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ABSTRACT Herein, we report the preparation of one-dimensional TiO2 nanocolumnar films 

grown by plasma-enhanced chemical vapour deposition (PECVD) as the electron selective layer 

(ESL) for perovskite solar devices. Our analysis includes both the impact of the ESL architecture 

(one and three-dimensional morphologies) and the nanocrystalline phase (anatase and amorphous). 

For anatase structures, similar power conversion efficiencies were achieved using as ESL either 

the one-dimensional nanocolumns deposited by PECVD or the classical three-dimensional 

nanoparticle films prepared by spin-coating. However, lower power conversion efficiencies and 

different optoelectronic properties were found for perovskite devices based on amorphous one-

dimensional films as ESL. The use of amorphous TiO2 as electron selective contact produces a 

bump in the reverse scan of the current-voltage curve as well as an additional electronic signal, 

detected by impedance spectroscopy (IS) measurements. The dependence of this additional signal 

on the optical excitation wavelength used in the IS experiments suggests that it stems from an 

interfacial process. Calculations using a drift-diffusion model which explicitly considers the 

selective contacts reproduces qualitatively the main features observed experimentally. From these 

calculations, it is inferred that the performance of the device with the amorphous contact is 

dominated by surface recombination, which induces a lower short-circuit photocurrent and more 

hysteresis, while not modifying significantly the open-circuit photovoltage. Our results 

demonstrate that for a solar cell in which the contact is working properly the open-circuit 

photovoltage is mainly determined by bulk recombination, whereas the introduction of a “bad 

contact” shifts the balance to surface recombination. 
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INTRODUCTION 

Due to the excellent optoelectronic properties of hybrid organic-inorganic metal halide perovskite 

semiconductors,1–4 the photovoltaic field has undergone rapid progress over the last years due to 

the interest that employing these materials as active layers in solar cells has received from both the 

scientific and industrial community. Currently, the certified power conversion efficiency of 

perovskite solar cells (22.7%)5 is comparable to the photovoltaic performance of other thin-film 

photovoltaic technologies based on Si, CdTe and GaAs. This remarkable development has been 

possible due to the advances in terms of device engineering, material design and 

deposition/synthesis methods.6–9  

In the most common PSC architecture, a mesoporous TiO2 nanoparticle film deposited onto a 

compact TiO2 layer and a Spiro-OMeTAD layer are employed as electron and hole selective 

materials, respectively. Under illumination, photogenerated electron-hole pairs in the perovskite 

layer separate into electrons and holes due to the high dielectric constant screening their mutual 

attraction, allowing migration and diffusion to drive the charge extraction to electron and hole 

selective layer (ESL, HSL). TiO2 is an especially suited material for electron injection due to its 

conduction band energy level. However, a large range of materials has also been employed as 

photoanodes or scaffolds (Al2O3, ZnO, ZrO2, Zn2SnO4).10–19 As in dye-sensitized solar cells20–23 or 

in photoelectrochemical applications,24,25 one-dimensional nanostructures (nanocolumns, 

nanorods, nanofibers, nanowires) have also been used as ESLs in PSCs. These vertically-aligned 

nanostructures have less grain boundaries than the classical three-dimensional nanoparticle films 

and consequently, as  was theoretically demonstrated, show a faster electron transport and reduced 

charge recombination.26 
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Different wet chemical methods have been employed to synthesize these one-dimensional 

nanostructures: electrochemical anodization, electrodeposition or sol-gel synthesis. However, 

other techniques such as chemical vapour deposition, atomic layer deposition or vapour phase 

deposition give rise to structures with better electronic properties, lower impurities and higher 

crystallinity.27–32 These methods make it possible to synthesize one-dimensional nanostructures 

with a more homogeneous and reproducible character even in a large area, which is especially 

interesting for its industrial implementation.  

The focus of this work is a fundamental study of the morphology of the TiO2/perovskite interface 

as regards its impact on the performance of the solar cell device. Its purpose is twofold. Firstly, we 

test the performance of the plasma-enhanced chemical vapor deposition (PECVD) technique to 

prepare TiO2 films to be used as ESL in perovskite solar devices. PECVD is a well-stablished 

technique in electronics and microelectronics, solar cells, mechanical engineering and optical 

industries for the fabrication of passive and active components. It provides an environmentally 

friendly (low-power and precursor consumption and solvent less approach) for the manufacturing 

in large scale with a finely control in the composition (including doping), microstructure and 

structure of thin films, coatings and interfaces in multilayer systems.28–34 Although this 

methodology has been traditionally applied in the deposition of compact layers, during the last 

years, our group has settled the conditions for the fabrication of tailored porous and nanostructured 

TiO2 thin films at low temperature (ranging from RT for amorphous to 250oC for anatase 

crystalline layers).34 

Secondly, we aim to establish the effect of the nature of the ESL, in terms on morphology and 

crystallinity, on the photovoltaic performance. In particular, we investigate how bulk or contact-
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induced recombination routes do influence the IV curve and the hysteretic behavior. The locus and 

nature of recombination in perovskite solar cells have been discussed thoroughly in the recent 

literature.35–38 The origin of hysteresis in the IV curve has also been object of intense debate.39–44 

In this work we investigate the impact of the different nanostructures employed as ESL on the 

optoelectronic properties and the hysteresis. We have measured IV curves and run 

photoluminescence and impedance spectroscopy experiments. The latter are carried out with two 

excitation wavelengths, characterized by different optical penetration lengths in the perovskite 

layer, so that surface effects can be detected. In addition, drift-diffusion modelling, with explicit 

consideration of the ion/electron dynamics and the presence of the selective contacts, is used to 

generate IV curves.  

In particular, we have found that anatase structures (both one and three-dimensional films) show 

exactly the same impedance response and similar power conversion efficiencies. In contrast, 

devices based on amorphous nanocolumnar films as ESL show an additional electronic process 

that appears to be related to interfacial processes and a more remarkable hysteresis. Drift-diffusion 

modelling indicates that a situation in which bulk recombination dominates explains the first set 

of experiments. However, the introduction of a more important contribution of the recombination 

at the TiO2/perovskite interface leads to lower values of the short-circuit photocurrent and more 

hysteresis. This prediction strongly suggest that this is the situation actually taking place when an 

amorphous TiO2 contact is used 

 

EXPERIMENTAL SECTION  

Fabrication of Perovskite Solar Devices 
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Perovskite solar cells were fabricated on FTO-coated glass (Pilkington–TEC15) patterned by laser 

etching. The substrates were cleaned using Hellmanex® solution and rinsed with deionized water 

and ethanol. Followed this they were ultrasonicated in 2-propanol and dried by using compressed 

air. Different methodologies were employed to prepare the different ETLs. For the standard 

configuration, a mesoporous layer of TiO2 was deposited on top of a TiO2 compact layer. The TiO2 

blocking layer was deposited onto the substrates by spray pyrolysis at 450 °C, using a titanium 

diisopropoxide bis(acetylacetonate) solution (75% in 2-propanol, Sigma Aldrich) diluted in 

ethanol (1:3.5, v/v), with oxygen as carrier gas. The TiO2 compact layer was then kept at 450 °C 

for 30 min for the formation of anatase phase. Once the samples achieve room temperature, a TiO2 

mesoporous layer was deposited by spin coating at 2000 rpm during 10 s using a TiO2 paste 

(Dyesol, 30NRD) diluted in ethanol (1:5, weight ratio). After drying at 100 °C for 10 min, the TiO2 

mesoporous layer was heated at 500 °C for 30 min and later cooled to room temperature. The TiO2 

nanocolumns deposition (anatase phase and amorphous) was carried out in a microwave electron 

cyclotron resonance (MW-ECR) PECVD reactor working in downstream configuration. The 

utilized plasma source was of the SLAN type operated with a power of 400 W with O2 as plasma 

gas at a pressure of 5 × 10-3 Torr. Titanium tetraisopropoxide, Ti(OC3H7)4 (TTIP), was used as 

precursor bubbled to the plasma chamber by means of an O2 flow. We previously applied this 

configuration for the deposition of TiO2 thin films as described in detail elsewhere.33,34 The 

deposition at room temperature produces the formation of one-dimensional amorphous TiO2 

nanocolumns, meanwhile heating of the substrates during deposition up to 300 ºC provides the 

crystallization to the anatase phase.34 The amorphous TiO2 nanocolumnar samples were deposited 

onto a 40 nm compact TiO2 thin film fabricated by electron-beam evaporation using TiO2 pellets 

as target material. Deposition was carried out under a pressure of 5 10-4 mbar by flowing O2 into 
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the chamber to obtain a full oxidation to TiO2. These TiO2 layers deposited at room temperature 

were amorphous and the crystallization to the anatase phase was accomplished by annealing the 

samples in air at a temperature of 450ºC for 1 hour. This compact anatase films was deposited to 

provide a crystalline layer that facilitates the electron transport at the interface with the FTO.  

For all the device configurations, a pure methylammonium (MAPbI3) layer was deposited as active 

layer. The precursor solution was prepared to be deposited by spin coating under environmental 

humidity conditions (RH » 50%) using a methodology recently reported.45 According to this paper, 

the perovskite precursor solution was obtained from reacting DMF/DMSO (1:0.095 v/v) solution 

containing MAI and PbI2 (1:1 mol %) and DMF/DMSO (1:0.2 v/v) solution with a volume ratio 

of 1:0.45. The perovskite precursor solution (50 μL) was spin-coated in a one-step setup at 4000 

rpm for 50 s. During this step, DMF is selectively washed with non-polar diethyl ether just before 

the white solid begins to crystallize in the substrate. Afterward the substrate was annealed at 100 

°C for 3 min. Spiro-OMeTAD was subsequently deposited as hole selective layer (HSL) by 

dissolving 72.3 mg in 1 mL of chlorobenzene as well as 17.5 μL of a lithium bis 

(trifluoromethylsulphonyl)imide (LiTFSI) stock solution (520 mg of LiTFSI in 1mL of 

acetonitrile), and 28.8 μL of 4-tert-butylpyridine. The HTM solution was spin coated at 4000 rpm 

for 30 s. Finally, 60 nm of gold was deposited as a metallic contact by thermal evaporation under 

a vacuum level between 1·10-6 and 1·10-5 torr.  

Characterization of Films and Devices 

Current-voltage characteristics of the devices were obtained using a solar simulator (ABET-

Sun2000) under 100mW/cm2 illumination with AM 1.5G filter. The light intensity was recorded 
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using a reference mono-crystalline silicon solar cell with temperature output (ORIEL, 91150). A 

metal mask was used to define an active area of 0.16 cm2. The current-voltage characteristics were 

determined by applying an external potential bias to the cell and measuring the photocurrent using 

an Autolab/PGSTAT302N potentiostat. The current-voltage characteristics were measured with a 

scan rate of 100 mV/s and a sweep delay of 20s. 

The illumination for the different Impedance Spectroscopy (IS) measurements was provided by 

white, red (λ = 635 nm) and blue (λ = 465 nm) LEDs and over a wide range of DC light intensities. 

This allows for probing the devices at different positions of the Fermi level in the semiconductor 

and for different optical generation profiles. A response analyser module (PGSTAT302N/FRA2, 

Autolab) was utilized to measure the frequency response of the devices. To avoid voltage drop due 

to series resistance, IS measurements were performed at the open circuit potential. The Fermi level 

(related to the open-circuit voltage) was fixed by the DC illumination intensity. A 20mV 

perturbation in the 106-10-2 Hz range was utilized to obtain the spectra. To compensate for the 

different response under blue and red-light due to the different optical absorption, all parameters 

are monitored and plotted as a function of the open-circuit potential generated by each type of bias 

light. The NOVA 1.7 software was used to generate IS data. Z-view equivalent circuit modelling 

software (Scribner) was used to fit the spectra.  

For the structural characterization, scanning electron microscope (SEM) images of the samples 

were performed using a Zeiss GeminiSEM-300 microscope working at 2 kV. X-ray diffractograms 

were recorded on a Rigaku diffractometer using CuKα source. The measurements were performed 

at grazing angle geometry. The samples were mounted without any further modification and the 

divergence slit were adjusted to the dimension of the films. The scan range of 10°- 60° was selected 
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with an acquisition time of 3 degree/min. A baseline correction was applied to the diffractograms 

to compensate for the noise arising from the substrate. For optical characterization, UV-Visible 

absorption spectra were recorded by using a Cary 100 UV-Vis spectrophotometer (Agilent) in the 

range of 400-850 nm. Steady state photoluminescence measurements were performed using a 

Hitachi, F-7000 Fluorescence spectrophotometer.  

Drift-diffusion device modelling  

The IV curves have been numerically simulated using a fully-coupled drift-diffusion model of 

charge carrier and halide ion dynamics in a perovskite solar cell. Our simulated device consists of 

a TiO2 electron selective layer, MAPbI3 absorber layer and spiro-OMeTAD hole selective layer. 

Electrons are constrained to the perovskite and TiO2 layers, while holes are constrained to the 

perovskite and spiro-OMeTAD layer. Ion vacancies are constrained to the perovskite. In one 

spatial dimension 𝑥, the behaviour of each species of particle over time 𝑡 is described by the drift-

diffusion equation 

𝜕𝑐
𝜕𝑡 = 𝐷

𝜕
𝜕𝑥 '

𝑞𝑐
𝑘*𝑇

𝜕𝜙
𝜕𝑥 −

𝜕𝑐
𝜕𝑥. + 𝐺 − 𝑅, 

where 𝑐 is the particle density, 𝐷 the diffusion coefficient, 𝑞 the elementary charge, 𝑘* the 

Boltzmann constant, 𝑇 the temperature, 𝜙 the electric potential, 𝐺 net generation rate (sources) 

and 𝑅 the net recombination rate (sinks). The electric potential is found from the Poisson equation 

𝜕3𝜙
𝜕𝑥3 = −

𝜌
𝜀	, 

where 𝜌 is the net charge density and 𝜀 the permittivity of the material. 
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Electrons and holes are generated within the perovskite with a Beer-Lambert profile given by 

𝐺 = 𝐹89𝛼e<=>, 

where 𝐹89 is the flux of photons incident on the device with energy above the bandgap and 𝛼 the 

absorptivity of the perovskite. Recombination within the bulk of the perovskite is calculated using 

a combination of bimolecular (direct relaxation across the bandgap) and trap-assisted Shockley-

Read-Hall (SRH) schemes, given by 

𝐑𝐛𝐮𝐥𝐤 = 𝛃E𝐧𝐩 − 𝐧𝐢𝟐J +
E𝐧𝐩 − 𝐧𝐢𝟐J
𝛕𝐧𝐩 +	𝛕𝐩𝐧

 

where 𝑛 and 𝑝 are the electron and hole densities, 𝜏O and 𝜏8 the SRH pseudolifetimes for electrons 

and holes. The intrinsic carrier density 𝑛P is defined as 

𝑛P = 𝑔R𝑔S exp '−
𝐸W
2𝑘*𝑇

. 

where 𝑔R and 𝑔S are the densities of states in the conduction and valence bands and 𝐸W  the bandgap 

of the perovskite. 

We also allow surface recombination, where a carrier in a transport layer recombines with an 

opposite carrier within the perovskite across the interface. We model this using a purely SRH 

mechanism, given by 

𝑹𝑺 =
𝒏𝒑 − 𝒏𝒊𝟐

𝒑/𝒗𝒏 	+ 𝒏/𝒗𝒑	
, 
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where 𝑣O and 𝑣8 are the recombination velocities at the relevant interface. All parameters used in 

the model are given in Table S1 in the Supporting Information. The only parameter changed 

between the two JV scans is the hole recombination velocity at the TiO2/MAPbI3 interface, which 

we increase from 10 m/s for Np-Anatase TiO2 to 1000 m/s for the Nc-amorphous TiO2.  

We use a finite difference scheme for spatial discretisation, and integrate over time using the 

MATLAB ode15s (The MathWorks Inc., Natick, MA, USA) solver adapted for quadruple-

precision arithmetic using the Advanpix Multiprecision Computing Toolbox. (Advanpix LLC, 

Yokohama, Japan). A full description of the method is detailed in Courtier et al.46 IV curves at 

100 mV/s were simulated by varying the boundary conditions on the Poisson equation at this rate. 

 

 

RESULTS AND DISCUSSION 

To isolate the effect of the nanostructure and nanocrystalline phase of the different TiO2 films, a 

fixed thickness of 200 nm was employed for all the different ETLs studied in this work. Figure 

1A-C gathers cross-section SEM images of the three ETLs showing their corresponding 

characteristic microstructures, i.e., a homogeneous three-dimensional distribution of nanoparticles 

(Np-anatase) and vertical nanocolumns (Nc) for the PECVD thin films. In the case of the Nc-

anatase, the columns are depicted for a feather-like morphology with sharp edges and rough 

surface. Nc-amorphous presents a domed form with the column diameter slightly thinner at the 

interface with the substrate. Figure S1 in the Supporting Information contains X-ray diffraction 

data of these TiO2 films. 
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Figure 1. Cross-section SEM views of the (A) Np-Anatase, (B) Nc-Anatase and (C) Nc-amorphous films 

deposited on silicon wafer. (D) Current-voltage characteristic in reverse scan under 1 sun – AM 1.5 

illumination and (E) cyclic voltammetry using a white-LED as light source (10 mW·cm-2) for the different 

device configurations. A scan rate of 100 mV·s-1 with a poling of 20 s at 1.2V was employed in all three 

cases. 

 

On top of the TiO2 layer, a film of pure methylammonium lead iodide (MAPbI3) was deposited. 

Spiro-OmeTAD was used as hole selective layer in all cases. Figure S2 shows that the quality of 

the perovskite layer and their interface to HTM deposited on top is not affected by the morphology 

of the TiO2, and that there are no pinholes or voids that might compromise the stability of the 

device.47 Figure S3 also shows that the absorption properties of the perovskite films are basically 

unaffected by the morphology of the TiO2 layer. Hence, we can be fairly confident on the fact that 

only the electrical effect of the TiO2/perovskite interface is analysed for each configuration. 

Figure 1D shows the best current-voltage characteristic obtained for the three device 

configurations measured under standard conditions (100 mW·cm-2 – AM 1.5 illumination). In 

particular, average efficiencies of 14.9%, 14.4% were obtained for Np-Anatase, Nc-Anatase 

devices, respectively (see also Figure S4 in the Supporting Information for full statistics details). 
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For Nc-Amorphous devices, the estimation of the efficiency is compromised by the appearance of 

a bump in the 0.6-0.8 voltage range (a lower efficiency is obtained in the forward scan, see Figure 

1E) and therefore only an indicative value can be reported. No significant differences were found 

between the nanoparticle film (JSC: 19.8 mA·cm-2, VOC: 1020 mV, Fill Factor: 0.73) and the 

nanocolumnar film (JSC: 19.4 mA·cm-2, VOC: 1025 mV, Fill Factor: 0.73) as long as they have the 

same anatase TiO2 crystalline phase (see Figure S1 for the comparison of the XRD diagrams). In 

contrast, significant changes were observed when the nanocolumnar layer employed as ETL in 

perovskite devices is amorphous and does not show any crystalline phase (Figure S1, Figure S4). 

In spite of showing a similar VOC (1020 mV) to the ones obtained for Np-Anatase and Nc-Anatase 

devices (Table S1, Figure 1D), lower JSC values (15.9 mA·cm-2) were recorded and a prominent 

bump in the vicinity of the maximum power point is clearly visible. We note that the same scan 

rate of 100 mV/s is used for all devices. Similar behaviour has been found in both perovskite solar 

cells and dye-sensitized solar cells with strong hysteresis.36,37 In line with these results, as shown 

in Figure 1E, when the current-voltage characteristics were measured by cyclic voltammetry, Nc-

Amorphous devices show strong hysteresis between reverse and forward scans in contrast to the 

Np-Anatase and Nc-Anatase devices, where the hysteresis is less significant. In particular, 

hysteresis indexes of 0.11, 0.13 and 0.61 were calculated for Np-anatase, Nc-Anatase and Np-

Amorphous, respectively. 
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Figure 2. Steady state photoluminescence spectra of perovskite deposited on the top of the different ETLs. Al2O3 film 

was employed as reference. The excitation wavelength was 532 nm. 

To investigate the influence of the different TiO2 films employed as ETLs on the charge 

extraction/separation efficiency, steady-state photoluminescence (PL) spectra of the perovskite 

films deposited on the top of each ETL were measured (Figure 2). In addition, a mesoporous Al2O3 

nanoparticle film was also employed as reference due to its conduction band position and, 

consequently, its inability to accept electrons from the perovskite layer.10 In line with a previous 

work,48 using an excitation wavelength of 532 nm, PL peaks appear in the range of 785–815 nm 

with an emission maximum at 804 nm. The PL signal arises from radiative recombination 

processes within the perovskite material and therefore a faster electron injection from the 

perovskite film to the ETL results in a reduction of the PL signal. It is important to remember that 

the optical and structural properties of the perovskite film are not affected by the nature of the 

TiO2 layer and therefore by means of the PL experiment we probe the quality of the interface in 

connection to the transfer of electrons towards the selective layer only. 

The higher PL intensity was obtained when Al2O3 film was employed as ETL as a consequence of 

no electron extraction. Faster charge extraction was observed for the rest of ETLs, in the following 
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sequence: Np-Anatase > Nc-Anatase > Nc-Amorphous, with only a slight difference between the 

two anatase TiO2 layers. The worse charge extraction efficiency of Nc-Amorphous layers (Figure 

2) could explain its lower JSC (Figure 1D, Table S1). However, in relative terms the 

photoluminescence difference between the three TiO2 layers is too small to have an impact on 

performance. Interfacial charge accumulation has been linked to hysteretic behaviour (Figure 

1E).39,41 
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Figure 3. (A) Nyquist impedance spectra, (B) impedance frequency plot of the imaginary part (Z”) and (C) frequency-

dependent apparent capacitance obtained for the different device configurations under open-circuit conditions and 

under white light illumination. The data were obtained for a photovoltage of 0.98 V at constant illumination. 

 

To further analyze the impact of the different TiO2 layers employed as ETLs on the electronic 

dynamics that governs the photovoltaic performance, impedance spectroscopy measurements at 

open circuit were performed. In Figure 3, the impedance response in the form of Nyquist, 

frequency-dependent imaginary impedance Z” and capacitance plots are reported.  

As shown Figure 3A, the impedance spectra obtained for the different devices were characterized 

by two signals (arcs). The signal that appears at low frequencies (LF) has been attributed to ionic 

motion and charge accumulation at the contacts.39,49 The high-frequency (HF) signal is likely to 

come mainly from losses due to bulk recombination in the perovskite layer,50–53 although as many 

authors have proposed, the recombination process also affects the LF signal.52,54,55 These two arcs 

(Figure 3A) will only be well-distinguished when the peak maxima on the impedance frequency 

plots (Figure 3B) lie separated enough in the frequency scale. In particular, for both Np-Anatase 

and Nc-Anatase the HF and LF peaks appear, under an applied potential closer to 1-sun VOC (» 980 

mV), at 105 and 0.1Hz, respectively. In contrast, Nc-Amorphous devices show the HF and LF 

peaks at 104 and 10 Hz, respectively.  

The frequency-dependent apparent capacitance for the different devices is shown in Figure 3C. 

Different polarization processes were attributed to each plateau.42,49,52,56 The HF component is 

determined by the dielectric polarization of the perovskite in the bulk, whereas the LF plateau has 
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been associated with the ETL/perovskite interface charge accumulation. It has been claimed that 

the hysteresis found in the current-voltage characteristics is associated with higher values of LF 

capacitance.39,42 However, in our case Nc-Amorphous devices show the most pronounced hysteretic 

behaviour (Figure 1E) in spite of showing lower LF capacitance values (»10-4 F) than in Np-

Anatase and Nc-Anatase (»10-2 F). Furthermore, a new polarization process appears at mid 

frequencies for Nc-Amorphous devices. This new feature appears in the range of 103 – 104 Hz 

(Figure 3C), in the same range where the HF peak for Nc-Amorphous devices was found (Figure 

3B). Thus, the presence of two time constants close in frequencies could explain the non-

symmetric shape of the HF semicircle (Figure 3A) and the HF peak in the impedance frequency 

plots (Figure 3B) of Nc-Amorphous devices. A similar feature has previously been found for 

degraded perovskite devices57 as well as for cells with a non-optimized contact or when an 

insulating SiO2 scaffold is placed on top of the TiO2 selective layer.58  

To better distinguish the time constants of the different processes found in the HF region of Nc-

Amorphous devices, we have plotted the impedance phase shift versus frequency (Bode plot, 

Figure 4A). In contrast to Figure 3B, two peaks appear in the HF range (HF1 » 104 Hz and HF2 

»105 Hz), under an applied potential closer to 1-sun VOC for Nc-Amorphous devices. Interestingly 

enough one of them (HF1) coincides in frequencies with the HF peak of Np-Anatase and Nc-

Anatase devices. Considering the HF region only, Figure 4B shows the associated time constants 

(t) estimated as t = 1/2pf, where f is the frequency peak maximum directly extracted from the 

phase Bode plot (Figure 4A). As hinted above, the HF component can be associated with charge 

recombination processes and, consequently, the HF time constant could be understood as a 

measure of the recombination rate of photogenerated charges.51,59  
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Figure 4. (A) Impedance frequency plot of phase shift, (B) HF time constants extracted as 1/2pf for the different 

device configurations under open-circuit conditions and under white light illumination. (C) HF resistance as extracted 

from fittings of the impedance spectra using [Rs-(R1CPE1)-(R2CPE2)] as equivalent circuit. Solid and open symbols 

correspond to the two time constants observed in the amorphous spectra in the HF region. 

 

From the analysis of Figure 4, we can draw the following conclusions. Firstly, Np-Anatase and 

Nc-Anatase devices show the same basic recombination rate. Secondly, Nc-Amorphous devices 

exhibit two different kinetic processes in the high frequency region. As mentioned, the HF1 time 

constant, coincides remarkably well with the single HF time constant (10-6 – 10-5 s) detected in 

the anatase films and attributed to charge recombination.  In contrast, the HF2 time constant was 

found in the range of 10-5 – 10-4 s with a different slope with respect to photopotential. Figure 4C 

shows the HF resistances as a function of the open-circuit photopotential extracted by fitting the 

impedance response to a simple [Rs-(R1CPE1)-(R2CPE2)] equivalent circuit. In particular,  the HF1 

recombination resistance is found to vary exponentially with the open-circuit potential as predicted 

by the following equation37,38 

𝑅abR = cdefgh
di

j
<k
= 𝑅llexp c

<mni
opq

j   (1) 

where Jrec is the recombination current, kB is the Boltzmann constant, T is the absolute temperature, 

q is the elementary charge, R00 is the resistance at zero potential and b  is the transfer or 

recombination parameter. As shown in Figure 4C, the HF1 resistance found for the different device 

configuration yields b parameter values around 0.56, very similar as the values obtained 

previously.38,60 The HF2 time resistance is also found to fit to Eq. (1) although with a different b 
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parameter value of 0.72. This suggest a different mechanism, possibly recombination, for Nc-

Amorphous devices. 

 

 

 

 

 

 

 

 

 

Figure 5. (A) Impedance frequency plot of phase shift and (B) HF time constants extracted as 

1/2pf for Nc-Amorphous devices at open-circuit conditions and using red and blue light 

illumination 

 

To cast light on the origin of HF time constants found for Nc-Amorphous devices, impedance 

spectroscopy was performed using two different illumination wavelengths. Considering the 

absorption spectra of perovskite devices (Figure S3) and the Beer-Lambert law, a different charge 
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generation profile inside perovskite layer will be produced using (l = 465 nm) blue and (l = 635 

nm) red illuminations due to the different spatial penetration of the optical excitation 

wavelengths.61 In particular, a higher concentration of photogenerated charges is expected at the 

ETL/perovskite interface under blue illumination, whereas a more homogeneous charge generation 

profile would be created under red illumination. A similar methodology was previously employed 

to distinguish interfacial and bulk processes.57,62 Figure 5 shows the impedance phase shift versus 

frequency and time constant of the HF component extracted as t = 1/2pf for Nc-Amorphous 

devices using blue and red illuminations. Figure 5A brings to light the importance of where the 

charge has been photogenerated as shown by the different impedance responses obtained under 

the different optical excitation wavelengths. As shown in Figure 5B, the blue and red HF1 time 

constants coincide quite well in the studied voltage range. Similar results were found for Np-

Anatase devices when impedance spectroscopy was performed under blue and red illuminations 

(Figure S5). However, the time constant HF2 does not only show a visible difference between the 

two time constants, but also a different slope. In particular, slower kinetics are observed when blue 

illumination was used as excitation wavelength. This behavior is consistent with the larger 

resistance observed in the Nyquist plot under blue illumination (Figure S6). 

It is relevant to elucidate what is the physical origin of the additional HF2 time constant observed 

in the Nc-Amorphous devices and the strong hysteresis with a marked bump that it is observed in 

the IV curve. As noted above, the HF2 signal shows a different value when the impedance 

experiment is done at a situation where more carriers are photogenerated close to the front contact. 

All this evidence points to an interfacial process as the cause of the signal. The fact that amorphous 

contacts generate much less current at short-circuit suggests also that surface recombination may 

be having an important role in this case.  
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As regards recombination, two main recombination mechanisms of photogenerated charges have 

been extensively discussed in the literature. On the one hand, a recombination process mediated 

via a trap-limited mechanism in the bulk of the perovskites.37,44,60,62 And, on the other hand, a 

surface-mediated recombination at the selective contacts.52,63,64 However, it is possible that the both 

recombination mechanisms could act together if the selective layer are characterized by a low 

charge extraction efficiency, as it is the case of Nc-amorphous layers studied here. As it was 

previously reported,62 the coincidence of the HF1 time constants obtained under blue and red 

illuminations, its time scale and the values of ideality factor (m ≈ 1.8) extracted from resistance 

versus potential plot (Figure 4C), indicate that this signal corresponds to recombination in the bulk 

of the perovskite layer via a trap-limited mechanism.35,60,62,65 In contrast, we attribute the different 

behaviour found for the HF2 time constants under blue and red illumination along with the ideality 

factor closer to 1 (m ≈ 1.4) to a surface-mediated recombination mechanism or, alternatively, to a 

slow transport process. In this respect, it is important to bear in mind that impedance time constants 

are not recombination “lifetimes”, especially for perovskite solar cells.47,48,50  

To confirm this interpretation, drift-diffusion modelling has been performed to simulate the IV 

curve for different relative values of surface versus bulk recombination. In these calculations the 

electron-hole dynamics, including transport and recombination, are coupled to the motion of iodide 

vacancies within the perovskite layer (see details above).  In Figure 6 results for the IV curves for 

two cases, high and low surface recombination at the TiO2/perovskite interface, are shown. 

The numerical simulation shows that a high value of the surface recombination rate does not only 

reduces the short-circuit photocurrent without affecting the VOC, but also induces more hysteresis 

in the voltage scan. This is perfectly in line with the experimental observations (Figure 1D, Figure 
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S4). Furthermore, the critical impact of the surface recombination term explains the appearance of 

the additional time constant in the impedance spectrum for the device with Nc-amorphous contact, 

as well its dependence on the excitation wavelength.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. (A) Simulated IV curves for reverse (solid lines) and forward (dashed lines) when either high or low surface 

recombination rates at the TiO2/perovskite interface are considered in the calculations. The rest of the parameters are 
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kept fixed. (B, C) Relative contributions to the total current: extracted current (green), bulk recombination (yellow), 

surface recombination at the TiO2 interface (blue) and surface recombination at the spiro interface (red). 

In summary, considering the same behaviour obtained for the fastest recombination rate extracted 

from impedance spectroscopy (Figure 4B and Figure 5B) and the same VOC values (1020 mV) 

obtained from the current-voltage characteristics (Figure 1D and Figure S4) for all the different 

device configurations, trap-limited recombination in the bulk of the perovskites seems to be the 

main candidate to explain the open-circuit photopotential of perovskite devices, at least for 

anatase-base contacts. This is in line with recent reports with state-of-the art solar cells.44,60,62 

However, an additional process appears for Nc-amorphous contacts, which also exhibit a bump in 

the current-voltage characteristics and strong hysteresis. We attribute this additional process and 

the IV curve shape to surface recombination at the TiO2/perovskite interface. It also important to 

state that at open-circuit, for Nc-amorphous contacts, bulk recombination still amounts to up to a 

third of the surface recombination, which explains the presence of the HF1 signal in the impedance 

spectrum in these devices. 

CONCLUSIONS 

In this work, we have analysed the impact of the structural and crystalline properties of different 

TiO2 films employed as ETL on the photovoltaic and optoelectronic behaviour of perovskite solar 

devices. In particular, we have investigated the effect of ETLs based on three-dimensional 

nanoparticle and one-dimensional nanocolumns films deposited by spin-coating method and 

plasma-enhanced chemical vapour deposition, respectively. Additionally, we have analysed the 

effect of the nanocrystalline phase of the ETL by comparing anatase and amorphous TiO2 

nanocolumnar films.  



 25 

Two main conclusions can be extracted from this work. On the one hand, the similar power 

conversion efficiency (»14.7%) and optoelectronic behaviour obtained for the both anatase TiO2 

films (three and one-dimensional structure) employed as ETL bring to light the capacity to prepare 

well-performing one-dimensional photoanode by plasma-enhanced chemical vapour deposition 

technique, which is a very simple, reliable and industrially scalable and low-temperature 

deposition method. Secondly, regardless of the structural and crystalline properties of the different 

TiO2 films employed as ETL, all devices show the same open-circuit photopotential although quite 

different short-circuit photocurrent. This behaviour can be explained by two different charge 

recombination mechanisms present in devices based on amorphous nanocolumnar films as ETL. 

The results extracted from impedance analysis and drift-diffusion modelling reveal that the 

recombination mechanism that determines the open-circuit photopotential is governed by a process 

mediated via a trap-limited in the bulk of the perovskite. However, the second charge 

recombination mechanism found for amorphous nanocolumnar devices suggest that surface-

mediated recombination at the ETL/perovskite interface determines the short-circuit photocurrent 

and the hysteresis.  
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