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Abstract

Research on quantitative judgments from multiple cues suggests that judgments are simultaneously

influenced by previously abstracted knowledge about cue–criterion relations and memories of past

instances (or exemplars). Yet extant judgment theories leave two questions unanswered: (a) How are

past exemplars and abstracted cue knowledge combined to form a judgment? (b) Are all past

exemplars retrieved from memory to form the judgment (integrative retrieval) or is the judgment based

on one exemplar (competitive retrieval)? To address these questions we propose and test a new model,

CX-COM (combining Cue abstraction with eXemplar memory assuming COMpetitive memory

retrieval). In a first step, CX-COM recalls only a single exemplar from memory. In a second step, the

initially retrieved judgment is adjusted based on abstracted cue knowledge. Qualitatively, we show that

CX-COM naturally captures judgment patterns that have been previously attributed to multiple

strategies. Next, we tested CX-COM quantitatively in two experiments and found that it accounts well

for people’s judgment behavior. In the second experiment we additionally tested two qualitative

predictions of CX-COM: The existence of multimodal response distributions within participants and

systematic variability in judgments depending on the distance between similar exemplars in memory.

The empirical results confirm CX-COM’s assumptions. In sum, the evidence suggests that CX-COM is

a viable new model for quantitative judgments and shows the importance of considering judgment

variability in addition to average responses in judgment research.

Keywords: Quantitative judgment, multiple cues, exemplar retrieval, cue abstraction, retrieval

theory, mixture models
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Competitive Retrieval Strategy Causes Multimodal Response Distributions in

Multiple-Cue Judgments

Introduction

Evaluating situations and judging the value of objects is a widespread cognitive task carried out

every day in people’s professional and private lives. From a judge passing sentence on a convict to a

financial analyst evaluating the risk and value of a bond or stock, people’s ability to estimate numerical

criteria in many different domains is of high importance. When making judgments people use the

information of different features or attributes (cues) describing an object or situation. A judge

determining the length of a sentence for a robbery conviction, for example, might consider the extent of

the damages in the case. To do so, the judge might retrieve details of past cases from memory and

compare them to the facts of the current case. Such a judgment strategy is usually described by

exemplar models (Nosofsky, 2014). These models assume that people’s judgments and decisions are

based on the similarity between the object under consideration and exemplars stored in memory

(Hoffmann, von Helversen, & Rieskamp, 2014; Juslin, Jones, Olsson, & Winman, 2003; Juslin, Olsson,

& Olsson, 2003; Nosofsky, 1984, 1986, 1997). Exemplar models have been successfully used to explain a

variety of phenomena across different domains ranging from memory recall (e.g. Brown, Neath, &

Chater, 2007; Hintzman, 1984) to categorizations and classifications (Medin & Schaffer, 1978; Nosofsky,

1984) to decision making (Juslin & Persson, 2002; Pachur & Olsson, 2012; Platzer & Bröder, 2012).

They have also been extended to account for judgments from multiple cues (Hoffmann et al., 2014;

Hoffmann, von Helversen, & Rieskamp, 2016; Juslin, Jones, et al., 2003; Juslin, Karlsson, & Olsson,

2008; von Helversen & Rieskamp, 2009).

Despite their success in cognitive psychology, approaches for quantitative judgments that are

purely based on exemplar processing fail to address two problems: The first problem is that people

learn to explicitly represent how cues relate to a criterion and use this knowledge to make predictions

for new objects (Brehmer, 1994; Cooksey, 1996; Juslin, Jones, et al., 2003). Following such a

cue-abstraction process, the judge, returning to our earlier example, would pass a prison sentence in a

robbery case by weighing the importance of the aggravating and mitigating factors (e.g. the damages

caused and whether the robber showed remorse) and then combining the weighted factors to form a

single sentence. Cue-abstraction processes are hard to reconcile with exemplar-based strategies. As a

consequence, current research in judgment assumes that people rely on both processes but switch

between them depending on the structure of the task and their own cognitive abilities (Herzog & von

Helversen, 2018; Hoffmann et al., 2014, 2016; Juslin, Jones, et al., 2003; Juslin et al., 2008; Juslin,

Olsson, & Olsson, 2003; Pachur & Olsson, 2012; von Helversen & Rieskamp, 2008, 2009). Yet,

empirical evidence does not unequivocally favor the view that cue abstraction proceeds independently
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of exemplar retrieval. For instance, the similarity between the to-be-judged event and past instances

influences people’s judgments even when they are relying on rules and abstracted knowledge (Brooks &

Hannah, 2006; Hahn, Prat-Sala, Pothos, & Brumby, 2010; von Helversen, Herzog, & Rieskamp, 2014).

Still, it is an open question how people integrate the two types of processes, that is, cue-abstraction

and exemplar-based processes, to form a judgment, which we address in the present work.

The second problem is that although exemplar models are deeply rooted in traditional models of

memory, how exemplar models instantiate retrieval from memory diverges from the retrieval processes

considered in contemporary memory models. Specifically, exemplar models in quantitative judgment

assume an integrative retrieval mechanism where all previously encountered exemplars are activated in

parallel and integrated into one composite value (Hoffmann et al., 2016; Pachur & Olsson, 2012). In

contrast to this view, many contemporary memory models assume a competitive retrieval process

where previously encountered exemplars compete for retrieval and only one exemplar is recalled

(Anderson, 1983; Logan, 1988). The degree to which a competitive retrieval mechanism better captures

how people retrieve past exemplars during the judgment process has not been investigated.

The goal of the present research was to propose and test an exemplar-based model for

quantitative judgments that addresses these two limitations. CX-COM (combining Cue abstraction

with eXemplar memory assuming COMpetitive memory retrieval) proposes that people engage in a

two-step judgment process: In the first step, people probabilistically retrieve one past exemplar from

memory, and in the second step, they adjust the criterion value of the recalled exemplar based on

knowledge about the cue–criterion relation. In the present work we first present evidence for different

retrieval and knowledge integration mechanisms and their implications for the judgment process. Next,

we formally derive the predictions of CX-COM from established versions of exemplar and

cue-abstraction models and review how the new model can account for behavioral patterns frequently

observed in multiple-cue judgment. We then present two experiments that (a) quantitatively test

CX-COM against competing models (Experiment 1) and (b) test the qualitative prediction that

previously learned exemplars compete for retrieval (Experiment 2). In the General Discussion we

compare CX-COM to cognitive models proposed for categorization and function learning and discuss

limitations and potential future work.

Combining exemplar and cue-abstraction processes

Exemplar models propose that people represent learned instances by storing them in memory.

Alternatively, cue-abstraction accounts propose that people conceptualize learned knowledge on a more

abstract level as a set of rules or cue–criterion relations (Hahn & Chater, 1998; Macrae et al., 1998).

The general question of how knowledge is represented and used has challenged judgment research over

the past decade (Hoffmann et al., 2014, 2016; Juslin, Jones, et al., 2003; Juslin et al., 2008; Karlsson,
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Juslin, & Olsson, 2007; von Helversen et al., 2014; von Helversen & Rieskamp, 2008, 2009). By

analyzing judgment behavior in different domains, it has been shown that the judgment process varies

with the structure of the judgment task and the cognitive abilities of the decision maker. For instance,

participants are better described by cue-abstraction models if the judgment criterion is a linear,

additive function of the cues, whereas nonlinear relationships are better captured with exemplar models

(Hoffmann et al., 2016; Juslin et al., 2008). In this vein, current research in judgment portrays the

judgment process as a selection from two types of judgment processes best described by rule-based

cue-abstraction models or similarity-based exemplar models (Hoffmann et al., 2016; Juslin et al., 2008;

Pachur & Olsson, 2012). This research implicitly suggests that people first select one process suited to

the task at hand and then use only the output of this process to make judgments in the task.

Empirical evidence, however, suggests that exemplar retrieval and abstracted cue knowledge

likely interact during categorization and judgment. Unintentionally activated exemplars can interfere

with task performance if they do not match the demands of the current situation (e.g. Macrae et al.,

1998). Specific exemplars can influence judgments that are otherwise based on abstracted cue

knowledge (von Helversen et al., 2014) and activate different rules depending on the context in which

past exemplars were learned (e.g. Yang & Lewandowsky, 2004). Consequently, categorization research

tends to favor mixture or hybrid models that assume people’s representations contain both generalized

beliefs in the form of abstracted (cue) knowledge and specific instances or exemplars. In these models

both types of representations influence decisions, although the relative importance may differ

depending on the task and learning history (e.g. Anderson & Betz, 2001; Ashby, Alfonso-Reese, et al.,

1998; Erickson & Kruschke, 1998; Herzog & von Helversen, 2018; Nosofsky, Palmeri, & McKinley, 1994;

Palmeri, Wong, & Gauthier, 2004; Vanpaemel & Storms, 2008).

Thus, it seems reasonable to assume that people integrate retrieval from memory with

abstracted cue knowledge also in multiple-cue judgment. But how do these two processes interact? In

categorization research different types of mixture and hybrid models have been proposed. Most

prominently in blending models, an exemplar and a cue-abstraction mechanism process information in

parallel and the two outputs are combined as a weighted average (e.g. Bröder, Gräf, & Kieslich, 2017;

Erickson & Kruschke, 1998). The most recent implementation of a blending model for judgments is

RulEx-J that captures the contribution of exemplar- and rule-processing across different task

conditions (Bröder et al., 2017).

Integrative versus competitive retrieval

Any model of memory has to address the key question of how exemplars stored in memory are

retrieved, that is activated and recalled. Memory models often share the assumption that the

activation of exemplars is based on their similarity to the current stimulus (the probe). They differ,
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however, in the way a recalled exemplar is produced upon request (Raaijmakers & Shiffrin, 1992). Two

different approaches can be distinguished, an integrative and a competitive retrieval mechanism.

An integrative retrieval mechanism produces a composite of all exemplars (or of a subset) in

memory. The most prominent example for an integrative retrieval mechanism is employed in the

MINERVA model (Dougherty, Gettys, & Ogden, 1999; Hintzman, 1984). In this model, exemplars are

represented as feature lists called memory traces. A probed recall activates all memory traces in

parallel and yields a special memory trace: an echo. This echo is the sum of all traces in memory, each

weighted by its activation value. Similarly, memory models that assume composite storage, such as

TODAM (Lewandowsky, Murdock, et al., 1989), usually also yield a composite as a retrieval product.

If past exemplars compete for retrieval only one exemplar is produced on each retrieval attempt.

This competitive retrieval mechanism can be found in a number of established memory models, such as

the ACT-R theory (Anderson, 1983), the instance theory of automatization (Logan, 1988, 2002), the

SAM model (Raaijmakers & Shiffrin, 1980), and some random walk theories (Nosofsky, 1997; Ratcliff,

1978). A competitive retrieval mechanism assumes that exemplars in memory are stored and accessed

separately. Although some of these theories specify how subsequently retrieved exemplars can be

combined to form a task response, they assume that each retrieval request yields only one exemplar.

The retrieval mechanism employed (integrative vs. competitive) implies different response

processes (Juslin & Persson, 2002; Palmeri, 1997). Exemplar models in categorization or judgment

mostly postulate an integrative retrieval mechanism (e.g. Hoffmann et al., 2014; Juslin, Olsson, &

Olsson, 2003; Medin & Schaffer, 1978; Nosofsky, 1984; Pachur & Olsson, 2012). Once a probe is

presented, all exemplars stored in memory are activated and a judgment or category response is formed

as a weighted average over all memory items (Hoffmann et al., 2014; Juslin et al., 2008; Juslin, Olsson,

& Olsson, 2003; Medin & Schaffer, 1978; Nosofsky, 1984). One potential reason why exemplar models

seldom consider competitive retrieval is that often (at least in the domains that have been considered)

the two mechanisms predict the same responses. In categorization tasks, for instance, classic exemplar

models predict the probability of a new item belonging to a category by using the sum of similarities it

holds with exemplars in that category. A competitive retrieval mechanism predicts that in each trial,

an exemplar is recalled from memory and used as a basis for the category decision. However, the sum

of the recall probabilities of individual exemplars belonging to a category is the same as the probability

of assigning an item to a category if integrative retrieval is assumed. Thus, the two retrieval

mechanisms cannot be distinguished in this type of task. In quantitative judgment tasks the type of

retrieval can be important because integrative and competitive retrieval mechanisms make qualitatively

distinct predictions on the judgment level.

Within the domain of judgments, integrative and competitive retrieval can be distinguished by

the predicted trial-by-trial variability across items and (sometimes) different distribution shapes. An



MULTIMODAL RESPONSE DISTRIBUTIONS IN JUDGMENTS 7

integrative retrieval mechanism predicts that all exemplars in memory are combined into a single

response value. Within-participant trial-by-trial variability is typically assumed to be normally

distributed (e.g. Pachur & Olsson, 2012; Pleskac, Dougherty, Rivadeneira, & Wallsten, 2009), resulting

in a model-predicted unimodal response distribution centered around the predicted response value.

With competitive retrieval each exemplar can, in principle, be recalled, although its chances in a given

context might be very low. As a result, a competitive retrieval mechanism predicts multimodal response

distributions and systematic changes in across-item variability. A detailed example will be discussed in

the next section.

CX-COM: A hybrid model for quantitative judgment with a competitive

retrieval mechanism

The development of CX-COM was motivated by two currently unresolved questions in judgment

research: (a) When forming a judgment based on exemplars retrieved from memory, does the retrieval

request yield one exemplar or an integrative composite of all exemplars? (b) Does combining

cue-abstraction processes with exemplar retrieval outperform the predictions of a pure exemplar-based

or cue-abstraction process?

CX-COM addresses these two questions by proposing a two-step judgment process: In the first

step, previously encountered exemplars compete for retrieval and only the winning exemplar along with

its criterion value is recalled from memory. Second, a cue-based adjustment process uses the recalled

exemplar as a reference point and adjusts the criterion value depending on the generalized beliefs about

cue-criterion relations. Accordingly, CX-COM spells out how people may combine competitive

exemplar-retrieval and cue-abstraction processes, allowing one to test these assumptions against

single-process models as well as competing mixture models.

In this section, we first introduce established models of human judgment, that is, classical

exemplar and cue-abstraction models. Next, we explain CX-COM and its components in relation to the

established models. We also introduce the blending model RulEx-J (Bröder et al., 2017) as an

additional competitor. A running example at the end of each subsection highlights differences and

similarities in the models’ predictions. As a last step we review important findings from the judgment

literature and explain how CX-COM accounts for them.

Exemplar models

In exemplar models (Nosofsky, 2014), a probe p that has to be judged or categorized serves as a

retrieval cue, activating previously encountered exemplars in memory. A response ĵExemplar
p is an

average of all judgment values je associated with exemplars e in the set of all exemplars M weighted by
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their relative, subjective similarity to p,

ĵExemplar
p =

∑
e∈M

sim(e, p) · je∑
e∈M

sim(e, p) . (1)

The more similar an exemplar in memory is to the probe, the higher its impact on the response value.

The similarity between exemplars e and probe p depends exponentially on their distance in

psychological space,

sim(e, p) = e−c·dist(e,p). (2)

Parameter c is the sensitivity parameter and manipulates how much impact the psychological distance

between a probe and an exemplar has on the subjective perception of similarity. Lower values of c

imply that two items with a high distance in psychological space are still perceived as similar.

The distance in psychological space is usually described using the family of Minkowski distance

metrics. For an exemplar e with n cue dimensions and cue values ce
1, . . . , ce

n, a probe p with cue values

cp
1, . . . , cp

n, and attention weights w1, . . . , wn this would be

dist(e, p) = r

√√√√ n∑
i=1

wi · |ce
i − c

p
i |r. (3)

Attention weights are assumed to vary between 0 and 1 and are constrained to sum to 1. The parameter

r captures how visually distinguishable cue dimensions are in a given task. The so-called city-block

distance is defined by r = 1 and is used when the dimensions are very distinct (Garner, 2014; Shepard,

1964). The Euclidean distance is represented by r = 2 and is used when the dimensions overlap.

The response value ĵExemplar
p is a composite of the exemplars in memory and is predicted each

time probe p is presented. Usually, a normally distributed error is associated with a response. Thus,

the predicted distribution of criterion values, response distribution Rp, coincides with the assumed

error distribution and is for one item p and some variance σ2:

RExemplar
p ∼ N (ĵExemplar

p , σ2). (4)

Competitive exemplar models make the same assumptions about the psychological distance

(Equation 3) and similarity between the exemplars in memory and a probe (Equation 2). However, the

relative similarity now determines the probability to recall exemplar e given probe p so that

pr(e|p) = sim(e, p)∑
e∈M

sim(e, p) . (5)

In each trial only one exemplar e is recalled from memory and the associated criterion value je is

given as a response, i.e. jExemplar-competitive
p = je. In another trial, an exemplar with another criterion

value may be retrieved probabilistically so that this competitive retrieval elicits a multimodal response

distribution. Assuming also a normally distributed error associated with a response in every trial, the
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response distribution RExemplar-competitive
p is a mixture of normal distributions with modes given by the

criterion values je stored in memory:

RExemplar-competitive
p ∼

∑
e∈M

pr(e|p) · N (jExemplar-competitive
p , σ2). (6)

Thus, the predicted response distribution is quite different compared to the one predicted by the

integrative exemplar model.

Example. To illustrate how an exemplar model with an integrative retrieval mechanism

(Equation 4) and an exemplar model with a competitive retrieval mechanism (Equation 6) make

different predictions in quantitative judgments, consider a judge passing sentence on a bank robber (see

also Table 1). In an attempt to rob a bank, a robber (Defendant 1) caused low property damage and

low harm to people. The judge can relate these circumstances to two earlier cases, one with low

property damage (but high harm to people) and a prison sentence of 8 years, and another with low

harm to people (but high property damage) and a sentence of 4 years. Assuming equal importance of

both aspects of the case (wharmtopeople = wpropertydamage), the sentence would be 6 years (because both

old cases are equally similar to the new case). Assuming normally distributed deviations from the

recalled criterion value in the model, repeated sentencing would result in a unimodal distribution of

judgments centered around 6 years (see Figure 1, Exemplar (integrative)). In contrast, an exemplar

model with a competitive retrieval mechanism (without additional assumptions on the response

process) predicts sometimes a prison sentence of 4 years and sometimes a sentence of 8 years,

depending on which of the two earlier cases the judge recalls. Assuming also that deviations from a

recalled criterion value happen by chance, the judge would draw the prison sentence from a bimodal

distribution with modes at criterion values 4 and 8 (see Figure 1, Exemplar (competitive)). Both

integrative and competitive exemplar models would not predict a sentence below 4 years for Defendant

1 despite the fact that he caused less harm or less damage than the remembered convicts.

Consider in comparison Defendant 2 who caused high property damage and a high harm to

people. Assuming equal dimension weights, both an integrative and a competitive exemplar model

would predict the same sentence as for Defendant 1. The integrative exemplar models yields a

unimodal sentence around 6 years; the competitive exemplar model a multimodal sentence, retrieving 4

and 8 years.

However, note that multimodal response distributions will not always occur with a competitive

retrieval mechanism, but depend on the similarity structure of the training set given a probe, in

particular the attention to specific dimensions. For example, assume again Defendant 2, who caused

high harm to people and high property damage. However, the judge does not equally weight the two

dimensions but only considers the harm to other people and neglects property damage (e.g. w1=2,

w2=100). In this case, convict 2 will be perceived as much more similar to Defendant 2 than Convict 1
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Table 1

Bank robber example

Memory Novel

Convict 1 Convict 2 Defendant 1 Defendant 2

Property damage High Low Low High

Harm to people Low High Low High

Sentence 4 8 TBD TBD

2 4 6 8
Property: high

People: low

Property: low

People: high

CAM

Exemplar (integrative)

Exemplar (competitive)

RulEx-J

CX-COM

Figure 1 . Example (see Table 1) showing the response distributions predicted by the cue-abstraction

model (CAM), the exemplar model, RulEx-J, and the cue abstraction model with exemplar memory

assuming competitive memory retrieval (CX-COM) for Defendant 1 (low property damage and low

harm to people).

and will be retrieved with a much higher likelihood. As a result, the judge may always pass a sentence

of 8 years and, consequently, a unimodal response distribution would emerge.

Cue-abstraction models

Cue abstraction models propose that people extract and explicitly represent their beliefs about

the importance of cues as a set of weights. Cue-abstraction models (CAMs) for judgments are often

implemented as main effects linear regression models (Juslin et al., 2008), because this implementation

has been shown to fit judgment data especially well in a variety of domains (for reviews see Karelaia &

Hogarth, 2008; Kaufmann, Reips, & Wittmann, 2013). To make a judgment, cue values c1 . . . cn of a
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probe p are weighted by their relative importance bi and summed up so that

ĵCAM
p = k +

n∑
i=1

(bi · ci). (7)

Parameter k is an intercept, e.g. the baseline judgment in case of cue values of zero. Similar to

exemplar models, the CAM’s prediction remains the same over repeated presentations of probe p and a

normally distributed error is assumed resulting in the response distribution RCAM
p centered around the

response value jCAM
p (similar to Equation 4).

Example. Figure 1 shows again an example of the unimodal response distribution predicted

by the CAM in the bank robber’s case (Table 1, Defendant 1). Assuming a minimum sentence of two

years for a robbery attempt with low property damage and low harm to people, the judge could weigh

high property damage as an additional 2 years of prison and high harm to people as an additional 6

years1. This would result in a prison sentence for the novel Defendant 1 of 2 years. For Defendant 2

(high property damage and high harm to people) the CAM with the same assumptions would thus

predict a unimodal response distribution with a mode at 10 years.

Combining competitive exemplar retrieval with cue-abstraction

With CX-COM we propose a two step process: First, an exemplar is recalled from memory.

Second, the associated criterion value is adjusted based on the beliefs about the cue–criterion

relationship. Exemplar retrieval follows the same principles as in the exemplar model with a

competitive retrieval mechanism. Following the presentation of a probe p, all exemplars e in exemplar

memory M are activated based on their relative, subjective similarity with similarity and psychological

distance calculated as described in Equations 2 and 3. The relative similarity determines the

probability to recall exemplar e and is described in Equation 5.

In each trial one exemplar is recalled from memory. This exemplar is used as a reference point

for a cue-abstraction process. Specifically, a cue-based adjustment mechanism adjusts the criterion

1Note that we use different dimension weights for the exemplar model and the CAM to illustrate

how the mechanisms assumed by the models can lead to differential predictions. If we assume the same

dimension weights in the exemplar model as in the CAM, i.e. wharmtopeople = 6 and wpropertydamage = 2,

the exemplar models become more difficult to distinguish. The integrative exemplar model predicts

a unimodal distribution centered around a prison sentence of 4.1 years for Defendant 1 and centered

around 7.9 years for Defendant 2. The exemplar model with competitive retrieval predicts a bimodal

distribution with modes at the two sentences of the previous cases 4 and 8. However, for Defendant 1

the judge has a 98% chance to recall the case of Convict 1 and for Defendant 2 he has a 98% to recall the

case of Convict 2. For CX-COM we discuss how its predictions depend on its parameters in the section

"Predicting multiple-cue judgments with CX-COM".
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value je of a recalled exemplar e to obtain a response. The magnitude of the change depends on the

differences in cue values between the probe p and the exemplar e on each cue dimension and the

relative importance given to the cue dimension, represented by a cue dimension weight bi:

ĵCX-COM
p = je +

(
n∑

i=1
bi · (ce

i − c
p
i )
)
· α. (8)

Parameter α is a scaling parameter that reflects how much the observed difference in cue values

influences the judgment, and cp
i and ce

i denote the cue values of the probe and the recalled exemplar.

The competitive retrieval in CX-COM elicits a response distribution quite different from the

integrative exemplar model and the cue abstraction model. Assuming a normally distributed error

associated with a response in every trial, the response distribution RCX-COM
p is a mixture of normal

distributions with modes close to criterion values je stored in memory and weighted by the similarity of

the associated exemplars e to the probe p:

RCX-COM
p ∼

∑
e∈M

pr(e|p) · N (ĵCX-COM
p , σ2). (9)

Example. Figure 1 also shows an example of the multimodal response distribution predicted

by CX-COM in the bank robber’s case (Table 1, Defendant 1). Assuming equal importance of both

aspects of the case, the similarity between Defendants 1’s case and the two older cases is the same and

so is their chance to be recalled, similar to the predictions of the exemplar model with competitive

retrieval. In CX-COM, however, the modes of the multinomial response distribution are shifted

depending upon the difference in cue values between the current case and the recalled case. Making the

simplified assumption that a difference between high and low damage/harm is 2 years of prison, the

modes would be adjusted downwards by 2 years each from 4 years to 2 years and from 8 years to 6

years, respectively. For Defendant 2, however, the predicted modes are adjusted upwards from 4 to 6

and from 8 to 10, respectively. Thus, because the cue abstraction component is sensitive to the

direction of the adjustment, CX-COM also predicts different response distributions from an exemplar

model with only competitive retrieval.

Blending Models

Besides, pure exemplar and cue abstraction models, blending models such as ATRIUM for

categorization (Erickson & Kruschke, 1998) and the measurement model RulEx-J for judgments

(Bröder et al., 2017) have been proposed. These models assume an independent processing of exemplar

and cue-abstraction models with the overall response being a weighted average (or blend) of the

predictions of the single responses. As it is the most recent blending model for judgments, we included

RulEx-J in the model test.
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Given the judgments for probe p predicted by the exemplar model, ĵExemplar
p , and the CAM,

ĵCAM
p , the response of RulEx-J is

ĵRulEx-J
p = β · ĵCAM

p + (1− β) · ĵExemplar
p (10)

with the parameter β weighting the relative contribution of each model’s response. The response

distribution RRulEx-J
p is unimodal as in the exemplar model and the CAM, but the mode lies between

the predictions of these models:

RRulEx-J
p ∼ N (ĵRulEx-J

p , σ2). (11)

Although they are both mixture models, the blending model differs from CX-COM in two

important aspects: (1) the blending model assumes a parallel processing of an exemplar and a

cue-abstraction component while CX-COM assumes that cue abstraction acts upon the retrieved

exemplar and (2) the blending model’s exemplar component assumes integrative retrieval while

CX-COM assumes competitive retrieval.

Example. According to RulEx-J, the judge sentences Defendant 1 (Table 1) to a mixture of

the predictions of the Exemplar model with integrative retrieval and the CAM. Making the same

assumptions for the two models as in the respective examples and additionally assuming that the judge

gives equal weights to both models, the sentence would be be 4 years, exactly the middle between the

exemplar model’s prediction (6 years) and the CAM’s prediction (2 years).

Predicting multiple-cue judgments with CX-COM

In the past decade, research on multiple cue judgments has proposed that judgment strategies

may elicit distinct behavioral judgment patterns (Bröder et al., 2017; Hoffmann et al., 2014, 2016; Juslin

et al., 2008; Mata, von Helversen, Karlsson, & Cüpper, 2012; Pachur & Olsson, 2012; von Helversen,

Mata, & Olsson, 2010; von Helversen & Rieskamp, 2009). For instance, Juslin et al. (2008) showed that

in a linear judgment task people showed extrapolation, that is they judged probes with lower/higher

cue values than the training exemplars as having lower/higher criterion values than the training

exemplars. This judgment pattern matches the predictions of the CAM (Figure 2a), but disagrees with

the predictions of an exemplar model in that task (Figure 2b). In contrast, in a multiplicative

environment participants do not seem to extrapolate beyond the range of encountered training values

and thus participants’ responses match the predictions of the exemplar model (Figure 2e), but disagree

with the CAM’s predictions (Figure 2d). In general, these differences in judgment patterns have been

taken as evidence that people shift between exemplar memory and cue abstraction processes (Bröder et

al., 2017; Hoffmann et al., 2014, 2016; Juslin et al., 2008; von Helversen et al., 2010).

CX-COM does not assume a shift between judgment processes, but proposes that a cue

adjustment process acts on the retrieved exemplars. The alpha parameter governs the extent to which
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the retrieved criterion value is adjusted based on cue knowledge. In the following we show that

CX-COM can capture the same behavioral judgment patterns that have been reported in the literature

without assuming a change in judgment processes and analyze how different parameter settings

influence CX-COM’s predictions.

In a first step, we generated CX-COM’s predictions for the linear and the multiplicative

judgment task reported by Juslin et al. (2008), using the reported parameters for the CAM as

dimension weights and an additive similarity function with equivalent parameters as attention weights

for the exemplar model. Figure 2c and 2f illustrates that CX-COM predicts a similar change in

judgments depending on the task structure as predicted by a strategy shift. In the linear environment

its predictions resemble the predictions of the CAM, whereas its predictions lie between the exemplar

model and the CAM in the multiplicative environment. Thus CX-COM reflects participants’ responses

in both environments. Notably, CX-COM accounts for these behavioral patterns without adjusting any

parameter values across environments but the changes result from differences in the structure of the

environment. One reason is that in a linear task with correct weights the adjustment process by

CX-COM leads to the same judgment independent of which exemplar was retrieved.2 In contrast, in a

multiplicative task predictions will differ depending on the retrieved exemplar leading to exemplar

effects and reducing extrapolation on the average level.

But can CX-COM also explain strategy shifts within the same environment due to within-task

manipulations such as instructions or individual preferences? To understand whether the free

parameters in CX-COM allow it to capture exemplar-based and cue-based judgment patterns within a

task, we analyzed within Juslin et al.’s linear environment (Juslin et al., 2008) how changes in the

parameter values, specifically changes in the adjustment parameter α and in the dimension weights,

influence CX-COM’s predictions. Assuming correct dimension weights with parameter α = 1 (Figure

3e), CX-COM produces the exact same predictions as the CAM (Figure 3a), and CX-COM with α = 0

(Figure 3f) produces the exact same predictions as the exemplar model (Figure 3b). Assuming

incorrect weights, for instance uniform weights equal to 1, the predictions of CX-COM for alpha = 0

(Figure 3h) are still exactly the same as for the exemplar model (Figure 3d). However, with α = 1 the

predictions differ between the CAM (Figure 3c) and CX-COM (Figure 3g), with CX-COM showing a

judgment pattern that deviates from the CAM with incorrect weights, but is still linear. Accordingly,

on average, if alpha = 0 CX-COM reduces to an exemplar model with the same dimension weights.

2For example, assume training items (c1 = 1, c2 = 1) with criterion 4 and (c1 = 2, c2 = 2) with

criterion 8. Assume further that a participant abstracts the (correct) cue weights w1 = w2 = 2 from

these items. For a test item (c1 = 1, c2 = 2) the response would be 6, independently of whether the first

training item is recalled and the associated criterion value is increased or if the second training item is

recalled and its criterion value is decreased.
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Figure 2 . Shows predictions of a cue-abstraction model (panels a and d), an exemplar model (panels

b and e) and CX-COM (panels c and f) in a linear environment (panels a-c) and a multiplicative

environment (panels d-f). Items, models, and parameters are the same as described in Juslin et al.

(2008). For CX-COM we used the same weights as for the linear model (w1 = 3.2, w2 = 2.4, w3 = 1.6,

w4 = 0.8) and α = 1.

With increasing alpha3, i.e. more cue adjustment, the predictions become more linear resembling a

rule-based process. This suggests that alpha in CX-COM reflects the extent to which participants’

judgments are influenced by cue-abstraction processes, similar to the interpretation of alpha in other

mixture models like Rulex-J. However, the CAMs and CX-COMs predictions are only identical when

the correct cue weights are assumed.

These simulations indicate that CX-COM can also reflect different levels of exemplar and

cue-abstraction processes induced by manipulations within a task environment. For instance, previous

research has argued that changing only one cue between subsequent exemplars facilitates cue

abstraction processes (Juslin et al., 2008). Within CX-COM, this could be reflected by a stronger

reliance on adjustment processes resulting in a lower α parameter for confounded than for ordered

sequences.

3please note that alpha as well as the dimension weights depend on the judgment scale and thus can

not be easily compared between tasks
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Figure 3 . Predictions of the CAM (a,c), the exemplar model (b,d) and CX-COM (e-h) assuming

correct weights (w1 = 1, w2 = 2, w3 = 3, w4 = 4; panels a,b,e,d) and incorrect uniform weights (w1 = 1,

w2 = 1, w3 = 1, w4 = 1; panels c,d,g,h). Sensitivity Parameter c in all models including an exemplar

component is set to the sum of the weights and attention weights are set to the sum of weights divided

by c. Panels e and g show CX-COM’s predictions assuming a strong influence of the cue-abstraction

process (i.e. α = 1) and panels f and h shows CX-COM’s predictions assuming a pure exemplar process

(i.e. α = 0). When assuming correct weights CX-COM perfectly mimics the exemplar model’s and the

CAM’s predictions depending on the value of parameter α (compare panels a and e, and panels b and

f). Assuming uniform weights CX-COM with a α of 0 still matches the exemplar model’s predictions

(compare panels d and h), however, the predictions differ between the CAM and the CX-COM model

with α = 1 (compare panels c and g).

Overall, the simulations demonstrate that CX-COM is able to account for important empirical

findings in the judgment literature with the alpha parameter reflecting different levels of

cue-abstraction processes4 . Although these results suggests that CX-COM is more flexible than either

the CAM or the exemplar model, it still provides a more parsimonious explanation than a blending

model like Rulex-J (Bröder et al., 2017).

4Please note that a quantitative analysis of existing data in a more traditional paradigm does not

allow to distinguish CX-COM from previously proposed judgment models. Due to a low number of

observations per item the models are not recoverable. See Appending E for more details.
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Testing CX-COM’s new predictions of judgment behavior

In the previous section we showed that CX-COMs can capture patterns of judgments reported in

the literature and usually attributed to a shift in judgment strategies. However, the data of these

studies does not allow comparing CX-COM with the other models because usually each item is only

repeated once or twice making it impossible to distinguish the models. The reason is that CX-COM’s

unique characteristic is the shape of the response distribution and thus it only makes different

predictions if an item is repeated many times. Accordingly, we conducted two new experiments to

quantitatively and qualitatively test CX-COM’s predictions.

Quantitative test. CX-COM combines the judgment processes of two very well

established cognitive models, the CAM and the exemplar model. To quantitatively test CX-COM, we

compared it against several competitors: an exemplar model, a CAM, RulEx-J, and a baseline model.

The baseline model provides a benchmark for the absolute fit of the model. In the baseline model, we

assume that participants respond with a constant value (with added noise), i.e. we fit a normal

distribution with mean and variance as free parameters to participants. To better take CX-COM’s

complexity into account, we also did a cross validation for both experiments. All details concerning the

fitting procedure and mean parameter values are shown in Appendix B.

Qualitative test. The CX-COM model predicts judgment patterns that are qualitatively

distinct from single exemplar and cue-abstraction models. Specifically, CX-COM’s competitive retrieval

mechanism predicts multimodal response distributions and systematic changes in variability across

items. This is in stark contrast to the classical exemplar models with integrative retrieval and the

CAM which always predict a unimodal distribution centered around one model-predicted value. We

tested the assumption of a competitive retrieval process explicitly in Experiment 2: A competitive

retrieval process predicts that variations in judgments across and within items depend on the number

of similar exemplars in memory and the distance between criterion values for similar exemplars. If a

probe activates only one similar exemplar, the variability should be lower than if several similar

exemplars are activated. If several exemplars with similar judgment values are activated, the variability

in judgments is low. But if a probe activates exemplars with strongly dissimilar criterion values, high

judgment variability and multimodal response distributions are predicted.

Experiment 1

Experiment 1 was designed as a first, quantitative test for the CX-COM model. Specifically, we

aimed at testing CX-COM in a situation that would usually favor an (integrative) exemplar model. In

the experiment, participants had to solve a quantitative judgment task using three cues. To encourage

exemplar retrieval, participants learned to judge a small set of training items and their criterion values
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Figure 4 . Visual presentation of stimuli in Experiment 1. The depicted stimuli 3.1.2 (on the left) is

associated with criterion value 4 (highlighted on the half circle on the right).

Note: The text on the figure is German stating "Richtig!" for "Correct!" and "Weiter" for "Next."

by heart (Rouder & Ratcliff, 2006). After this training phase, they were instructed to repeatedly judge

the criterion values of novel test items on the basis of their similarities to the training items.

Method

Participants. We tested 29 current or former students from the University of Basel (Mage

= 27 years, SD = 7, range: 20–46 years). The target sample size was a priori set to 30 following

conventions for one condition in cognitive modeling research (e.g. Hoffmann et al., 2016; Tsetsos et al.,

2016). 35 participants were invited through the recruitment platform of the center for Economic

Psychology in Basel and 29 came at the assigned time. The experiment took on average approximately

1 hour. Participants could choose between course credit or a payment of 20 Swiss francs per hour. In

addition, participants could earn a performance-dependant bonus of 5 Swiss francs. The study received

ethics approval by the Institutional Review Board (IRB) of the Faculty of Psychology at the University

of Basel.

Material. In Experiment 1 we used items with three dimensions shown as three adjoining

stacks (left, middle, right) on the left side of a computer screen, see Figure 4. Each dimension was

assigned a value between 1 and 4, indicated by the number of geometric shapes in the stack.

Additionally, the dimensions differed in geometric shape (triangle, square, circle) and color (blue, red,

green). Colors were chosen as complementary colors from the color wheel rendering them all similarly

visually salient. Associated criterion values ranged between 1 and 33 and were presented on a

half-circle on the right side of the computer screen. Figure 4 shows the visual presentation of stimuli as

shown to the participants. Positions of the different cue dimensions were randomized across

participants. Throughout the text, items are named with their three cue values separated by a dot.

Item 3.1.1, for example, corresponds to an item with value 3 in cue dimension 1 (i.e. three shapes in the

left position) and 1 in cue dimensions 2 and 3 (i.e. one shape in the middle and the right position).

To foster the use of exemplar-based processes we used a multiplicative environment (Hoffmann



MULTIMODAL RESPONSE DISTRIBUTIONS IN JUDGMENTS 19

et al., 2016; Juslin et al., 2008) and instructed participants to use similarities to judge novel items

(Olsson, Enkvist, & Juslin, 2006). To help ensure that participants did not rely only on simple visual

features of the items, for example, the higher the cue value the higher the criterion value, the first cue

was inverted so that

j = (5− c1) · c2 · c3, (12)

with cue values c1, ..., c3.

We presented only a small number of training items (six) that had to be learned by heart but

used a larger number of novel test items (14) to evaluate participants’ responses. The six training items

were chosen such that the associated criterion values represented the general trend found in

multiplicative environments; the lower part of the response scale was densely packed with observations

(criterion values 4, 6, 8); in the higher part of the scale, single observations were rather sparse

(criterion values 12, 18, 24).

Ten out of 14 test items were chosen so that each was most similar to one of the training items.

The similarities are calculated with the city-block distance metric and assuming equal dimension

weights. Four additional test items were included as fillers for which we did not systematically

vary/control the similarity to all training items (see Table 2). We chose a relatively small number of

training items and larger number of test items for two reasons: First, we wanted direct control over the

similarity structure among training items and between training and test items. Second, we wanted

participants to learn the training items by heart and to remember them throughout the whole

experiment.

Procedure. The experiment included three phases. In the training phase participants had to

learn six different training items by heart. They were told that there was no simple functional

dependency between the cues and criterion values and that they would later be asked to use the

learned items to estimate the criterion values for novel items. We used two types of training blocks,

judgment learning and cue learning. In the judgment-learning blocks participants were presented with

the cue values of a training item on the left-hand side of the screen and had to choose the associated

criterion value from the response circle on the right-hand side of the screen. In the cue-learning blocks

one specific criterion value was highlighted on the response circle and participants were asked to adjust

the stacks so that they represented the cues of the training item corresponding to the displayed

criterion value. Participants could adjust the stack by repeatedly clicking on it to change the number of

displayed shapes. After giving a response, participants received feedback in all trials during training. In

total, the training phase consisted of 10 blocks.5 Within each block the six training items were

presented once in a random order. The training phase included six judgment-learning and four

5Two participants only completed 8 training blocks due to technical issues.
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Table 2

Stimuli, manipulation, and results in Experiment 1

Training item Result

Criterion 4 6 8 12 18 24

test item 3.1.2 2.1.2 3.2.2 1.1.3 2.2.3 1.2.3 Mean (SD)

3.1.1 1 2 2 4 4 5 6.37 (4.13)

4.1.2 1 2 2 4 4 5 8.53 (5.59)

2.1.1 2 1 3 3 3 4 4.50 (2.79)

3.2.1 2 3 1 5 3 4 10.93 (6.66)

4.2.2 2 3 1 5 3 4 10.35 (4.68)

1.1.4 4 3 5 1 3 2 18.49 (4.82)

2.2.4 4 3 3 3 1 2 21.92 (3.71)

2.3.3 4 3 3 3 1 2 19.78 (6.47)

1.2.4 5 4 4 2 2 1 24.74 (2.96)

1.3.3 5 4 4 2 2 1 21.27 (5.86)

2.3.2 3 2 2 4 2 3 15.00 (5.98)

2.1.3 2 1 3 1 1 2 12.61 (4.47)

1.3.2 4 3 3 3 3 2 15.57 (5.54)

2.3.1 4 3 3 5 3 4 14.77 (5.62)

Note. Distance profiles for stimuli used in Experiment 1. Items consist of three cue dimensions (cf.

Figure 4). Dimension values are separated by a dot. The distances are calculated using the city-block

metric assuming attention weights of 1 in each dimension. Items with a distance of 1 to a test item are

assumed to be most similar to that item and are shown in bold.

cue-learning blocks presented in alternating order, and with two judgment-learning blocks at the

beginning and one judgment-learning block at the end of training. Participants received a bonus of 5

Swiss francs if they were able to correctly judge all training items in at least two subsequent training

blocks.

In the test phase, participants saw 14 different novel test items and were asked to estimate the

associated criterion values. People were asked to make the judgment according to the test items’

similarities to the training items. The test phase included 15 test blocks. In each block all 14 items

were presented in random order, resulting in 210 test trials. After test blocks 5 and 10, participants

again judged the criterion values for all training items twice, resulting in four additional

judgment-learning blocks during the test phase. These blocks were announced as training blocks and

participants received feedback.
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Table 3

Model overview and results of the model comparison

Model Experiment 1 Experiment 2 Model type

Par. Subj. Deviance BIC Par. Subj. Deviance BIC

CAM 5 7 1,294 1,321 6 9 1,077 1,109 Cue abstraction

Exemplar 4 0 1,375 1,397 5 2 1,119 1,146 Exemplar

CX-COM 5 18 1,268 1,294 6 19 1,033 1,065 Mixture

RulEx-J 6 4 1,285 1,317 7 1 1,075 1,112 Mixture

Baseline 2 0 1,490 1,501 2 0 1,400 1,411 -

Note. Par = Number of parameters; BIC = mean Bayesian information criterion; Subj = number of

participants for whom a specific model had the best BIC-value. Best fitting model is shown in bold.

After completing the test phase, participants judged on a paper-and-pencil questionnaire how

similar each test item was to each of the six training items, resulting in a total of 84 similarity

judgments. Each page of the questionnaire showed one test item and the six training items.

Participants were asked to judge the similarity on a scale of 0 (completely different) to 10 (exactly the

same) for each pair.6 The results of the similarity questionnaire are presented in Appendix A.

Results

Performance. In the last two training blocks (one cue-learning block and one

judgment-learning block) participants judged 80% of the training items correctly. In the four judgment

training blocks in the test phase they judged 81% of the training items correctly.

Quantitative model evaluation. To get an idea whether competitive retrieval in

general and CX-COM in particular explain the judgment behavior in experiment 1, we compared it

with the exemplar model, the CAM, and the blending model RulEx-J. We also included a baseline

model which assumes that participants respond the same, random value in every trial. We fit the five

models to single-participant responses with a maximum likelihood estimation method. We used the

BIC (Schwarz et al., 1978) to choose the best model for a single participant. A more detailed

explanation about the fitting methodology, with an overview of best fitting parameter values, is

presented in Appendix B. In addition we conducted a model comparison based on a cross validation

reported in Appendix E.7

Across different model selection criteria, the exemplar model with competitive memory retrieval

6Two participants did not finish the similarity questionnaire and were excluded from the related

statistics.
7The cross validation also suggested that CX-COM best described the largest number of participants,

however its advantage was reduced and the Rules-J emerged as the second best model.
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Figure 5 . Percentiles .025, .5, and .975 bootstrapped, model-predicted response distributions

calculated across participants for all items in Experiment 1. Participants probability to respond a

specific value (between 1 and 33) is shown as dots. Light grey lines indicate criterion values of the

training exemplars.

(A) CX-COM-predictions (dashed line)

(B) CAM-predictions (solid line)

and a cue-abstraction component (CX-COM) fits the data very well. It is the model with the lowest

mean BIC and deviance (Table 3) for over 60% of the participants and thus the most likely model to



MULTIMODAL RESPONSE DISTRIBUTIONS IN JUDGMENTS 23

describe their underlying cognitive process. The second best model is the cue-abstraction model

(CAM) which is the most appropriate model for approximately 25% of participants followed by

RulEx-J most appropriate for just under 15% of participants. The baseline model fares far worse than

the other four models in relative and in absolute terms. The average deviance for the baseline model is

200 points higher than for the other models. However, it is not always the worst model. In fact, CAM

is worse than the baseline model for one participant

A model recovery based on the design of Experiment 1 confirmed the ability of CX-COM and

the CAM to discriminate when participants used these different cognitive process. When CX-COM

generated the data then 78% of the time it was identified as the data-generating model. When the

CAM generated the data then 96% of the time it was identified as the data-generating model. Note

that CX-COM can have overlapping predictions with the CAM, depending on the values of the

attention weights. We designed Experiment 2 to discern the two models also qualitatively.

The quantitative differences in model fits are also illustrated in Figure 5 comparing participants’

response distributions for each test item with the predictions of CX-COM (Figure 5A) and the second

best model CAM (Figure 5B). Most test items for which a very similar training item exists (e.g. items

3.1.1 to 1.3.3 in the figures, for reference see Table 2) show a clear peak in participants response

probability for a judgment close to the value associated with the very similar training item. CX-COM

is able to predict these peaks nicely while the CAM and the exemplar model cannot.

However, the BIC does not adequately reflect the functional flexibility of the models, in

particular Rulex-J and CX-COM, so that we additionally conducted a cross-validation study. The

details of the cross validation procedure are described in Appendix B and the results are shown in

Table B1. Compared to the model selection based on BIC, CX-COM still is the best model for most

participants and describes 14 participants best (4 participants less than previously). The mixture

model RulEx-J explains 13 participants best (9 participants more than according to BIC) and CAM

only explains 2 participants best (5 participants less). Somewhat surprisingly, the results show a larger

advantage for the models with a high functional complexity, that is RuleEx-J and CX-COM, compared

to models with a lower functional complexity (the CAM and the exemplar model). However,

cross-validation methods have been shown to favor more complex models (Browne, 2000), which might

explain why Rulex-J, the arguably most complex model, had the largest gain. Overall, the result

suggests that the additional functional complexity introduced by mixture models is warranted in our

task.

Discussion

In Experiment 1 we tested the CX-COM model quantitatively against competing models from

the literature. CX-COM assumes that judgments are the result of (1) a competitive retrieval
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mechanism and (2) a subsequent cue-abstraction mechanism that adjusts the criterion value of the

recalled exemplar. We compared CX-COM to an exemplar model, a cue-abstraction model (CAM) and

the blending model RulEx-J.

CX-COM captured the judgments best compared to the competing models in terms of number

of assigned participants according to BIC, mean BIC, and mean deviance. It is still the best model for

most participants according to the cross validation. As Figure 5 shows, CX-COM is able to capture

almost every peak in the participants’ probability distribution, while the CAM, the second best model

according to the BIC, cannot. Interestingly, there is no participant assigned to the (pure) exemplar

model. That is, even in a multiplicative environment that is usually understood to promote the use of

an exemplar process (Hoffmann et al., 2016; Juslin et al., 2008; Pachur & Olsson, 2012), we found

evidence that all participants used a cue-abstraction process. This result suggests that adjustments

based on beliefs about the cue–criterion relations play an important part in judgments, even when

overall judgments may be best described by an exemplar model. To replicate the quantitative results

and to qualitatively test the assumption that previously encountered exemplars compete for retrieval

we designed Experiment 2.

Experiment 2

In Experiment 2 we focused on the prediction that sets CX-COM apart from other models in the

literature: The assumption that exemplar retrieval is competitive and not integrative. For integrative

retrieval, the judgment is based on the similarity to all previously encountered instances, independent

of how many exemplars are similar to the probe and how strongly their criterion values differ from one

another. Therefore, an integrative retrieval component predicts unimodal response distributions and no

systematic variation in judgments across items.

In contrast, during competitive retrieval one exemplar is recalled on each retrieval attempt,

implying that judgments for each probe vary depending on how similar (or dissimilar) the criterion

values for similar exemplars in memory are. If only one exemplar in memory is highly similar to the

probe, retrieval probability for this exemplar is high and it is recalled most of the time. Thus

judgments for this probe will vary only to a small extent between trials. However, if two exemplars are

highly similar to the probe, both exemplars are, in principle, recalled equally often. Response

variability depends on the distance between the associated criterion values. If the distance is small, say,

the decision maker retrieves criterion values of 25 and 33 on a scale of 1 to 33, judgments for this probe

should vary little across trials. If the distance between the associated criterion values is large, for

instance, 9 and 33, judgments should vary strongly. In addition, the distribution of judgments should

be bimodal, within and across participants. We tested this prediction by systematically manipulating

the number of exemplars with a high recall probability and the distance between associated criterion
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(A) (B)

Figure 6 . Example stimuli used in Experiment 2. The text on the figure is German stating "Richtig!"

for "Correct!" and "Weiter" for "Next."

(A) Stimulus 3.2.2.1; high value in a left extremity is associated with a low value on the scale (value 9,

left part of the scale).

(B) Stimulus 1.2.2.3; high value in a right extremity is associated with a high value on the scale (value

25, right part of the scale).

values. Recall probabilities depend on the similarity between a test item and exemplars in memory.

Response variability depends on the interplay between the perceived difference in similarity and the

distance in the associated criterion values.

Method

Participants. We tested 33 current or former students from the University of Basel (Mage

= 28 years, SD = 8, range: 19–48 years).8 The target sample size was a priori set to 30 following

conventions for one condition in cognitive modeling research (e.g. Hoffmann et al., 2016; Tsetsos et al.,

2016). 35 participants were invited through the recruitment platform of the center for Economic

Psychology in Basel and 33 came at the assigned time. The experiment took on average 1 hour.

Participants received course credit or an hourly payment of 20 Swiss francs. In addition, participants

could earn a bonus of up to 5 Swiss francs. The study received ethics approval by the Institutional

Review Board (IRB) of the Faculty of Psychology at the University of Basel.

Material. The general setup in Experiment 2 was very similar to the setup from

Experiment 1. In Experiment 2 we used stimuli with four cue dimensions and three possible values on

each dimension (see Figure 6). Each cue dimension was represented by a limb of a robot. Each limb

had a certain number of slots for power modules (the cue values) and was associated with a different

geometric form (triangle, square, circle, cross) and color (red, blue, green, brown). Participants were

told to judge the overall power level of the robot (the criterion with the response scale again between 1

8Participant information for three participants are missing due to technical problems.
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and 33) and that the power level depended on the number of power modules in the limbs. Figure 6

shows the training stimuli as they were presented to the participants. Positions of the different cue

dimensions were partly randomized.

The overall power level was a linear function of the number of power modules in each limb,

j = −15 + 4 · c1 + 12 · c4, (13)

with cue values c1, ..., c4. The second and the third cue were not predictive of the response.

Because the predictive cues were positively related to the criterion, participants should have

been able to rapidly identify the cue–criterion relationship (see Table 4). Small values on all dimensions

indicated small criterion values and large cue values indicated large criterion values respectively.

However, different values on cue dimensions 1 and 4 required additional attention. A large value on cue

dimension 4 and a small value on cue dimension 1 indicated a large criterion value, whereas a large

value on cue dimension 1 and a small value on cue dimension 4 indicated a small criterion value (see

Table 4 and for an example, Figure 6).

The simple rule underlying stimulus generation allowed us to manipulate the distance between

criterion values associated with training items with high recall probabilities. Thus, if the cue value of a

test item on dimension 1 was small but all other cue values were large, then a judgment based on a

similar training item should have been very likely to be large as well (see test item 1.3.3.3 in Table 4).

However, if the cue value of a test item on dimension 4 was small but all other cue values were large, a

judgment based on a similar training item might be large or small (see test item 3.3.3.1 in Table 4).

To extend the manipulation of distance between most similar exemplars conceptually to all

items, we developed a measure we call the similarity neighborhood (SN, see Table 4). The SN score for

a test item was calculated as the mean distance between the criterion values for those training items

most similar to the test item (assuming city-block distance). The higher the mean distance is, the

higher the expected variability in judgments. For example, the two training items which are most

similar to test item 3.3.3.1 are items 3.2.2.1 (criterion value 9) and 3.3.3.3 (criterion value 33). The

distance between the criterion values associated with the training items—the SN score—is 24 (Table 4).

Considering item 1.3.3.3, the most similar items are 1.2.2.3 (criterion value 25) and 3.3.3.3 (criterion

value 33) with a distance between criterion values of only 8. For items with only one most similar

training item (e.g. 3.3.3.2 and 2.3.3.3) we used the mean distance between criterion values of the most

and second most similar training items as SN score. Item 2.3.3.3, for example, is most similar to item

3.3.3.3 and second most similar to items 1.2.2.3 (with distance between criterion values of 8) and

2.3.1.2 (with distance between criterion values of 16). The SN score is, thus, 12. With this approach we

considered retrieval candidates with a combined recall probability of over 90% per item

(M = 0.97, SD = 0.03).
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Table 4

Stimuli and results in Experiment 2

Training item SN Results

Judgment 1 9 17 25 33

test item 1.1.1.1 3.2.2.1 2.3.1.2 1.2.2.3 3.3.3.3 Mean (SD) SD (SD)

1.2.2.1 2 2 4 2 6 16 10.08 (2.93) 3.11 (1.78)

3.2.2.3 6 2 4 2 2 16 26.39 (2.52) 2.77 (1.96)

2.2.2.2 4 2 2 2 4 11 18.22 (2.76) 3.49 (2.07)

3.3.3.1 6 2 4 6 2 24 18.04 (5.32) 4.63 (2.51)

1.3.3.3 6 6 4 2 2 8 27.34 (2.28) 2.62 (1.91)

1.1.1.3 2 6 4 2 6 24 17.52 (5.48) 3.33 (2.04)

3.1.1.1 2 2 4 6 6 8 7.93 (2.92) 2.49 (2.11)

2.1.1.1 1 3 3 5 7 12 6.48 (2.94) 2.5 (1.86)

1.1.1.2 1 5 3 3 7 20 11.3 (4.34) 3.61 (1.95)

2.3.3.3 7 5 3 3 1 12 29.87 (2.09) 2.25 (2.24)

3.3.3.2 7 3 3 5 1 20 25.59 (4.35) 4.11 (2.78)

2.2.2.1 3 1 3 3 5 11 11.22 (3.22) 3.04 (1.52)

3.3.2.1 5 1 5 5 3 24 13.98 (4.05) 3.38 (2.14)

1.2.2.2 3 3 3 1 5 16 16.84 (3.09) 3.7 (2.05)

1.2.3.3 5 5 3 1 3 8 24.78 (2.97) 2.62 (1.53)

2.2.1.2 3 3 1 3 5 11 15.39 (2.81) 3.3 (2.07)

2.3.2.2 5 3 1 3 3 11 19.99 (2.86) 3.24 (2.04)

3.2.2.1 4 0 4 4 4 14 11.62 (3.74) 2.31 (1.65)

2.3.1.2 4 4 0 4 4 12 17.47 (2.24) 2.58 (1.82)

1.2.2.3 4 4 4 0 4 14 23.2 (2.42) 2.94 (2.4)

Note. Distance profiles for stimuli used in Experiment 2. Items consist of four cue dimensions (cf.

Figure 6). Dimension values are separated by a dot. The distances are calculated using the city-block

metric and all attention weights set to 1. Items with the lowest distance are shown in bold. SN

(similarity neighborhood) is the mean distance of the criterion values for similar training items. If more

than one training item is most similar to a test item (first seven items), SN is the mean distance among

the criterion values of these training items. If only one training item is most similar to a test item, then

SN is the mean distance between the most similar and second most similar training item. Results

(mean and SD) are calculated within participants and then averaged across participants.
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Procedure. The experiment consisted of two phases. In the training phase participants had

to learn five different items by heart. They were told that they would later be asked to use these items

to estimate the criterion value for novel items. During training, participants were presented with a

training item on the left-hand side of the screen and had to choose the associated criterion value from

the response circle on the right-hand side of the screen. Participants received feedback in all trials

during training.

The maximum number of training blocks was set to 12. However, participants with 100%

accuracy in three blocks (with 100% accuracy in at least two subsequent blocks) had to complete only

one more block to move on to the test phase. People who failed to reach this criterion had to complete

all 12 training blocks and then moved on to the test phase.

In the test phase, participants had to judge 20 different items without feedback. Seventeen items

were unknown and three were training items (3.2.2.1, 2.1.3.2, 1.2.2.3). Participants were asked to

estimate the criterion values on the basis of their similarity to the items learned during training. The

test phase included 10 test blocks. In each block all 20 items were presented in a randomized order,

resulting in a total of 200 test trials. Participants received a bonus relative to their accuracy compared

to an integrative exemplar model without cue abstraction (assuming equal weights) during the test

phase. The maximal bonus was set to 5 Swiss francs.

Results

Performance. On average, participants completed training successfully after 7.9 blocks

(SD = 2.3). Two participants failed to reach the inclusion criterion and were excluded from further

analyses.

Multimodality and across-item variability. In this experiment we contrasted

the competitive and integrative retrieval mechanism. Items were chosen to test two key predictions of

competitive retrieval: The occurrence of multimodal response distributions within and across

participants and across-item variability being a function of the similarity structure of learned

exemplars. A list of all items is shown in Table 4. Recall that we hypothesized (a) that the number of

training items that are very similar to a test item and their absolute difference in criterion values

influences the test item’s variability (e.g. items 3.3.3.2 and 1.3.3.3 should have a lower variability than

item 3.3.3.1), and (b) that we would be able to observe a response distribution with a visible bimodal

shape in test items that are very similar to two training items that have a high absolute distance

between their criterion values (e.g. item 3.3.3.1).

Multimodality: Descriptive statistics. Figure 7 shows response distributions for items

3.3.3.1 and 1.3.3.3. The figure includes two test items that are similar to only one training item but

have similar cue values (3.3.3.2 and 2.3.3.3) as well as two training items tested again during the test (a
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Figure 7 . Participants’ response distributions for items representative of the manipulation in

Experiment 2. Black distributions correspond to test items with two most similar training items but a

high (3.3.3.1) and low (1.3.3.3) distance between associated criterion values. White distributions

correspond to test items with one most similar training item. Response distributions for training items

judged at test are displayed in gray. Thick dotted lines correspond to criterion value of maximally

similar training items; thin lines show the median of the distribution. The standard deviation of the

kernel estimation was set to 1.06 (Scott, 1992).

beanplot including all tested items is shown in Appendix C). For the training items, the median

judgment during test corresponds to the learned criterion value and the standard deviation of responses

is low. In items 3.3.3.2 and 2.3.3.3, the standard deviation is lower than in items 3.3.3.1 and 1.3.3.3.

Additionally, the response distribution has a different shape. Especially, item 3.3.3.1 clearly shows a

multimodal response distribution with the most frequent responses close to the learned criterion values

of the two most similar training items. The deviation of the most frequent responses from the learned

criterion values is consistent with cue-based adjustment.

Response distributions aggregated across participants were multimodal for items with a clear

effect of similarity and distance, for example, item 3.3.3.1 in Figure 7. As an additional piece of

evidence to corroborate our claim that this is the result of a competitive retrieval and not, for example,

the result of variability in parameter settings or strategies between participants, we show

model-predicted response distributions and observations for the two participants who were best fit by

CX-COM (Figure 8) and the CAM (Figure 9), relative to the respective other model according to the

difference in BIC. The participant best fit by CX-COM (Figure 8) displays multimodal response
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Figure 8 . Percentiles .025, .5, and .975 bootstrapped, model-predicted response distributions for the

participant best described by CX-COM relative to the CAM (i.e. highest difference in BICs). The

participant best described by the CAM is shown in Figure 9. Light grey lines indicate criterion values

of the training exemplars.

distributions as predicted by CX-COM. CX-COM captures the responses of the participant well, the

broad distributions predicted by the CAM do not.

Multimodality: Inferential statistics. In order to substantiate our claim and the

descriptive results, we tested for multimodality across participants using Hartigan’s dip test (Hartigan

& Hartigan, 1985). Conceptually, Hartigan’s dip test calculates the maximum distance between an

empirical distribution and the best fitting unimodal distribution. In principle, all response distributions

predicted by CX-COM are multimodal, the predicted response distribution can have as many modes as
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Figure 9 . Percentiles .025, .5, and .975 bootstrapped, model-predicted response distributions for the

participant best described by the CAM relative to CX-COM (i.e. highest difference in BICs). The

participant best described by CX-COM is shown in Figure 8. Light grey lines indicate criterion values

of the training exemplars.

there are learned exemplars (cf. Figure 1). However, it can be very hard to detect this multimodality,

for example, if the recall probability for one exemplar is very high. In this case, the multimodal

structure of the distribution is easily confused with a distribution with long tails and a substantial

number of observations are needed to classify the distribution correctly. Aggregated across

participants, 17 out of 20 test items showed significant multimodality (mean D = .06, p < .01,

bonferroni corrected). The 3 test items which showed no signs of mulitmodality are the three training

items repeated during the test phase (mean D = 0.03). For participants best fit by the CX-COM
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model (19 participants) 14 out of 20 items showed significant multimodality and for participants best

fit by the CAM (9 participants) only 4 out of 20 items showed significant multimodality.

Across-item variability. Within participants we lacked the power to detect multimodal

response distributions (see Appendix D for a post-hoc power analysis). We thus tested a second

hypothesis: Across-item variability is a function of the distance between criterion values of highly

similar training items. The higher the distance between the criterion values of two similar training

items, the more variable should responses to this test item be.

To investigate the influence of competitive exemplar retrieval on judgment variability

systematically across all test items, we predicted the variability in judgments with the SN score, that is

the average distance between the criterion values of similar training items. To measure variability of

judgments for an item we used the standard deviation of the judgments for an item during the test

phase (calculated within participant and averaged across participants), see Table 4. On average, the SN

score correlated positively with the mean standard deviation (r = 0.66, p < 0.01). Because we aimed at

an analysis on the participant level, we used a linear mixed effects model that predicted an item’s

judgment variability with its SN score as a fixed factor and items’ and participants’ intercepts as

random factors. This model predicted the items’ judgment variability significantly better than a

baseline model including only participants’ and items’ random intercepts, χ2(1) = 10.80, p < 0.01.

Quantitative model evaluation. We fit the same models under the same conditions

as in Experiment 19. All models had one more free parameter because of the additional cue dimension

(the respective dimension weight), except the baseline model that assumes a constant response. A

detailed description of the fitted parameters and best fitting parameter values is given in Appendix B.

A model comparison based on a cross validation is reported in Appendix E.

The CX-COM model again captured participants’ judgments best. It was the most appropriate

model for over 60% of the participants and had the lowest mean BIC (Table 3). Around 30% of

participants were again best described by the CAM. Surprisingly, the blending model RulEx-J fared

worse than in experiment 1 and described only one participant best. The baseline model again fit

participant responses much worse than all other models.

9Following the suggestions of anonymous reviewers we also fitted a model with competitive re-

trieval and without a cue-abstraction component and two possible versions of a prototype model to

the data in this experiment. In one version of the prototype model we assume the most extreme ex-

emplars to be prototypes, i.e. 3.3.3.3 and 1.1.1.1 (Prot1). In the second version we assume the most

informative exemplars to be prototypes, i.e. 1.2.2.3 and 3.2.2.1 (Prot2). None of these three models

explain any participants best and the average BIC is much higher (BICP rot1 = 1139, BICP rot2 =

1280, BICCompetitivew/ocue−abstraction = 1220) than the average BIC of the CAM (BIC = 1109) or the

CX-COM model (BIC = 1065).
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Figure 10 . Percentiles .025, .5, and .975 bootstrapped, model-predicted response distributions

calculated across participants for all items in Experiment 2. Participants probability to respond a

specific value (between 1 and 33) is shown as dots. Light grey lines indicate criterion values of the

training exemplars.

(A) shows CX-COM-predictions (dashed line)

(B) shows CAM-predictions (solid line)

A model recovery with CX-COM and the CAM based on the design of Experiment 2 again

supports these conclusions. When CX-COM generated the data, 94% of the time CX-COM was

identified as the data-generating model. When the CAM generated the data, 87% of the time the CAM
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was identified as the data-generating model. In the cross validation, CX-COM also emerged as the best

model, followed by Rulex-J (see Appendix E).

Figure 10 shows a comparison of participants’ aggregated response probabilities with aggregated

predictions of CX-COM (Figure 10A) and the CAM (Figure 10B). Both models describe the

aggregated responses well. However, CX-COM clearly captures some peaks that the CAM cannot.

We again conducted a cross validation in Experiment 2. The results are very similar to the

results according to BIC (see Table B1). As in Experiment 1, the two mixture models CX-COM and

RulEx-J explain the responses of most participants best despite their higher functional complexity.

CX-COM is still the best model for 17 participants (only describes the judgments of 2 participants

less), whereas RulEx-J explains the judgments of 11 participants best (10 participants more than

according to BIC). The number of participants best explained by the CAM drops from 9 to 3. The

exemplar model looses all its participants. These results again suggest that the additional complexity

introduced by mixture models is warranted also according to Experiment 2.

Discussion

Experiment 2 investigated whether an exemplar model with a competitive retrieval mechanism

explains judgment behavior better than the traditional exemplar model using integrative retrieval. We

found that the exemplar model with an integrative retrieval mechanism could neither quantitatively

nor qualitatively account for the data. Test items varied in their trial-to-trial judgment variability and

most items showed clear signs of multimodality. Furthermore, judgment variability across items was a

function of the distance between the criterion values associated with similar training items: A

prediction that cannot be accounted for by an integrative retrieval component or a CAM. The

multimodal response patterns occurred across and more importantly within participants. The existence

of multimodal response distributions within participants delivers important evidence in favor of

exemplar models assuming a competitive retrieval mechanism. If multimodality was found only across

participants, differences in parameter settings such as attention weights or the strategies used could

also explain the results.

Quantitatively, the best model was again the CX-COM model that was most appropriate for

over 60% of the participants in the model comparison based on BIC. The CAM also described some

participants well. One possible reason is the linear structure of the task. This type of task is known to

coincide with cue-abstraction strategies (Hoffmann et al., 2016; Olsson et al., 2006). However, the

CAM also assumes that judgment variability is constant across items, an assumption that was clearly

violated by the majority of participants.

The results from the cross validation likewise support CX-COM. The high number of

participants best described by CX-COM and Rulex-J suggests that the majority of participants seems
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to rely on both cue-abstraction and exemplar processes. Still, CX-COM clearly best captured the

responses of more participants than Rulex-J. One reason for this could be that we designed it as a

critical test for the prediction of multimodal responses. In sum, the results provide important evidence

for competitive retrieval.

General Discussion

When people evaluate objects and situations in order to form a decision or category assignment,

research suggests that knowledge of previous experiences is combined with more abstract knowledge

about a specific context (e.g. Erickson & Kruschke, 1998; Juslin et al., 2008). Judgment research has

largely been mute about the concrete nature of the retrieval processes and possible combinations of

recalled and abstracted knowledge. The present research sought to address these two shortcomings by

spelling out a new cognitive model, CX-COM. Building on established models for quantitative

judgments, CX-COM introduces a competitive retrieval mechanism to describe how exemplars are

activated in memory and adjusts the judgment based on the retrieved exemplar using abstracted cue

knowledge. To contrast its underpinning assumptions with competing theoretical ideas, we (a) tested

CX-COM quantitatively against several competitor models from the literature and (b) derived and

tested a qualitative prediction about the variability and shape of response distributions induced by

CX-COM’s competitive retrieval mechanism. Overall, the CX-COM model was best suited to explain

human judgment behavior across the two experiments. Quantitatively, the model was most appropriate

for describing the data of the majority of participants and also had on average the lowest BIC values.

In addition, the qualitative test supported the model’s assumptions that past exemplars compete for

retrieval when people make judgments (Experiment 2). We next reconsider the model’s assumptions in

detail and then compare the mechanisms to similar theories in judgment, categorization, and function

learning research.

Competitive retrieval from exemplar memory

Traditionally, exemplar models in judgment and categorization have proposed that people

retrieve a composite of all previously encountered exemplars from memory. This composite does not

change across trials and a constant error is assumed. This implies that judgment variability is constant

across items. In contrast, in both experiments we found evidence that judgment variability

systematically varied across items, indicating competitive retrieval. A stricter test of this assumption in

Experiment 2 suggested that some items elicited multimodal response distributions—across and within

participants. Furthermore, across-item variability was a function of an item’s similarity structure,

consistent with the qualitative predictions of the CX-COM model. In line with this, more participants

were best described by models assuming competitive retrieval from memory in both experiments.
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Taken together, these results suggest that exemplar retrieval in quantitative judgments is best

described by competitive retrieval processes, corresponding to established theories on retrieval

processes in episodic memory (Anderson, 1983; Logan, 2002; Ratcliff, 1978) and process-oriented

versions of exemplar models (Nosofsky & Palmeri, 1997; Palmeri, 1997). The response distributions are

not consistent with the assumption that judgment variability is constant across items, which is the

assumption made by exemplar models with an integrative memory component, the pure CAMs, as well

as blending models such as Rulex-J.

Importantly, these results also highlight that the form of the response distribution and the

variability of responses provide a tool to understand the nature of the involved cognitive processes

(Kalish, Lewandowsky, & Kruschke, 2004). Moreover, the ability to explain and predict the expected

variance in judgments is also of practical relevance given that it puts natural constraints on the

expected reliability in judgments that will vary depending on the experiences of the decision maker.

Combining cue abstraction and exemplar retrieval

Although judgment research has investigated how people shift between exemplar retrieval and

abstracted knowledge, little empirical work has studied the degree to which the two processes are

intertwined. Within CX-COM, we assumed that cue abstraction acts on the retrieval of stored

exemplars. In both experiments, CX-COM consistently outperformed an exemplar model that did not

consider any cue abstraction, independently of the tested environment. This suggests that beliefs about

how cues are related to the criterion influence judgments in addition to memories of similar exemplars.

Besides supporting the idea that cue-abstraction processes exist in quantitative judgments, the

two experiments also provided evidence for the effects of specific exemplars. Even in the linear

judgment task in Experiment 2, CX-COM described participants’ judgments better than the pure

CAM, although a host of research suggests that in linear tasks, judgments are usually best described by

the CAMs (Hoffmann et al., 2016; Juslin et al., 2008; Pachur & Olsson, 2012). Furthermore, the

multimodal response distributions follow naturally from the assumption of exemplar competition but

cannot be explained by pure cue-abstraction processes.

Taken together, these results suggest that quantitative judgments are based on a combination of

exemplars retrieved from memory and abstracted beliefs about the cues. They resonate well with

previous empirical research showing that specific exemplars and rules simultaneously influence

judgments and categorizations (Brooks & Hannah, 2006; Hahn et al., 2010; von Helversen et al., 2014)

and research showing the advantage of mixture models in categorization (Erickson & Kruschke, 1998;

Nosofsky et al., 1994; Vanpaemel & Storms, 2008) and function learning (DeLosh, Busemeyer, &

McDaniel, 1997; Kalish et al., 2004).
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Relation to different approaches

The two experiments provide consistent support for the CX-COM model. This new model

explains how beliefs about cue–criterion relationships interact with memories about specific instances.

In the following we spell out similarities and differences between CX-COM and other models and

approaches in related domains.

Blending Models. Blending models are based on the assumption that an exemplar and a

cue-abstraction component processes information independently and the response is a weighted average

of the two results. The measurement model RulEx-J (Bröder et al., 2017) is a very recent and

successful implementation of this idea in the domain of multiple-cue judgments. In line with findings in

multiple-cue judgment, the mixture parameter in RulEx-J weighs the contribution of the two model

components and reflects the employed strategy on the individual level and the impact of the

environment or experimental instructions on the aggregate level.

In our two experiments the environments differed; In Experiment 1 we used a multiplicative

environment that is known to coincide with exemplar processing and in experiment 2 we used a linear

environment that is known to coincide with cue-abstraction processes. In line with findings from the

literature and especially with the results presented by Bröder et al. (2017) we find on average a higher

mixture parameter (β) in experiment 2 (.6) than in Experiment 1 (.5, see Table B1). These results

suggest RulEx-J reflects differences in the amount of cue abstraction processes well. However, our

CX-COM model outperformed RulEx-J consistently in the quantitative model comparison in both

experiments. Additionally, RulEx-J is not able to account for multimodal response distributions and

changes in variability across items.

Function Learning. In both function learning and multiple-cue judgment, a numerical

criterion has to be estimated given contextual information. However, function learning and

multiple-cue judgment differ strongly in the complexity of the to-be-judged objects. In multiple-cue

judgment the evaluation of objects is based on several cues with several possible values, while in

function learning it is based on one numeric value. Accordingly, models from the function learning

literature are rarely considered in the literature on multiple-cue judgment.

Function-learning research found that participants often extrapolated in a rule-based fashion,

although they learned with single exemplars (DeLosh et al., 1997). Accordingly, theories in function

learning often consider a competition between memory items (or rules) as well as mixtures between

retrieval-based and cue-abstraction processes. Most notably, CX-COM could be considered as an

extension of EXAM (DeLosh et al., 1997; McDaniel & Busemeyer, 2005) for judgments based on

multiple cues. EXAM learns similarity-based associations between one-dimensional, quantitative inputs

and outcomes. When generalizing to new patterns, it uses the distance between similar inputs to

recruit a linear extrapolation mechanism. Thus, EXAM and CX-COM share the idea that a
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cue-abstraction mechanism adjusts the response values of a recalled response. The difference between

CX-COM and EXAM mirror the different complexities of the to-be-judged objects. In the EXAM

model, the cue-abstraction component considers not only the one recalled output but also two outputs

with similar input values. The response is based on the proportion of change in input and output

values. In contrast, CX-COM adjusts the retrieved criterion depending on the difference in cue values

between the probe and the one recalled exemplar.

Knowledge Partitioning. In function learning and categorization, knowledge

partitioning spells out the idea that knowledge is separated into independent parcels that potentially

contain mutually contradictory information (Kalish et al., 2004; Lewandowsky, Roberts, & Yang, 2006).

As a result of knowledge being spread out over a space of, potentially numerical, response values in

separate parcels, knowledge partitioning also predicts multimodality of responses and these patterns

have been found in the domain of function learning (Kalish et al., 2004).

The most prominent model implementing knowledge partitioning in the function-learning

domain is POLE (Population Of Linear Experts; Kalish et al., 2004). According to POLE, judgments

are based on linear experts, that is, linear functions that are associated with each stimulus value during

learning. When a new stimulus is evaluated, functions are activated based on the similarity between

the new and associated stimuli. Then one rule is probabilistically selected and used to determine the

response. Thus, similar to CX-COM, POLE involves a competitive selection mechanism. Consequently,

an adaption of the competitive retrieval of exemplars as sketched in CX-COM is, in principle, able to

explain some multimodal results POLE accounts for by assuming that sometimes an exception is

recalled and adjusted according to a linear function. However, POLE stores different rules and assumes

competition between these rules instead of exemplars, predicting that people also extrapolate in

opposite directions depending on the exemplar they recall. CX-COM is unable to predict different

extrapolation patterns on the same cue. Accordingly, although both models can predict multimodal

response distributions, CX-COM and POLE differ on the items for which they predict a large

variability. In CX-COM, variability is caused by training items that are activated by the same probe

but differ in their criterion values; in POLE variability is caused by different functions associated with

different parts of the stimulus space.

Anchoring and Adjustment. On a more general level, CX-COM is also related to the

idea that quantitative judgments are based on an anchoring and adjustment process (Tversky &

Kahneman, 1974). According to the anchor and adjustment heuristic, people start making a judgment

or an estimation by generating an initial value, the anchor. During the estimation process they then

question whether the anchor provides an adequate judgment value and adjust their judgment until they

are satisfied. Anchors can be internally generated values based on a memory processes or values that

are externally provided in the environment (Chapman & Johnson, 2002; Epley & Gilovich, 2001;
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Mussweiler & Strack, 2000). Similar to internally generated anchors, CX-COM assumes that a single

exemplar is retrieved from memory and the value associated with this exemplar is adjusted based on

the differences in cue values and beliefs about the relation between cues and the criterion. However,

CX-COM does not allow for external anchors and their influence on the judgment process. In addition,

the cue-based adjustment is based on the deviation between the features of the probe and the recalled

exemplar and participants’ assumptions about how these features relate to the criterion but not by

further knowledge.

Limitation and Future Work

We found that CX-COM accounted for judgments much better than the competing models in

two experiments. However, in both experiments the number of exemplars in training was quite small

and we ensured that participants memorized them very well. The open question remains of whether

CX-COM still captures human judgments well if people retain more, but not necessarily intact

exemplars in memory. One way people might react to more noisy exemplar representations is by giving

more weight to the cue-abstraction component. Alternatively, it is possible that people will abstract

prototypes or summary representations of exemplars that are clustered together. Then people might

retrieve these prototypes instead of a single exemplar (Love, Medin, & Gureckis, 2004; Vanpaemel &

Storms, 2008).

In both experiments we instructed participants to use the items they had learned during training

to judge novel items during test (Olsson et al., 2006). We used these instructions because we aimed to

provide a strong test of the retrieval assumptions underlying exemplar memory, that is, whether

exemplar retrieval is integrative or competitive, and its interaction with cue knowledge. These

instructions may limit the generality of CX-COM as a judgment model. However, the importance of

exemplar-based processes in multiple-cue judgments studies without strategy instructions has been

frequently demonstrated (Bröder & Gräf, 2018; Hoffmann et al., 2014, 2016; Juslin et al., 2008;

Karlsson et al., 2007; McDaniel et al., 2018; Stillesjö, Nyberg, & Wirebring, 2019). Furthermore, a

thorough, qualitative analysis of previous empirical evidence demonstrates that CX-COM can cover a

broader variety of empirical findings (e.g. Juslin et al., 2008), including results that have been taken as

evidence for transitions between exemplar memory and cue knowledge.

Although several memory models assume competitive retrieval, how many exemplars are recalled

and combined before a response is given differs (e.g. Giguère & Love, 2013; Raaijmakers & Shiffrin,

1980). For example, the SAM (Search of Associative Memory) model assumes that memory images

resulting from a competitive retrieval process are only partly restored. To restore a full memory image,

several retrievals are necessary, implying that recalled images may be a combination of values from

different memory items. In this work we tested the foundation of this idea: a model that considers only
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one exemplar and a model that considers all exemplars to determine a response. If a subset of memory

items is recalled, two scenarios are possible. If only exemplars with similar values are recalled from

memory, the responses correspond to CX-COM’s predictions. If very different values are recalled, they

would be combined into one response similar to exemplar models with integrative retrieval. The focus

on a competitive memory process in CX-COM allowed us to explore more complex and realistic

memory processes in judgment research.

The present research has important implications for predictive models in the domain of

quantitative judgments and evaluations. Although an integrative and a competitive retrieval

mechanism as part of an exemplar model predict the same mean judgment values, the variance and

actual shape of the distribution of response values might differ tremendously. Depending on the

exemplars in memory that are activated in a specific context, a mean judgment value as predicted by

integrative exemplar models might only be observed with a very low probability. Accordingly, the

predictive power of classic exemplar models might be very low.

Conclusions

We presented a new theory and cognitive model for quantitative judgments. CX-COM models

how memories about specific exemplars and general beliefs about the relation of cues with criteria are

integrated into a single judgment response. Most notably, CX-COM predicts multimodal response

distributions and variability in judgments based on previously encountered exemplars and the

similarity of these exemplars to the item under evaluation—an aspect in judgment behavior that has

been largely neglected in research. In a quantitative model comparison CX-COM consistently

outperformed all competitor models. In sum, CX-COM is a promising new model of the cognitive

processes underlying quantitative judgments that allows researchers to derive distinct predictions for

judgment behavior in various judgment situations.
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Appendix A: Similarities

In Experiment 1 participants rated how similar every training item was to every test item. Table

A1 shows the aggregated results. The aggregated similarity ratings corresponded to the aggregated

similarities predicted by the CX-COM model for all participants, (r = 0.89, p < 0.01). An analysis on

the individual level confirms the results on the aggregate level (mean r = 0.70, p < 0.01) with every

individual correlation being significant (individual p values were corrected for multiple comparisons

using the Bonferroni correction method).

Table A1

Similarity ratings in Experiment 1

Training item

Judgment 4 6 8 12 18 24

test items 3.1.2 2.1.2 3.2.2 1.1.3 2.2.3 1.2.3

3.1.1 7.00(2.68) 4.52(2.71) 6.14(2.20) 2.71(2.70) 2.19(1.78) 1.43(1.25)

4.1.2 8.19(1.47) 4.67(2.82) 5.67(2.76) 2.05(1.75) 2.14(1.53) 1.33(1.56)

2.1.1 4.76(2.64) 6.90(2.36) 4.76(2.36) 2.33(1.85) 2.05(1.83) 1.24(1.45)

3.2.1 5.67(2.87) 3.38(2.71) 7.67(1.93) 1.62(1.69) 2.67(1.80) 2.48(2.20)

4.2.2 6.38(2.75) 3.76(2.41) 7.95(1.53) 1.62(1.40) 2.90(2.10) 1.90(1.79)

1.1.4 2.29(1.68) 2.29(1.85) 1.67(1.49) 7.86(1.82) 5.29(1.95) 5.29(2.24)

2.2.4 1.90(1.84) 2.62(2.25) 2.67(2.13) 5.33(2.33) 8.14(1.31) 6.05(2.48)

2.3.3 2.10(2.07) 2.90(2.23) 4.14(2.50) 3.71(2.59) 7.57(1.29) 5.14(2.92)

1.2.4 1.71(2.03) 1.76(1.61) 2.43(1.43) 6.29(1.65) 6.67(1.71) 8.24(1.51)

1.3.3 1.76(1.45) 1.86(1.62) 2.67(1.91) 4.52(1.86) 5.86(2.26) 7.24(2.23)

2.3.2 2.81(2.14) 5.05(2.65) 4.33(2.54) 2.10(2.26) 5.00(2.26) 2.76(2.41)

2.1.3 5.38(2.69) 6.62(2.87) 4.00(2.59) 6.71(2.45) 6.95(2.01) 4.62(2.50)

1.3.2 3.62(2.25) 2.67(1.77) 3.57(2.25) 3.00(1.70) 3.95(2.16) 5.43(2.56)

2.3.2 1.76(1.41) 2.76(1.79) 3.67(2.13) 1.43(1.91) 3.76(2.07) 2.76(2.30)

Note: Participants’ mean similarity ratings (and standard deviations) in Experiment 1. Highest

perceived similarity is marked in bold.
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Appendix B: Fitting and Implementation Details

All analyses are done with the R programming language (R Core Team, 2015).

Table B1

Model fit parameters

Parameter CAM Exemplar CX-COM RulEx-J Baseline

Experiment 1

w1 = b1 (Dimension weight) -.89 3.12 .12 35.95 -

w2 = b2 (Dimension weight) 3.79 1.94 .67 -3.99 -

w3 = b3 (Dimension weight) 2.89 6.35 .79 -30.97 -

k (Intercept) 1.79 - - 1468.69 -

c (Sensitivity) - 11.42 1.58 1 -

α (Cue-based adjustment) - - -101.39∗ - -

β (Model selection probability) - - - .5 -

σ2 (Error variance) 5.45 6.51 2.93 5.33 8.51

Mean in baseline model - - - - 14.58

Mean Deviance 1,294 1,375 1,268 1,285 1,490

Mean BIC 1,321 1,397 1,294 1,317 1,501

Number of parameters 5 4 5 6 2

Number of best fitted participants 7 0 18 4 0

Mean Deviance (CV fit) 645 687 679 643 -

Mean Deviance (CV prediction) 654 691 647 650 -

Number of best predicted participants (CV) 2 0 14 13 -

Experiment 2

w1 = b1 (Dimension weight) 6.71 .98 .99 4.16 -

w2 = b2 (Dimension weight) 2.43 .45 .27 1.5 -

w3 = b3 (Dimension weight) 2.56 .92 .43 1.89 -

w4 = b4 (Dimension weight) 1.58 .42 .42 .96 -

k (Intercept) -8.7 - - 66.97 -

c (Sensitivity) - 2.76 2.11 8.5 -

α (Cue-based adjustment) - - 33.64∗ - -

β (Model selection probability) - - - .6 -

σ2 (Error variance) 3.80 4.2 2.02 3.78 8.06

Mean in baseline model - - - - 17.26

Mean Deviance 1,077 1,119 1,033 1,075 1,400

Mean BIC 1,109 1,146 1,065 1,112 1,411

Number of parameters 6 5 6 7 2

Number of best fitted participants 9 2 19 1 0

Mean Deviance (CV fit) 535 558 518 536 -

Mean Deviance (CV prediction) 549 565 527 546 -

Number of best predicted participants (CV) 1 0 17 11 -

Note: Mean parameter values, Bayesian information criterion (BIC), and model descriptions. BIC and number of participants of the best

fitting model are marked in bold.
∗The high value for α in both experiments stems from a small number of participants with α values above 100. These participants were

poorly fit by CX-COM and were not included in participants best fit by the model. The median for α is 2.86 in experiment 1 and 3.17 in

experiment 2. The mean over participants best fit by the CX-COM model is 1.05 in experiment 1 and 6.92 in experiment 2.

The mean deviance of the cross validation (CV) are averaged across the two cross-validation sets (see Appendix B) for fits (CV fits) and

predictions (CV predictions), number of best-predicted participants according to cross validation (CV).
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For each model–participant combination we searched for the best fitting parameter setting by

minimizing the models’ negative log-likelihood. To find the best fitting model for every participant we

used the Bayesian Information Criterion (BIC; Schwarz et al., 1978) to penalize more complex models.

All exemplar models (or model components) were fit to the data with the city-block distance

(see Equation 11). Both exemplar and cue-abstraction models contain parameters reflecting the

importance/attention given to the cue dimensions. To be able to fit both processes simultaneously we

estimated only one set of dimension weights for both the exemplar retrieval process and the cue-based

adjustment, so wi = bi for each cue-dimension i. To do this, we freely estimated one weight for each

cue dimension. In the cue-abstraction component, the adjustment was calculated according to the

estimated weights. In the exemplar components we determined the attention weights wi and the

sensitivity parameter c by setting it to the sum of the absolute weights. We then calculated the

attention weights by dividing the absolute weights of the respective dimensions by c. Hence, the

attention weights in the exemplar process varied between 0 and 1 and summed up to 1 following the

constraints usually assumed in exemplar models. Best fitting parameter values for both experiments

are shown in Table B1.

For parameter estimation we used a combination of grid search and non-linear optimization. The

grids had a step size of one and the overall size of the grid was informed by the true parameters of the

functions underlying stimulus creation. In experiment 1 the borders of the grid were set to -10 and 10

and in experiment 2 to -20 and 15. These choices yielded 21 optimization searches for each model in

experiment 1 and 46 in experiment 2. For each search, the starting parameter values were set to a

random value between two subsequent grid values. Starting values outside the range of possible

parameter values were ignored and set to the respective borders of the range instead. As optimization

algorithm we used the "nlminb" function in the "stats" package of the R programming language (R

Core Team, 2015).

Cross Validation. Although CX-COM possesses the same number of parameters as the

CAM and only one parameter more than the exemplar model, CX-COM may be more prone to

overfitting than the CAM or the exemplar model. CX-COM is a mixture model which functionally

traverses between pure exemplar and pure cue-abstraction predictions. Thus, similar to the mixture

model RulEx-J Bröder et al. (2017), its functional complexity likely exceeds the functional complexity

of pure exemplar and cue-abstraction models. To better understand whether the functional complexity

is warranted given the data we conducted a cross validation.

For each participant, we split the set of observations for each test item into half and randomly

assigned one half to the training set and the other half to the validation set in cross-validation. In

Experiment 1, this resulted in splitting the observations into one set with 7 observations and one set

with 8 observations. In Experiment 2, this resulted in two sets with 5 observations each. We then
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estimated the model parameters’ for each model and participant using participants’ responses to items

in the training set and predicted the responses from the validation set (and vice versa). Reported

results are the mean of these two predictions.
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Appendix C: Beanplot for all items tested in Experiment 2

Figure C1 shows a beanplot for all items in Experiment 2.
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Appendix D: Post-hoc power analysis of multimodality within participant

and item in Experiment 2

Within participants we only have 10 observations per item in experiment 2 and lacked the power

to detect multimodality. Out of the 620 statistical tests on the participant/item level approximately

20% were significant (p < .05, not corrected). To better understand how many observations would have

been needed to have enough power, we performed a post-hoc power analysis. Thereby we utilized the

fact that CX-COM predicts a multimodal response distribution. We drew 10, 20, 50, 100, and 1000

samples (with 100 repetitions each) from the response distributions predicted by CX-COM for each

participant/item combination. In case of 10 samples, multimodality was only detected in 17% of all

tests, followed by 21%, 53%, 82%, and 100% in case of 1000 samples.

To test how often false positive results occur, we checked how likely a normal distribution is

falsely identified as being multimodal by the dip test: Drawing 10 samples (same number as

observations per participant and item in the experiment) with 1000 repetitions from normal

distributions with variances of 1, 2, and 5 there were less than 0.2% false positive results in all three

cases.

Appendix E: Reanalysis of previous data and its limitations

We reanalyzed data from Hoffmann et al. (2014, 2016) who systematically investigated judgment

strategies across different environments without strategy instructions. For all the different

environments we fitted the CX-COM model, the CAM, and the exemplar model. In the environments

from the 2016 paper CX-COM explains most participants best in the one-dimensional linear

environment (22 out of 32 in the first and 24 out of 32 in the second variant) and in the

multi-dimensional multiplicative environment (all 32), and it explains about half of the participants

best in the multi-dimensional quadratic environment (16 out of 32). In the multi-dimensional linear

environment the CAM is the best model with 18 out of 32 and CX-COM explains only 7 participants

best. In the environments tested in the 2014 paper CX-COM is the best model in the multiplicative

condition (267 out of 287) and the CAM is the best model in the linear condition (176 out of 287).

Unfortunately, these environments were not designed for tearing apart CX-COM from other

models of human judgment. A model recovery suggested that CX-COM and the CAM could not be

distinguished because CX-COM can make similar predictions as a cue abstraction model. Importantly,

CX-COM and the CAM often only differ when predicting full response distributions instead of average

responses. Therefore, it is necessary to observe many responses on the same test items to successfully

recover CX-COM and contrast it with a CAM. Previous studies on judgment research, however, usually

tested judgments for many test items but did not assess full response distributions for single items.
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This data structure thus poses a problem for evaluating CX-COM’s performance using previously

published data. In the multi-dimensional linear environment from the 2016 paper, for example,

CX-COM’s recovery rate is around 50% while CAM’s is around 90%. In contrast, in the

multi-dimensional multiplicative condition the CAM can only be recovered in less than 40% while

CX-COM can be recovered in more than 90% of all cases.


	Abstract
	Competitive Retrieval Strategy Causes Multimodal Response Distributions in Multiple-Cue Judgments
	Introduction
	Combining exemplar and cue-abstraction processes
	Integrative versus competitive retrieval

	CX-COM: A hybrid model for quantitative judgment with a competitive retrieval mechanism
	Exemplar models
	Cue-abstraction models
	Combining competitive exemplar retrieval with cue-abstraction
	Blending Models
	Predicting multiple-cue judgments with CX-COM
	Testing CX-COM's new predictions of judgment behavior
	Quantitative test
	Qualitative test


	Experiment 1
	Method
	Results
	Discussion

	Experiment 2
	Method
	Results
	Discussion

	General Discussion
	Competitive retrieval from exemplar memory
	Combining cue abstraction and exemplar retrieval
	Relation to different approaches
	Limitation and Future Work

	Conclusions
	References
	Appendix B: Fitting and Implementation Details

