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Solving a Large-Scale Crew Pairing Problem

Güneş Erdoğan ∗ Mohamed Haouari † Melda Örmeci Matoglu ‡

Okan Örsan Özener §

August 29, 2014

Abstract

Airline companies seek to solve the problem of determining an assignment of crews
to a pre-determined flight schedule with minimum total cost, called the Crew Pairing

Problem (CPP). Most of the existing studies focus on the CPP of North American
airlines, which widely differs from that of most European airline companies in terms of
the objective function, the flight structure, and the planning horizon. In this study, we
develop an optimization-driven heuristic algorithm that can efficiently handle large-
scale instances of the CPP that must be solved on a monthly basis. We perform
computational experiments using flight schedules of a European airline company to
test the performance of the solution method. Our computational results demonstrate
that our algorithm is able to provide high quality solutions to monthly instances with
up to 27,000 flight legs.
Keywords: crew pairing problem, set partitioning, metaheuristic, monthly problem

1 Introduction

To increase the efficiency of their operations, airlines use optimization techniques for
tackling their many interdependent and challenging planning problems. Each of these
problems has its own considerations, complexity, and objectives. In practice, the
planning processes start with the construction of the flight schedule, a list of flights
to be operated in a period of time (usually, 4 to 6 months). This schedule usually
depends on the expected demand for the flight segments as well as the fleet size of the
airline. Next, aircraft are assigned to the scheduled flight legs based on their types
and capacities with the objective of maximizing the net profit, which is called the
Fleet Assignment Problem. The next step is to solve the aircraft routing problem
where maintenance requirements of the aircraft are considered. After that, the airline
must assign cockpit and cabin crew for each of the scheduled flights, where the crew
scheduling problems arise. Typically a particular cockpit crew is qualified to fly aircraft
belonging to only one family, hence the crew scheduling problem can be decomposed
for different fleet types. The objective of the crew scheduling problem is to minimize
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the crew related costs. An intermediate, but crucial, stage before building individual
crew schedules requires solving the so-called Crew Pairing Problem (CPP). In this
context, a pairing refers to a sequence of duty periods (i.e. single crew workdays)
that starts from and end at the crew base. The feasibility of crew duties and pairings
depends on a set of complex rules imposed by government, international organizations
(e.g. International Civil Aviation Organization), labor unions, and airline companies
themselves. Provided that there exists tens of thousands of flights in a month and
thousands of cockpit and cabin crews, even determining a feasible crew pairing is a
daunting task.

In this paper, we investigate novel solution approaches for the CPP. The relevance
of the CPP stems from the fact that crew related costs constitute a major chunk of
cost (second next to fuel costs) for commercial airlines (Gopalakrishnan and Johnson,
2005). As fuel price is usually uncontrollable, crew cost is the biggest operating cost
item on which an airline company has control. Therefore, reducing the crew costs may
offer significant savings for a commercial airline company, particularly under intense
competition. The CPP is a highly complex and large-scale optimization problem as
it often involves thousands of flights and crews, and requires advanced and efficient
optimization techniques to solve. During the last three decades, the CPP has been
intensely investigated in the operations research literature and often used as a testbed
for assessing cutting-edge optimization techniques including interior point methods,
sophisticated branch-and-price algorithms, and decomposition methods (Makri and
Klabjan 2004, Subramanian and Sherali 2008, Sherali et al. 2010). However, a glaring
fact is that a great majority of these research efforts address variants of the CPP that
arise at North-American airlines.

In the sequel, we focus on the CPP arising at a European Airline Company (here-
after, referred to as EAC). Unlike most previous related contributions published so
far that focus on daily CPP variants, we investigate in this study a monthly variant.
Actually, the CPP that is investigated in the present paper significantly differs from
most of the CPPs that were studied in the literature in three important aspects: (i)
schedule periodicity, (ii) flight network structure, and (iii) cost structure. These dis-
tinctive features are detailed in Section 2. Consequently, the resulting CPP monthly
instances that we address are typically huge as they usually involve tens of thousands
of flights, while the largest solved CPP instances that were reported in the literature
barely exceed 1,000 flights. In this paper, we make the following contributions:

• We describe a novel solution methodology that aims at solving a large-scale
monthly CPP arising at a major European airline. The proposed solution ap-
proach is based on a combination of several optimization paradigms: large neigh-
borhood search, exact enumerative algorithms, and integer programming.

• We report the results of extensive computational experiments on a large set of
real data with up to 27,000 flights (in major U.S. airlines the number of daily
flights are typically in the order of 1-2,000). Our results provide evidence that
the proposed approach is highly competitive and delivers multiple high-quality
solutions within an acceptable time limit. Furthermore, the different solutions
provide the decision-maker with the flexibility to choose one which better meets
their operational concerns.

The remainder of the paper is organized as follows. In Section 2, we provide a
detailed description of the problem. In Section 3, we present review of the litera-
ture. In Section 4, we describe the algorithmic expedients of the proposed solution
methodology. Several variants of increasing levels of sophistication will be presented.
In Section 5, we will present the results of our computational experiments. Finally, in
Section 5 we conclude by presenting a summary of our contributions and we outline
some directions for future research.
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2 Problem description

In this section, we introduce the relevant terminology, and provide some specific fea-
tures of the investigated problem while highlighting major differences with CPP vari-
ants that are often studied in the literature. We will also present a formal problem
description together with a valid formulation.

2.1 Generalities and terminology

As stated in the Introduction section, airline planning processes start with the Schedule
Generation Problem. This involves the construction of the flight schedule, a list of
flights to be operated in a given time period (usually one to four months). This
schedule usually depends on the expected demand for the flight segments as well as
the fleet size of the airline. Next, aircrafts should be assigned to the scheduled flight
legs based on their types and capacities with the objective of maximizing the net
profit, which is called the Fleet Assignment Problem. The next step requires solving
the Aircraft Routing Problem where a specific tail number is assigned to each flight
while accommodating aircraft maintenance requirements. After that, the airline must
assign cockpit and cabin crew for each of the scheduled flights. Given that a crew is
typically qualified to fly only a specific aircraft family, the crew scheduling problem
is solved for each aircraft family. This crew scheduling process is usually achieved in
two stages: (i) Solving the Crew Pairing Problem, and (ii) Solving the Crew Rostering

Problem.
In the crew pairing stage, a set of crew schedules is generated to cover each flight

leg scheduled and in the crew rostering stage the generated schedules are combined
to create monthly rosters to be flown by the available crews. The former stage begins
with generating feasible duties. A duty is a sequence of flight legs in a single workday of
a crew followed by a rest period. It also includes the time for briefing and debriefing
meetings. Each duty has an associated cost. Next, these duties are combined to
produce feasible pairings. A pairing is a sequence of duties that starts at a crew base
and ends at the same crew base with an overnight rest. Typically, a pairing spans one
to five days and has a well defined associated cost. For North American airlines, the
cost structure is a nonlinear function of three quantities: (i) the number of duties in
the pairing, (ii) the total time away from base (each crew has a well identified base),
and (iii) the sum of duty costs in the pairing, where the cost of a duty is a function
of the duty duration, the total flying time, and the minimum guaranteed pay.

The feasibility of a crew schedule depends on numerous complex work rules im-
posed by government, international organizations (e.g. International Civil Aviation
Organization), labor unions, and airline companies themselves. Typical work-rule re-
strictions include limits on the number of hours flown in a duty, the number of flights
flown in a duty, the rest durations, and the time the crew may be away from their
base. Given a set of flight legs to be served by an aircraft family, the CPP seeks to
find a minimum-cost set of pairings that covers the set of flights. Due to the combi-
natorial explosion of the number of the pairings and the complexity of the associated
feasibility restrictions, solving the CPP to optimality is a daunting task. However,
the benefits of solving CPP largely outweigh its challenges as small improvements can
lead to significant savings. Additionally, an efficient solution will offer improved oper-
ational crew planning process, decreased crew requirements, and increased employee
satisfaction.

2.2 Specific features of the CPP arising at EAC

In this section we provide the details of the CPP arising at EAC that distinguishes it
from the CPPs in the literature.
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2.2.1 The flight schedule

The flight schedule of the Airbus 320 family includes approximately 12,000 flights per
month, to more than 100 destinations. Most of these flights are short- and medium-
haul flights that usually take one to five hours to complete. In addition, EAC operates
a Boeing 738 aircraft family that serves the same destinations. Each month, both fam-
ilies are used for serving about 25,000 flights. Interestingly, the flight schedule of EAC,
similar to most European airlines, does not exhibit any daily periodicity, and exhibits
limited weekly periodicity. Indeed, to better match capacity with the varying demand,
different aircraft types (either from the Airbus 320 or the Boeing families) might be
assigned to the same daily flight. So, for example, while a certain flight is assigned to
an A321 on a given day, the next day it may be assigned to a B737. Consequently, to
derive effective crew schedules we model the CPP as a monthly problem. At this point,
it is worth mentioning that CPPs that are traditionally addressed in the literature as-
sume that all flight legs are operated on every day. This assumption is consistent with
common practices at North American airlines where the daily problem is solved and
adjustments are made for weekly or monthly exceptions. Clearly, the daily problem
has significantly lower number of flight legs than the monthly variant.

2.2.2 The flight network structure

An interesting feature of EAC’s flight network is that there is only one hub (or,
crew home base). Consequently, more than 80% of the scheduled flights are either
originated or terminated in this hub. In what follows, we shall refer to this hub as
BASE. Furthermore, a significant portion of the flights to several domestic and most
international destinations are round trip type flights. Here, we define a round trip as a
sequence of two consecutive flights that originate from and end at the home base and
are always served by the same crew and aircraft. For example, if there is a flight from
BASE to Rome in the morning on a given day, there is also a flight returning to BASE
later that day, as there exists no other flights from Rome to any other destination.
Therefore, neither the aircraft nor the crew will not stay in Rome for an additional
day due to utilization purposes. As we shall see in Sections 4 and 5, this property of
the flight network will prove useful for devising an effective tailored solution approach.

2.2.3 The cost structure

In contrast with North American airlines, at EAC (as in most European carriers)
the crew salaries do not depend on the flight assignments, but are fixed. Hence,
the objective function of the CPP is to minimize the crew related costs that include
deadheadings (crews being transported to a flight’s departure city as passengers), and
layovers . These latter costs correspond to the accommodation, ground transportation,
and subsistence expenses of the crew members when they rest away from BASE. For
a connection of more than 4 hours, half the cost of a layover is incurred. This is due
to the fact that, for long connection times, airlines typically get a day-room for their
crew.

At this point it is worth emphasizing that even though a separate CPP is solved
for each aircraft family, it is necessary to consider the whole set of legs while solving
a problem that is defined for a specific family. Indeed, since the cost of a pairing
includes the deadheadings, then a pairing of a specific family (say, the Airbus 320
family) might include a flight leg that is assigned to a different family (say, the Boeing
738) and that is used by the crew as a deadheading.
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2.2.4 Restrictions on duties and pairings

A formidable challenge is posed by the great complexity of the rules that are used
for building duties and pairings. In identifying these rules, we relied on the standard
rules mentioned in the literature and policies used by EAC. We provide the following
non-exhaustive list for illustrative purposes:

1. All pairings start and end at BASE. A pairing cannot continue past a duty that
ends at BASE.

2. A landing is the number of flights a crew flies on in a duty. The maximum
number of landings in a duty is restricted to 5.

3. The minimum and maximum number of duties in a pairing are one and six,
respectively.

4. The maximum total duty time is : (i) Fourteen hours if the duty start time lies
with the interval [05:00, 14:00], (ii) Thirteen hours if the duty start time lies with
the interval [14:01, 17:00], (iii) Twelve hours if the duty start time lies with the
interval [17:01, 04:59]. However, these total duty times differ depending on the
number of landings in a duty, whether the duty is extended range, or performed
with single augmented (a cabin crew of three) / double augmented (a cabin crew
of four) crew.

5. The minimum connection time for a crew is 30 minutes, if they are not changing
aircraft and both flights are either domestic or international. However, this time
changes based on whether there is a change of aircraft, domestic/international
connections, preceding or following active flights/deadheadings.

6. A rest period starts at the end of a duty and ends at the beginning of the next
duty. The duration of a rest period is determined by a function of the duty time
and flight time. Depending on whether the duty is a one leg duty, extended
range, or a duty with certain duration the rest period may differ.

7. The total duty time during one pairing should not exceed 56 hours.

2.3 Problem definition and formulation

Given the monthly schedule of flights and an aircraft family, CPP requires finding a
minimum-cost set of pairings such that exactly one feasible pairing is assigned to each
scheduled flight. The objective function is a weighted sum of the deadheading costs
and the layover costs. We now provide the notation we will be using for describing
the CPP.

Notation
L : set of legs to be covered, indexed by l
P : set of all pairings, indexed by p
Pl : subset of pairings that cover leg l, l ∈ L
γ1 : cost of the international layovers that are included in a pairing if any, p ∈ P
γ2 : cost of the domestic layovers that are included in a pairing if any, p ∈ P
γ3 : cost of the deadheadings that are included in a pairing if any, p ∈ P
cp : total cost of pairing p (viz. , cp = w1γ1 + w2γ2 + w3γ3, where w1, w2 and w3

are weight parameters), p ∈ P
xp : binary decision variable that takes value of 1 if pairing p is selected, and 0

otherwise, p ∈ P.
A standard formulation of the CPP as a Set Partitioning Problem (SPP) is the

following:

min
∑

p∈P

cpxp (1)
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subject to

∑

p∈Pl

xp = 1, ∀l ∈ L, (2)

xp ∈ {0, 1}, ∀p ∈ P. (3)

The objective function (1) minimizes the total cost of the solution while the par-
titioning constraint (2) enforces that exactly one pairing is assigned to each leg. It
is worth emphasizing that pairings might include deadheadings (and therefore multi-
ple pairings might cover a given leg), but (2) requires that exactly one crew will be
assigned to serve that leg.

As a final note, we emphasize that the differences mentioned in the previous sub-
sections result in a CPP that is at least as hard as the CPP of the North American
Airlines. This is due to the fact that the flight schedule of the monthly problem has
significantly more legs with respect to the daily and weekly problems. Despite the sim-
plifying features of the flight network structure, cost structure, and the restrictions
on costs and duties, the sheer size of the problem places it outside the computational
reach of the algorithms in the literature.

3 Literature Review

CPP is generally considered as the hardest of the airline planning problems and has
been extensively studied in the literature. We refer the interested reader to Gopalakr-
ishnan and Johnson (2005), Arabeyre et al. (1969), Barnhart et al. (2003b,a), De-
saulniers et al. (1998) and references therein. Even for small size problems it is not
possible to generate all feasible pairings in a reasonable amount of time. In fact,
because of the extensive list of complex rules and regulations, determining whether
a sequence of flights constitutes a feasible duty can be quite difficult by itself. For
example, Vance (1993) reports of an instance with 253 legs to have more than 5 mil-
lion feasible pairings and states that an instance with 1000 legs is likely to have more
than billions of pairings. This exponential growth in problem size is one of the biggest
disadvantage of set partitioning (as well as covering) models. CPPs with these models
mostly differ in their enumeration techniques (Andersson et al. 1998).

In early works to overcome the problem size issue heuristic approaches were em-
ployed to generate just a small subset of the pairings (Arabeyre et al. 1969, Anbil
et al. 1991, Gershkoff 1989, Hoffman and Padberg 1993) and the resulting small SPPs
were solved. The main shortcoming of this approach is that it does not provide any
quantitative information regarding the quality of the solution. Notably, a pairing
with a low cost may be incompatible with the rest of the selected pairings, and may
require other pairings with multiple deadheadings and layovers to cover a given leg.
Consequently, a poor choice of columns may result in severe suboptimality. To over-
come this shortcoming, branch-and-price algorithms have been used, where column
generation is used at each node of the branch-and-bound tree to obtain linear pro-
gramming bounds. Negative reduced cost columns are identified by solving a pricing
problem which is usually formulated as a multi-label shortest-path problem where
each path corresponds to a pairing (Barnhart et al. 2003a). Branch-and-price tech-
niques have been used frequently in airline problems (Barnhart et al. 1994, Butchers
et al. 2001, Desaulniers et al. 1998, Dück et al. 2011, Ryan 1992, Vance et al. 1997).
Branch-and-price has a larger computational reach compared to branch-and-bound,
however, the pricing algorithm may take a prohibitively long time for very large in-
stances. Saddoune et al. (2011) and Saddoune et al. (2012) address the integrated
CPP and rostering problem using a combined column generation and dynamic con-
straint aggregation method. While the integration helps obtain improvement in cost
over sequential approach, computation time increases significantly.
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Another common formulation type used in CPPs is network flow models. These
models are built using a time-space network, where each node corresponds to a depar-
ture or arrival time and origin or destination pair. Desaulniers et al. (1997) formulate
a CPP of Air France as an integer, nonlinear multi-commodity network flow problem
with additional resource variables. In this model commodities represent crews, nodes
represent time-airport pairs and arcs represent crew activities like active flights or
deadheadings, connections, rests, briefing, debriefing, ground transportation or pair-
ings. Using several auxiliary variables they also model crew pairing constraints and
regulations. Their solution approach relies on a branch-and-price algorithm based
on an extension of Dantzig-Wolfe decomposition. They implement their solution ap-
proach on the weekly schedule of the airline’s fleets and solve CPPs with number of legs
varying from 154 to 1157. They build a duty based network model which eliminates
the need to check the feasibility of individual duties. The cost function consists of the
sum of nonlinear, nondecreasing functions of time away from base, total flight time,
number of landings, deadheadings, aircraft changes and night rests. Our work differs
from this European application mainly in terms of problem size and cost structure,
Desaulniers et al. (1997) uses a more general cost structure which encompasses part of
the same cost items. Although we also rely on a duty based solution the size difference
in the problems require the use of different solution methods. Barnhart and Shenoi
(1998) also formulate a similar time-space network model with additional constraints.
An interesting application of network models can be seen in Yan and Tu (2002) where
the CPP of Taiwan Airline is solved. Due to the network structure of Taiwan Airline,
the number of constraints on the pairings is significantly reduced. In fact, the authors
are able to obtain an exact solution in polynomial time using network-simplex method.

Heuristic approaches have also been used in the literature to solve the CPP. Simu-
lated annealing (Emden-Weinert and Proksch 1999), tabu search (Cavique et al. 1999),
genetic algorithms (Levine 1996, Ozdemir and Mohan 2001), ant colony algorithms
(Deng and Lin 2011), particle swarm optimization (Azadeh et al. 2013) are among the
metaheuristics employed. Aydemir-Karadag et al. (2013) employ a hybrid algorithm
that combines genetic based heuristics with zero-one integer programming models.
Advantages of heuristics include speed and the size of instances that can be handled,
whereas the quality of the solutions obtained can only be empirically demonstrated.

Recently there has been increasing interest in approaches addressing robustness,
recovery models (e.g. Clausen et al. (2010), Tekiner et al. (2009), Muter et al. (2013))
and integrated models (e.g. Barnhart et al. (1998), Gao et al. (2009), Saddoune et al.
(2012), Sherali et al. (2013), M. Dunbar and and Wu (2014)) that take into account
several of the airline planning problems described above jointly. These approaches
enable airlines to achieve costs closer to optimal values and make managing operations
in the face of planned or unplanned schedule changes easier. In addressing these
issues the ability to quickly solve the CPP becomes quite important. In fact, with our
solution approach it is possible to obtain initial results in less than five minutes.

In this work we address the monthly problem of a EAC, with instances up to
27,000 legs. The large number of legs requires generating novel solution approaches,
as the literature mostly addresses the daily or weekly problem with several hundreds
to 1-2,000 legs. Furthermore different cost and network structures enables the use of
different methods which include large-scale neighborhood search, exact enumerative
algorithms, and integer programming.

4 Solution Method

We now describe an optimization-driven heuristic that is able to handle large-scale
instances of the CPP. Optimization-driven heuristics (also known as model based
metaheuristics) are combinations of metaheuristics and exact optimization methods
that take advantage of the diversification provided by the metaheuristics as well as
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the strength of the intensification provided by the exact optimization methods. The
metaheuristic we present below constructs solutions for the CPP through a Large
Neighborhood Search (LNS) heuristic, while the optimization-driven heuristic employs
these solutions to solve an SPP that selects the best possible combination.

In the sequel, we should conform with the following terminology and notation. A
solution S is a set of feasible pairings such that each flight leg is covered by at most
one pairing. The cost of S, denoted by c(S), is equal to

∑
p∈S cp. We define a working

vector of leg indices L̂ := {1, 2, ..., |L|} that can be randomly reordered, and the ith

element of which is referred to as L̂(i). A solution is set to be feasible if each leg is
covered exactly once.

The LNS is based on the following basic construction procedure. Given a feasible
CPP solution S, we randomly remove from it a fraction of its pairings. In so doing,
S becomes infeasible since a subset L′ of legs now becomes uncovered. To reconstruct
a feasible solution, we consider the uncovered legs in S′ in random order, and we
iteratively identify for each leg l ∈ L′ a minimum-cost pairing p ∈ P that covers that
leg. The pairing thus derived is included in the solution and the process is reiterated
until no more legs can be covered and a new solution S′ is obtained. This process is
now restarted with S′ being the new working solution, for kmax iterations.

Clearly, a crucial step in this local improvement procedure involves finding a
minimum-cost pairing that covers a given leg. Provided, that each leg l ∈ L might be
potentially covered by hundreds of feasible duties and therefore millions of pairings,
solving this subproblem might prove cumbersome. To solve it optimally, we propose
an implicit enumeration procedure in the spirit of a branch-and-bound algorithm. We
refer to this algorithm as Restricted Minimum Cost Covering (RMCC), the details of
which we provide in Section 4.1.

The construction procedure can be embedded into an LNS framework to yield the
following solution approach:

Procedure LNS0
Input: A set of legs L
Output: A feasible solution S∗

Construct the working vector of leg indices L̂ := {1, 2, ..., |L|}.
Initialize the working solution S := ∅ and the best known solution S∗ := ∅.
For k = 1 to kmax

Set S := S∗

Randomly remove α percent of pairings from S
Randomly reorder L̂
For i = 1 to |L|

If leg L̂(i) is not covered by S
Initialize the working pairing p := ∅ and the incumbent pairing p∗ := ∅
Apply RMCC(L̂(i), S, p, p∗)
S := S ∪ p∗

End For
If S covers all legs and c(S) < c(S∗)

Update the best known solution, S∗ := S.
End For
Return S∗.

In the first iteration, LNS0 behaves as a constructive algorithm rather than an
improvement algorithm, and the computing effort required for this iteration is signif-
icantly more than the following iterations. Starting with an empty solution, LNS0
covers legs in a greedy manner, in the chronological order of departure times. The
solution thus constructed defines the initial solution of the CPP, and affects the per-
formance of the overall algorithm. Albeit simple, LNS0 lacks the intensification ability

8



to provide high quality results. We will remedy this shortcoming by periodically solv-
ing SPPs. Before moving on to the optimization-driven heuristic, we provide details
about the Restricted Minimum-Cost Covering algorithm.

4.1 The Restricted Minimum-Cost Covering algorithm

As briefly stated above, the RMCC is a branch-and-bound algorithm that aims to find
a minimum cost pairing to cover a given leg. The algorithm incrementally constructs
pairings starting from the BASE. The weighted sum of deadheadings and layovers
incurred is used as a lower bound, and best feasible solution found through the search
serves as an upper bound. In addition to pruning by bound, any duty that ends at
BASE signals the end of a pairing, and the resulting pairing is pruned. Furthermore,
a pairing that moves past the leg to be covered in terms of starting time without
covering it, is pruned due to infeasibility. The algorithm is provided below.

Procedure RMCC(Mandatory leg l, solution S, working pairing p, incum-
bent pairing p∗)
If p 6= ∅ and p∗ 6= ∅ and cp ≥ cp∗

Return // pruning by bound
If the last duty in p ends after the departure of leg l and p does not cover leg l

Return // pruning by infeasibility
If p ends at BASE

If p covers leg l, update the incumbent pairing p∗ := p // incumbent update
Return // pruning due to forced end of pairing

If p∗ = ∅
For every duty d ∈ D that starts at BASE up to 6 days before l // first duty

If the active legs in d do not conflict with any active leg in S
Add the duty to the working pairing, p := p ∪ d
RMCC(l, S, p, p∗)
Remove the duty from the working pairing, p := p \ d

End For
Else

For every duty d ∈ D that can connect to the last duty in p // next duty
If the active legs in d do not conflict with any active leg in S

Add the duty to the working pairing, p := p ∪ d
RMCC(l, S, p, p∗)
Remove the duty from the working pairing, p := p \ d

End For
Return p∗

Despite being an enumerative procedure, RMCC successfully finds solutions in a
short time, and the number of legs already covered by S do not seem to have a major
effect on the runtime of RMCC. In case S is sparse, RMCC finds simple pairings
with no deadheadings and layovers, and quickly proves optimality. If S is dense, then
the restrictions imposed by legs that are already covered limit the search space of the
RMCC, helping it to converge fast. Through the course of a LNS run, RMCC first finds
pairings with low cost. As the LNS progresses and S grows dense, the enumerative
power of the RMCC comes into play and finds intelligent pairings with relatively
low costs that can accommodate the restrictions. Towards the end of the LNS run,
RMCC can only find high cost pairings that cover the remaining legs through multiple
deadheadings and layovers. The resulting LNS solutions are consequently composed of
the low cost, relatively low cost, and high cost pairings described above, which allows
the SPP to find the best combinations among this diversity.
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4.2 The intensification strategy

We now focus on improving the intensification of the LNS by solving SPPs. Let us
define a pairing pool that consists of pairings found through the LNS, and denote it
as π, which we will solve periodically. The resulting optimization-driven heuristic is
described below.

Procedure LNS1
Input: A set of legs L
Output: A feasible solution S∗

Construct the working vector of leg indices L̂ := {1, 2, ..., |L|}.
Initialize the working solution S := ∅ and the best known solution S∗ := ∅.
Initialize the pairing pool, π := ∅
For k = 1 to kmax

Initialize S := S∗

Randomly remove α percent of pairings from S
Randomly reorder L̂
For i = 1 to |L|

If leg L̂(i) is not covered by S
Initialize the working pairing p := ∅, and the incumbent pairing p∗ := ∅
Apply RMCC(L̂(i), S, p, p∗)
S := S ∪ p∗

End For
If S covers all legs and c(S) < c(S∗)

Update the best known solution, S∗ := S.
Add the pairings in the S to the pairing pool, i.e. π := π ∪ S.
If the number of pairings in the pairing pool reach the limit, |π| ≥ pmax

// SPP
Solve an instance of the SPP with π as the set of pairings
Denote the optimal solution of the SPP as Ŝ
If z(Ŝ) < z(S∗)

Update the best known solution S∗ := Ŝ.
Reinitialize the pairing pool, π := S∗.

End For
Return S∗.

The structure of LNS1 is similar to that of LNS0. The main difference is the
existence of a pairing pool π, which is populated through the solutions found during
the search and may contain multiple copies of pairings used in consecutive iterations.
Once the number of pairings in the pairing pool exceeds pmax, an SPP is solved using
the pairing pool, i.e. P = π. Since the pairing pool contains all the pairings in the best
known solution S∗, the result of the SPP is no worse than the best known solution.
If a better solution Ŝ is found as the result of the SPP, the best known solution is
updated. The pairing pool is reinitialized to contain the pairings of the best known
solution after solving the SPP.

4.3 Polishing methods and an acceleration feature

It is possible to further enhance LNS1 by defining a second pairing pool, π∗. Every
time the best known solution is updated, the pairings in the new best solutions should
be added to π∗. Solving a final SPP with π∗ as the pairing set is a way of polishing
the solution found by LNS1. This polishing method is aimed at using the information
generated by the trajectory of the best known solution through the algorithm. We
will refer to this algorithm as LNS2. The second polishing method populates π∗ with
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the final best known solutions of an instance for different weight combinations, and
solves a final SPP using π∗ and the original weight combination. This second method
is conceived as a means of achieving the best possible solution, and is used for the
purpose of evaluating the quality of the solutions returned by the other algorithms.
We will refer to this algorithm as LNS3.

During our initial experiments, we observed that the runtime of RMCC is strongly
dependent on the cardinality of the duty set |D|. Hence, we have looked for ways of
reducing the cardinality of the duty set significantly without compromising the solution
quality. To that end, we have exploited the flight network structure that results from
the fact that EAC has a single hub with most of the flights either originating or
ending at BASE. By identifying suitable pairs of flights in the leg list as round trips,
and taking them out of the leg list, we have reduced the cardinality of the duty set
significantly and therefore made the proposed solution approach faster.

A time extended graph of a sample schedule of flights between BASE and and
another city, which we refer as XYZ, is presented in Figure 1. Using the concept of
round trip, consecutive pairs of flights in the schedule constitute 7 duties, considering
duties where one of the flights in these consecutive pairs is deadheading, results in
a total of 21 duties. Without using the concept of round trip, every flight by itself
is a duty as an active flight or a deadheading. The first flight departing from BASE
can be complemented by any return flight, with at most one of the flights being a
deadheading, and results in 21 possible duties. Similarly, the second flight can be
complemented by six return flights, and results in 18 duty combinations. The total
for this case turns out to be 112, more than five times the number of duties with round
trips. Accounting for the 3, 4, and 5 leg duties in a similar manner, the grand total
of duties becomes 340. Note that most of these duties are too costly to be practically
relevant, and can be substituted by the round trips provided.

Figure 1: Round trips between BASE and XYZ

5 Computational experiments

In this section, we give the details of our extensive computational experiments based
on the flight schedule of EAC to compare the proposed solution algorithms.

5.1 Setting and Data

We focus on the Airbus 320 (A320) family covering a 4-month period. At EAC, A320
and Boeing 737 (B737) families are frequently used for serving the same destinations,
so we have included B737 family flights as potential deadheadings. We solve each
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month’s CPP as a separate instance. Not all crews are at BASE at the beginning
and end of each month, since some are still on duty (performing a layover) at other
stations. Since we do not have the data of the exact location and number of crews
at each station, we include 1 week of warm-up period in the beginning and 1 week of
“cool-down” period at the end of each month. Thus, 42 days of flights (a total of 2
weeks for warm-up and cool-down, and 4 weeks of flights that we actually try to solve
the crew pairing problem) for two families are taken into account when solving each
month’s CPP.

We define a pair of matching flights BASE-XYZ and XYZ-BASE with less than
rmax = 180 minutes of connection time (the maximum connection time for a crew at
a domestic station) as a round trip. These flights cannot be used as one way flights
connecting to other flights, and no other flights may be added before or after these
flights. This reduces the cardinality of the duty set significantly, from approximately
eight hundred thousand down to approximately two hundred fifty thousand, and makes
the LNS approach tractable. However, for “well-connected” stations, which have
many incoming and outgoing flights to many stations, the restriction deteriorates
the solution quality as the solution space becomes very limited. To determine the
“well-connected” stations, we have analyzed the flight network and identified domestic
stations with the highest number of flights that either originate or end at that station.
Among these we select 4 stations for which we set rmax = 35 minutes, since 30 minutes
is the minimum connection time. In Table 1, the number of legs to be flown by A320
and B737 families is presented. The first and third columns display the number of
legs in A320 and B737 families, respectively. The second and fourth columns show
the number of legs in A320 and B737 families including the warm-up and cool-down
periods. The fifth column includes all the legs in A320 and B737 families including
the warm-up and cool-down periods, with an average of approximately 27,000 legs per
monthly instance.

Table 1: Number of Legs

Leg Data Number of Duties
Month A320 A320 B737 B737 Total Without With

Active Total Active Total number of legs Round trips Round trips
1 5428 8142 12088 18136 26278 763031 248070
2 5430 8151 12219 18368 26519 767694 249223
3 5536 8288 12623 18869 27157 813651 264501
4 5572 8358 12672 19008 27366 837556 271766

Since the crew salaries are fixed, while solving the CPP, we try to minimize the
number of deadheadings as well as international and domestic layovers. The reported
number of deadheadings and layovers are based on the number of people in the crew,
e.g. a layover of a crew of two people counts as two layovers and a deadheading by a
crew of three counts as three deadheadings. We test our algorithms’ performance under
different weight structures. In determining the weights to assign to deadheadings
and layovers we take several factors into account. Airlines aim to maximize their
occupancy rates in order to increase efficiency, and a seat allocated to a crew member
in one of the legs can be costly. Furthermore, deadhead flights count as flight time
for the crews, and consequently the deadheadings decrease the utilization efficiency
of crews. Thus it is clear that deadheadings can be very costly for airlines and must
be minimized. Another cost item is domestic and international layovers. Airlines
typically have discounted rates with hotels for their crew, lower rates for domestic
layovers and relatively higher rates for international layovers. Thus, we set the weight
of domestic layovers to 1 and assign relative weights to the others, based on a brief
market search on airline ticket prices and hotel room rates. For deadheadings we use

12



200, 100, 50, and 10 as weights, and for international layovers we use 100, 50, 10, and
5 as weights. These values are chosen to reflect the possible fluctuations of the ticket
and hotel rates. In the sequel we shall refer to the experimental setting of weights of
the objectives as 3-tuples of the form (weight of deadheadings, weight of international
layovers, weight of domestic layovers), and compare the weighted objective function
value.

We first run our two proposed methods, LNS0 and LNS1 with each months of
data using different weight combinations. For both algorithms, we obtain and record
several outputs from each run. We repeat the runs with different weight combinations
to get relatively differentiated results, i.e. solutions with relatively fewer deadheadings
as well as solutions with relatively fewer international layovers, which gives flexibility
to an airline company to choose the solution that better suits their objectives. In our
experimentation, we have set kmax = 500 for both LNS0 and LNS1 and pmax = 25000
for LNS1. The pairing removal parameter α was set to be 0.15 for LNS0, to retain the
intensification power provided by the best known solution. Since we have relied upon
the intensification ability of the SPP, a value of α = 0.7 was used for LNS1 in order
to maximize the diversification.

We then analyze the performances of LNS2 and LNS3. The potential for improve-
ment is higher for LNS3 since we utilize the diversity of the solutions obtained by
using different weight combinations. For example, when we combine the outputs of
LNS0 using weight combinations of (100, 10, 1), (200, 5, 1) and (10, 50, 1) and solve
a final SPP using the weight combination of (100, 10, 1), we are likely to obtain a
better result than using only the output of LNS0 with weight combination of (100, 10,
1) only.

5.2 Comparison of the Proposed Algorithms

We have implemented algorithms LNS0, LNS1, LNS2, and LNS3 in C++, using
CPLEX 12.3 as the mixed integer programming solver. In what follows, we will be
presenting the results of these algorithms, using the result of LNS0 as a basis for mea-
suring the quality of solutions. Although a more rigorous assessment of the quality of
solutions is theoretically possible, it requires the exact solution of a relaxation of the
problem, and developing an exact algorithm is beyond the scope of this paper.

In Table 2, we present the results of the LNS0 algorithm for Month 1 under different
parameter sets. The column “Weights” presents the weights used for deadheadings,
international and domestic layovers, respectively. The columns “DH”, “IL”, and “DL”
presents the number of deadheadings, international layovers, and domestic layovers,
respectively. Note that the values in the “IL” and “DL” columns can be fractional,
due to the half day layovers for connections of more than 4 hours for the crew. The
column “Obj.” presents the objective function value of the corresponding solution.
The first 16 rows display different weight combinations used and the final two rows
presents the average and maximum improvement of the objective function value from
the LNS0 solution.

In Table 3, we present results of the LNS1, LNS2, and LNS3 algorithms for the
first month, where the column “Impr.” presents the percentage improvement of the
objective function value from the LNS0 solution. We observe from the result in Table
3, LNS1 improves the LNS0 solution by 43.40% on average. Furthermore, LNS2
and LNS3 increase this improvement percentage to 43.51% and 47.17%, respectively.
Detailed results for the remaining months can be provided upon request from the
authors. The main improvement comes with LNS1, which improves the LNS0 solution
by 43.07% on average. LNS2 and LNS3 increase this improvement percentage to
43.14% and 47.01% respectively. Table 4 gives a summary of the average and maximum
improvement from LNS0 solution under each method for each month.

It can be observed that the results of LNS0 for weight schemes with identical ratios
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Table 2: The results obtained using LNS0 for Month 1
Weights DH IL DL Obj.

(200, 100, 1) 347 871 1013 157513
(200, 50, 1) 308 967.5 990 110965
(200, 10, 1) 321 1093 957 76087
(200, 5, 1) 320 1159 994 70789

(100, 100, 1) 429 602.5 1034 104184
(100, 50, 1) 347 871 1013 79263
(100, 10, 1) 319 1105.5 969 43924
(100, 5, 1) 320 1159 994 38789

(50, 100, 1) 485 465 1024 71774
(50, 50, 1) 429 602.5 1034 52609
(50, 10, 1) 313 1037.5 975 27000
(50, 5, 1) 319 1119.5 978 22525.5

(10, 100, 1) 660 464.5 1069 54119
(10, 50, 1) 576 456.5 1038 29623
(10, 10, 1) 429 602.5 1034 11349
(10, 5, 1) 352 850 981 8751

Table 3: The results obtained using LNS1, LNS2, and LNS3 algorithms for Month 1
LNS1 LNS2 LNS3

Weights DH IL DL Obj. Impr. DH IL DLObj. Impr. DH IL DLObj. Impr.

(200, 100, 1) 144 492.5725 78775 49.99 143 491.579078540 50.14 125 497 72475424 52.12

(200, 50, 1) 133 516 742 53142 52.11 133 516 72553125 52.12 119 511 72450074 54.87

(200, 10, 1) 129 524 688 31728 58.30 127 524 75831398 58.73 119 511 72429634 61.05

(200, 5, 1) 130 532 817 29477 58.36 130 532 80629448 58.40 119 511 72427061 61.77

(100, 100, 1) 225 442 735 67435 35.27 226 440 73767337 35.37 158 443.571060860 41.58

(100, 50, 1) 144 490 655 39555 50.10 142 493 65239502 50.16 125 497 72438074 51.96

(100, 10, 1) 128 521 629 18639 57.57 126 520 67918479 57.93 119 511 72417734 59.63

(100, 5, 1) 131 532 677 16437 57.62 131 532 67716419 57.67 119 511 72415161 60.91

(50, 100, 1) 253 424 732 55782 22.28 251 424 76655716 22.37 162 439.571052760 26.49

(50, 50, 1) 224 444 814 34214 34.97 224 444 80434204 34.98 158 443.571030785 41.48

(50, 10, 1) 130 523 800 12530 53.59 130 523 79912529 53.60 119 511 72411784 56.36

(50, 5, 1) 128 522 768 9778 56.59 128 522 760 9752 56.71 119 511 724 9211 59.11

(10, 100, 1) 422 438.5690 48760 9.90 422 438.569048760 9.90 248 416.567944809 17.20

(10, 50, 1) 345 424 660 25310 14.56 341 424 67525285 14.64 228 420.564723952 19.14

(10, 10, 1) 234 437 634 7344 35.29 234 437 634 7344 35.29 168 443.5566 6681 41.13

(10, 5, 1) 160 489.55114558.5 47.91 158 493.5511 4540 48.12 137 497 546 4383 49.91

Ave 43.40 Ave 43.51 Ave 47.17

Max 58.36 Max 58.73 Max 61.77
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of deadheading cost and layover cost (e.g. (100,100,1) and (50,50,1) and (10,10,1)) are
identical. Furthermore, the results of LNS1 for these instances also show a significant
amount of similarity. We attribute this to the fact that the cost of domestic layovers
is dominated by the cost of deadheadings and international layovers. Hence, the ratio
of deadheading cost and layover cost becomes the determining factor for the results
of LNS0 and LNS1.

Table 4: Summary of Improvement Levels
LNS1 LNS2 LNS3

Avg Max Avg Max Avg Max
Month 1 43.40% 58.36% 43.51% 58.73% 47.17% 61.77%
Month 2 42.96% 57.03% 43.02% 57.03% 47.14% 60.03%
Month 3 42.76% 54.13% 42.84% 54.22% 46.84% 58.37%
Month 4 43.15% 55.06% 43.18% 55.06% 46.87% 58.39%

We present Figure 2 to depict the improvement in objective functions for LNS0
and LNS1. LNS0 initially makes quick but small improvements followed by small
improvements after long intervals of iterations. On the other hand LNS1 achieves
a sharp reduction in the objective function after the solution of the first SPP and
then starting from this solution continues to improve gradually. Note that within our
experimental setup, the end of the first SPP step roughly corresponds to 5% of the
overall CPU time. Hence, LNS1 can be used with kmax = 25 to obtain a high quality
solution in a short time.

Figure 2: Objective function trajectory under LNS0 and LNS1, Month 1

5.3 Running Times of the Algorithms

Table 5 and 6 summarize the CPU times required to get the reported solution of our
algorithms. Less than 1 minute of this time is used to generate duties. The CPU
times of LNS1 are almost twice those of LNS0, nevertheless, it yields solutions within
a reasonable time. The running times of LNS2 are very similar to those of LNS1,
and differ only by the solution of an extra SPP, which takes about 5 minutes. Since
LNS3 uses outputs from multiple streams, the total running time should include the
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running times of all the streams, which corresponds to approximately 25 times the
time requirement of LNS1.

It can be observed that the running times for the weight schemes (10, 100, 1) and
(10, 50, 1) are significantly larger than the others, for both LNS0 and LNS1. This
phenomenon can be explained by the importance of deadheadings, which is under-
stated by these weight schemes. Cheaper deadheadings result in longer duties with
more deadheadings, which in turn limit the search space for RMMC, requiring a longer
search for feasible solutions. In each iteration, the RMMC is run for one fifth of the
legs on the average, and the longer search times for RMMC are reflected to the overall
runtime with a factor of 5000.

Table 5: CPU Times of LNS0 Algorithm (seconds)
Weights Month 1 Month 2 Month 3 Month 4

(200, 100, 1) 1697.5 1906.1 1990.8 2054.1

(200, 50, 1) 1568.8 1561.7 1558.4 1789.7

(200, 10, 1) 1555.0 1533.0 1490.5 1661.5

(200, 5, 1) 1701.4 1589.8 1655.6 1728.4

(100, 100, 1) 2500.9 2497.4 2557.5 2747.8

(100, 50, 1) 1699.3 1910.8 1989.4 2052.2

(100, 10, 1) 1552.6 1528.7 1517.9 1676.5

(100, 5, 1) 1685.7 1592.2 1654.7 1740.2

(50, 100, 1) 3976.9 4156.6 4306.7 4674.3

(50, 50, 1) 2465.7 2504.9 2557.4 2732.0

(50, 10, 1) 1611.4 1544.7 1567.9 1856.4

(50, 5, 1) 1683.6 1582.3 1651.4 1731.7

(10, 100, 1) 14601.6 14255.3 15732.4 16295.9

(10, 50, 1) 12574.5 12852.7 13580.1 14876

(10, 10, 1) 2472.9 2456.6 2578.3 2616.3

(10, 5, 1) 1786.7 1974.4 1949.3 2168.3

Ave 3445.9 3465.5 3646.1 3900.1

Max 14601.6 14255.3 15732.4 16295.9

Table 6: CPU Times of LNS1 Algorithm (seconds)
Weights Month 1 Month 2 Month 3 Month 4

(200, 100, 1) 4053.2 4112.8 4548.7 4630.4

(200, 50, 1) 3325.5 3252.1 3484.0 3803.9

(200, 10, 1) 3160.1 3199.9 3562.3 3716.7

(200, 5, 1) 3322.4 3198.2 3420.1 3715.3

(100, 100, 1) 5276.0 5334.7 5905.0 5906.8

(100, 50, 1) 4042.5 4176.4 4363.1 4670.9

(100, 10, 1) 3227.3 3256.7 3499.4 3775.1

(100, 5, 1) 3308.0 3218.3 3414.2 3719.2

(50, 100, 1) 9553.0 9461.9 10105.1 10778.6

(50, 50, 1) 5055.1 5381.8 5855.8 6040.3

(50, 10, 1) 3254.1 3322.0 3478.2 3787.7

(50, 5, 1) 3236.4 3309.5 3497.6 3705.1

(10, 100, 1) 48508.8 49643.8 51927.9 54469.8

(10, 50, 1) 41340.7 41545.4 44873 46569.1

(10, 10, 1) 5212.9 5377.3 5795.6 6111.3

(10, 5, 1) 4082.8 3881.6 4504.6 4687.8

Ave 9372.4 9479.5 10139.7 10630.5

Max 48508.8 49643.8 51927.9 54469.8
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5.4 Robustness analysis

We now analyze the robustness of the algorithms we have presented. For the sake of
simplicity, we focus on LNS1, which dominates LNS0, and forms the basis of LNS2
and LNS3. We have also chosen Month 3 as a representative month, based on the
number of legs scheduled. We have performed ten runs of LNS1 for the flight schedule
of Month 3 and every weight combination, each run with a different random number
seed, the results of which we present in Table 7. In addition to the minimum, aver-
age, and maximum results, we also report the standard deviation of the results, and
the coefficient of variation (average / standard deviation). The results clearly show
that the algorithm returns with an insignificant deviation, regardless of the weight
combination.

Table 7: Robustness analysis for LNS1
Weights Min Average Max Stdev C.V.

(200, 100, 1) 85247.0 85941.0 86917.0 537.0 0.62%

(200, 50, 1) 59390.0 60309.6 61083.0 561.1 0.93%

(200, 10, 1) 37084.0 38109.9 39423.0 747.8 1.96%

(200, 5, 1) 34511.5 35462.6 36605.5 756.9 2.13%

(100, 100, 1) 70286.0 71033.4 71851.0 490.9 0.69%

(100, 50, 1) 42946.0 43214.3 43645.0 243.9 0.56%

(100, 10, 1) 21554.0 22203.8 22814.0 359.0 1.62%

(100, 5, 1) 18861.0 19216.8 19638.0 280.1 1.46%

(50, 100, 1) 58532.0 58889.4 59192.0 214.5 0.36%

(50, 50, 1) 35608.0 35898.6 36496.0 288.3 0.80%

(50, 10, 1) 14226.0 14342.0 14458.0 74.5 0.52%

(50, 5, 1) 10967.0 11420.6 11695.5 243.3 2.13%

(10, 100, 1) 50208.0 50267.0 50487.0 79.9 0.16%

(10, 50, 1) 26089.0 26343.8 26503.0 152.3 0.58%

(10, 10, 1) 7602.0 7681.9 7771.0 56.3 0.73%

(10, 5, 1) 4828.0 4843.9 4860.5 13.0 0.27%

6 Conclusion

The CPP is a challenging optimization problem, which has been studied extensively
by the operations research community. In this paper, we have studied the CPP using
the flight schedule of a European airline company, which has unique characteristics.
We have set our objective to minimize crew based costs due to deadheadings, inter-
national layovers, and domestic layovers. We have attempted to solve the monthly
problem of considerable size (around 27,000 flight legs), and proposed an optimization-
driven heuristic algorithm that combines heuristic and exact approaches: large-scale
neighborhood search, exact enumerative search, and integer programming. We pre-
sented the results of a computational study that provides evidence that the proposed
approach delivers multiple high-quality solutions within a relatively short CPU time.

An interesting issue that is worthy of future research is to implement a similar ap-
proach for solving the so-called airline crew rostering problem. This important airline
operational problem is usually solved after the CPP. It aims at assigning crew pairings
to anonymous bidlines and, in a final step, assigning these bidlines to individual crew
members. In some sense, this latter problem is conceptually similar to the CPP since
it involves building feasible sequences of pairings (instead of duties) to derive effec-
tive rosters/bidlines (instead of pairings). We believe that the main ideas that were
developed in this paper could be advantageously adapted for solving this crew ros-
tering problem. Furthermore, the ability of solving large-scale CPP instances within
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a reasonable time is very important as it opens the doors to efficiently solve more
complicated integrated problems of the airline industry, such as the Integrated Fleet

Assignment and Crew Pairing Problem. The ability to jointly solve these integrated
problems is very important as they provide means to optimize airline operations as a
whole and avoid suboptimality (or, infeasibility) that arises from solving airline plan-
ning problems in subsequent steps. We believe that our LNS approach could be used
as a subroutine in solving integrated airline problems.
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