Thus, we con-

clude that the first two strategies are effective in improving the forecasting performance of

temporal hierarchies while more evidence is needed for evaluating the impact of the last

strategy.

Table 3. Average performance improvements when each strategy is applied separately or in conjuction with other strategies.

Combination of methods Bias adjustment Avoiding seasonal shrinkage Accuracy improvement Bias improvement

✔ 1.98% 2.30%

✔ 1.34% 1.57%

✔ 0.54% 0.30%

✔ ✔ 3.24% 3.51%

✔ ✔ 2.71% 2.89%

✔ ✔ 1.85% 1.84%

✔ ✔ ✔ 3.91% 4.06%

https://doi.org/10.1371/journal.pone.0223422.t003
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Finally, we would like to notice that the improvements reported by the proposed strategies

do not significantly increase the computational cost of the forecasting process, as they utilise

information that is directly provided during the estimation of the base forecasts, or imply

minor, computationally cheap additional estimations (e.g., ACF test and bias estimation). For

example, we have found that bias adjustments increase computational cost by about 0.6%,

while the avoidance of seasonal shrinkage by less that 0.1%. Regarding the combination of the

methods, the additional cost depends strongly on the computation time required for individu-

ally estimating the combined methods. Thus, given that ETS is much faster to compute than

ARIMA, the additional cost for combining is about 1.3 and 4.7 times greater for the case of the

ARIMA and the ETS methods, respectively. In this regard, these strategies transform temporal

hierarchies into a truly efficient forecasting solution, capable of producing fast, yet highly accu-

rate forecasts.

5 Conclusions

Temporal hierarchies have been proven an effective solution for improving the performance

of traditional forecasting methods, supporting at the same time aligned decisions at different

planning horizons. The accuracy, robustness, coherency and uncertainty mitigation they

imply, have made them a popular forecasting framework, highlighting the potential benefits of

multiple temporal aggregation in decision making.

Fig 7. MCB significance tests for the three strategies considered. The analysis is done using the average MASE

reported for each series across all temporal levels. In all cases, the WLSS reconciliation method is considered. “COMB” is

the combination of ETS and ARIMA forecasts (first strategy), “BA” is additive bias adjustments (second strategy), “SS” is

the avoidance of seasonal shrinkage (third strategy) and “COMB AS” is the combination of the three strategies.

https://doi.org/10.1371/journal.pone.0223422.g007
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Having examined the limitations of the existing framework, this study aims at further

improving the performance of temporal hierarchies by considering three different strategies:

(i) Combining forecasts of multiple methods, (ii) applying bias adjustments and (iii) selec-

tively implementing temporal hierarchies to avoid seasonal shrinkage. These strategies can

be applied either separately or simultaneously, being complements to the method considered

for reconciling the base forecasts and completely independent from each other. Moreover,

they are computationally cheap, utilising information which becomes directly available

when generating the base forecasts or easy-to-compute derivatives of the forecasting

process.

The results show that replacing base forecasts coming from a single method with

combinations of multiple methods has a great positive impact on forecasting performance

across all aggregation levels, especially when the individual methods used are inaccurate or

biased. Similarly, mitigating the bias of the base forecasts leads to improved forecasting per-

formance, being more significant at the higher levels of the hierarchy where historical data

are typically scarce. Finally, selectively choosing between temporal hierarchies and tradi-

tional bottom-up modelling is also beneficial, allowing the better handling of highly-sea-

sonal series for which the seasonal component is excessively damped by temporal

hierarchies.

The strategies proposed in this study indicate that temporal hierarchies are a useful, yet gen-

eralised framework for combining forecasts of different temporal levels that can be further

expanded to provide even more accurate and robust results. This work introduces such effec-

tive expansions, outlining some interesting ways towards that direction. Even if this study

focuses on improving the performance of temporal hierarchies, the first two strategies pre-

sented could be equally considered for cross-sectional hierarchies. Future research could focus

towards that direction. Finally, our work focuses on the forecasting performance of the point

forecasts and it would be interesting to see if the results generalise for the case of probabilistic

forecasts [5].
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