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Abstract 

Purpose: to develop a novel tool to support decision-making for enhanced demolition process 

efficiency and material waste sortability through computerised 4D motion workflow simulation. 

Design/methodology/approach: a time-lapse evaluation model was developed to classify and 

estimate the impact of building demolition processes and material waste recovery. The dynamic 

assessment of demolition, collision and mechanical impact were measured through computerised 4D 

motion game and physics engines. Waste recovery and treatment complemented the simulation 

algorithm. The simulation of the information workflow was tested through case study using two 

demolition strategies.  

Findings: the simulation successfully estimated the efficiency and efficacy of the different demolition 

strategies. Thus, simulation results can potentially support better decision-making related to the 

definition of demolition strategies associated with recycling and re-use targets. 

Research limitations/implications: the simulation was limited to a simple machine-led demolition 

strategy. Further research is required to understand the impact of complex machine mechanic 

movements and processes on complex building fabrics.  

Originality/value: Modelling and evaluating the demolition process and its impact on material waste 

recovery with a time dimension is novel. The comparative analysis of quantitative data allows 

demolition professionals to find optimal and more sustainable demolition solutions and more efficient 

and safer implementation on site. It also contributes to a better understanding of the relationship 

between demolition strategy and waste sortability. This research represents a significant 

advancement in applied computing for building demolition waste recycling and notably, it improves the 

quality of information available in the definition of building demolition strategies. 
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1 Introduction 

It is widely acknowledged in the literature that the volume of resources used in the construction 

industry worldwide makes the sector one of the largest consumers of raw and processed materials. 

To a great extent, this is worsened by inefficiencies in the management of construction projects that 

make the sector responsible for unacceptable amounts of waste being disposed in landfills. Circa 

30% of the total waste generated in most European countries are disposed in landfills (Dyer, 2012). In 

2014, an estimated 202.8 million tonnes of waste was generated in the UK.  Of this, 60% was 

generated by construction, demolition and excavation (DEFRA, 2016). Demolition itself is responsible 

for approximately 26% (CRWP, 2009) of the total construction waste (i.e. 31.8 mtpa). Despite these 

alarming figures, proposed solutions are failing to resolve the problem and currently so much waste is 

being disposed that landfill spaces are becoming increasingly scarce. 

Reportedly, very few initiatives and programmes exist to attenuate construction waste. The UK Site 

Waste Management Plan (SWMP), the obligatoriness of which was revoked in 2013, is one example 

of such initiatives.  The SWMP placed obligations on both clients and main contractors, requiring 

stakeholders to propose optimal waste treatments and maintain extensive documentation related to 

type, origin and destination of all types of construction waste leaving a site (Clean Neighbourhoods 

and Environment Act, 2005; Environmental Agency, 2013). However, without being mandatory, the 

use of such programmes has been left to the goodwill of companies and clients seeking compliance 

with “Duty of Care Regulations” and sustainability credits within methods such as BREEAM and 

LEED. Whilst these programmes are helpful, waste recovery calculation remains a relatively 

inaccurate approximation of the reality (Chen and Ma, 2013). For Chen and Ma, key elements of 

information (such as materials origin and usage) are not considered within the methods, reducing the 

possibility of establishing optimal means for recovering materials and components. Other challenges 

also exist. Addis (2006) argues that deciding which demolition strategy is best is often based on the 

suitability of traditional demolition methods as applied to a group of elements. For example, several 

elements demolished simultaneously results in comingled waste, making subsequent separation on 

site more time-consuming with reduced recovery rates than would otherwise have been possible if 

demolition was done by separate materials. Thus, the limitations of existing methods requires the 

development of new approaches to improve the efficiency and efficacy of demolition and waste 

recovery. 

Scientific contributions have been piecemeal in spite of the relevance of this problem. Emphasis has 

been placed more on construction waste within construction and literature reporting solutions that 

effectively improve demolition waste recovery rates is also rare. A review of literature on demolition 

waste shows a constant increase in the number of publications since 2000 (Yuan and Shen, 2011). 

However, most efforts have been placed on the development of waste quantification methods (e.g. 

Wu et al., 2016; Won et al., 2016, Cheng and Ma, 2013 and Kourmpanis et al., 2008), methods for the 

re-utilisation and recycling of waste (e.g. Wang et al., 2010; Addis, 2006; Poon et al., 2001) and the 



 

use of Building Information Modelling (Liu et al., 2015; Chen and Ma, 2013; Hao et al., 2010). Less 

common is research addressing waste recovery as a result of building design and demolition strategy 

decisions (e.g. Banias et al., 2011; Hao et al., 2010; Peng et al., 1997). This article refers to this latter 

theme and seeks to develop the science that underpins demolition strategy by looking into how 

demolition can be simulated to support process efficiency and predictive models of waste recovery.  

The aim of this research is to improve demolition process efficiency and material waste sortability 

through computerised 4D motion workflow simulation. For this purpose, a video time-lapse evaluation 

model was developed to classify and estimate the impact of building demolition processes and 

material waste recovery. The model has enabled qualitative and visual assessment of mixed 

demolition impacts and its time-lapse change comprehension. The dynamic assessment of 

demolition, collision and mechanical impact were also measured through a computerised 4D motion 

game and physics engines. The demolition evaluation model has demonstrated positive results in 

spite of being in its experimental phase. Waste recovery and treatment data complemented the 

simulation algorithm. The simulation information workflow was tested through a case study. Two 

demolition strategies supported a comparative analysis showing how this approach provides more 

accurate projections of waste generation and a better understanding of the project plan can be 

achieved regardless of users’ project knowledge.  

2 Demolition Sortability in Construction 

According to Yuan and Shen (2011) measuring waste generation rates is a theme that still requires 

significant attention to support the creation of benchmark figures for different waste management 

systems. It is a paradox to solve, i.e. maintain, sustainability demolition credentials based on slow and 

inadequate methods and low material recovery rates while seeking a faster demolition rate and rapid 

site clearance (Poon, 1997). This is certainly the case when tools that can accurately and 

conveniently estimate the amount of waste from construction, renovation, and demolition projects are 

lacking (Cheng and Ma, 2013). 

In this respect, there have been several attempts to use Building Information Modelling (BIM) to assist 

the demolition process. For example, Cheng and Ma (2013) created a BIM system that can extract 

material and volume information through an “as built” BIM model and then integrate the information 

for detailed waste estimation and planning. The BIM model proposed by them represented an 

advancement in the design of demolition methods from manual to automated quantification of 

Demolition and Recycling (D&R). However, it is limited to extracting the information from an as built 

model and it does not resolve the issue of debris generation caused by the impact of demolition 

methods against the fabric of the building. Similarly, Akinade et al., (2015) developed a BIM-based 

building deconstructability score system that assess buildings’ deconstruction levels prior to 

demolition, which has the potential for improving sortability of debris. 
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In general, demolition waste is comprised of inert (e.g., sand, bricks, and concrete) and non-inert 

materials (e.g., timber, plastics, glass, and paper) (Yuan 2013) that require sorting after the demolition 

process occurs. Waste sorting is a process where material can be manually separated out from the 

mixture (i.e. inert from non-inert, poisonous from safe, etc. (Wang et al., 2010)). The benefits of on-

site demolition sorting are numerous: increased reuse and recycling, reduced transportation and 

disposal costs, reduced landfill use and less pollution (Wang et al., 2010). However, as discussed by 

Poon et al, (2001), sorting methods are slow and contractors tend to be reluctant with regards to 

sorting waste on-site, even in the event of a high penalty fee for not doing so. 

For Wang et al., (2010), the aversion to on-site demolition waste sorting results from a series of 

factors that makes the business case unfeasible. Firstly, large manpower resources are needed to 

manually sort materials; secondly the scarcity of a market for recycled materials can lead to storage 

issues and additional costs; thirdly, waste sortability is a complicated task because of the various 

factors involved such as the heterogeneity of the debris (different sizes, sometimes with more than 

one material, etc.); Fourthly, it requires additional management capacity to resolve logistics, health 

and safety, etc.; furthermore, it can imply the use of site space which may not be available (e.g. 

storage for equipment and sorted waste containers). In this respect, it is very important to distinguish 

on-site sorting of construction waste from on-site sorting of demolition waste. The first is characterised 

by packaging, cut-outs and left overs of materials while the latter refers to debris resulting from the 

demolition process. Most existing research focuses on the former (e.g. Hao et al., 2010; Wang et al., 

2010; and Wang and Yuan, 2008), whereas very little (if anything) exists for the latter, which is the 

focus of this research.  

This research builds on the principle that being able to generate simulations in the demolition planning 

process can encourage construction teams to utilise demolition waste and hence reduce the 

necessity of waste treatment. This can benefit the environmental impact of the construction project 

and also provide budget savings. Without much precedence to draw a path and lessons from, a 

choice was made to explore the use of parametric design and information modelling to support on-site 

demolition waste storability, in particular the use of 4D (3D + time) modelling linked to game engines 

for simulating the physical impact of demolition tools as explained in the following sections. 

3 4D use in demolition 

The relevance of 4D to assist demolition comes from the support it provides to planning activities and 

forecasting issues that can be missed in traditional planning. In a nutshell, 4D adds the dimension 

‘time’ to digital objects in a 3D model (which contains geometry and other characteristics of each 

building component). In general, 4D is used to assist production planning and control through the 

simulation of sequencing of production processes. Work-Breakdown Structure (WBS) and Critical 

Path Method (CPM) are the most common techniques used to create a 4D plan (Moon et al., 2013; 

Wang et al., 2004) and as such, bring the same limitations associated to these methods. Within WBS, 



 

the construction process is seen as a sequence of individual activities (e.g. building a wall, first fix, 

second fix, etc.) with target elements (digital objects such as brick and mortar, plasterboard, etc.) that 

leads to project completion. Elements are associated to activities and processes to form a three 

layered structure (process-activity-element) where time is added to elements and organised following 

a desired sequence of activities. Modifications to the activity plan can be easily updated on the 

elements model and vice versa. This two-way data reflection between the 3D model and the schedule 

allows for the application of mathematical algorithms to optimize project plans (Zhou et al., 2015 and 

Wang et al., 2004) in accordance with critical activities (and constraints) impacting the flow of 

execution. In addition, other methods such as Line of Balance can be applied to model locational 

information on a time line. Thus, overlaps and inefficiencies within schedule planning can be identified 

(Jongeling and Olofsson, 2007). These techniques are also known for the support they provide to 

improve various aspect of production planning such as health and safety (Benjaoran and Bhokha, 

2010), constructability measurement, spatial conflicts, site layout design, sequencing and logistics, 

cost estimating, resources management, stakeholder communications and collaboration (Mahalingam 

et al., 2010). The criticism of both techniques centres on the high level of uncertainty related to 

planning and the low level of accuracy involved in planning activities far in advance of execution.  

In practical terms, various lessons can be drawn from 4D research that apply to both construction and 

demolition. The interpretation of 4D simulation is, in general, based on visualization and testing of a 

‘plan of attack’1 strategy. Planning is refined through a trial and error approach. Both aspects also 

apply to demolition. One of the areas that demolition can benefit is the anticipation of on-site 

problems, as reflected in the work of Trebbe et al (2015) who raised the issue of accrued costs due 

unanticipated on-site conflicts and provided detailed practical information related to how practitioners 

used 4D to assist planning in a major project. We should also consider alternative methods for 

visualising on-site information, such as Boton et al., (2013) who developed alternative visualisation 

methods for collaborative 4D that are supported by meta-models adapted to planning and user 

requirements. Also key are the areas of Health and Safety, highlighted in the work of Zhang et al 

(2013, 2015), Zhou et al (2013) and Benjaoran and Bhokha (2010), that are focused on safety hazard 

detection and prevention algorithms and the area of Risk Management, such as the Kang et al (2013) 

system for visualising risk using Analytic Hierarchy Analysis associated with 4D modelling. Other 

areas to benefit include on-site workspace planning and logistics. In this respect, Moon et al (2013) 

and Jongeling et al (2008) propose methodologies to identify clashes between schedule and 

workspace conflicts. Zanen et al (2013) expanded this concept by looking at additional impacts on 

traffic and noise levels and Zhou et al (2015) investigated shortest path algorithms that apply to route 

optimization. Finally, there is research around tracking such as Kim et al., (2013) who analysed on-

 

1 In Lean Construction literature, the term ‘plan of attack’ refers to the organisation of construction activities according to a 

series of directives that enables construction flow in spite of constraints. 
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site visual data with Hue, Saturation and Value (HSV) filters; Turhan et al., (2012) using live 3D laser 

scanning methods and Wenfa (2008) who applied the radio-frequency identification (RFID) method to 

identify (according to plan) installed elements. Kim et al., (2017) is of specific importance to this article 

as it discusses the conversion of volumes of materials obtained from 3D modelling and its conversion 

into demolition waste volumes. Also is Bilal et al., (2017) who developed a database for building 

waste analysis which can increase the granularity of information related to materials characteristics 

that impact on waste sortability. All of which can benefit demolition planning. 

From the 4D related research it is evident there are various overlaps between construction and 

demolition which indicates potential benefits from using this approach in the demolition industry. If 

expanded to BIM, the overlaps are even greater as presented by Won and Cheng (2017). Although 

various studies have demonstrated the possibilities of improving demolition and waste recovery, there 

are other areas, such as the modelling/simulation of machine impact (i.e. numerical impact evaluation) 

on digital objects (digital demolition), that remain unexplored, further justifying the approach used in 

this research.  

4 Method - Using waterfall for the development of a 4D simulation tool 

The steps built into the research design were: First, a literature review to map out the use of software 

evaluation tools for demolition and packages for 4D CAD modelling. The key decision criteria included 

advantages within different software packages and an easy to use interface. Second, the defining of a 

(digital) building type to be demolished in the simulation. The model had to be simple enough to allow 

initial tests, but robust enough to embed information (i.e. using different materials) for it to be 

representative. A simple five-storey (Figure 1) building was chosen as having sufficient complexity for 

the purposes of this research. This decision was informed through a workshop with professionals 

involved in the demolition of buildings. Third, the dynamic assessment of demolition, collision and 

mechanical impact had to be measured through computerised 4D motion game and physics engines. 

For this purpose a tool was developed according to methods currently used in demolition projects in 

the UK. Finally, the tool interface, usability and applicability as a support to decision-making was 

assessed by testing it with three demolition practitioners. The work was also presented to UK and 

Japanese demolition practitioners at two national conferences (see Kunieda, 2016; Kunieda & 

Kitsukata, 2017). 

[INSERT FIGURE 1 HERE] 

Figure 1. Axonometric and floor plan views of the 5 storey building studied. 

4.1 Requirements 

Various attributes were considered in the development of the 4D tool for the simulation of demolition 

processes. Key requirements included the definition of a software package and the identification of 



 

process input and output formats, including the establishment of building physics rules related to 

different demolition machinery and their impact on digital buildings. These are described below. 

4.1.1 Selection of a software package 

Various game engines for construction have been explored, in areas such as health and safety (e.g. 

Guo et al., 2012; Lin et al., 2011), design reviews (e.g. Kumar et al., 2011) and construction 

education, (Nikolic et al., 2011) showing significant improvements. For Petridis et al. (2010) relevant 

quality criteria for game engine selection includes: audio-visual and functional fidelity, composability, 

availability and accessibility, networking, and heterogeneity. Analysis suggests the combination of 

quality criteria and modules, such as: graphics, physics, collision detection, I/O, sound, AI and 

network, form the basis for choice of package. 

The current literature is scarce regarding the application of game engines to demolition. However, 

works such as Lind and Skavhaug (2012) simulating production processes provide helpful insights. 

They used the Blender Game Engine (BGE), open source software equipped with a resourceful game 

engine integrated into a Bullet Physics library. It’s a flexible and adaptable package due to an 

embedded Python interpreter and game engine logic enabling real-time interaction with external 

control software. Its use is recommended whenever mechanical parts are exposed to uncontrolled 

motion, such as sliding or falling (Lind and Skavhaug, 2012); processes often seen in demolition. 

Disadvantages include a limited bullet physics engine library that doesn’t feature static friction and 

heavy physics computation, requiring separation of the physics dynamics body from geometry as well 

as freezing settled geometry (Lind and Skavhaug, 2012). Although BGE outperformed all criteria 

assessed by Petridis et al. (2010) when compared to paid-for software, the difference was deemed 

insignificant for accessibility, heterogeneity, physics and collision detection. It also provides an easy to 

use graphical interface (El Nimr and Mohamed, 2011). Accordingly, models in BGE can be 

constrained, colliding with each other under physical laws regardless of collision, body and mesh 

types (Coumans, 2012). 

BGE is also recommended for its interoperability capabilities. For example, Pitman and Watts (2011), 

Gore et al., (2012) and Kulahcioglu et al., (2012) successfully used BGE for building life cycle 

assessment. BGE’s high interoperability enables 3D-CAD tools, such as Vectorworks and Revit, to 

import 3D (BIM), 2D geometry and construction data files. In addition, dynamic simulation with object 

control at runtime and physical laws are essential features in demolition simulation which BGE 

delivers through complex logic design and Python script, as shown in El Nimr and Mohamed (2011). 

BGE’s rendering also enabled continuous real-time updating of information to reflect user interaction 

with the system requiring minimal code writing skills for complex interactions.  

Combined, these studies show BGE offers advantages that, in turn, enable assessment of the 

essential multiple criteria required in this research, justifying its adoption for practical application in the 

simulation of demolition processes.  
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4.1.2 Data input and database construction 

Data collection was supported by demolition practitioners in the UK. First, project documents of two 

projects were analysed to identify conventional demolition methods (i.e. machinery and equipment) 

and approaches (i.e. plan of attack and material triage process) used in practice. Project data (e.g. 

2D and 3D information) were also gathered in this process. The data was stored in its native format 

within a database2 and served as baseline for pilot model application studies. Building design and site 

information were used for modelling site conditions, while the actual on-site impacts (e.g. cost, waste 

generation, etc.) were captured in numerical format for comparison with simulation results. Second, 

onsite visual data (Figure 2) was collected to understand the physics of conventional demolition 

systems. From the repeated pattern in the data, the typical order of demolition in demolition systems 

were identified and converted into algorithms that were stored in the database. These algorithm 

patterns were used for planning the demolition strategy in the model application phase. Also, the 

demolition equipment used in the simulation was restricted to Caterpillar 312D*(STDC4.2ACERT) 

which is commonly used in practice operation (key parameters also shown in Figure 2 – Left). Thirdly, 

a literature review was conducted for the identification of a waste generation estimation model for 

traditional and 4D comparison purposes. Finally, survey questionnaires were given to fifteen 

demolition practitioners for the evaluation of the usability of models. The questionnaire had 15 

questions related to: the ability of the model to support decision-making, the fit-for-purpose qualities of 

the model and the advantage and disadvantages of the model. A 5 point Likert scale was used 

ranging from ‘poor’ to ‘excellent’. Answers ranged from 3 to 5, in general, with more experienced 

respondents being less optimistic regarding the use of the model. An additional fifteen interviews were 

conducted for detailed understanding of the key issues raised by respondents. Key issues raised 

included: the lack of BIM data for running the simulation and, more importantly, the concern that 

machine simulation does not include experience of machinery operators and other aspects such as 

health and safety aspects, which were not included in the tool hitherto. Respondents tended to view 

the tool as replacing experience rather than an aid to decision-making. However, after further 

explanation regarding the use of the tool, there was a general agreement that visualization and waste 

property analysis could significantly support decision-making and help professionals with less 

experience to identify issues that could occur during demolition. 

[INSERT FIGURE 2 HERE] 

Figure 2. Visual data machine movement analysis through 3D marker tracker systems 

 

2 Within the conceptual development, no systematic database was structured such as SQL. 



 

4.1.3 Output features 

Key elements related to the efficiency of the demolition process included: (1) total volume to be 

demolished: measured in m3, this was calculated automatically according to geometrical information 

of 3D objects and separated per object type (e.g. beam, column, wall, etc.); (2) time utilised for 

demolition: time information was extracted in seconds from the simulation process; (3) demolition 

machinery travelled distance: this information is extracted automatically from the simulation engine 

and measured in meters through measuring movements in the X and Y-axis. A limitation of the 

process is that machines are allowed to stay as long as targets are located within the arm range of 

the demolition tool and it does not consider the occlusion of targets with other building elements; (4) 

after impact waste distribution: a map of demolition waste distribution is generated throughout the 

simulation process based on debris element location and type. Each element type was coloured 

differently to facilitate element identification. Maps are generated on a time-lapse base and updated 

every 100 seconds of the simulation. Limitations in this process include that of elements being 

demolished, not by the result of collision with the shovel, but rather by free fall. Moreover, elements 

are segregated into the set unit grid, rather than a realistic set of different debris size: the basic cube 

size was set as 0.3*0.3*0.3m3 for all elements except slabs which were set as 1.0*1.0*0.12m3.; and 

(5) waste rubble purity (sortability): a map of waste purity was generated based on the location and 

volume of waste generated for each demolished element displayed in a unit grid of 5x5 meters. A 

colour grade is used to classify purity in 20% intervals and purity increases as colours get darker. The 

method used involved converting graph XYZ data into mesh data using Gray Technical XYZ Mesh 4.0 

software (GT, 2017) and then exported to Microsoft Excel VBA to generate a 3D graph of purity.  

4.2 Concept Design  

In this study, BGE was used to develop the evaluation model. The control of objects was set as 

‘Sensor’, ‘Controller’ and ‘Actuator’ (Figure 3). Input is received through the ‘Sensor’, combining inputs 

is done through the ‘Controller’ and manipulating the objects through the ‘Actuator’. Complex control 

is achieved through Python scripting as ‘Controller’. After logic settings are defined, the dynamic 

model simulation is executed and saved as a movie file. The values of the impact projection function 

are exported to external software (i.e. Microsoft Excel) with ‘Logic Bricks’. The outputs include time of 

collision and the volume of targeted object. 

[INSERT FIGURE 3 HERE] 

Figure 3. Setting object logic with Logic Bricks in BGE 

The system framework with 4D-CAD impact evaluation model proposed in this study is shown in 

Figure 4. The main processes in this platform are (i) input of project plan by users to Blender, (ii) data 

retrieval from database, (iii) model simulation by BGE using physics engine and (iv) output of 

simulation result. Project plan input includes site information and the project plan in 3D CAD format. 

The 3D five-storey building was originally generated with Vectorworks (2015), was exported to BGE 
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through IFC and used as the digital demolition test case through simple machine demolition methods 

in the BGE simulation tool devised. 

[INSERT FIGURE 4 HERE] 

Figure 4. Conceptual platform of 4D-CAD impact evaluation model 

The design of the demolition plan is done through the graphic user interface (GUI), where users 

access the database and refer to the values and demolition patterns available in the GUI panel. 

Demolition methods are chosen from the pre-defined list of demolition methods including: top-down, 

external demolition (high reach excavator3 and steel ball) and explosives. This process is informed by 

previously executed Site Waste Management Plans (SWMP) that contain project, waste generation 

and functional data. Designated project details inform the BGE set model and game logics to 

manoeuvre demolition machines. BGE plus the physics engine returns the demolition impact 

projection in .xls, blender supported 3D file formats (e.g. 3DS, FBX, DXF, SVG, STL (for 3D printing), 

VRML and X3D) and 4D time-lapse impact change movie files. The results can be used to inform 

decision-makers, while the accumulation of simulation data enhances the robustness of the database 

for future project planning.  

4.2.1 Implementation 

 Developed Tool Interface and Settings 

Figure 5 shows an overview of the GUI developed for this research and different stages of the 

application while in use as described in the following. 

[INSERT FIGURE 5 HERE] 

Figure 5. Setting Interface (left) and Process model application (right) 

Input site information (i): The site layout and the building model are imported from the existing BIM 

data file to BGE using the ‘building model import’ field. Preferably, surrounding site data should also 

be imported as neighbouring conditions can influence decisions regarding line of movement, impact 

on neighbouring properties and boundaries, amongst others. Whenever possible the CAD file should 

be merged with GIS so to include location specific data.  

Designation of element demolition treatment (ii): Users can modify the input parameters until 

intended project requirements are fulfilled. The “treatment of elements” field enable users to classify 

elements according to three groups: ‘preserved’ for processes where demolition machines are 

 

3 In this research, only external high reach excavator method was used. 



 

operated to avoid damage to elements; ‘soft-stripped’ for processes where elements, such as doors, 

windows, pipes, are removed before demolition. Elements that are not striped can be demolished as 

other structural elements and materials are regarded as impurity of structural waste. And ‘ground’ 

processes where element includes the path of demolition machines and the site boundary as the 

movable area in the BGE simulation. Soft stripping costs and labour information are calculated 

through conventional methods that describe additional impacts at the treatment stage. In addition, the 

reservation of elements allows the evaluation of partial demolition impact in refurbishment or 

renovation projects.  

Decision of demolition method (iii): The demolition strategy is defined by choosing type and 

direction of demolition in the ‘Demolition Method’ field. The algorithm for the demolition sequence 

(order) of composed elements is selected with a basis on previous demolition projects. The ‘set’ 

button links the algorithm to the element and a number is assigned to the element (except from 

registered ones). Assigned machines demolish elements sequentially from the smallest number. This 

process can be altered manually if the algorithm does not reflect the intended plan. The path through 

all targets is automatically calculated and displayed after numbering. Users can compare several 

demolition methods to find the optimal solution from this value. 

Registration of machines (iv): After setting the demolition sequence, machines in use must be 

registered at the ‘Demolition machine’ field. From the tab menu, users can choose from a series of 

suitable demolition machine types. This process is based on default sizes for each body part that can 

be customised for enhanced accuracy.  Once registered, roles are allocated to machines for defining 

the phase(s) in which they will be applied. The multiple registration and designation of roles enables 

the simulation of complex project demolition plans. Registration can be modified and cancelled at any 

point.  

Execution (v): The BGE has enough information to simulate the demolition project once the settings 

of demolition machines is complete. After choosing the output saving location, the simulation can be 

triggered by using the ‘Run simulation’ button at the ‘Model simulation and export’ field. Once started, 

model elements are segregated into a unit cube to recreate the destruction of elements by the 

confliction of demolition parts. Unit cubes are set to start demolition through contact between one 

another with impact always exceeding element durability. The game logic of machines, defined during 

registration, enables the monitoring of machine movement and the measurement of waste generation 

according to changes occurring through the time-lapse simulation. Machines continuously interact 

with target elements until impact data is generated. The data generated can be exported to other 

software such as MS Excel before the file is closed. Based on the results, users can modify the plan 

until intended project requirements are fulfilled. 

Estimation of Waste Generation (vi): Solís-Guzmán et al. (2009) waste generation calculation 

method (the Spanish model) was used to estimate the amount of waste generated from the total 

building floor area (Equation 1). This follows is recommended by tradition of Cheng and Ma (2013) in 

the verification of their own BIM-based model for demolition, which used the Spanish model. In this 
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model, the demolition waste volume is calculated as a product of the building total floor area and the 

coefficients for each element type, derived from 100 building case studies. Accordingly, the waste 

generation is calculated using the following formula:  

demdem FMFlV   

Equation 1. The Spanish model for quantification and management of construction waste (adapted 

from Solís-Guzmán et al. (2009)) 

Where Vdem is demolition waste volume (m3); Fl is the floor area per level (m2); M is the number of 

floors and Fdem is demolition waste volume factor (m3/m2). The designation of element types follows 

the element type mapping from the Solis et al model and presented in Cheng and Ma (2013). 

4.2.2 Implementation through simulation  

Solís-Guzmán et al. (2009) waste generation calculation method was used to estimate the amount of 

waste generated from the total building floor area (Table.1). The value of S in Table1 is the same as 

the calculation of each element’s volume is done according to the floor area. In the simulated pilot, the 

building is symmetric, thus the floor area is the same for each component. In addition, the total area is 

calculated by S(single floor area)* N(number of floors). 

Table 1. Case study waste generation estimation 

[INSERT TABLE 1 HERE] 

The five-storey building was set to be demolished by external demolition method comprising of one 

high reach excavator with a 15m boom and 9m dipper. Main and sub-direction of demolition orders 

were set as ‘South to North’ and ‘West to East’. Demolition at higher levels is prioritised in line with 

onsite health and safety practices. The machine logic settings included two patterns of machine 

behaviour to allow the comparison of: 

1.  The demolition of targets in sequence within the arm range without changing machine location 

(scenario1: ‘fixed’). The machine arm is long enough to complete demolition without moving its 

location.  

2. The demolition of targets regardless of the distance from the (moveable) machine (scenario2: 

‘movable’).  

The differences in impact results caused by machine use were numerically compared through 

‘transportation distance’ and ‘total time to complete demolition’. Only the demolition process was 

assessed in order to simplify the simulation (i.e. waste collection and treatment process were not 

included). The excavator’s transportation distance and waste’s treatment volume were measured on a 

dynamic timescale. Three aspects were considered for waste generation time-lapse change impact: 



 

(i) waste distribution, (ii) total waste generated and (iii) waste purity within the unit area. The 

demolition of elements were also measured according to the time, location, material type and volume 

when hitting the ‘ground’. Results are presented through a waste distribution map, a purity map and a 

generation map was drawn to visually express the demolition progress and physical features.  All 

slabs were divided into three sections (south, middle, north).  

5 Results and discussion 

Simulation results of both scenarios and its comparison with the Spanish model by Solís-Guzmán et 

al., (2009) are summarised in Table.2. Most of the unit objects that compose the building elements 

have been recorded as waste objects. There are no significant differences between the two 

demolition strategies except the computation time in BGE. A total of 96.9% accuracy was achieved, 

which makes the model ideal for supporting demolition planning. The comparison with method shows 

significant differences for wall (≅ +51.6%) and column (≅ +300%) volumes This can be attributed to 

the target building model, which has a frame structure and no partitions and external walls.  

Table 2. Simulation results compared to the Vdem model 

[INSERT TABLE 2 HERE] 

With regards to travelled distance, the comparison of machine impact between scenario 1 -‘fixed’ and 

scenario 2 -‘movable’ as illustrated in Figure 6 (left) shows that the excavator in scenario 1 travelled 

60m to demolish the targets whereas in scenario 2 the distance was 2200m. Considering that the 

interference from other building elements is not included in this simulation, operators can change the 

location of the excavator. However, results show that it is considerably more efficient to adopt a ‘fixed’ 

position for both, distance travelled and demolition efficiency.  

[INSERT FIGURE 6 HERE] 

Figure 6. Result of machine impact (left) and waste generation (right) 

In terms of total time consumption, the fixed treatment strategy uses 20% less time. This result should 

be interpreted carefully as various assumptions were made concerning the time scale of each 

demolition process (the accuracy of which can be improved by referring to the actual demolition data, 

such as machine properties, onsite visual record, etc.). The time for simulation shows consistency in 

scenarios 1 and 2 (Figure 6 - right and left). Comparing the two scenarios, there are no significant 

difference in results with the exception of time scale. The different is explained by the use of the same 

order of demolition for both scenarios and the simplification of the element demolition method that 

considers a free fall for each element unit (rather than a joint one, which would be the case in a real 

scenario, thus reducing the time difference between the two scenarios). It is expected that 

improvements can be achieved if the actual hitting of the target with the shovel can be simulated to 
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recreate a more accurate behaviour of object scattering, which in turn impacts on the machine and 

target layout relationship.  

For treatment volume, there is a steady increase up to 400sec in scenario1 and 500sec in scenario 2 

that is followed by a small decrease. This is the result of a target shift, from the large slab unit to the 

small column unit at the end of demolition. The relative reduced efficiency for scenario2 is due to the 

time-consuming re-location time of machinery. Therefore, the efficiency of demolition method and the 

time required for each process can be read accurately from the machine impact data in this model 

simulation. 

In relation to waste generation (Figure 6 - right - continuous lines for scenario 1 and dashed lines for 

scenario 2), the results reflect the plan of attack choice (South to North) and model configuration (i.e. 

walls on the South and columns on the North). In other words, walls have been demolished at the 

beginning whereas column waste increases its volume towards the end. 

With regards to waste generation time-lapse change, Figure 7 shows the resulting successive waste 

distribution maps (for scenario 1). Following the South to North approach, walls have been 

demolished within 200sec and columns in the North started being demolished from 400sec. The maps 

show the relation between original and final location for each element type (e.g. columns were located 

longitudinally on both sides of the building - East and West - which falls vertically, thus forming a 

similar layout on the waste generation map). Attention has to be given to the slab-origin waste 

distribution. The map is influenced (on the South side) by the effect of higher level slab waste falling 

over lower slab levels. This is clearly seen on 200sec and 300sec maps that shows no wastes on the 

middle area. As slabs were divided into south, middle and north sections, it is only after the collapse 

of all slabs in the south that the slab waste from the middle section start falling to lower levels. The 

waste slides down to the south and spills from the lowest level to land. Similarly, slab waste start 

falling on the north side of the north slab (see 500sec map). This graph also reveals that a sortability 

strategy can be aligned with the demolition times (for instance, through the implementation of 

beginning or end of the working day collection regimes). 

[INSERT FIGURE 7 HERE] 

Figure 7. Waste distribution map per element category (scenario 1: fixed)] 

Information about waste purity is essential for demolition planning, given the importance of waste 

sortability for increased reuse. In this respect, a purity map was produced based on the location and 

volume of waste generated for each element (Figure 9, Equation 2). Figure 9 shows the results in a 

unit grid of 5x5m and the volume rate per waste type is plotted on the centre of the grid. The centre 

part of the building shows a high value of purity, but the value declines as it approaches the location 

of the columns and beams. The purity level stays at high level because the case building has the 

same floor design for each level. For more complex building designs, increased purity and sortability 



 

will be the result of a waste transportation plan based on waste distribution time-lapse change and on-

site features as mentioned above. 

[INSERT FIGURE 8 HERE] 

Figure 8. Impact conversion flow with waste generation data 

𝑃𝑢𝑛𝑖𝑡(𝑥,𝑦) =
∑ 𝑉𝑖{𝑖|𝑒𝑐𝑖 = 𝑒𝑐𝑀𝑢𝑛𝑖𝑡(𝑥,𝑦)

, 𝐴𝑖 ∈ 𝑢𝑛𝑖𝑡(𝑥, 𝑦)}

∑ 𝑉𝑖 {𝑖|𝐴𝑖 ∈ 𝑢𝑛𝑖𝑡(𝑥, 𝑦)}
 

where Punit: Purity of collected waste in target unit area. 

Equation 2. Purity of collected waste in target unit area 

Further analysis of Figure 9 shows that the north waste purity levels reduces after 400sec because of 

the demolition of the column in the same area. In this case, demolition should be halted temporarily at 

400sec and the waste recovered before the remaining building element gets mixed with other types of 

waste. Even after the whole demolition is complete, waste can be recovered with high purity if 

extracted locally. The graphs representing different grids (Figure 9 bottom) show that as purity 

increases as grid size decreases. Although time-consuming, it is feasible to recover waste in small 

scale by manual labour or by small vehicles in small areas where treatment is critical. In this respect, 

planning should be considered along with the volume of waste generated so to maintain the onsite 

work productivity. 

[INSERT FIGURE 9 HERE] 

Figure 9. Change of waste purity map (scenario 1: fixed) 

Other aspects related to sortability mentioned in the literature include barriers to the implementation of 

rapid site clearance as impacted by heterogeneity of the debris (i.e. different sizes, sometimes with 

more than one material), additional management capacity to resolve logistics, health and safety, 

storage, etc. These have not yet been studied in this research, but constitute the next steps of the 

research. 

6 Conclusions and future work 

The 4D evaluation method presented in this research can contribute to more effective and efficient 

demolition projects. From the machine journey and treatment volume, users can simply modify 

demolition sequences, the number and types of machines to be applied in the projects, while waste 

generation and classification data is described in a dynamic time-lapse process. Waste recovery 

strategies and site risk assessment can be informed by the simulation with the additional benefit of a 

4D visual aid. With the simultaneous analysis of time and efficiency, users can count on this model as 

the decision-making supporting tool.  
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While there is very little relationship between modelled waste generation and waste generated on site, 

demolition modelling can help direct professionals in the right direction to make informed decisions. 

The science about waste sortability is still embryonic. While the physics of demolition methods is 

unknown, we now know that there is a relationship and it is possible to plan demolition based on the 

level of sortability and reuse that each demolition approach has. This process can be used to inform 

new policies related to demolition practice. 

The relationship model between building types and sortability (which is also related to building size 

and complexity in terms of sub-systems) in this research is still developing. In this respect, practice 

will have to wait for a well-established science to emerge and a series of equations to be developed. 

However, the system presented in this research can provide a practical classification for building 

demolition strategies from ‘highly inefficient’ to ‘much improved’.  

Our results show that by sorting the different mixtures of waste along the time axis, one can obtain a 

level of information about waste purity that has never been possible to evaluate using conventional 

static approaches (e.g. waste purity evaluation). In the case of a contaminated building, this function 

can potentially help to minimize the propagation of contaminants and the exposure of workers to 

them, thus also improving the health and safety of workers. Information about demolition waste can 

be taken into account by constructors so they can better recycle materials in new construction 

projects. In turn, this enhances the material flow from demolition projects to construction projects, 

helping to contribute to a circular economy. 

The way forward for further research relates to better data accuracy. In order to recreate an accurate 

demolition behaviour, simulation accuracy and rationality need to become more robust. For example, 

the collision for each part of elements must be decided from the comparison between the material 

strength and the collision impact, instead of a grid. For the rationality of the demolition process, more 

scenarios of actual data of demolition implementation needs to be developed and incorporated within 

the tool so that the development of demolition plans is more realistic and accurate. Furthermore, 

machine efficiency can only be assessed through BGE simulation time consumption. This should be 

converted to on-site implementation time with the actual data of machine movement (e.g. running and 

tuning speed, bloom movement, etc.) so that the machine use can be evaluated by cost, CO2 

emissions and other impact factors. This would require comprehensive data collection from 

construction sites to establish an accurate information base. Increase model accuracy will lead to 

increased predictability of demolition results. Moreover, it also enables a better and more accurate 

understanding of different demolition strategies and its efficiency, thus unlocking potential 

improvements within the demolition planning process.  

In spite of the limitations, modelling and evaluating the demolition process and its impact on material 

waste recovery with a time dimension is novel. The comparative analysis of quantitative data allows 

demolition professionals to find optimal, sustainable demolition solutions and more efficient and safer 



 

implementation on site. It also contributes to a better understanding of the relationship between 

demolition strategy and waste sortability. In this respect, the research represents a significant 

advancement in applied computing for building demolition waste recycling and notably improves the 

quality of information available in the definition of building demolition strategies. 

7 Limitations 

Various limitations were identified during the development of this research including: a) BIM data is 

needed from inception to recreate the demolition project planning and it might not be available for 

existing projects; b) The destruction of objects was restricted to the collision between machine and 

elements, thus excluding element to element collision during fall and impacting on debris’ granularity 

accuracy; c) Machines were operated automatically, thus not including factors such as operator’s 

experience in critical situations such as those related to health and safety within the site; d) Size 

validation has not been investigated and it is the next step for the research. At this stage, the 

validation was restricted to 4D simulation recreating acceptable waste comingle and debris’ 

granularity; and e) The evaluation of the demolition processes was limited to time and needs to be 

expanded to other criteria such as health and safety, cost and labour behaviour. 
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