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ABSTRACT Previous pricing strategies including time-of-use price and dynamic price reflect system 

marginal cost and calculate consumers’ bills according to the quantity of their electricity usage. Little effort 

is made to understand the impact of power volatility on total production costs. This paper thus proposes a 

novel pricing strategy reflecting the cost arising from power volatility. Firstly, the impact of volatility on the 

production cost is investigated to quantify volatility cost. Secondly, a novel pricing model is proposed to 

allocate the volatility cost to consumers and renewable energy generations (REGs). It can reveal the coupling 

relationship between an individual load/REG curve and the system load curve. Thirdly, under the proposed 

pricing strategy, customers/REGs help to flatten the system load curve and reduce the production cost in a 

decentralized manner, which is certificated theoretically based on the Haar wavelet transforms. Validation on 

residential level loads shows that the volatility and peak-to-valley difference of aggregated load curve is 

reduced by 34.07% and 19.81%, respectively. The problem of synchronous response among customers faced 

by hourly price strategies is addressed by the proposed strategy. A test on megawatt-level loads shows a 

61.95% reduction in system load volatility and a 2.21% reduction in production cost. It also reduces the peak-

to-valley difference by 6.52%. 

INDEX TERMS Pricing strategy, volatility cost, correlation coefficient, decentralized demand response, 
wavelet transforms. 

I. INTRODUCTION 

To utilize flexible resources in the demand side to reduce the 

production and operational cost, various pricing strategies and 

demand response (DR) programs have been proposed. These 

pricing strategies and DR programs aim to reduce system load 

peak, decrease the production cost, and postpone network 

investment [1]-[10]. Increasing penetration of renewable 

energy generations (REGs) makes DR more important. 

Pricing strategies adopted in practice and proposed in the 

literature include time-of-use (TOU) price [1], [2], day-ahead 

dynamic price [3], [4] and real-time price [5]-[7], which could 

reflect system marginal cost to some extent. Consumers’ bills 

are computed according to the quantity of their electricity 

usage. However, these strategies and DR programs seldom 

explore the impact of load/REG volatility on the production 

cost, thus failing to reflect the cost caused by the volatility. 

This issue will be addressed in this paper. A novel pricing 

strategy reflecting the cost of volatility is proposed to motivate 

consumers to contribute to flattening the system load curve 

and reducing the total production cost in a decentralized 

manner. 

A proper price strategy or a market mechanism in power 

systems should be cost-reflective, reduce system operational 

cost, and ensure fairness for all market participants. TOU price 

schemes divide a day into several segments and set different 

prices for them. These price schemes reflect the difference in 

marginal costs between peak and off-peak load periods and 

aim to reduce the load volume in the defined peak period. 

However, as the shiftable loads increase in power systems, 

TOU price schemes may create a new peak in the defined off-

peak period due to the herding effect [11]. Similar schemes to 

TOU price involve critical peak pricing (CPP) [12] and peak 

load pricing (PLP) [13], [14]. 

Dynamic price (DP) and real-time price (RTP) schemes 

could reflect the system hourly marginal cost. Unlike TOU 

schemes defining a fixed price curve, DP schemes [3], [4] 

broadcast variable price signals to consumers. Sometimes, 

iteration processes are needed to update the prices until 

reaching to a convergent state. For example, in [5], [15] 

market models based on Stackelberg games are proposed for 

the electricity trading between an upstream supplier and 

multiple downstream consumers. Iteration and bi-directional 

communication are required to reach a stable price. 

Consumers need to submit their load curves in each iteration, 

which limits the participation of small residential consumers 

who are not smart enough to bid or compete in the market. 
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Under RTP schemes, prices are determined before the gate 

closure of each real-time trading period. Prices can reflect the 

real-time electricity supply and demand conditions [5]-[7]. 

However, continuous decision-making process and bi-

directional communication are necessary, which makes DP 

and RTP schemes applicable to intelligent participants, such 

as consumer agents and aggregators [16], [17] rather than 

some small residential consumers, who are restricted by the 

ability of bi-directional online interaction. 

With the increasing penetration of renewable energy 

resources, the power system will witness a problem of 

insufficient ramping capacity which is caused by the 

increasing volatility of system net load (load minus the power 

of REGs). This problem has been pointed out in [18]. Markets 

for flexible ramping products are investigated in [19], [20]. In 

these markets, controllable generators are economically 

compensated for their providing flexible ramping products. 

However, to our best knowledge, how to allocate the ramping 

cost among consumers and renewable energy sources has not 

yet been well addressed. 

To investigate the cost related to the volatility and allocate 

cost among those who cause the volatility, i.e. consumers and 

renewable energy generators (REGs), we propose a novel 

pricing strategy considering the cost of volatility. Our pricing 

strategy satisfies three market axioms: 1) The pricing model 

should follow the cost causation as much as possible. Market 

players causing cost should pay for it and those mitigating cost 

should be rewarded for it [21], [22]; 2) In the short term, the 

pricing and allocation model should enable to reduce the 

production cost; 3) In the long term, it should ensure the 

effective operation for the market. Contributions of this paper 

include: 

i) The impact of load volatility on the production and 

operational cost is analyzed. Electricity production costs can 

be divided into electricity quantity cost and volatility cost. The 

quantity cost depends on the volume of electricity usage. The 

volatility cost is related to the volatility of the system net load 

curve. It is allocated among consumers and REGs. 

ii) A novel apportionment factor for allocating the volatility 

cost among consumers/REGs is proposed. It reveals the 

correlation between an individual load/power curve and the 

system net load curve. This would establish an effective 

mechanism that penalizes consumers/REGs whose volatility 

has great alignment with that of the system net load curve, 

while reduces the bill of consumers who have little impact on 

the volatility of the system net load curve. The proposed 

apportionment factor has properties of normalization and 

additivity, which ensures market fairness and scalability. 

iii) The pricing model motivates consumers to contribute to 

reducing the volatility and peak-to-valley ratio of system net 

load in a decentralized manner, which is certificated 

theoretically through Haar wavelet transforms and Cauchy 

Inequality Criterion. The DR scheme is achieved in a 

decentralized manner with no need for online interaction. It 

enables large consumers, such as industrial and commercial 

users, and small consumers, such as residential users 

participating in the market equally. From the long-term 

perspective, the proposed pricing strategy will not cause new 

peaks even in case of high penetration of flexible resources in 

the demand side. More meaningful, the proposed pricing 

model is applicable to the scenarios of consumers coexisting 

with REGs. 

Detailed work is carried out in the following parts. The 

impact of the volatility on production cost is investigated in 

Section II. Cost-reflective pricing strategy and allocation 

model are presented in Section III. Consumers’ DR model and 

how the decentralized DR is realized are illustrated in Section 

IV. In Section V, numerical simulation studies are 

implemented. Finally, Section VI concludes this paper. 

II.  ANALYSIS OF VOLATILITY COST 

In the future power system with great penetration of 

renewable energy generations, the volatility of the system net 

load will have a great impact on the system operational cost. 

On the one hand, the volatility will cause the ramping, start-

up, and shut-down of fossil fuel generators. On the other 

hand, volatility will increase the production cost from fossil 

fuel generators, which is analyzed in the following. 

In power systems, the marginal cost depends on the fossil 

fuel generators and increases with the amount of net load [23], 

[24]. The marginal generation costs can be approximated as a 

linear function against the net load: 

𝑈 = 𝑎𝑃 + 𝑏 (1) 

where, 𝑈 refers to the marginal generation cost; 𝑃 refers to 

the net load power; 𝑎 and 𝑏 are two constants and 𝑎 is 

positive. 

The impact of load volatility on the production cost is 

investigated considering a fluctuating net load curve 𝐏𝟏 and a 

flat load curve 𝐏𝟐 as shown in FIGURE 1, where, 

𝐏𝟏 = {𝑃1,𝑡 , 𝑡 = 1, 2, … , N} and 𝐏𝟐 = {𝑃2,𝑡, 𝑡 = 1, 2, … , N}. 

 
FIGURE 1. A flat load curve and a fluctuating load curve 

To analyze the impact of volatility on the production cost, 

the total electricity consumption of the two load curves are 

assumed to be equal, namely: 

∑ 𝑃1,𝑡

N

𝑡=1

T = ∑ 𝑃2,𝑡

N

𝑡=1

T = 𝐸 (2) 

𝑃2,𝑡 = 𝑃𝑚 =
𝐸

NT
      𝑡 = 1, 2, … , N (3) 

where, 𝐸 refers to the total electricity over a specific period, 
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e.g. a day; 𝑃𝑚 is the average power of each net load curve; T 

refers to the length of a time slot. N refers to the number of 

time slots. 

Based on the function of marginal generation cost in Eq. 1, 

total production costs of the two net load curves are: 

C1 = T ∑ 𝑃1,𝑡(𝑎𝑃1,𝑡 + 𝑏)

N

𝑡=1

                                        

     = T ∑(𝑎𝑃1,𝑡
2

N

𝑡=1

+ 𝑏𝑃1,𝑡) = 𝑎T ∑ 𝑃1,𝑡
2

N

𝑡=1

+ 𝑏𝐸

 (4) 

C2 = T ∑ 𝑃2,𝑡(𝑎𝑃2,𝑡 + 𝑏)

N

𝑡=1

                     

    = 𝑎T ∑ 𝑃2,𝑡
2

N

𝑡=1

+ 𝑏𝐸 =
𝑎𝐸2

NT
+ 𝑏𝐸

 (5) 

where, C1, C2 refer to the electricity cost of load curve 𝐏𝟏 and 

𝐏𝟐, respectively. 

Based on the Cauchy Inequality Criterion: 𝑘1
2 + 𝑘2

2 ≥
(𝑘1 + 𝑘2)2/2, there is: 

∑ 𝑃1,𝑡
2

N

𝑡=1

≥ N𝑃𝑚
2 (6) 

Substitute Eq. 6 into Eq. 4, and replace 𝑃𝑚 by /NT . It can 

be derived that: 
𝐶1 ≥ 𝐶2 (7) 

Only if 𝑃1,1 = 𝑃1,2 = ⋯ = 𝑃1,N, there is C1 = C2, 

otherwise C1 > C2. 

Eq. 7 indicates that the production cost of a fluctuating net 

load curve is higher than a flat load curve. The difference 

between C1 and C2 is caused by the volatility of the fluctuating 

net load. 

Cv = C1 − C2 = 𝑎T ∑(𝑃1,𝑡
2

N

𝑡=1

− 𝑃2,𝑡
2)                                             

= 𝑎T ∑[(𝑃1,𝑡 − 𝑃2,𝑡)2 + 2𝑃1,𝑡𝑃2,𝑡 − 2𝑃2,𝑡
2]

N

𝑡=1

                    

= 𝑎T[∑(𝑃1,𝑡 − 𝑃𝑚)
2

N

𝑡=1

+ ∑2(𝑃1,𝑡 − 𝑃2,𝑡

N

𝑡=1

)𝑃2,𝑡 ]             𝐸

= 𝑎T ∑(𝑃1,𝑡 − 𝑃𝑚)2

N

𝑡=1

= 𝑎TN𝑆1
2                                          

 (8) 

where, S1
2 is the variance of fluctuating net load curve, Cv is 

the volatility cost. 

Eq. 6 indicates that the production cost of a flat net load 

curve only depends on the quantity of the total electricity 

usage. This part of the cost is referred to as the quantity cost in 

this work. Eq. 8 indicates that the volatility cost of a net load 

curve is proportional to the variance of the load curve, namely 

𝑎TN𝑆1, which is referred to as the volatility cost in this work. 

Without loss of generality, for any form of marginal cost 

function, the total product cost of a flat net load curve is 

defined as the quantity cost. The difference between the costs 

of a fluctuating net load curve and the corresponding flat load 

curve is defined as the volatility cost. Costs related to the 

ramping, start-up and shut-down of fossil fuel generators also 

belong to the volatility cost, which is allocated to consumers 

and REGs through the proposed pricing strategy in the next 

Section. 

III. PRICING AND ALLOCATION MODEL 

Unlike most existing electricity markets that allocating the 

total cost to consumers just according to the quantity of their 

electricity usage, the proposed pricing strategy considers 

both the quantity and the volatility of consumers’ electricity 

usage, as well as the volatility of REGs. 

For the two parts of the total cost, i.e. quantity cost and 

volatility cost, the quantity cost is allocated to consumers 

according to the quantity of their electricity usage and the 

volatility cost is allocated to consumers/REGs according to the 

impact of their volatility on the net load volatility. Unlike the 

electricity quantity, the volatility does has the feature of 

additivity. For example, the algebraic sum of all load/REG’s 

variances is not equal to the variance of the net load curve, as 

given by Eq. 9. A reasonable apportionment factor needs to be 

defined. 

∑𝑆𝑖
2/𝑆n

2

M

𝑖=1

≠ 1 (9) 

where, 𝑆𝑖
2 is the variance of a load/REG curve 𝑖; 𝑆n is the 

variance of the net load curve; M is the number of 

consumers and REGs. 

A. DEFINITION OF APPORTIONMENT FACTOR FOR 

VOLATILITY COST 

The apportionment factor for volatility cost is defined to 

satisfy the first axiom that consumers causing costs should 

pay for it and those mitigating costs should be rewarded for it 

[22]. A load/REG curve that is positively correlative to the 

net load curve will aggravate net load volatility and give rise 
to the increase of the total volatility cost, and vice versa. 

The impact of an individual load/REG’s volatility on the net 

load volatility depends on two factors: scale factor and 

correlation factor. In detail, the scale factor refers to the 

volatility degree of a load/REG curve. The correlation factor 

refers to its correlation with the net load curve. Accordingly, 

the product of the two factors is defined as the apportionment 

factor to allocate the volatility cost, as given by: 

 𝑣𝑖 =
𝑆𝑖

𝑆n

𝑅𝑖 (10) 

where, 𝑣𝑖 refers to the apportionment factor. At the right side 

of Eq. 10, the first term 𝑆𝑖/𝑆n  represents the scale factor and 

the second term 𝑅𝑖 refers to the correlation coefficient 

between a load/REG curve and the net load curve. It reflects 

the synchronization degree between a load/REG curve and 
the net load curve. 
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The apportionment factor defined by Eq. 10 can properly 

allocate system volatility cost to customers because it has two 

inherent properties: normalization and additivity. 

B. PROPERTIES OF THE PROPOSED APPORTIONMENT 

FACTOR 
i) Normalization 

The proposed apportionment factor has the property of 

normalization, i.e. the sum of apportionment factors of all 

loads/REGs is equal to 1 as described by Eq. 11. It ensures that 

total volatility cost can be exactly apportioned to loads/REGs. 

 ∑ 𝑣𝑖

M

𝑖=1

= 1 (11) 

The proof of Eq. 11 is given by Eq. 26 presented in the 

Appendix. 
ii) Additivity 

Additivity means that the sum of apportionment factors of 

curve 𝑖 and 𝑗 and equal to the apportionment factor of their 

combined curve, namely: 
 𝑣𝑖 + 𝑣𝑗 = 𝑣𝑘 (12) 

where 𝑣𝑘 is the apportionment factor of the combined curve 
𝑷𝑘 (𝑷𝑘 = 𝑷𝑖 + 𝑷𝑗, namely 𝑃𝑘,𝑡 = 𝑃𝑖,𝑡 + 𝑃𝑗,𝑡  ∀𝑡). 

The proof of Eq. 12 is given by Eq. 27 presented in the 

Appendix. The proof of additivity can be easily extended to 

scenarios of more than two curves. The property of additivity 

makes the pricing strategy generalized and scalable. It will not 

cause confusion when two or more consumers/REGs 

collaborate to use one meter. In addition, the cost of small 

consumers will not be influenced by large consumers or 

consumer alliances. 

In summary, the volatility cost is apportioned to 

consumers/REGs according to the proposed apportionment 

factor as given by: 
𝐶𝑖,v = 𝐶n,v𝑣𝑖 (13) 

where, 𝐶𝑛,𝑣 is the volatility cost of net load curve; 𝐶𝑖,v is the 

volatility cost allocated to consumer/RES 𝑖; 𝑣𝑖 is 

apportionment factor for  allocating volatility cost defined in 

Eq. 10. 

A consumer can cut down his electricity bills through 

reducing his electricity usage, load volatility or the correlation 

with the net load curve. A REG installed with energy storage 

can also reduce its volatility cost by reducing its volatility or 

correlation with the net load curve. 

IV. DECENTRALIZED DEMAND RESPONSE (DR) 

The proposed pricing strategy can reduce the net load 

volatility and peak-to-valley ratio. The transmission system 

operator (TSO) or distribution system operator (DSO) 

broadcast a forecast net load curve based on the day-ahead 

forecast of system load and REGs. Consumers can manage 

their electricity usage into an opposite trend against the net 

load curve to reduce their correlation with the net load curve. 

However, as the flexible resources increase in power systems. 

A high DR ratio may result in a reverse load fluctuation and 

even peak-to-valley inversion under TOU price [25]. To 

tackle this problem, the proposed pricing strategy can realize 

a decentralized DR, i.e. no forecast net load curve is 

broadcasted centrally in advance. The proposed pricing 

strategy can encourage consumers/REGs to reduce the 

volatility of their own load/output curve. Then, the volatility 

and the peak-to-valley ratio of the net load can be also 

reduced. The DR strategy for consumers/REGs is provided in 

Section IV-A. The decentralized DR effect is verified based 
on the Haar wavelet transforms in Section IV-B. 

A. DR STRATEGY 

When the total electricity demand/generation is fixed, a 

consumer/DEG can reduce its volatility cost by reducing the 

variance of its load/output curve under the proposed pricing 

model given by Eq. 10 and 13. The electricity usage strategy 
can be modeled as: 

 min∑(𝑝𝑖,𝑡 − 𝑃𝑖,𝑚)2

N

𝑡=1

 (14) 

s. t. ∑ 𝑝𝑖,𝑡T

N

𝑡=1

= 𝐸𝑖 (15) 

where, 𝑝𝑖,𝑡 refers to the load/output value after self DR 

measures; 𝑃𝑖,𝑚 refers to the mean value of a load/output curve 

𝐏i. Eq. 15 indicates that the total electricity 

demand/generation is equal to 𝐸𝑖, which is constant. The 

objective function Eq. 14 is to minimize the variance of the 

load/output curve, which is equivalent to minimize the sum 
of squares of all load/output values because of: 

∑(𝑝𝑖,𝑡 − 𝑃𝑖,𝑚)2

N

𝑡=1

= ∑ 𝑝𝑖,𝑡
2

N

𝑡=1

− 𝐸𝑖
2/NT2 (16) 

The deduction of Eq. 16 is given Eq. 28 presented in the 

Appendix. 𝐸𝑖
2/NT2 is constant, so it has no impact on the 

optimization solution. The objective function (Eq. 14) of the 
DR model can be rewritten as: 

min∑ 𝑝𝑖,𝑡
2

N

𝑡=1

 (17) 

B. THEORETICAL PROOF OF THE DECENTRALIZED DR 

FUNCTIONALITY 

The proposed pricing strategy that charges consumers/REGs 

of their volatility can help to reduce the peak-to-valley ratio 

and the volatility of the net load curve. The theoretical proof 

based on Haar wavelet transforms and Cauchy Inequality 
Criterion is provided in this section. 

Due to factors of living habit, production cycle, temperature 

and weather conditions, the correlation coefficient between 

consumer load profiles is generally positive [26], [27], which 

results in high volatility and peak-to-valley ratio in the 

aggregated system load curve. From the perspective of the 

frequency domain, the load curve can be decomposed into 

constant component and fluctuating components. The 

synchronization of fluctuating components in consumer load 
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curves is the dominating factor causing the peak-to-valley 

difference in the system load curve. Hence, reducing 

fluctuating components in each load is in favor of reducing 

total volatility and peak-to-valley difference at the system 

level. The proposed pricing strategy that charges consumers of 

their load variance could promote consumers to reduce 

fluctuating components in their own load curves. 

Wavelet Transforms (WT) is a popular technique in time-

frequency transformations [28]. For an original function 

𝑓(𝑡), 𝑡 = 1, 2, … , N, it can be expanded in the basis of a set of 

wavelet functions: 

𝑓(𝑡) = ∑ ∑ 𝑎𝑗,𝑘𝜓𝑗,𝑘(𝑡)
𝑘𝑗

 (18) 

where,  𝜓𝑗,𝑘(𝑥) refers to a wavelet function, 𝑎𝑗,𝑘 refers to a 

wavelet coefficient, 𝑗 refers to a scale factor, 𝑘 refers to a time 
shift factor,  N refers to the length of the time window. 

Considering the Haar WT, its mother wavelet is defined as: 

𝜓0,0(t) = {
1,   0 ≤ 𝑡 ≤ N/2
−1, N/2 < 𝑡 ≤ N

0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (19) 

It can be translated and dilated by scale factor 𝑗 and time 

shift factor 𝑘: 

𝜓𝑗,𝑘(t) = 2𝑗/2𝜓0,0(2𝑗𝑡 − 𝑘N),   𝑗 = 1,2 … , 𝑘

= 0,1, … 2𝑗 − 1 (20) 

The 𝑎𝑗,𝑘 represents the “amount” of 𝑓(𝑡) presenting in 

wavelet 𝜓𝑗,𝑘, and is calculated by: 

𝑎𝑗,𝑘 =
1

2𝑗/2 ∑ 𝑓(𝑡)

𝑁

𝑡=1

𝜓𝑗,𝑘(t)  (21) 

Three levels of Haar wavelet functions are depicted in 

FIGURE 2. 

 
FIGURE 2.Three levels of Haar wavelet functions 

The total “amount” of 𝑓(𝑡) presenting in level j of wavelet 

functions, namely the sum of 𝑎𝑘,𝑗 ,  𝑘 = 0,1, … 2𝑗 − 1, is equal 

to: 

𝐴𝑗 = ∑ 𝑎𝑗,𝑘

2𝑗−1

𝑘=0

= ∑ 𝑓(𝑡)

N

𝑡=1

𝜙 (22) 

𝜙 = {
1,   0 ≤ 𝑚𝑜𝑑(2𝑗𝑡, N/2𝑗) ≤ N/2

−1, N/2 < 𝑚𝑜𝑑(2𝑗𝑡, N/2𝑗) ≤ N
 (23) 

𝐴𝑗 refers to the amount of fluctuating component in 𝑓(𝑡) 
on level j. According to the Cauchy Inequality Criterion: 
(𝑘1 + 𝑘2)2 ≤ 2(𝑘1

2 + 𝑘2
2), there is: 

𝐴𝑗
2 = (∑ 𝑓(𝑡)

𝑁

𝑡=1

𝜙)2 ≤ N ∑ 𝑓(𝑡)2

N

𝑡=1

 (24) 

Eq. 24 indicates the sum of squares of all values of 𝑓(𝑡) 
multiplied by N provides an upper bound to the square of 𝐴𝑗. 

Consequently, minimizing the variance of load curve through 

Eq. 17 could lower the upper bound of the amount of the 

fluctuating component in a load curve. It further reduces the 

aggregated load peak and volatility at the system level. And 

the relevant production cost will be reduced, which satisfied 

the second axiom: in the short term, the pricing and allocation 

model will encourage to reduce the production cost. 

In summary, under the proposed pricing strategy, the DR 

scheme is achieved in a decentralized manner. There is no 

need of online communication between the upstream operator 

and downstream consumers/REGs. To reduce their volatility 

cost, consumers/REGs are encouraged to flatten their own 
load/output curves in a decentralized manner. 

 V. CASE STUDIES AND ANALYSIS 

Case studies are conducted on several cases including 

consumers on the residential level (based real smart metering 

data [29]) in Section V-A to D, consumers on the residential 

level coexisting with PV generation in Section V-E, and large 

consumers on the megawatt level (based on real data from a 
UK project [30]) in Section V-F. 

A. COST-REFLECTION AND RATIONALITY OF THE 

PRICING STRATEGY 

In the first case, 10 real residential load curves and the 

aggregated curve are presented in FIGURE 3. Their 

variances, correlation coefficients, and volatility 

apportionment factors are given in FIGURE 4. 

 
FIGURE 3. 10 consumer load curves and the aggregated load curve  

The volatility apportionment factors of all consumers are 

positive, indicating that they have positive impacts in 

aggravating the volatility of the total load curve. The volatility 

apportionment factors have a similar trend as the correlation 

coefficients. Generally, if a consumer load is more strongly 

correlated to the total load, it will undertake more volatility 
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cost. Although load No. 4 has a relatively high variance, its 

apportionment factor is relatively small because of its weak 

correlation with the total load curve. 

 
FIGURE 4.  Relevant indicators of 10 consumer load curves 

 

A consumer’s bill is relevant to the quantity of his electricity 

usage, variance, and correlation with the system load curve. 

The pricing model can be easily applied to a large number of 

small consumers without increasing the operational or 

computational complexity, which means that the pricing 

strategy has good scalability. 

B. EFFECT OF DECENTRALIZED DR 

Each consumer reduces its bill by minimizing its load 

variation. Assuming that each consumer has 10% of shiftable 

load at each time slot, after self-management/DR, the wavelet 

components in all load curves at each level have been reduced 

as shown in FIGURE 5. Those relatively high fluctuating 

components are reduced significantly after DR. 

 
FIGURE 5. Amount of fluctuation components before and after DR 

 

The aggregated load curves before and after DR are given 

in FIGURE 6. The peak-to-valley difference and variance of 

the aggregated load curve are reduced by 19.81% and 

34.07%, respectively. 

 
FIGURE 6. Aggregated load curves before and after DR 

C. FAIRNESS OF THE COST ALLOCATION MODEL 

Market fairness is ensured by the additivity of the proposed 

model. It means that even if a number of consumers cooperate 

and connect to the system using one meter, they cannot 

reduce their total bills and have no impact on other 

consumers. Supposing that 5 consumers numbered 6 to 10 

cooperate to use one meter and is denoted by L6’, the 

recalculated volatility apportionment factor of the alliance 

L6’ is 0.47, equal to the sum of their respective apportionment 

factors as shown in TABLE I. It indicates that a larger 

consumer or a consumer alliance will not undermine the 

benefit of other small dispersed consumers, verifying the 
fairness of the proposed pricing strategy. 

TABLE I. 

Volatility apportionment factor before and after cooperation 

 L6 L7 L8 L9 L10 Sum L6’ 

Apportionment 
Factor 

0.12 0.10 0.04 0.05 0.18 0.47 0.47 

D. COMPARISON OF PROPOSED PRICING MODEL TO 

TOU MODEL 

The proposed pricing model will not cause peak-to-valley 

inversion even if a large proportion of loads transforms into 

flexible loads. The proposed pricing model is compared with 

TOU price model considering several flexibility levels (10%, 

30%, 50%, 70%, 90%) of the load. DR results are shown in 

FIGURE 7. It shows that when the flexibility degree reaches 

to 50%, the aggregated system load is approaching a flat 

curve under the proposed pricing strategy, while peak-to-

valley inversion appears under the TOU strategy. Results 

verify that the proposed pricing strategy can ensure the 

effective operation of the electricity market in the long run, 

which follows the third axiom presented in Section 1. 

 
a) Total load curve after DR under the proposed pricing strategy 

 
b) Total load curve after DR under TOU strategy 

FIGURE 7. DR results considering different percentages of shiftable loads 
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The proposed model can be extended to scenarios with REGs, 

such as PV. Its revenue is calculated based on the electricity 

quantity that it supplies. Meanwhile, it is required to 
undertake the volatility cost. 

A scenario considering 10 residential consumers (L1 to 

L10) and 2 PVs (PV1 and PV2) are tested. PVs are taken as 

negative loads. Results of apportionment factors before and 

after DR are listed in TABLE II. 

TABLE II. 

Apportionment factors (AF) considering PV integration 

Factors L1 L2 L3 L4 L5 L6 

AF before DR 0.118 0.150 0.071 0.044 0.096 0.099 

AF after DR 0.116 0.149 0.069 0.027 0.092 0.097 

Factors L7 L8 L9 L10 PV1 PV2 

AF before DR 0.089 0.036 0.050 0.147 0.037 0.064 

AF after DR 0.086 0.032 0.043 0.146 0.049 0.086 

 

In this case, the apportionment factors for the two PVs are 

0.037 and 0.064, respectively, indicating that they need to pay 

the volatility cost. The reason is that the load peak appears in 

the morning and late afternoon. PVs, as negative loads, 

increase the peak-to-valley difference and volatility of the net 

load curve.  

After the decentralized DR, the variance of the net load 

curve is reduced from 33.55 kW2 to 23.20 kW2. The 

apportionment factors of consumers decrease and that of PVs 

increase because consumers flatten their load curves and PV 

curves do not change. This case verifies that the proposed 

pricing strategy can allocate the volatility cost among 

consumers and REGs. 

F. VALIDATION OF COST REDUCTION CONSIDERING 
LARGE CONSUMERS ON THE MEGAWATT LEVEL 

In the second case, the proposed pricing strategy is tested on 

megawatt level consumers. Each consumer has a 10% 

shiftable load. The original load curves are given in FIGURE 

8. Parameters of 𝑎 and 𝑏 in Eq. 1 are set as 15 £/MW2 and 

30 £/MW, respectively. 

 
FIGURE 8. 10 consumer load curves and the aggregated load curve  

Aggregated load curves before and after consumer self-

management are shown in FIGURE 9. The variance of the 

aggregated curve is reduced from 1.75 MW2 to 0.67 MW2, 

reduced by 61.95%. The total production cost is decreased by 

2.21%. This large test case shows that the decentralized DR 

promoted by the proposed pricing strategy can also effectively 

reduce the volatility and peak-to-valley difference of the 

aggregated load. 

 
FIGURE 9. Aggregated load curves before and after DR 

VI. CONCLUSIONS 

Increasing penetration of renewable energy generation into 

the future power system will increase the net load volatility 

which will further increase the production cost. The impact of 

volatility on total production costs is investigated in this 

paper. A novel pricing strategy is proposed to allocate the 

volatility cost among consumers. A volatility apportionment 

factor with the inherent merits of normalization and additivity 

is proposed. It can reflect the coupling relationship between 

an individual load/REG curve and the aggregated net load 
curve. 

The proposed pricing strategy reflecting the cost of 

volatility can encourage consumers/REGs to reduce the 

volatility of their load/output curve. It also contributes to 

flattening the net load curve in a decentralized manner, which 

is theoretically certificated based on the Haar wavelet 

transforms. Validation on a case of residential-level loads 

shows that the peak-to-valley difference and the variance of 

the aggregated load curve are reduced by 19.81% and 34.07%, 

respectively. On a large case considering megawatt-level 

consumers, the aggregated load variance and the total 

production cost are reduced by 61.95% and 2.21%, 

respectively. Moreover, the pricing model will not cause a new 

load peak or peak-to-valley inversion even in conditions of 

high levels of flexible loads. This is an important advantage of 

the proposed pricing strategy over TOU prices. 

The proposed pricing strategy is applicable to consumers 

and producers. As the proposed model is has the merit of 
additivity and the volatility cost is calculated based on 
the net load curve of a player, it is applicable to 
prosumers in the future power system. The pricing model 

can prevent consumers from colluding to make a profit. It 

makes it possible for small consumers and large consumers to 

participate in DR programs equally. The demand response is 

carried out by encouraging players to reduce the volatility of 

their load/REG curves in a decentralized manner. Even if the 

information is asymmetric for large and small electricity 

players, the method is still applicable.  
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APPENDIX 

A: CORRELATION COEFFICIENT 

Let 𝑷𝑖, 𝑖 = 1, 𝟐, … , M  denotes a load/REG curve, and 𝑷𝐬 

denotes system load curve. The correlation coefficient is 
formulated as: 

𝑅𝑖 =
Cov(𝑷𝑖, 𝑷n)

𝑆𝑖𝑆n

 

=
∑ (𝑃𝑖,𝑡 − 𝑃𝑖,𝑚)(𝑃n,𝑡 − 𝑃n,𝑚)N

𝑡=1

√∑ (𝑃𝑖,𝑡 − 𝑃𝑖,𝑚)
2N

𝑡=1
√∑ (𝑃n,𝑡 − 𝑃n,𝑚)

2N
𝑡=1

 
(25) 

where 𝑆𝑖 and 𝑆n refer to standard deviations (SDs) of a 

load/RED curve and the net load curve, respectively; 𝑃𝑖,𝑡  and 

𝑃n,𝑡 refer to load values of 𝑷𝑖 and 𝑷n at time slot  𝑡 , 

respectively; 𝑃𝑖,𝑚 and 𝑃n,𝑚 refer to mean values of 𝑷𝑖 and 

𝑷n, respectively. 

B: PROOF OF NORMALIZATION 

∑ 𝑣𝑖

M

𝑖=1

= ∑
𝑆𝑖

𝑆n
𝑅𝑖

M

𝑖=1

= ∑
Cov(𝑷𝑖,𝑷n)

(𝑆n)2

M

𝑖=1

 

=
∑ [∑ (𝑃𝑖,𝑡 − 𝑃𝑖,m)(𝑃n,𝑡 − 𝑃n,m)N

𝑡=1 ]M
𝑖=1

∑ (𝑃n,𝑡 − 𝑃n,m)
2N

𝑡=1

 

=
∑ [∑ (𝑃𝑖,𝑡 − 𝑃𝑖,𝑚)(𝑃n,𝑡 − 𝑃n,m)M

𝑖=1 ]N
𝑡=1

∑ (𝑃n,𝑡 − 𝑃n,m)
2N

𝑡=1

 

=
∑ [(∑ 𝑃𝑖,𝑡

M
𝑖=1 − ∑ 𝑃𝑖,m

M
𝑖=1 )(𝑃n,𝑡 − 𝑃n,m)]N

𝑡=1

∑ (𝑃n,𝑡 − 𝑃n,m)
2N

𝑡=1

 

=
∑ [(∑ 𝑃𝑖,𝑡 −M

𝑖=1 ∑ 𝑃𝑖,m
M
𝑖=1 )(𝑃n,𝑡 − 𝑃n,m)]N

𝑡=1

∑ (𝑃n,𝑡 − 𝑃n,m)
2N

𝑡=1

 

=
∑ [(𝑃n,𝑡 − 𝑃n,m)(𝑃n,𝑡 − 𝑃n,m)]N

𝑡=1

∑ (𝑃n,𝑡 − 𝑃n,m)
2N

𝑡=1

= 1 

(26) 

C: PROOF OF ADDITIVITY 

𝑣𝑘 = 𝑅𝑘

𝑆𝑘

𝑆n

=
∑ (𝑃𝑘,𝑡 − 𝑃𝑘,m)(𝑃n,𝑡 − 𝑃n,m)N

𝑡=1

∑ (𝑃n,𝑡 − 𝑃n,m)
2N

𝑡=1

 

=
∑ (𝑃𝑖,𝑡 + 𝑃𝑗,𝑡 − 𝑃𝑖,𝑚 − 𝑃𝑗,𝑚)(𝑃n,𝑡 − 𝑃n,m)N

𝑡=1

∑ (𝑃n,𝑡 − 𝑃n,m)
2N

𝑡=1

 

=
∑ (𝑃𝑖,𝑡 − 𝑃𝑖,m)(𝑃n,𝑡 − 𝑃n,m)N

𝑡=1

∑ (𝑃n,𝑡 − 𝑃n,m)
2N

𝑡=1

 

     +
∑ (𝑃𝑗,𝑡 − 𝑃𝑗,m)(𝑃n,𝑡 − 𝑃n,m)N

𝑡=1

∑ (𝑃n,𝑡 − 𝑃n,m)
2N

𝑡=1

 

= 𝑅𝑖

𝑆𝑖

𝑆n
+ 𝑅𝑗

𝑆𝑗

𝑆n
= 𝑣𝑖 + 𝑣𝑗 

(27) 

where 𝑣𝑘 is the apportionment factor of the combined curve 

𝑷𝑘 (𝑷𝑘 = 𝑷𝑖 + 𝑷𝑗, namely 𝑃𝑘,𝑡 = 𝑃𝑖,𝑡 + 𝑃𝑗,𝑡  ∀𝑡). 

D: Deduction of Eq. 16. 

∑(𝑝𝑖,𝑡 − 𝑃𝑖,𝑚)
2

N

𝑡=1

= ∑ 𝑝𝑖,𝑡
2

N

𝑡=1

− 2𝑃𝑖,𝑚 ∑ 𝑝𝑖,𝑡

N

𝑡=1

+ N𝑃𝑖,𝑚
2
 

= ∑ 𝑝𝑖,𝑡
2

N

𝑡=1

− 2N𝑃𝑖,𝑚
2 + N𝑃𝑖,𝑚

2 = ∑ 𝑝𝑖,𝑡
2

N

𝑡=1

− N𝑃𝑖,𝑚
2
 

∑ 𝑝𝑖,𝑡
2

N

𝑡=1

− N(𝐸𝑖/NT)2 = ∑ 𝑝𝑖,𝑡
2

N

𝑡=1

− 𝐸𝑖
2/NT2 

(28) 
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