
Numerical methods for radiative and
ideal relativistic hydrodynamics applied

to the study of gamma-ray bursts

Julio David Melon Fuksman

Department of Physics
University of Rome “La Sapienza”

This dissertation is submitted for the degree of
Doctor of Philosophy

IRAP PhD program
Supervisor: Dr. Carlo L. Bianco September 2019





A Julio y Elena





Acknowledgements

I am obliged to express my gratitude towards a number of people who have helped me in
different ways throughout the last three and a half years, making this work possible.

First of all, I would like to thank the organizers of the IRAP PhD Program for the financial
support throughout the time of my PhD. I also thank my advisor, Carlo L. Bianco, and
Professors Jorge A. Rueda and Gregory V. Vereshchagin for their guidance and the many
fruitful discussions we had. I thank the entire staff of Sapienza and ICRANet, in particular
Cinzia Di Niccolo, Federica Di Berardino, Cristina Adamo, Silvia Latorre, Gabriele A.
Brandolini, and Elisabetta Natale, for being so helpful and kind to me ever since my arrival
in Pescara.

I would like to thank all of the members of the Thesis Comittee and the external evaluators
for aiding me in the final stage of my PhD by taking the time to read this thesis and express
their judgement.

Among the scientists I have met since I arrived in Italy, I must especially mention Andrea
Mignone. I am indebted to you for welcoming my interest to work together and consistently
trusting it would lead to a good place. Above all, however, I thank you deeply for your support
in the last year, and for always finding some time to talk when I needed advice. You are an
example to follow both as a scientist and as a person.

I would also like to thank all of the students of the ICRANet group I have met in these
years, starting with Daria Primorac and Andreas Krut. We have shared so many adventures,
some of them rather extreme, and we survived them all. I treasure the amazing experiences we
lived together and the times we have stood up for each other. As well, I thank José Fernando
Rodríguez Ruiz and Margarita Velandia Avendaño for their continued support and friendship.
You are amazing people and many moments throughout this PhD were made easier thanks to
you. I must also mention Rahim Moradi and Yu Wang, who welcomed me into the group
in Pescara, as well as Marco Muccino and Giovanni Pisani, who did the same in Rome. I
thank Yerlan Aimuratov, Laura Becerra, Stefano Campion, Diego Cáceres Uribe, Gabriel
Guimarães Carvalho, Vahagn Harutyunyan, Mile Karlica, Miloš Kovačević, Iarley Pereira
Lobo, Clément Stahl, Juan David Uribe Suárez, and Ronaldo Vieira Lobato for the great
moments we shared. Lastly, I thank Rafael Ignacio Yunis for the mates and his (always very
Argentinian) words of encouragement.

During my years at Sapienza I have met several people outside of my group that have
brought countless cheerful moments into the day-by-day experience of my PhD, starting with



vi

the students of Stanza 117. In particular, I want to thank José Manuel Ruiz Franco for his
daily Maradonian encouragement in the worst and best moments of the PhD. No me alcanzan
todos los alfajores del planeta para agradecerte lo que me has bancado estos años. Gracias
por tantos cafés compartidos (que casi nunca me has dejado pagar), por los partidos de fútbol,
las birras, y las juntadas en tu casa. Mil gracias también a Carmen por estas últimas. I must
also thank Nicolás García for being so welcoming to me when I first arrived to the Physics
Department, and for bringing me to the RCAI. I thank my irmão Jorge Henrique Nogueira
for his support, and for the many great moments and trips we shared. In this sense, I also
thank Gabriela Navarro, Nazanin Davari, and Francesco De Santis.

A great deal of my stress during these years was relieved thanks to the football group I
helped organize together with Matt Starr, Jan Delshad, and Alan Daventry. I thank the three
of you for your amazing friendship and for building such a wonderful community that has
brought together so many people who, like us, were far from home.

Agradezco de corazón a mis amigos de toda la vida, esos que son mi familia y me lo
hacen sentir cada vez que vuelvo a la Argentina, en particular a Ana Ailén Armanelli, Daniela
Giraldez, Ramiro Manuel Monzón Herrera, Nicolás Gabriel Ojea, Lisandro Parodi, y Matías
Pérez Rojas, por bancarme y quererme, literalmente, siempre. Agradezco a Cintia Buonzerio
por los mismos motivos y por algunos otros que los dos sabemos. Agradezco también a Lucas
Javier Albornoz, Nahuel Almeira, Rodrigo Bonazzola, Ignacio Ferreiro, Paloma Machain
y Nicolás Vattuone, los integrantes de La Casa. Pese a estar desperdigados por el mundo,
nos hemos acompañado a la distancia, y las veces que he podido verlos, ya sea en Argentina
o en algún lugar del norte, hemos vuelto a esa fantástica atmósfera que creamos juntos en
Bariloche. Agradezco también a Octavio Cabrera Morrone por confiar en mis capacidades y
sacarme de la vorágine del doctorado para divertirnos un poco y pensar juntos otro tipo de
problemas.

I am deeply indebted to Courtney Ann Pereira for her incredible support, especially in
moments when I could do nothing but work day and night. You consistently brought happiness
and tranquility into my mind in the darkest days. You are an amazing person, and this work
was largely possible thanks to you.

Finalmente agradezco a mi familia, en particular a mis padres, Elena Margarita Fuksman
y Julio César Melon. Gracias por bancarse todos estos años lejos de casa, y por venir a
visitarme cada vez que han podido. A ustedes debo no solo su eterno cariño y apoyo, sino
también mi curiosidad y mis eternas ganas de aprender más sobre el mundo. En definitiva,
ustedes son el motor de todo. Agradezco por último el cariño de mi abuela, Olga Anunciada
Pirro, que siempre entendió que estuviera acá y me acompañó desde donde pudo, sin saber
bien qué estaba haciendo yo del otro lado del mar.



Abstract

This thesis is devoted to the application of high-resolution numerical methods for relativistic
hydrodynamics (RHD) to the study of gamma-ray bursts (GRBs), as well as to the development
of new schemes able to describe radiative transfer in relativistic magnetized and unmagnetized
flows.

On one side, we have performed RHD simulations of relativistic plasma outbursts within
the binary-driven hypernova model, developed throughout the last years in the International
Center of Relativistic Astrophysics Network (ICRANet1). This model is based on the so-
called induced gravitational collapse scenario, proposed to explain the observed temporal
coincidence of GRBs and supernovae (SN) of type Ic. This scenario considers a carbon-oxigen
star (COcore) forming a tight binary system with a companion neutron star (NS). When the
collapse of the COcore produces a type Ic SN, part of the ejected material is accreted by the NS,
which in turn collapses and forms a black hole (BH). It has been proposed, although the details
of this process are a matter of current research, that this collapse creates an optically thick
electron-positron plasma around the BH that expands due to its own internal pressure and
originates a GRB. Our work in this context has focused on the description of such expanding
plasma and its interaction with the surrounding SN ejecta, for which we have followed a
hydrodynamical approach using the open-source code PLUTO. This allowed us to study this
process in high-density regions that had not been explored thus far, and to perform consistency
checks of the model taking into account both theoretical and observational constraints such as
the system’s size, the initial plasma energy, the observed timing and the Lorentz factor of the
outbursts. Three different scenarios are here considered: (I) the expansion of the plasma in
low-density regions, proposed to produce most of the GRB emission in the prompt phase; (II)
a model in which X-ray flares are produced due to the breakout of shocks created when the
plasma interacts with high-density regions of the SN ejecta; and (III) a model for the emission
of secondary bursts due to the creation of reflected waves caused by the same interaction.

The second part of this thesis is devoted to the main part of our work, which consists
in the development of a numerical code for radiative transfer integrated in PLUTO. Our
implementation is able to solve the equations of relativistic radiation magnetohydrodynamics
(Rad-RMHD) under the so-called M1 closure, which allows the radiation transport to be
handled in both the free-streaming and diffusion limits. Since we use frequency-averaged
opacities, this approach is unable to describe frequency-dependent phenomena; instead,

1https://www.icranet.org/

https://www.icranet.org/


viii

the main focus is put on the transport of total energy and momentum. To avoid numerical
instabilities arising due to the possibly large timescale disparity caused by the radiation–
matter interaction terms, the Rad-RMHD equations are integrated following implicit–explicit
(IMEX) schemes. In this way, interaction terms are integrated implicitly, whereas transport
and all of the remaining source terms are solved explicitly by means of the same Godunov-
type solvers included in PLUTO. Among these, we have introduced a new Harten–Lax–van
Leer–contact (HLLC) solver for optically thin radiation transport. The code is suitable for
multidimensional computations in Cartesian, spherical, and cylindrical coordinates using
either a single processor or parallel architectures. Adaptive grid computations are also made
possible by means of the CHOMBO library. We explain in this work the implementation of
all of these methods, after which we show the code’s performance in several problems of
radiative transfer in magnetized and unmagnetized flows. We pay particular attention to the
behavior of the solutions in the free-streaming and diffusion limits, and show the efficiency
and scalability properties of the code as compared with its usual nonradiative implementation.
Finally, we show an application of this code to the mentioned model for X-ray flares.
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Chapter 1

Introduction

1.1 Gamma-Ray Bursts

1.1.1 A brief history

Gamma-ray bursts (GRBs) are intense pulses of gamma rays observed in the sky. In particular,
they are famous for being the brightest known sources of electromagnetic (EM) radiation in
the universe, reaching isotropic luminosities of the order of 1054 erg/s [1], with estimated
emitted energies in the range 1048 − 1055 erg if the emission is isotropic [2]. On the contrary,
in models where the emission is beamed, these values get reduced to up to ∼ 1052 erg [3–
5], which is in the order of magnitude of the energy emitted by the brightest supernovae
throughout several months [6]. Even considering collimation, this means that some of these
events release, in just a few seconds, the amount of energy that the Sun will have radiated by
the end of its entire ten-billion years lifetime. It is therefore no wonder that the mechanisms
that produce such violent events continue to puzzle the scientific community to this day.

GRBs were serendipitously discovered in 1967 in a series of observations made by the
Vela satellites, an US project led by the Los Alamos laboratory whose only purpose was
to monitor hypothetical nuclear weapon tests by the Soviet Union in outer space. By that
time, atmospheric, underwater, and outer-space nuclear tests had been prohibited through
the joint signing by the Soviet Union, the United Kingdom, and the United States of the
Nuclear Test Ban Treaty, an international attempt that failed to halt the growth of the nuclear
arms race but successfully reduced the atmospheric radioactive contamination [7]. On July
2, 1967, the gamma-ray detectors on board the Vela 3A, 3B, 4A, and 4B satellites detected
a signal consisting of two peaks; the first of these lasted an eigth of a second (the time
resolution of Vela 4), and the second one was observed for two seconds, a behavior that
could not be explained as a result of nuclear detonations [8]. The discovery of GRBs was
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Fig. 1.1 Fluence and location on the sky of the 2704 GRBs detected by BATSE between 1991
and 2000. Source: CGRO-BATSE home page (https://heasarc.gsfc.nasa.gov/docs/cgro/cgro/
batse_src.html).

finally published in 1973 in [9], where it was reported that 16 bursts of photons in the energy
range 0.2− 1.5 MeV lasting between 0.1 and 30 s had been observed by the Vela 5A, 5B, 6A,
and 6B satellites between 1969 and 19721. In the same article, a study of the arrival time
differences between different satellites ruled out both the Earth and the Sun as the sources of
the observed radiation.

Since their discovery, several scientific campaigns have been launched with the purpose of
better understanding GRBs. The first one to achieve a breakthrough in this direction was the
NASA Compton Gamma-Ray Observer (CGRO), a space observatory that from 1991 to 2000
detected photons in the 20 keV−30 GeV energy range [11]. The most important instrument on
board of this satellite was the Burst and Transient Source Experiment (BATSE), that consisted
of a series of eight detectors placed in different positions in order to provide the location of the
observed GRBs, apart from their temporal and spectral properties. During those nine years,
BATSE detected 2704 GRBs and showed that their locations were isotropically distributed
on the sky (see Fig. 1.1), instead of being preferentially located in the galactic plane [11].
Furthermore, the observations made by the CGRO showed that the number of detected sources
as a function of their flux f deviated from the Euclidean count N(> f) ∝ f−3/2 [12–14].
These two discoveries convinced most astronomers that GRBs originated either in an extended
galactic halo or at cosmological distances [14, 15]. The confirmation of the latter hypothesis

1Needless to say, the military purposes of the Vela project are not mentioned in that article. Instead, the
project is justified in the search for gamma-ray emission during the early stages of supernovae, that had been
predicted in [10].

https://heasarc.gsfc.nasa.gov/docs/cgro/cgro/batse_src.html
https://heasarc.gsfc.nasa.gov/docs/cgro/cgro/batse_src.html
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was only obtained after the launching in 1996 of the BeppoSAX satellite, that covered a
broad range of energies between 0.1 and 300 keV and provided enough angular resolution for
optical and radio astronomers to search for lower-energy counterparts of these explosions.
The observation of GRB 9702282 by this satellite led in 1997 to the first detection of an X-ray
afterglow following a GRB [17] and the first identification of a host galaxy, whose redshift
was later identified to be z = 0.695 [18]. In the same year, the absorption features observed
in the afterglow of GRB 970508 led to the measurement of a redshift of z = 0.835. Later
observations have confirmed the hypothesis that GRBs arrive from cosmological distances,
sometimes with z values as large as 9 [15].

Further advancements were achieved in the last 20 years thanks to the observations
made by several gamma- and X-ray satellites, and the follow-up observations carried out
by numerous ground-based optical, infrared, mm and radio observatories [15]. In the next
Section, we will review some of the most important observational features of GRBs known
to this day, with the goal of providing an overview of GRB physics that sets the ground for
the models explored in this thesis.

1.1.2 Observational features

GRB events are typically divided into two main parts: the prompt emission, consisting of
the initial emission of gamma- and X-ray photons, and the afterglow phase, a lower energy
emission occurring right after the prompt phase in an energy range between gamma-rays and
radio waves.

Prompt emission light curves have in general the property of being irregular, diverse and
complex, which makes their modelling rather challenging (see Fig. 1.2). This phase is usually
composed of individual pulses, each of them exhibiting a FRED (fast rise and exponential
decay) behavior. The total duration of the prompt emission is generally determined by the
parameteter T90, defined as the time interval between the moments in which 5% and 95% of
the total fluence is observed, and whose value ranges from milliseconds to tenths of thousands
of seconds. As pointed out in [15] and [19], this definition is quite limited for several reasons:
(I) it depends on the energy range and sensitivity of the detector; (II) some GRBs exhibit
long gaps between emission episodes, and hence T90 may overestimate the duration of the
source’s activity; (III) this parameter does not distinguish the prompt emission from the early
afterglow and can include episodes originated in different physical phenomena, which reduces

2GRBs are named after the date they are published, following the convention GRB YYMMDD. If more
than one GRB is published on the same day, the form GRB YYMMDDX is adopted, where X is a letter that
identifies the order of publication of the burst (A for the first one, B for the second one and so forth). Since
2010, a letter A is added even if no second burst is published that day [16].
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Fig. 1.2 Light curves of 12 different GRBs (reproduced from [19]), created by Daniel Perley
with data from the public BATSE archive (http://gammaray.msfc.nasa.gov/batse/grb/catalog/).

its physical significance; and (IV) its definition is based on the observation time, and hence
it does not take into account the differences in the redshift of different souces, which can
be important. Despite these issues, this parameter brings some light to the general behavior
of GRBs. When considering many GRB sources, it can be seen that T90 follows a bimodal
distribution, leading to a division into two main groups (see Fig. 1.3). About 25% of GRBs in
the BATSE catalog3 are classified as short, with an average T90 between 0.2 and 0.3 s, while
the rest of them are long, with an average T90 between 20 and 30 s [22, 23]. The boundary
between the two distributions is usually set at 2 s. On top of this, short GRBs have in general
a harder spectrum than long ones, with a mean peak energy of ∼ 600 and ∼ 200 keV for short

3This observation was later confirmed by the Swift and Fermi satellites, with a slightly smaller proportion of
short GRBs (18%) [21].

http://gammaray.msfc.nasa.gov/batse/grb/catalog/
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Fig. 1.3 Histograms of T90 and Epeak and scatter plot of Epeak vs. T90 for several GRBs
observed by BATSE, where the bimodality of both distributions can be seen. Reproduced
from [20].

and long GRBs respectively [20]. These features seem to indicate that long and short GRBs
are originated by different physical mechanisms, as discussed in Section 1.2. An additional
clue for this is given by the observed spatial and temporal coincidence between some long
GRBs and core collapse supernovae of type Ib/c [24–30], that is not observed for short GRBs.
Most evidence in this direction points to an association between long GRBs and broad-lined
type Ic SN, named hypernovae (HN) due to their uncommonly large kinetic energy when
compared with other SNe Ic [31, 32]. In particular, broad spectral lines reveal unusually large
velocities for the ejected material (≲ 10−1 c; see [32]).

Contrarily to the erratic behavior seen in the prompt emission, the afterglow usually
presents a smoother and simpler pattern. The understanding of this phase was radically
improved after the launch of the Neil Gehrels Swift Observatory in 2004, which allowed for
the first time for a rapid localization and coverage (within the first ∼ 100 s after the gamma-ray
trigger) of GRB afterglows in the γ, X, and optical bands [34, 35]. As shown in [33, 36]
using data from Swift’s X-Ray Telescope (XRT), afterglow light curves can be schematized
in a canonical form that generally includes five components (see Fig. 1.4): (I) an early time
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Fig. 1.4 Scheme of the typical behavior of an early afterglow, showing the early time steep
decay phase (I), the plateau (II), the two decay phases after the plateau (III and IV), and an
X-ray flare (V). Reproduced from [33].

steep decay phase, typically proportional to t−3 or steeper; (II) a shallow decay or plateau,
usually proportional to t−1/2 except in few cases where the light curve is flat or even rises
in the beginning of this phase; (III) a normal decay phase, approximately proportional to
t−1; (IV) a late steep decay phase, usually decaying as t−2 and not always observed; and (V)
X-ray flares, which are sudden increases in the flux observed in roughly 1/3 of GRB X-ray
afterglows. After these initial stages, the late decay of the afterglow is sometimes observed to
last up to several years [37].

Another feature shared by a few GRBs is the appearance of a precursor, a typically
softer and weaker emission that precedes the main burst by 10− 100 s. This phenomenon
is observed in roughly 10% of GRBs [38], although this number depends on the definition
of the precursor, and ranges generally between 3% [39] and 20% [40]. Most precursors are
observed to be shorter than the main burst, as shown in [38], and no statistical correlation is
found between the features of the main episode in the prompt emission and the existence of a
precursor event [40, 41]. In some GRBs, the properties of the precursor are similar to those
of the main-episode emission [38, 40, 41].

More information about the general behavior of GRBs and the mechanisms that produce
them can be obtained from the measurement of their spectral energy distributions (SEDs),
either time-integrated over the entire duration of the bursts or time-resolved. Spectra are
generally observed to be nonthermal, and their time-integrated functional forms can typically
be optimally fitted by a phenomenological model consisting in two smoothly connected power
laws. This model, introduced by David Band et al. in [42] and hence called the Band model,
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(a) (b) (c)

Fig. 1.5 Histograms of the parameters of the Band model, corresponding to the low-energy
slope α (a), the high-energy slope β (b), and the peak energy of the E2N(E) distribution
Epeak (c). Data are extracted from 3800 spectra, derived from the 487 GRBs in the first
Fermi/GBM catalogue. Dashed lines represent results obtained for all GRBs in the catalogue,
while solid lines show only those that satisfy goodness criteria based on the χ2 distribution.
Reproduced from [43].

is given by the following function:

N(E) =

A
(

E
100 keV

)α
exp

(
− E

E0

)
, E < (α− β)E0

A
(

E
100 keV

)β ( (α−β)E0

100 keV

)α−β

exp (β − α) , E ≥ (α− β)E0

, (1.1)

where N(E) is defined in such a way that N(E)dE is the number of photons per unit area
measured in the energy interval (E,E+dE). This function has four free parameters: the low–
and high–energy spectral slopes α and β, the break energy E0, and the normalization constant
A. In [43], using data of 487 GRBs detected by the Fermi4 Gamma-ray Burst Monitor (GBM),
it is shown that the low-energy spectral slope is roughly in the range [−1.5, 0.5] and averages
at α ≈ −1 (see Fig. 1.5), while β is typically smaller than −1.3 and can sometimes take very
small values (≲ −3), which is consistent with an exponential cutoff [19]. The distribution
of the parameter E0 is represented in Fig. 1.5c in terms of the peak energy of the E2N(E)

distribution, given by Epeak = (2 + α)E0, which peaks around ∼ 150 keV and ranges from
∼ 20 keV up to ∼ 2 MeV.

The Band model is not the only one usually implemented to fit GRB spectra, and often a
combination of several components is used. To this date, there is evidence for the existence
of up to three separate components in the observed spectra: (I) a nonthermal component,
fitted as a Band function with Epeak ∼ 1 MeV; (II) a quasi-thermal component fitted by either

4 The Fermi Gamma-ray Space Telescope, launched in 2008 with a detection energy range between 8 keV
and 300 GeV and still in activity, was the first instrument to study the behavior of GRBs in such high energies
[44].
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Fig. 1.6 Scheme of the three components of GRB spectra considered in [45], showing a
nonthermal component (I), a quasi-thermal component (II), and an extra power-law component
that extends to high energies (III). The bandwidths of the LAT and GBM detectors of Fermi
are shown for comparison. Reproduced from [45].

a blackbody or multicolor blackbody model, typically peaking at ∼ 100 keV; and (III) an
extra power-law component at very high energies (> 100 MeV) [45, 46] (see Fig. 1.6). The
determination of an optimal fitting model is not always clear, as frequently more than one
can fit the data equally well. This must be taken into account when developing theoretical
frameworks aimed to explain each of the observed components. For instance, the fraction of
GRBs that show clear evidence for the existence of a thermal component is not clear, since
such value is quite sensitive to the analysis method [19].

In general, determining the photon spectrum emitted in different time windows gives
valuable information about the processes originating each of the emission episodes in a GRB.
Unfortunately, due to the amount of photons required in each temporal bin to achieve a good
statistical significance, time-resolved spectra can only be obtained for the brightest GRBs.
Nevertheless, this method is nowadays broadly used due to the high sensitivity of the Fermi
satellite. An interesting feature that can only be observed in this way is the variation of the
value of Epeak in individual GRB pulses, which either shows a hard-to-soft evolution, in
which Epeak decreases from the beginning of the pulse [47], or a tracking behavior, in which
Epeak follows variations of the flux [48]. On the other hand, observations made by Fermi/LAT
have shown that in most cases high energy photons (> 100 MeV) are detected with a delay
of a few seconds with respect to the lower energy emission (≲ 1 MeV) [45, 49, 50].

In the next section, we will outline a series of astrophysical models proposed in the
literature to explain the origin and behavior of GRBs, paying particular attention to those
explored in this thesis.
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1.2 Models for GRB emission

1.2.1 Generally accepted ingredients

Despite the years of work dedicated to understanding the processes that lead to the emission
of GRBs, there is no universally accepted model that explains all of their observed features.
Before going into details about the different scenarios proposed in the literature, we will
enumerate a few common features shared by most of them and summarized in [19, 51]:

1. Practically all GRB models involve relativistic motion with Lorentz factors γ > 100.
Initially, this was theoretically proposed to solve the compactness problem: assuming
Newtonian dynamics, the estimated photon densities required to emit the observed
energies with a time variability of ∼ 10 ms are high enough to efficiently produce pairs
out of photon-photon interaction, which makes the source optically thick. Relativistic
motion solves this issue by reducing the photon energy by a factor γ in the source’s
frame and the size of the source by a factor γ2, which as a result makes the source
optically thin for γ ≳ 100. This theoretical prediction was later on experimentally
supported [52–54]. To this day there is no consensus on the mechanisms that accelerate
matter to such velocities: while some models consider a radiation–dominated expansion
[55, 56], in others matter dynamics is dominated by magnetic fields [57].

2. The energy radiated in both the prompt and afterglow phases are generally explained
through a dissipation process that enables the conversion of bulk kinetic energy into
random motion of highly energetic particles. Some mechanisms proposed in the
literature are diffusive shock acceleration [58], collisional heating [59], magnetic
reconnection [60], and heating by neutron decay [59, 61]. In particular, there is a
rather general agreement in the association of GRB afterglows with the dissipation of
energy generated by the interaction of the burst and the circumburst medium (CBM).
The processes that lead to the gamma-ray emission differ according to the model, the
most widely considered ones being synchrotron emission, inverse Compton effect, and
photospheric emission.

3. Most GRB models consider that the energy emission is highly collimated, with an
opening angle θj ≲ 10◦ (see, e.g., [5, 62]), which drastically reduces the energy budget
required to explain observations. Moreover, a jet with Lorentz factor γ being slowed
down by the CBM will produce a steepening in the afterglow light curve when θj ∼ 1/γ

for two main reasons. Firstly, the flux emitted from the jet is beamed within an angle
θb = 1/γ, which means that an observer along the jet axis will see a steeper decrease
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of the flux as soon as θb > θj , which would not be observed if emission was isotropic
[3, 4, 63, 64]. Secondly, as shown in [3, 4, 65], the jet starts spreading sideways as
soon as it reaches the same condition, which also leads to a steepening of the flux. The
combination of these two phenomena provides the most widely accepted interpretation
of the frequently observed flux steepening observed in GRB afterglows (between phases
III and IV in Fig. 1.4), usually denominated jet break. According to this model, jet
breaks must be achromatic, i.e., they must be observed in all frequency bands. Evidence
for achromatic jet breaks was found e.g. in [66, 67], whereas evidence for chromatic
breaks occurring in the X-ray band but not in the optical was found in [68]. In particular,
a consistent lack of achromatic breaks has been observed in GRB afterglows since the
beginning of the Swift mission, sometimes attributed to off-axis observations [69] or to
misinterpretation of low-quality data [70]. Such lack of evidence is argued in [71, 72]
to support the model considered in this thesis, in which the GRB emission is produced
isotropically (see Section 1.2.3).

4. GRBs are generally associated with the death of massive stars and the birth of compact
objects. The most important indication for this is the large amount of energy released
in these processes (up to ∼ 1052 erg if the emission if collimated), since no other kinds
of sources are known to release that much energy in such short times. In the case of
long GRBs, this is additionally supported by their association with SN Ic.

We will now describe two models for GRB emission proposed in the literature. In Section
1.2.2 we will focus on the so-called fireball model, widely regarded as a standard model of
GRBs, while in Section 1.2.3 we will discuss the main features of the alternative fireshell
model.

1.2.2 The fireball model

To this day, the most widely accepted scenario for the emission of GRBs is the fireball model,
in which GRBs are associated with the sudden release of a large amount of gravitational
energy (of the order of a solar mass) by a stellar size object, which receives the generic
name of central engine [73]. The model does not make any particular assumption of the
nature of this object, and focuses instead on the dissipation processes that produce the GRB
emission. In this scenario, a small fraction of the total released energy5 (∼ 10−3 − 10−2)
is transformed into a high-temperature (∼ 1 MeV) plasma containing electrons, protons,
photons and baryons, known as fireball [55]. This plasma is produced within a volume of

5 In such a process, most of the energy should be converted into thermal neutrinos with typical energies
10− 30 MeV and gravitational waves with frequencies in the range 102 − 103 Hz [73].
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radius R0 ∼ 107 cm, which makes it initially optically thick to Compton scattering due to its
high density of positrons and electrons. Depending on the emission mechanism, the internal
energy of a fireball can either be radiation–dominated or magnetically dominated. We will
mostly discuss the first of these scenarios, which is the most commonly regarded one among
the two of them.

Let us consider a radiation–dominated fireball (see Fig. 1.7) produced through the injection
from the central engine of mass and internal energy at the rates Ṁ and Ė. As studied in
[74–76], such an outflow undergoes an initially adiabatic expansion (acceleration phase) until
all of its internal energy has been transformed into bulk kinetic energy, and the flow expands
at constant velocity (coasting phase). For constant Ṁ and Ė, we can obtain a limit to the
maximum velocity reached by the fireball by imposing energy conservation [75, 77], which
gives a maximum Lorentz factor γmax = η, where η = Ė/Ṁc2. In particular, the condition
γ ≳ 100 gives an upper limit on the total baryon load of the fireball, defined as B = Mc2/E,
where E and M are respectively the total injected energy and mass, which must therefore
satisfy B < 10−2. During the acceleration phase, the bulk Lorentz factor of the outflow
grows as γ ∝ r, and the coasting phase is reached at the saturation radius given by Rs ∼ ηR0.

At some point during this evolution, at the so-called photospheric radius Rph, the fireball
becomes optically thin, which allows radiation to escape freely. After that stage, each layer
continues to expand without changing its speed, and radiation streams freely through the
photosphere, i.e., the optically thin region located at r ≳ Rph [78, 79]. Some of these
photons are scattered by the highly energetic electrons in the ejected plasma, as explained
below. This process is proposed in the fireball model to explain the quasithermal component
observed in the spectra of several GRBs, whose spectrum depends on the several dissipation
mechanisms occurring both at r > Rph and r ≲ Rph [80]. In particular, it is proposed in [81]
that the transition between the optically thick and thin regimes produces a precursor with a
quasithermal spectrum.6 This model explains a class of GRB precursors with smooth and
FRED-shaped light curves and quasithermal spectra, but is at odds with the predominantly
nonthermal spectrum observed in most GRB precursors7 [40, 85].

In the radiation–dominated fireball model, dissipation is explained through internal and
external shocks. The first of these are caused by fluctuations in the energy injection rate at
the early stages of the expansion, which lead to different values of η and consequently to
variations in γmax. As discussed in [87], such fluctuations cannot be smoothed out in spatial

6Some alternative models to this one involve are the breakout of the fireball through the surface of a massive
star [82, 83] and the formation of weak jets caused by magnetohydrodynamical processes preceding the main
emission episode [84]. In particular, nonthermal emission would be emitted only in the latter of these scenarios.

7In principle, the nonthermal appearance could be explained through a convolution of blackbody emission
at different temperatures and locations in the outflow. However, this does not explain why the spectral indices of
precursors are on average similar to those of the main event [41].



12 Introduction

Fig. 1.7 Schematic representation of the different emission mechanisms involved in a radiation–
dominated fireball model. Reproduced from [86] with modifications.

scales bigger than R0, and hence the outflow is formed by a series of independent shells with
typical thickness ∼ R0. In particular, spreading due to gradients in γ within individual shells
start occurring for r ≳ 2η2R0 [19, 88]. Approximately at the same radius, the interaction of
shells with different velocities becomes possible. As faster shells catch up with slower ones,
internal shocks are generated within the plasma. Due to its low density, the ejected plasma is
collisionless, which enables the acceleration of electrons to high energies through diffusive
shock acceleration8 (Fermi process). Such electrons can then emit part of their energy, either
through synchrotron emission or by inverse Compton scattering. In this picture, the fast
variability during the prompt phase of GRBs is naturally explained through energy dissipation
occurring at several internal shocks. However, this model has the drawback of predicting
a low overall efficiency in the conversion of kinetic to internal energy unless the Lorentz
factor changes considerably from side to side of the shocks9 [19, 90, 91]. On the other hand,
external shocks produced when the fireball is slowed down by the CBM are proposed in this
model to produce the afterglow [92, 93]. Such a scenario predicts a slower time variability
with respect to the prompt phase [94], and explains the shallow decay during the plateau by

8 It is likely that the acceleration mechanisms are related to magnetic field amplification close to the shocks
via plasma instabilities, which is a matter of current research. Efforts in this direction have been made in the
past years through particle-in-cell (PIC) simulations (see, e.g., [89]). However, further advancements are limited
by the lack of computational power required to resolve both the electron skin depth and the dynamical length
scales of astrophysical systems.

9 Alternatively, dissipation mechanisms due to collisional processes and the decay of neutrons in the outflow
are considered in [59].
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means of a prolonged energy injection into the external shocks [36]. As well, the interaction
with the CBM may produce reverse shocks, which are expected to produce a lower-energy
emission that could explain the optical flashes observed in several GRB afterglows [95].

If the energy release is entirely explained through synchrotron emission, i.e., assuming
that dissipation produces enough energetic electrons, the emitted spectrum can be computed
by assuming that such electrons are injected for γe > γmin with a distribution proportional
to γ−p

e , where γe is the electron Lorentz factor, γmin is the minimum γe of the distribution,
and where p > 2 [96, 97].10 The characteristic energy hνs of observed synchrotron photons
depends in general on the Lorentz factors γ and γe of the emitting material and the energetic
electrons, as well as on the magnetic field. The behavior of the emitted spectrum of an
electron changes depending on whether γe is larger or smaller than the value γc, above which
electrons emit practically their entire kinetic energy during a single synchrotron period. The
observed spectrum can consequently be expected to be different in the regimes characterized
by γmin > γc (fast cooling) and γmin < γc (slow cooling). In the fast cooling regime, all of
the electrons satisfy γe > γc, which results in the following observed flux:

Fν = Fν,max


(ν/νc)

1/3, ν < νc

(ν/νc)
−1/2, νc < ν < νm

(νm/νc)
−1/2(ν/νm)

−p/2, νm < ν

, (1.2)

where νc = νs(γc) and νm = νs(γmin). Conversely, in the slow cooling regime, we have

Fν = Fν,max


(ν/νm)

1/3, ν < νm

(ν/νm)
−(p−1)/2, νm < ν < νc

(νc/νm)
−(p−1)/2(ν/νc)

−p/2, νc < ν

. (1.3)

In particular, fast cooling must take place during the prompt phase in order to produce an
efficient emission of photons. On the other hand, it is expected that during the afterglow
phase there will be a transition from fast to slow cooling [53, 92, 98–100].

The synchrotron model gives an explanation for the broken power-law behavior of GRB
spectra, commonly fitted by means of the Band function (Eq. (1.1)). Provided that the outflow
is optically thin, the lowest part of the spectrum must verify Fν ∝ ν1/3, which translates
into α = −2/3. This behavior is typical of synchrotron radiation [101–103] and does not
depend on the energy distribution of the accelerated electrons. Taking fast cooling into

10This condition is imposed to guarantee that the total integrated energy is finite, although the same can be
achieved by considering 1 < p < 2 with an energy cutoff.
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account, the lowest-energy spectral index α must be contained in the range [−3/2,−2/3],
which is not verified in several bursts11 [106, 107]. This means that additional mechanisms
must take place in those cases. For instance, if the scattering optical depth of the emitting
material is of order unity, spectral indices of up to 3/2 can be obtained [108–110]. On top
of this, synchrotron self-aborption should produce a steep cut-off of the spectrum at lower
frequencies; in particular, this happens if the photon frequency is lower than that for which the
optical depth equals 1 for uncooled electrons (denoted νac) and for all electrons (denoted νsa)
[109, 110]. In that case, Fν ∝ ν2 and ν11/8 for ν < νac and νac < ν < νsa respectively. On
the other hand, inverse Compton scattering can also change the spectrum even if the system
is optically thin to this process. The effect of this phenomenon depends on the Compton
parameter Y = γ2

eτe, where τe is the optical depth to Compton scattering [51]. This process
becomes important for Y > 1. Typically, a scattering of a photon by a relativistic electron
boosts its energy by a factor γ2

e , which should lead to the appearance of an ultrahigh-energy
component in the GeV−TeV range of the observed spectra [111, 112]. In addition, inverse
Compton speeds up the cooling of the emitting regions by shortening the cooling time by a
factor Y [51].

An alternative mechanism for the emission of GRBs is given by magnetically dominated
fireballs, in which most of the energy is released in the Poynting flux [113–115]. In this case,
the dynamics of the ejected material depends on the magnetization parameter σ, defined as
the Poynting to kinetic energy flux ratio, which verifies σ ≫ 1. If absence of dissipation,
such a magnetically driven outflow reaches a maximum Lorentz factor given by σ

1/3
0 , where

σ0 = σ(R0) [15, 116]. It is proposed in this model that energy dissipation occurs in these
outflows through reconnection of magnetic fluctuations on small scales. Although additional
dissipation could be in principle caused by internal shocks, such mechanism is much less
efficient in Poynting–dominated plasmas than in weakly magnetized plasmas (e.g. radiation–
dominated fireballs) [117–119]. Jet acceleration can be driven by both adiabatic expansion
and reconnection itself, if part of the dissipated energy is transferred to bulk kinetic energy.
However, due to a lack of understanding of the reconnection process, it is not known in
which proportion the dissipated energy is destined to heating and jet acceleration. Despite
this drawback, this model counts with the advantage of predicting a high enough radiative
efficiency, and is in good agreement with observed GRB spectra [120]. Another prediction
made by this model comes from the fact that photons are mainly radiated by accelerated
particles in an ordered magnetic field, which means that the emission should be largely
polarized [121]. Although some studies indicate smaller polarization degrees than predicted

11 This approach is critiqued in [104, 105], where it is argued that criteria based on the Band function tend to
overreject synchrotron models, which are consistent with data in most GRBs if alternative physically motivated
fitting functions are used instead.
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by models of magnetically dominated fireballs (see, e.g., [122, 123]), both experimental and
theoretical developments still need to be achieved in this direction.

Several models are proposed in the literature for the central engine responsible of the
energy injection. In particular, temporal and energetic considerations suggest that GRBs are
produced as a consequence of the accretion of a massive disk (∼ 0.1M⊙) by a compact object,
most likely a newly born black hole (BH). It is generally considered that short GRBs originate
from small disks produced by compact binary mergers, either of two neutron stars (NSs) or of
a NS and a BH (see, e.g., [124]), whereas long GRBs originate in the gravitational collapse of
massive stars (collapsars). In the first of these cases, the merger releases ∼ 1053 ergs, mainly
in the form of low-energy neutrinos and gravitational waves [51], and the rest produces a
jetted GRB emission. This scenario has been recently supported by the observation of GRB
170817A 1.7 s after the detection of the gravitational wave GW170817, whose signal was
determined to be consistent with the merger of two NSs [125]. On the other hand, the most
accepted explanation for the emission of long GRBs is given by the collapsar model, which
involves the collapse of a massive, rapidly rotating Wolf-Rayet star with a core of ∼ 10M⊙.
In this model, matter accretion on the newly created BH creates a low-density region close
to the rotation axis of the latter, which leads to the formation of a jetted outflow that breaks
through the star’s surface. The mechanisms by which the rotational and gravitational energy
of the system produce such jets in both of these models are not clear, and are a matter of
current research. If the central engine is an accreting BH, three jet launching mechanisms are
most commonly proposed in the literature: (I) neutrino-antineutrino annihilation in rapidly
accreting disks, which can generate a hot e−e+ plasma with similar features to a radiation–
dominated fireball [126, 127]; (II) the Blandford-Znajek mechanism, in which rotational
energy and angular momentum are transferred from the BH to a Poynting–dominated outflow
due to the frame dragging of the magnetic field lines supplied by the accretion disk [128];
(III) the launching of magnetic blobs from accretion disks [129]. An alternative possibility
for the central engine is given by millisecond magnetars, which are rapidly spinning (period
∼ 1 ms), highly magnetized (B ≳ 1015 G) NSs [130–133]. The spindown of these objects
powers the jetted emission of Poynting–dominated outflows, which release a large fraction
of the stored magnetic and rotational energy in typical timescales of ∼ 10 s (for this value
of the magnetic field; see [19]). The energy budget for such emission is powered by the
dynamo produced by the differential rotation of the NS. In this model, the fast variability and
erratic behavior of the prompt phase are explained through magnetic dissipation instabilities
[134, 135]. Following the main energy extraction, a residual rotation is proposed (e.g. in
[132]) to power late time flaring or afterglow emission, giving a possible explanation for the
occurrence of X-ray plateaus [136, 137].
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1.2.3 The fireshell model

An alternative mechanism for the emission of GRBs is given by the fireshell model, proposed
in [138] and further developed in [139–146]. As well as the fireball model, this one also
involves the relativistic expansion of an optically thick baryon-loaded e−e+ plasma up to bulk
Lorentz factors γ ∼ 100− 1000, but the emission process is radically different. Firstly, the
expansion of the pair-baryon plasma is assumed to be isotropic, which increases the energy
budget required for the observed GRB emission with respect to jet models. In addition, this
model does not consider a prolongued activity of the inner engine, and dissipation is, at least
in the early stages of the emission, explained through collisional mechanisms.

In this scenario, the initial creation of an e−e+ plasma is explained through vacuum
polarization (Schwinger effect, [147]) due to the strong electric fields created during the
collapse of a compact object to a BH [138, 148] (see [149] for a review). The region where
electric fields are initially intense enough to allow such process, called dyadosphere, has a
width rdyad ∼ 108 − 109. The details of the creation of such strong electric fields are still
a matter of current research: while initially this was explained through the collapse to a
Kerr-Newman BH, some authors have rejected this possibility by arguing that the creation
of e−e+ itself is an efficient mechanism for the discharge of the BH (see, e.g., [150]). The
model has been changed in the last year by considering a configuration proposed in [151], in
which strong electric fields are induced due to the rotation of an uncharged (Kerr) BH placed
in an asymptotically uniform magnetic field [152].

Since the e−e+ plasma is initially optically thick, its evolution is well described by the
already mentioned hydrodynamical models applied to the fireball model in [75, 77]: the
expanding plasma forms an ultrarelativistic shell (hence the name fireshell) that accelerates
as γ ∝ r due to the conversion of internal into kinetic energy, while maintaining its width
approximately equal to rdyad [139]. The expansion is slowed down by conservation of total
momentum as the plasma engulfs the baryonic matter in the CBM, until acceleration stalls
when most of the internal energy of the plasma has been converted into kinetic energy. This
occurs when the shell has reached a bulk Lorentz factor γ ∼ 1/B [75, 77, 140]. From that
moment on, the plasma continues to expand at constant speed until the electron density
decreases below the point at which the material becomes optically thin. At this stage, photons
decouple from the electrons and positrons in the shell, which produces an emission episode
denominated proper GRB (P-GRB). Since the optical depth of electrons and positrons in
the material is still significant during this emission, the spectrum of photons emitted in the
P-GRB should be that of a Comptonized Doppler-shifted blackbody [142, 153]. Moreover,
the spectrum can be further broadened if the comoving temperature varies significantly along
the shell [142].
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Once the P-GRB is emitted, the ejected material continues to expand, and interacts with the
CBM. This interaction slows down the shell by dissipating part of its kinetic energy through
collisional processes, and produces the afterglow. Hence, the prompt emission corresponds
in this model to both the P-GRB and the initial stages of the afterglow. In particular, the fast
time-variability of prompt GRB light curves is explained by considering that the CBM is
formed of clumps of matter of size ∼ 1015 − 1016 cm, density contrast δρ/ρ ∼ 0.1− 10, and
mass between 1022 and 1024 g, which is supported by both observations of the CBM in novae
(see, e.g., [154]) and theoretical models [155, 156]. Thus, in this scenario, fast changes in the
structure of GRBs map abrupt changes in the density of the CBM12. In particular, light curves
can be reproduced numerically by making a few assumptions about the geometry of the CBM
and its interaction with the expanding shell. The approach adopted in the fireshell model
consists in considering that the shell reaches instantaneous thermal equilibrium with the
engulfed CBM matter, which allows for a description of the entire dynamics of the expanding
shell by imposing energy-momentum conservation, provided the CBM density profile is
known. This method is implemented by means of a 1D code that computes the interaction
between a spherically symmetric shell with a constant width in the laboratory frame and
an isotropic matter distribution that represents the CBM [140, 158]. For each observation
time, a distant observer measures photons emitted at different locations on the shell and at
different times in the source’s rest frame, such that the arrival time is the same for all of
them. This condition defines for each arrival time an equitemporal surface (EQTS), such that
photons emitted from it arrive at the same time at the observation location. The geometry of
each EQTS depends entirely on the shell’s dynamics, and can be computed analytically as
shown in [144, 145]. The observed light curve is thus computed by integrating the differential
luminosity of the shell on each EQTS, assuming that the emitted photon distribution is at each
point thermal, and taking into account the Doppler shift due to the relativistic motion of the
emitting material. In order to take into account the filamentary, clumpy structure of the CBM,
the local emitted power is multiplied by the ratio between the effective emitting area of the
shell and the total visible area [158]. The time-resolved and time-integrated spectra of some
low-energy GRBs can be explained through this model, where the nonthermal Band-like
shape arises as a product of the integration of different thermal spectra on each EQTS13. In
particular, the observed hard-to-soft spectral variation observed in individual pulses (see
Section 1.1.2) is explained by the time decrease of both the comoving temperature and the
bulk Lorentz factor. However, this model does not reproduce the spectra of some highly

12A similar model in the context of collisionless external shocks has been proposed in [157]. On the contrary,
it is argued in [51] that such model is unable to explain the millisecond-scale time variability observed in several
long GRBs.

13A similar idea is proposed in [159].
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Class Type Number In-State Out-State Ep,i (MeV) Eiso(erg) Eiso,GeV (erg) ρGRB (Gpc−3 yr−1)

Binary-driven I 329 COcore-NS νNS-BH ∼0.2–2 ∼1052–1054 ≳1052 0.77+0.09
−0.08

hypernova II (30) COcore-NS νNS-NS ∼0.01–0.2 ∼1050–1052 − 100+45
−34

(BdHN) III (19) COcore-NS νNS-NS ∼0.01 ∼1048–1050 − −
IV 5 COcore-BH νNS-BH ≳2 >1054 ≳1053 ≲0.77+0.09

−0.08

I 18 NS-NS MNS ∼0.2–2 ∼1049–1052 − 3.6+1.4
−1.0

Binary II 6 NS-NS BH ∼2–8 ∼1052–1053 ≳1052
(
1.9+1.8

−1.1

)
× 10−3

Merger III (1) NS-WD MNS ∼0.2–2 ∼1049–1052 − 1.02+0.71
−0.46

(BM) IV (1) WD-WD NS/MWD <0.2 <1051 − −
V (0) NS-BH BH ≳2 >1052 − ≈0.77+0.09

−0.08

Table 1.1 Summary of the 9 GRB subclasses considered in the approach outlined in Sections
1.2.3 and 1.2.4 (extracted from [72]). The nature of the initial binary is indicated, as well
as the resulting state after the GRB emission (either a new binary or a merged compact
object) and the amount of claimed observations with known redshifts (numbers in parenthesis
indicate lower limits). Rest-frame peak spectral energies (Ep,i) are indicated together with the
isotropic energies in the 1 keV−10 MeV (Eiso) and 0.1−100 GeV (Eiso,GeV) bands. Estimated
rates for each type of event are shown in the last column.

energetic GRBs (such that their isotropic emitted energy Eiso exceeds ∼ 1054 erg), which
is why it has been proposed in [160] that energy is not emitted thermally, but following a
modified blackbody spectrum with a different low-energy power index, for which a physical
explanation has not yet been proposed. However, further ingredients have been added to
this model in the last two years, including the modelling of the early flaring activity and the
synchrotron emission produced both at the central engine and the ejected magnetized material
(see Section 1.2.4 and [161, 162]).

In this alternative approach, GRBs are to this date divided into 9 subclasses on top of
their standard long-short categorization, classified according to their spectral peak energies,
Eiso values in different energy bands, and occurrence rates (see Table 1.1). These subclasses
are thoroughly reviewed in [72, 163]. In agreement with general models of GRBs, short
bursts are proposed to originate from binary mergers (BM), and are therefore classified into
BM of types I–V14. The other four subclasses correspond to long bursts, and are subdivided
into binary driven hypernovae (BdHNe) of types I–IV [72]. In particular, part of this thesis
consists in the modelling of type I BdHNe, which we discuss in Section 1.2.4.

1.2.4 The BdHN model

The BdHN model has been proposed in the past years to explain the observed temporal
coincidence of long GRBs and type Ic SN mentioned in Section 1.1.2 [164–168]. This model
considers a tight binary system composed by a NS and a carbon-oxygen star that has lost its

14Type III BM, however, have hybrid properties between short and long GRBs; see, e.g., [72].
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Fig. 1.8 Schematic picture of the IGC, extracted from [165]. The collapse of a COcore produces
a SN explosion that impacts the companion NS. Photons are trapped in the infalling flow, and
temperatures are high enough to enable efficient neutrino emission close to the NS surface.

hydrogen and helium envelopes (COcore), which explodes as a type Ic SN as portraited in Fig.
1.8. Part of the mass ejected during this explosion is directed towards the NS, which starts
fastly accreting it at a high rate (Ṁ ≳ 10−3 M⊙ s−1). If the binary system is tight enough
(for orbital periods of a few minutes), this accretion process may become hypercritical. In
this regime, the mass infall rates are so high that the emitted photons diffuse outward at
a slower velocity than that of the accreting material, and are consequently trapped in the
accreting flow. This causes the NS atmosphere to reach the high temperatures (T ∼ 1010 K)
and densities (ρ ≳ 106 g cm−3) required for neutrino-antineutrino cooling to become efficient.
Consequently, the energy gained by the accreted material is mostly radiated via neutrino
emission, and matter continues to fall onto the NS at a high rate without being stopped by
photon pressure. If the NS reaches its critical mass, it can collapse into a BH, which gives
this process the name of induced gravitational collapse (IGC). In particular, helium depletion
plays a crucial role in this model, since carbon-oxygen stars lead to tight binaries and high
opacities, which favors photon trapping [165]. It is argued in [165] that helium cores do not
trigger enough hypercritical accretion onto the NS to produce its IGC, which explains in this
model why GRBs are associated with SNe with totally absent or very little helium.

In general, there is a chance that the binary system may be disrupted due to the SN
explosion, which depends on the mass loss and the kick imparted during the explosion (see,
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e.g., [169]). If this is not the case, the IGC mechanism produces as a result a binary system
composed by the collapsed BH and a newly formed NS (νNS) at the center of the SN. The
BH rotates in the presence of the magnetic field of the νNS, which induces an electric field
around it strong enough to efficiently create e−e+ pairs [72]. As outlined in Section 1.2.3,
this process creates an e−e+ plasma around the BH, that expands isotropically and produces
the emission of the different episodes seen in GRB light curves. The energy budget for the
creation of such a plasma comes from the rotation of the BH, which consequently spins down
until the induced electric field is insufficient for the creation of pairs. It has been hypothetized
in the recent years that X-ray precursors can be explained by the emission of rising bubbles
driven by the Rayleigh-Taylor instability during the initial phase of the accretion process
[72, 165, 167], whereas a different explanation could be given by the emission produced at
the SN shock breakout [72]. As well, it is proposed that the energy injection into the SN
ejecta from the hypercritical accretion and the produced GRB tranforms the SN Ic into a
more energetic broad-lined SN Ic or hypernova (see Section 1.1.2), which is observed in
the optical band a few days after the GRB trigger [72, 170]. An additional energy release is
proposed to occur due to the acceleration in the induced electric field of protons up to 1021

eV, which in turn produce synchrotron emission of GeV photons [168, 170]. Moreover, the
synchrotron emission produced by relativistic electrons injected in the magnetized HN ejecta,
and the νNS pulsar emission, are proposed to explain, respectively, the early and late X-ray
afterglow [162].

Bursts produced in this way are characterized by an isotropic energy in the range 1052−1054

erg and a rest-frame peak energy between 0.2 and 2 MeV, and are classified as type I BdHNe.
On the other hand, if the system is not tight enough, the accretion onto the NS may be
insufficient to induce its collapse to a BH. Such scenario produces bursts with a lower
isotropic energy (Eiso ≲ 1052 erg) and spectral peak energy (Ep ≲ 200 keV), classified as a
type II BdHNe (or X-ray flashes) if Eiso is in the range 1050−1052 erg, and as type III BdHNe
if Eiso ≲ 1050 erg [72]. Higher energies (≳ 1054 erg) are proposed to be reached when a
similar process originates from COcore-BH binaries, in which case the BdHN is classified as
type IV (see Table 1.1 and [72]).

During its evolution, the e−e+ plasma encounters different mass density profiles depending
on the direction of expansion. This can be seen in Fig. 1.9, where the location of the BH and the
νNS are shown on the equatorial plane of the binary system together with the mass distribution
of the SN ejecta. In this scenario, the prompt emission occurs due to the ultrarelativistic
expansion of the plasma in the lowest-density regions according to the fireshell model detailed
in Section 1.2.3. On the other hand, the creation of shocks in the SN ejecta by its interaction
with the plasma in higher-density regions, and the subsequent breakout of these shocks, are
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Fig. 1.9 Matter distribution of a BdHN in the equatorial plane of the binary system at the
moment of the IGC of the NS, produced through N-body Newtonian simulations. The white
and black circles indicate, respectively, the locations of the νNS and the newly born BH.
Reproduced from [167].

proposed in this model to produce the early flaring activity observed in GRB afterglows (see
Section 1.1.2). Additionally, the interaction of the e−e+ plasma with high-density regions
of the SN ejecta can produce a reflected wave. Due to the baryon depletion caused by both
the accretion process and the expansion of the plasma, a low-density optically thin region is
created in the ejecta, which allows radiation to be emitted from the reflected wave towards a
distant observer, producing a second burst following the main GRB emission. All of these
processes are studied in this thesis by following a hydrodynamical approach. In particular,
shock breakouts in high-density regions of the SN ejecta are also studied by means of radion
hydrodynamics. We introduce both approaches in the next sections.

1.3 Hydrodynamics and radiative transfer

Fluid dynamics is one of the most powerful tools to understand astrophysical systems such
as star and planet interiors, disks, winds, and even larger systems including the universe
itself. Countless physical phenomena can be solved by following hydrodynamical and mag-
netohydrodynamical approaches, including flow instabilities, convection, and astrophysical
dynamos. Even though high-energy phenomena such as accretion in BHs usually require the
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consideration of general relativistic effects, some astrophysical phenomena involve relativistic
flows far from strong gravitational fields. Some of those systems, as is the case for optically
thick ejected flows in GRB models in far regions from the central engine, are well described
by special relativistic hydrodynamics (RHD). Such is the approach followed in this thesis to
explore the different episodes occurring in the BdHN model.

In most cases, the RHD equations must be solved numerically in order to produce realistic
descriptions of astrophysical processes. The first numerical methods to solve the RHD
equations were introduced by J. R. Wilson in the seventies [171–173]. The techniques
implemented in this approach relied on explicit finite difference schemes, together with the
introduction of artificial viscosity to handle shock waves. Although these methods became
extremely popular at the time, they proved too inaccurate when describing relativistic flows
with bulk Lorentz factors greater than ∼ 2 [174]. Ever since, new techniques have been
developed and larger and more accurate computations have been made possible, aided by
the rapidly increasing technological advancements of the last decades and the possibility
of running parallel simulations using thousands of processors. In the context of the BdHN
model, the smoothed particle hydrodynamics (SPH) technique has been used by L. Becerra
et al. [168] to perform an extensive study of the dynamical properties of the system and the
conditions for the IGC to be possible. Although this technique is particularly well suited
for some nonrelativistic problems such as SN explosions and star mergers (see, e.g., [175]),
it is still in disadvantage with respect to other methods when describing shock waves, in
particular when relativistic speeds are involved [176]. Nowadays, the most accurate option for
the description of relativistic shocks, frequently involved in GRB emission models, is given
by high-resolution shock capturing (HRSC) methods such as the Godunov-type15 schemes
described in Chapter 2 of this thesis. In particular, these methods are implemented in the
open-source PLUTO16 code, which has been used to produce the simulations presented in this
work.

Maybe the most important condition required for the validity of any hydrodynamical
approach is the the assumption of local thermodynamic equilibrium (LTE). This assumption
consists in stating that the described system can be divided into a series of elementary vol-
umes17, in which all particles have equilibrium energy distributions at a common temperature.
In many astrophysical scenarios, the most stringent condition for this to hold is given by the
equilibrium between photons and material particles. Considering that the main exchange of

15This class of schemes is named after S. K. Godunov, who introduced them in [177].
16http://plutocode.ph.unito.it/
17 Despite the definition of these volumes is rather ambiguous, it is enough to consider that they are large

enough to contain a large number of particles and allow for a statistical kinetic description, and small enough to
guarantee homogeneity in their interior [178].

http://plutocode.ph.unito.it/
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internal energy between matter and radiation is dominated by absorption-emission processes
[179], for LTE to be valid the absorption photon mean free path λa must be smaller than any
characteristic length l in which the properties of the system change. Additionally, changes
must be slow enough that these processes lead to thermal equilibrium in a much shorter time
than any dynamical timescale of the system. If v is a typical mean velocity of the material,
we can express such timescale td ≈ l/v. Since the characteristic thermal equilibrium time is
given by ta ≈ λa/c, the condition ta ≪ td translates into λav/lc ≪ 1.

Despite the usefulness of the hydrodynamical approach to understand matter dynamics in
astrophysical processes, the LTE assumption must be abandoned to explain the emission of
EM radiation. Since radiative processes provide most of the information we have about the
observable universe, their accurate description constitutes an important tool to do research in
astrophysics, and is in particular one of the main goals of this thesis.

The problem of radiation transfer can be radically simplified if conditions are such that
photons and matter particles are tightly coupled; for instance, in stellar interiors. In those
cases, LTE can be assumed and radiation transport can often be treated as a diffusion problem
(see Chapter 4). Contrarily, when densities are low enough that matter and radiation do
not interact, they can be treated separately. The challenge arises when describing systems
in which matter has a nonzero opacity but the condition λa ≪ l does not hold, and thus
radiation–matter interaction occurs in nonequilibrium conditions. Such a situation is given in
stellar atmospheres, where emitted photons constitute significant energy losses. Similarly,
the assumption λa/c ≪ td fails, for instance, in the vicinity of strong shocks, where the
abrupt variation of the local properties of matter and radiation field produces regions in the
shocked material that remain outside of equilibrium (see Chapter 4). As a consequence, the
hydrodynamical approach fails to describe the dynamics of systems where radiation and
matter are not in equilibrium. In particular, it is insufficient to describe several phenomena
relevant for the understanding of GRB emission models, as is the case of the transition from
optically thick to optically thin flows, and shock breakouts (see Chapters 3 and 5). Instead,
such systems are most optimally described by methods that enable a description of matter
and radiation separately, as well as their interaction. This caveat motivated the development
of a radiative transfer module integrated in the PLUTO code, which constituted the main part
of this work.

We overview in the next section different methods for radiative transfer commonly followed
in the literature, and focus on the main features of the approach followed in this thesis.
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1.4 Our approach to radiative transfer

Most modern treatments of the problem of radiation–matter interaction in astrophysics are
based on different solutions of the radiative transfer equation (see, e.g., [179–194] and Chapter
4). In this approach, photons are treated as point-like wave packets that can be instantly emitted
or absorbed. As detailed in [195], this rules out several effecs due to the wavelike nature of
light, which we now summarize. Firstly, for this particle treatment to be valid, it is necessary
that the spread of the wave packet, in both space and momentum, is small compared to any
resolution of interest. Hence, the minimum possible resolution that can be described through
this approach is determined by Heisenberg’s uncertainty principle. Secondly, this treatment
involves radiative intensities instead of wave amplitudes, and consequently it cannot describe
any interference of photons among themselves. Thus, a different approach must be followed
if the number density of photons is high enough that the overlap between their wavefunctions
is not negligible18. However, this density cannot be arbitrarily small, since it must still be
high enough to allow for a statistical treatment. Similarly, interference produced from waves
arising from different scattering centers which scatter the same photon are is also neglected,
and thus diffraction and reflection are also not contemplated. Refraction and dispersion are
also not reproduced, since they also arise due to the wavelike nature of light. In addition,
polarization of light is also neglected, and the computed intensity can be understood as an
average of all polarization states. Finally, since it is assumed that the emission, absorption
and scattering of photons are instantaneous, the timescales of these processes must be shorter
than any described timescale.

In general, solving the frequency-dependent radiative transfer equation is a rather chal-
lenging task, since doing so requires an integration on many variables and a self-consistent
simultaneous determination of the states of both matter and radiation fields, which is often
only achievable in simplified cases. For this reason, several simplified schemes can be found in
the literature. Typical examples are the post-processing of ideal hydrodynamical calculations,
sometimes used in cases where radiation back-reaction can be neglected (see, e.g., [196]),
and Monte Carlo methods [180, 181], where radiation densities and fluxes are computed
by following the evolution of a large number of effective ‘photon packets’ along selected
trajectories. In some particular cases, when dealing with optically thin environments which
present some photon emission mechanism, it is also possible to account for radiative losses by
simply adding cooling terms to the equations of fluid dynamics (see, e.g., [182]). A different
approach is given by discrete ordinate methods, in which both the spatial domain and the
photon propagation direction are discretized [183–186].

18 This restriction can be relaxed, however, considering that photons with sufficiently different frequencies do
not interfere even if they coincide spatially.
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A generally faster alternative to these methods, followed in this thesis, is given by the
moment approach to the radiative transfer equation. This consists in taking succesive angular
moments of this equation, in the same fashion as the hydrodynamics (HD) and magneto-
hydrodynamics (MHD) can be obtained from the collisional Boltzmann-Vlasov equation
[197]. The resulting scheme provides an extension to relativistic and nonrelativistic MHD
that can be used to compute the evolution of the total radiation energy density and flux while
considering their interaction with a material fluid. In this work we focus on the relativistic
case, to which we refer as relativistic radiation MHD (Rad-RMHD henceforth). The model
involves a series of additional approximations:

1. We replace the opacity coefficients for a set of conveniently chosen frequency-averaged
values, thus neglecting any physical effect caused by the frequency dependence of these
coefficients. Consequently, our framework cannot be used to compute observables
such as emission spectra, and instead can be used to describe dynamical processes
depending on the total transport of energy and momentum of both matter and radiation.
A similar approach that partially overcomes this limitation is given by multigroup
methods, where the equations are solved in a set of selected frequency bands where
opacities are averaged [198].

2. We consider the fluid to be a perfect conductor, and assume the validity of the equations
of ideal relativistic MHD (RMHD) for the interaction between matter and EM fields.

3. As firstly done in [199], we close the system of equations by assuming that photons
are transported isotropically in a certain reference frame. The assumption of the
existence of such reference frame is generally known as M1 closure. As opposed to the
Eddington approximation, which consists in assuming that the radiation field is isotropic
in a chosen reference frame (typically the fluid’s comoving frame; see e.g. [200]),
this choice enables the description of systems in which photon transport has strong
directional variations. In particular, it describes both the free-streaming limit, where
photons are freely transported in a single direction without interacting with matter,
and the diffusion limit, where the radiation flux is largely affected by radiation–matter
interaction and the main transport mechanism is diffusion.

Our implementation of these methods in PLUTO makes use of several of the code’s built-in
capabilities. The new module is fully parallel, has been adapted to all available geometries
(Cartesian, cylindrical and spherical) and supports calculations on adaptively refined grids
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using the PLUTO-CHOMBO framework [201, 202]. This allows the code to capture and resolve
localized features that evolve on a much shorter scale when compared to the rest of the
computational domain, at a relatively low computational cost. In addition, we have introduced
in this model a new Riemann solver suitable for optically thin radiation transport, based on
the HLLC solver for RHD in [203] and designed to improve the code’s ability to resolve
contact discontinuities when compared to other schemes.

To integrate the transport terms of the equations of Rad-RMHD, our implementation
employs the same sort of explicit methods used in PLUTO for the nonradiative case. However,
gas-radiation interaction is treated differently, since this process may occur in times that are
much shorter than the dynamical times; for instance, when matter is highly opaque. Hence, a
direct explicit integration of the interaction terms would lead to prohibitively small time steps
and inefficient calculations. For this reason, our method of choice relies on Implicit-Explicit
(IMEX) Runge-Kutta methods [204] whereby spatial gradients are treated explicitly while
point-local interaction terms are integrated via an implicit scheme. Such methods, commonly
used to solve systems of differential equations with stiff source terms, have a significant effect
on stability and make it possible to integrate the interaction terms without having to take
extremely small time steps.

Similar approaches in the context of radiation HD and MHD have been followed in [187–
194]. While some of the codes presented in these works use the Eddington approximation,
others do not take into account relativistic corrections, and most of them are designed to work
only in Cartesian coordinates. Apart from the increased accuracy of the new Riemann solver,
the presented module counts with the comparative advantage of supporting adaptive mesh
refinement (AMR), which is not included in most schemes for radiative transfer (in particular,
in the mentioned references, it is only included in [188]).

1.5 Structure of this thesis

Chapter 2 is dedicated to a brief introductory review of the assumptions behind the RHD
and RMHD equations, as well as a comprehensive description the methods followed to solve
them.

In Chapter 3, we show the results of a series of RHD simulations of different episodes
contemplated by the BdHN scenario. In Section 3.1, the acceleration stages of the fireshell
are modelled through 1D RHD simulations and compared with results obtained following the
constant-width approach described in Section 1.2.3. In Section 3.2 we study the expansion
of shocks created by the e−e+ plasma in high-density regions of the SN ejecta and their
subsequent breakout, in the context of a model for X-ray flares proposed in this scenario. The
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dynamics of this process is again described through 1D RHD simulations, and estimates for
the breakout velocity for different baryon loads are obtained and compared with estimates
made for GRB 081008. A time and energy fit within this approach is made for GRB 160625B,
and the plausibility and predictive power of the model are discussed. In Section 3.3, we study
the possibility of explaining a particular peak in the light curve of GRB 190114C through a
model for reflected waves created in the SN ejecta. A simplified analytical model is made for
the interaction of the e−e+ and the SN material, and 2D RHD simulations of this phenomenon
are shown. Estimates are given for the spectral properties of the observed radiation, and
the predictive power of the model is discussed. In Section 3.4, we summarize the chapter’s
conclusions.

Chapter 4 is entirely devoted to the derivation and implementation of the numerical
methods included in the Rad-RMHD module. An extensive discussion of the assumptions
of our approach is made in Section 4.1, and the Rad-RMHD equations are derived. The
employed numerical schemes are detailed in Section 4.2, while in Section 4.3 the code’s
performance is shown on several selected numerical benchmarks. Finally, Section 4.4 contains
the chapter’s conclusions.

In Chapter 5, we overview a few current and future applications of the Rad-RMHD
module. In Section 5.1, we show preliminary results of an ongoing application to the model
for X-ray flares studied in Section 3.2. We discuss these results in Section 5.2, and conclude
by outlining further prospective developments.

Supplementary details and derivations not included in these chapters are shown in Ap-
pendices A–D.
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Chapter 2

Relativistic hydrodynamics and
magnetohydrodynamics

This chapter has the twofold goal of presenting the numerical approach followed throughout
Chapter 3 in the context of the BdHN model, and setting the ground for the methods imple-
mented in Chapters 4 and 5 to solve the Rad-RMHD equations. After briefly discussing the
main assumptions of both RHD and RMHD, we give an introduction to linear and nonlinear
hyperbolic systems, paying particular attention to the solutions of discontinuous initial value
problems. We then show how Godunov-type solvers can be constructed by making use of
the knowledge of the behavior of such solutions, focusing on the way these methods are
implemented in the PLUTO code.

2.1 Fluid dynamics

2.1.1 Relativistic hydrodynamics

As mentioned in the Introduction, the equations of RHD can be obtained by computing the
first three moments of the collisional Boltzmann equation, in a similar way as the equations
of Rad-RMHD can be derived from the radiative transfer equation (see Chapter 4). As in the
radiative transfer treatment, the fluid description requires that the number density of particles
is high enough to guarantee that the typical separation between them is much smaller than any
relevant lengthscale (see, e.g., [178]). If this is true, the system can then be divided in a set of
volume elements where local quantities are defined as volume averages. These elements must
be both large enough to contain a high number of particles and small enough to guarantee
homogeneity within them. In this context, we assume that the particles contained in each
elementary volume are in thermal equilibrium in the comoving frame, i.e., a local reference
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frame in which their average velocity is zero. The assumption of LTE thus defined holds as
long as the mean free path of each particle species is smaller than all of the system’s relevant
lengthscales, provided that the system evolves in longer times than all thermal equilibrium
timescales. This allows one to neglect the viscosity and thermal conduction terms that
otherwise arise from the kinetic equations; i.e., we consider ideal hydrodynamics.

The aforementioned assumptions make it possible to describe a system of many particles
as a single fluid, whose state is completely determined by a set of locally defined fields. In
particular, in this work we follow the Eulerian description, in which the equations of motion
are written in a chosen inertial reference frame to which we refer as Eulerian or laboratory
frame. In this frame, we write the components of the total energy-momentum-stress tensor as

T µν = ρhuµuν + pgη
µν , (2.1)

where uµ is the fluid’s four-velocity and ηµν is the Minkowski tensor (we use the (−,+,+,+)

sign convention), while ρ, h and pg are, respectively, the fluid’s matter density, specific
entalphy, and pressure, measured in the comoving frame (our units are chosen so that c = 1).
In this way, the conservation of energy and momentum in the system can be summarized as

∇µT
µν = 0 , (2.2)

where the symbol ∇µ denotes covariant derivation. Similarly, mass conservation reads

∇µ (ρu
µ) = 0 . (2.3)

Although this equation holds in general under the condition that particles are not created nor
annihilated, it can still be considered if the mass variation caused by such processes is much
smaller than the total mass. Writing Eqs. (2.2) and (2.3) using the explicit form of T µν , we
obtain the equations of RHD in the following form1:

∂ (ργ)

∂t
+∇ · (ργv) = 0 (2.4)

∂E
∂t

+∇ · (m− ργv) = 0 (2.5)

∂m

∂t
+∇ ·

(
ρhγ2vv

)
+∇pg = 0 , (2.6)

1This form of Eq. (2.5) is obtained by subtracting Eq. (2.3) to Eq. (2.2)
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where γ = 1/
√
1− v2 is the Lorentz factor, v is the fluid’s coordinate velocity, and vv

denotes the outer product of v with itself. As well, we have here defined the fields

m = ρhγ2v (2.7)

and
E = ρhγ2 − pg − ργ , (2.8)

which correspond, respectively, to the momentum and energy densities in the laboratory
frame. The first of these is simply T 0i, whereas the second one results from subtracting ργ to
T 00. In this way, the comoving value of E corresponds to the fluid’s internal energy in the
comoving frame.

In order to completely define the system of Equations (2.4)–(2.6), it is necessary to include
an additional set of relations between the considered fields. This can be achieved by imposing
an equation of state (EoS) that relates the defined comoving thermodynamical quantities
according to the microphysics of the considered fluid. In this work we consider two possible
EoSs, which are the constant-Γ law

h = 1 +
Γ

Γ− 1
Θ, (2.9)

and the Taub-Mathews equation, introduced in [205],

h =
5

2
Θ +

√
1 +

9

4
Θ2, (2.10)

where Θ = pg/ρ. The Γ index in equation (2.9) can take values between 4/3 and 5/3, where
these limits correspond respectively to a relativistic and a nonrelativistic gas. Equation (2.10)
approximates within ≲ 4% the equation of state of a single-species relativistic perfect gas, and
so describes both limits: it coincides with equation (2.9) with Γ = 4/3 for pg ≫ ρ, and with
Γ = 5/3 whenever pg ≪ ρ, while respecting the physical constraint (ρh− pg)(ρh− 4pg) ≥ 1

(see [206]).

2.1.2 Relativistic magnetohydrodynamics

The equations of ideal RMHD, considered in Chapter 4, can be derived in a similar way by
making a few additional conditions to those of RHD (see e.g. [207]). Firstly, we consider
that the fluid is quasineutral, which means that the net charge averaged over each elementary
volume is zero. Typically, this can be assumed as long as EM fields vary in timescales that
are much longer than both 1/ωpe and 1/ωce, where ωpe and ωce are, respectively, the electron
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plasma frequency and synchroton frequency. Furthermore, relevant lengthscales must exceed
simultaneously the length scales given by c/ωpe, the electron Larmor radius, and the Debye
length. In addition, we assume that typical dimensions are much larger than an ion gyro
radius, and large enough to neglect resistive diffusion despite the high collisionality. If these
conditions are fulfilled, we can safely assume that the electric field in the comoving frame is
null, which yields the ideal nonresistive Ohm’s law given by

E+ v ×B = 0 , (2.11)

where E and B are, respectively, the electric and magnetic fields. In this case, the total
energy-momentum-stress tensor T µν includes the EM contribution as

T µν = T µν
g + T µν

em , (2.12)

where the components of T µν
g are defined in Eq. (2.1), while the EM part is defined as

T µν
em = F µαF ν

α − 1

4
ηµνFαβF

αβ . (2.13)

We have here introduced the EM tensor F µν , whose components are given by

F µν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 . (2.14)

The components of F µν evolve according to Maxwell’s equations, which can be written in
covariant form as

∇µ

(
ϵαβµνFµν

)
= 0

∇µF
µν = J ν ,

(2.15)

where ϵαβµν is the Levi-Civita symbol and J ν is the four-current.



2.2 Hyperbolic systems of partial differential equations 33

Combining Equations (2.2), (2.3), and (2.15) using the expression for T µν given in Eq.
(2.12), we obtain the RMHD equations:

∂ (ργ)

∂t
+∇ · (ργv) = 0 (2.16)

∂E
∂t

+∇ · (m− ργv) = 0 (2.17)

∂m

∂t
+∇ ·

(
ρhγ2vv −BB− EE

)
+∇p = 0 (2.18)

∂B

∂t
+∇× E = 0 , (2.19)

where we have introduced the quantities

p = pg +
E2 +B2

2
, (2.20)

m = ρhγ2v + E×B, (2.21)

E = ρhγ2 − pg − ργ +
E2 +B2

2
, (2.22)

which account, respectively, for the total pressure, momentum density, and energy density of
matter and EM fields. In addition, the magnetic field must satisfy Gauss’s law, given by

∇ ·B = 0 . (2.23)

This system can be closed assuming an EoS like Eqs. (2.9) and (2.10) for the fluid fields, and
using Eq. (2.11) to compute E in terms of v and B. Due to the constraint given by Eq. (2.11),
the first of Equations (2.15) is enough to obtain Eqs. (2.16)–(2.19) and (2.23), whereas the
second one becomes irrelevant for the dynamics, and can be used solely to compute the value
of J µ. Finally, the nonmagnetic case is recovered by taking the limit B → 0 in the previous
expressions, which yields the RHD equations.

2.2 Hyperbolic systems of partial differential equations

Both the equations of RHD and RMHD belong to a general class of systems of partial
differential equations called hyperbolic systems. Systems of this type share well-known
properties, that can be used to construct accurate numerical solutions of general initial value
problems. In this section we review some of these properties, which will provide a theoretical
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basis for the numerical methods implemented in this work. The definitions and results
explained in this section follow mainly the book by Toro [208].

2.2.1 Linear and nonlinear systems

From Eqs. (2.4)–(2.6) and (2.16)–(2.6), we can see that both the RHD and RMHD equations
can be cast as a conservation law of the form

∂U
∂t

+∇ · F(U) = 0 (2.24)

where U is an array of conserved fields, while F(U) is a flux tensor. Applying the chain rule
to the second term, this system of equations can be rewritten in cartesian coordinates as

∂U
∂t

+
∑
d

Jd
∂U
∂xd

= 0 , (2.25)

where we have defined the Jacobian matrices of the system for each direction d as

Jd =
∂Fd

∂U
≡

∂F1
d/∂U1 . . . ∂F1

d/∂Un

... . . . ...
∂Fn

d/∂U1 . . . ∂Fn
d/∂Un

 , (2.26)

while Fd = F · êd are the flux components in the coordinate direction êd. Equation (2.25)
has the form of a homogeneous system of quasi-linear partial differential equations, which
means that the matrices Jd depend in general on U (the system of equations is called linear
otherwise, e.g., if Jd is a constant matrix). Such a system is said to be hyperbolic at a point
(t,x) if the matrices Jd ∈ Rn×n have each n real eigenvalues λ1, . . . , λn, and a corresponding
set of n linearly independent right eigenvectors K(1), . . . ,K(n) (such that Jd K(i) = λiK(i),
see [208]).

Some properties of this kind of systems can be intuitively illustrated by considering a
one-dimensional linear hyperbolic system like the following:

∂U
∂t

+A ∂U
∂x

= 0 , (2.27)

where A ∈ Rn×n is a matrix of constant coefficients. The solution to the initial value problem
given by this equation and the initial condition U(x, 0) = U (0)(x) can be written in terms of
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the eigenvalues and eigenvectors of A, as

U(x, t) =
n∑

i=1

w
(0)
i (x− λit)K(i) . (2.28)

The functions w(0)
i (x) can be determined from the initial condition by inverting the relation

U (0)(x) =
n∑

i=1

w
(0)
i (x)K(i) , (2.29)

which is always achievable due to the linear independence of
{
K(i)

}
. Therefore, the solution

of any such initial value problem can be expressed as a sum of n independent waves, each of
which move with constant speed λi (the eigenvalues λi are therefore called the characteristic
speeds of the system). If, instead, the matrix A depends on U , each mode K(i) is in principle
different for each point of space, and in particular, evolves with a different wave speed. To see
the consequences that this can carry, let us consider an example where n = 1, in which the
only eigenvalue λ satisfies λ′(U) > 0. This condition means that higher values of U travel
faster than lower values of U , which creates expansive regions (corresponding to ∂xλ > 0 for
rightward-moving waves) and compressive regions (∂xλ < 0 for rightward-moving waves).
In the considered example, compressive regions tend to steepen until eventually ∂xU diverges,
and a discontinuity is created within finite time. Wave steepening and shock development are
distinctive features of nonlinear systems, which can be observed in nature in a vast number of
physical scenarios (see, e.g., [209]).

2.2.2 The Riemann problem

Let us now consider a system like (2.27), with the following initial condition:

U (0)(x) =

{
UL if x < 0

UR if x > 0
, (2.30)

where UL and UR are two constant states. The solutions of this initial value problem, generally
known as the Riemann problem, provides useful insights to understand the behavior of
nonlinear systems, and as we shall see later, can be used to construct numerical schemes to
solve them.

As shown in Section 2.2.1, we can solve this system by writing U (0)(x) in terms of the
eigenvectors of A (see Eq. (2.29)). We thus obtain that the resulting w

(0)
i functions are of the
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Fig. 2.1 Structure of the solution of the 1D linear Riemann problem form different eigenvalues
λi. The curves x = λit separatem+1 regions whereU takes a constant valueUi. Intermediate
waves are represented with dots.

form

w
(0)
i (x) =

{
αi if x < 0

βi if x > 0
, (2.31)

with αi , βi ∈ R. Consequently, the coefficients w
(0)
i in the full solution of the Riemann

problem (Eq. (2.28)) satisfy

w
(0)
i (x− λi) =

{
αi if x− λit < 0

βi if x− λit > 0
. (2.32)

This expression states that, for each t and λi, the solution changes from one constant value to
another in the boundary given by x = λit. Consequently, if A has m different eigenvalues,
the spatial domain is divided into m+ 1 zones for each t, such that in each of them U(x, t)
takes a constant value. Hence, the solution consists of m discontinuous waves (also called
jump discontinuities), each of which propagate at a speed given by λi. The general structure
of one such solution can be convenientely represented in the (x, t) plane by plotting the
curves x = λit, which separate the m + 1 regions of constant U(x, t). From this analysis,
we can see that these solutions satisfy the property of self-similarity, as they depend solely
on the ratio x/t. This is a direct consequence of the fact that both Eq. (2.27) and the initial
condition in Eq. (2.30) are scale-invariant, i.e., they are invariant under the transformation
(x, t) → (αx, αt) with α > 0. Therefore, any solution of this problem should also satisfy this
property, from which U(x, t) = U(αx, αt), and hence U(x, t) can only be a function of x/t.
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Let us now consider the nonlinear Riemann problem given by Eq. (2.24) with the initial
condition in Eq. (2.30). This problem is also scale invariant, and therefore we should again
expect to have self-similar solutions. Moreover, the general solution to the nonlinear problem
shows again a pattern of m waves, each corresponding to a different eigenvalue, that divide
m+ 1 constant states. The nature of these waves depends essentially on the behavior of the
different functions λi(U), and can be studied in terms of the so-called characteristic curves
defined as the solutions of the equations dx/dt = λi. In short, these curves represent the
direction in the (x, t) plane in which the data of a given mode is being transported from each
point (x0, t0). This can be seen by considering the linearized problem defined in Eq. (2.25)
approximating Jd as constant for small variations of U , in which case the solution given by
Eq. (2.28) holds locally.

The waves in the nonlinear Riemann problem can be thus classified into three main
categories, depending on whether characteristic curves originated on different sides of the
initial discontinuity converge, diverge, or are parallel when compared from side to side. If for
a given mode i they converge, a compressive shock wave of speed Si is formed, verifying

λi(UR) < Si < λi(UL) , (2.33)

where the subindices L and R denote each side of the discontinuity. Instead, if the character-
istic curves at different sides of x = 0 diverge, i.e., if

λi(UR) > λi(UL) , (2.34)

a rarefaction wave is formed. This kind of wave is characterized by a region of smooth
transition between the L and R states, where characteristic curves diverge from each other.
The third category is given by those jump discontinuities whose speed Si verifies

Si = λi(UL) = λi(UR) ; (2.35)

i.e., characteristic curves of both sides are parallel among each other. We shall refer to this
category as noncompressive waves.2

The pattern followed by the solution of a given Riemann problem, also called Riemann fan,
depends both on the initial condition and the functional form of F(U) (see Eq. (2.24)). For
the RHD equations (see, e.g., [210]), each solution consists of a three-wave pattern, with two
external waves that can be either shocks or rarefactions, and a middle noncompressive wave

2In the literature, these are usually called contact waves. However, that term is oftentimes applied to
discontinuities in HD across which the pressure and normal velocity are continuous. To avoid confusion, we
have chosen to give them a different name.
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(a)

(b)

Fig. 2.2 Wave structure of the 1D Riemann problem for RHD (a) and RMHD (b).

moving at the fluid’s velocity, across which the pressure and normal velocity are continuous
(see Fig. 2.2a). The latter receives the name of contact discontinuity. On the other hand, in
the Riemann problem for RMHD, up to seven waves can be formed (see Fig. 2.2b). These
are two fast and two slow magnetosonic waves (either shocks or rarefactions), two so-called
rotational discontinuities corresponding to Alfvén modes (noncompressive), and a middle
contact wave, across which this time pg, v, and B are continuous (see [211]).

So far we see that the solutions of the Riemann problem exhibit a regular, predictable
behavior despite the nonlinearity of the equations, which makes it an ideal benchmark to
test numerical methods. In the next section we shall see how this regularity can also be
used to construct approximate solutions (or Riemann solvers) that can be applied locally
in cell boundaries to solve systems like Eq. (2.24) with arbitrary initial conditions. These
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approximate solutions consist in replacing each of the above-mentioned waves with a jump
discontinuity that moves at some guessed speed. Across each of these waves, a set of jump
conditions relating the states left and right from the shock must be imposed for consistency.
For any discontinuity that moves at a speed S, we can obtain a set of such relations by
integrating Eq. (2.24) in an infinitesimal volume that includes the shock boundary. This
yields the Rankine-Hugoniot jump conditions:

S [UR − UL] = F(UR)− F(UL) , (2.36)

where again L and R denote each side of the shock. Additional conditions can be obtained
from the particular form of the eigenvectors of Jd. For a noncompressive wave associated to
the eigenvalue λi, for instance, it can be proven that

dU1

K(i)
1

= · · · = dUn

K(i)
n

, (2.37)

from which it can be obtained that the pressure and the normal component of the velocity
are conserved across the shock. Thus, the mentioned approximate solutions of the Riemann
problem can be constructed by applying Equations (2.36) and (2.37) on a set of approximate
waves, as we will show in the next section.

2.3 Numerical approach

In this section we outline the numerical methods implemented in PLUTO, used in this work to
solve the RHD and RMHD equations. These procedures are as well the basis of the methods
used in Chapters 4 and 5 to solve the Rad-RMHD equations.

The PLUTO code solves hyperbolic systems of the form (2.24) by following a finite-volume
approach. Instead of storing field values at specific points of space and time, as it is done in
finite-difference schemes, in this formulation we follow the evolution of volume-averaged
values of U computed within each cell in which the domain is divided. This approach is
chosen due to its exceptional ability to accurately reproduce sharp discontinuities such as
shock and contact waves (see, e.g., the discussion in Chapter 11 of [212]). This kind of
method, usually called shock-capturing for that reason, guarantees as well that the correct
jump conditions across each discontinuity are satisfied.

The full algorithm implemented in PLUTO is based on a standard Godunov-type reconstruct-
solve-update strategy. In it, relevant fields are estimated at cell boundaries (reconstruction
step) and used to compute the fluxes by means of approximate Riemann solvers (solving step),
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after which flux differences are explicitly integrated in time (update step). We now describe
each of these steps.

2.3.1 Reconstruction step

Let us consider the particular case of the RMHD equations, where our chosen set of conserved
fields is

U = (ργ, E ,m,B)⊺ . (2.38)

We refer from now on to fields defined on computational grids, and therefore the notation U
corresponds to cell-averaged values inside a given zone i, j, k (indices have been omitted to
avoid cluttered notations). We define the set of primitive fields for this system as

V = (ρ, pg,v,B)⊺ . (2.39)

These definitions are almost identical for the RHD equations, where the only difference is
that B is not included.

The first part of the reconstruction step consists in computing V in each cell using the
stored values of U , for which Equations (2.20)–(2.22) must be inverted. This is achieved by
means of root-finding algorithms, paying special attention to avoiding problems related to
small number handling that arise when large Lorentz factors are involved. To perform this
conversion, we follow the procedure detailed in [206].

Next, the obtained values of V , assumed to be cell-centered, are interpolated to zone
interfaces. This produces left and right discontinuous states adjacent to each interface, which
we denote by VL and VR. In order to avoid spurious oscillations next to discontinuities
and steep gradients, reconstruction must use slope limiters in order to satisfy monotonicity
constraints (see, e.g., [208, 213]). In more than one dimension, the interpolation is carried
direction-wise. During this step, some physical constraints are imposed, such as gas pressure
positivity and the upper boundary for the velocity given by ||v|| < 1. The imposition of these
constraints is much simpler when applied on V than on U , which is why the interpolation is
carried over the former.

2.3.2 Solving step

Once reconstruction is finished, the states VL and VR are reconverted into the conserved fields
UL and UR, respectively. In an environment of each cell boundary, the solution of Equation
(2.24) looks exactly like the nonlinear Riemann problem defined in Section 2.2.2. If we knew
the exact solution to this problem in the general case, fluxes along each direction could be
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computed at cell boundaries by means of a direct evaluation of such solution. However, this
approach is too numerically expensive to be viable. Instead, we can use the integral form of
Eq. (2.24) to obtain relations that allow us to make a good estimation of the fluxes.

With this purpose, let us assume that, knowing UL and UR, we can produce a good
estimation of the maximum and minimum wave speeds (λR and λL respectively) of the
solution of the Riemann problem. Without loss of generality, we now consider only fluxes
along the x-axis, since fluxes along the other directions can be computed in the exact same
way. The resulting system takes the following form:

∂U
∂t

+
∂F(U)
∂x

= 0 , (2.40)

where F(U) are the flux components in the êx-direction.3

We now consider the case λL ≤ 0 ≤ λR, and place an initial discontinuity at x = 0.
Following, e.g., [208], we can then integrate Eq. (2.40) in the region of the (x, t) plane given
by [λLT, λRT ]× [0, T ] for a given time T > 0, which yields∫ λRT

λLT

U(x, T ) dx−
∫ λRT

λLT

U(x, 0) dx+

∫ T

0

F(U(λRT, t)) dt−
∫ T

0

F(U(λLT, t)) dt = 0 .

(2.41)
Some of these integrals can be easily evaluated noting that U(x, 0) = UL for x < 0 and UR for
x > 0. In the same way, F(U(λRT, t)) = F(UR) ≡ FR and F(U(λLT, t)) = F(UL) ≡ FL.
Inserting these relations into Eq. (2.41) and dividing both sides by T (λR − λL), we obtain

1

T (λR − λL)

∫ λRT

λLT

U(x, T ) dx =
λR UR − λL UL + FR −FL

λR − λL

. (2.42)

We hence see that the left-hand side of Equation (2.42) equals the space average of the full
solution of the Riemann problem in the interval [λLT, λRT ] for any given time. This relation
is exact and depends only on the correct estimation of λL and λR. Furthermore, the resulting
averaged value of U does not depend on time, which is a consequence of the self-similarity of
the solution. The cases λL > 0 and λR < 0 can be studied in a similar way, by integrating Eq.
(2.40) in [0, λRT ]× [0, T ] and [λLT, 0]× [0, T ] respectively. In both cases, this procedure
leads again to Eq. (2.42).

We shall now use the above results to estimate the fluxes at the zone boundary, i.e.,
at the axis x = 0. For this, let us again consider the case λL ≤ 0 ≤ λR and integrate

3 In general, for any direction êd, Fd(U) = êd · F(U), where d = x, y, z in Cartesian coordinates or
d = r, θ, ϕ in spherical coordinates. In the derivation shown in this section, we have omitted the superindex x
to avoid complicated notations.
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Eq. (2.40) in [λLT, 0] × [0, T ]. Given that F(U(x, t)) is a function of x/t, we know that
F(x = 0) ≡ F(U(0, t)) is constant. In this way, we obtain the following relation:

F(x = 0) = FL − UL − 1

T

∫ 0

λLT

U(x, T ) dx. (2.43)

Our estimation of the flux will therefore depend on our estimation of the integral in the
right-hand side of Eq. (2.43). An option for doing so, proposed in [214], is to replace U(x, T )
in the intermediate zone [λLT, λRT ] by its averaged value U∗, defined as the right-hand side
of Eq. (2.42). This yields the following approximate flux at x = 0:

F∗ =
λRFL − λLFR + λRλL (UR − UL)

λR − λL

. (2.44)

On the other hand, if λL > 0 (λR < 0), the solution at x = 0 for T > 0 corresponds
to UL (UR), and therefore the flux is FL (FR). Therefore, this approximation leads to the
Harten-Lax-van Leer (HLL) approximation to the intercell flux:

Fhll =


FL if λL > 0

F∗ if λL ≤ 0 ≤ λR

FR if λR < 0 .

(2.45)

We note that this treatment is equivalent to considering an approximate two-wave solution of
the form

Uhll =


UL if λL > x/t

U∗ if λL ≤ x/t ≤ λR

UR if λR < x/t .

(2.46)

Applying the Rankine-Hugoniot conditions (Equation (2.36)) to the solutions left and right
from both waves, we reobtain Equations (2.45). It must be noted that F∗ and U∗ represent
approximate values, and in general F∗ ̸= F(U∗).

In the HLL solver implemented in PLUTO, λL and λR are estimated, respectively, as the
minimum and maximum eigenvalues of both states UL and UR; i.e.,

λR = max
S=L,R

max
i

{λi(US)}

λL = min
S=L,R

min
i

{λi(US)} .
(2.47)

The way these speeds are calculated for both RHD and RMHD is detailed in Appendix A.
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A simplified version of this solver is obtained when the maximum right- and left-going
signal speeds are estimated as

λR = λmax

λL = −λmax ,
(2.48)

with
λmax = max

S=L,R
max

i
{|λi(US)|} . (2.49)

The result of this choice is the Lax-Friedrichs-Rusanov (LFR) solver (see [208, 215]), where
the flux is computed as follows:

FLFR =
1

2
[FL + FR − λmax (UR − UL)] . (2.50)

This is the simplest flux estimation included in PLUTO, but also the most diffusive.
A more accurate estimation is given by the HLL-contact (HLLC) solver, which consists in

a three-wave approximate solution. As before, two shocks of speeds λL and λR are considered,
with the addition of a middle constant discontinuity of speed λ∗, with λL ≤ λ∗ ≤ λR. This
approximate solution takes the form

Uhllc =


UL if λL > x/t

U∗
L if λL ≤ x/t < λ∗

U∗
R if λ∗ ≤ x/t ≤ λR

UR if λR < x/t .

(2.51)

where now we have considered two intermediate states, U∗
L andU∗

R, separated by the mentioned
contact wave. This solution leads to the following approximate flux:

Fhllc =


FL if λL > 0

F∗
L if λL ≤ 0 < λ∗

F∗
R if λ∗ ≤ 0 ≤ λR

FR if λR < 0 .

(2.52)

The strategy followed to compute the approximate fluxes F∗
L and F∗

R consists in applying the
Rankine-Hugoniot jump conditions (Eq. (2.36)) to the three considered waves. If U has n
components, these relations provide 3n equations for the 4n+ 1 unknowns given by U∗

L/R,
F∗

L/R and λ∗. Therefore, additional constraints must be imposed. A natural choice for this
is given by the properties satisfied by the exact solution, such as the continuity of pg and βx

along the contact wave in the RHD case. In addition, any approximate solution must satisfy
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the constraint given by λL ≤ λ∗ ≤ λR. The way this is achieved in the RHD and RMHD
modules of PLUTO is described in [203, 216], and will not be discussed here. Instead, we will
go back to HLLC solvers in Chapter 4, where we will show the full derivation of a solver
of this type for the equations of radiation transport, which follows analogous steps to those
shown in [203].

As we will show in Chapter 4, HLLC solvers are less diffusive than HLL and LFR
solvers, and have a higher accuracy when reproducing contact waves. One could therefore
ask whether it is possible to increase the accuracy of these methods by including more waves
in the approximate Riemann solver. Since the solutions of the RHD equations exhibit a
pattern of three waves, it seems natural to consider a three-wave solver. On the other hand,
the solutions of the RMHD equation exhibit up to 7 waves, and therefore it is reasonable to
increase the number of intermediate states in the approximate solutions. Such is the case of
the HLLD solver, introduced in [217] and included in PLUTO. However, we consider in this
work solvers which include up to three waves.

2.3.3 Update step

Once fluxes are estimated on every cell interface, their values are used to compute an operator
R that approximates the value of (−∇ · F), which is then integrated in time (see Equation
(2.24)). For each cell, the value of R is computed by calculating all flux differences taking
into account the cell’s geometry. The contribution along each direction d is obtained as

Rd = − 1

∆V d

(
Ad

+Fd
+ − Ad

−Fd
−
)
+ Sd

e , (2.53)

whereAd
± are the cell’s right (+) and left (−) interface areas and∆V d is the cell volume in that

direction [213]. Here Sd
e (U) accounts for geometrical terms that arise when the divergence is

written in different coordinate systems. These can be obtained at the cell center or following
the approach outlined in [218]. The full operator R is in the end computed as

∑
d Rd.

Among the integration schemes included in PLUTO, we shall focus on three particular
semidiscrete methods. In these, time evolution is considered to be independent on the spatial
discretization, and therefore Equation (2.24) is discretized as an ordinary differential equation
(see [213]). The simplest case is given by the Euler discretization, which consists in the
following method of first order in time:

Un+1 = Un +∆tnRn , (2.54)
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where n denotes the current step number and ∆tn is the current time step. Higher orders can
be achieved by evolving U in intermediate time steps, as in the total variation diminishing4

(TVD) Runge-Kutta schemes by Gottlieb & Shu [220]. In its second-order version (RK2),
this method reads:

U (1) = Un +∆tnRn

Un+1 =
1

2
Un +

1

2

(
U (1) +∆tnR(1)

)
.

(2.55)

Similarly, the third-order method of this kind (RK3) has the following steps:

U (1) = Un +∆tnRn

U (2) =
3

4
Un +

1

4

(
U (1) +∆tnR(1)

)
Un+1 =

1

3
Un +

2

3

(
U (2) +∆tnR(1)

)
.

(2.56)

Once the update of the conserved variables is completed, the time step is changed using the
maximum signal speed computed in the previous step, according to the Courant-Friedrichs-
Lewy condition [221] given by

∆tn+1 = Ca min
d

(
∆ldmin

λd
max

)
, (2.57)

where ∆ldmin and λd
max are, respectively, the minimum cell width and maximum signal speed

along the direction d, and Ca, the Courant factor, is a user-defined parameter.

Finally, we must recall that finite-volume schemes do not maintain in general the condition
∇ · B = 0 when magnetic fields are included, which can lead to instabilities due to the
unphysical acceleration parallel to field lines that occurs when monopoles are created (see
e.g. [222]). In the modules of PLUTO regarded in this thesis, this constraint can be enforced
by either using the constrained transport method ([223] and [224]) or hyperbolic divergence
cleaning (see [225], [226], [227]).

4 TVD schemes guarantee that the total variation of the numerical solution of Eq. (2.24), defined for 1D as
the L1 norm of ∂U/∂x, does not increase in time, which is a property that must be satisfied by monotonicity-
preserving schemes (see, e.g., [219]).
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2.3.4 Parallelization and AMR

We now provide a brief description of the parallelization and AMR routines included in
PLUTO, which are applied in Chapter 3 and adapted to the radiative transfer module in Chapter
4.

In PLUTO, AMR is based on an implementation of the CHOMBO library [202]. The strategy
consists in locally increasing the resolution of all regions of the domain where a given function
χ of the conserved variables and its derivatives exceeds a treshold value χr. By default, the
χ function used in PLUTO adopts a criterion based on the second derivative error norm (see
[228]), as

χ(U) =
√ ∑

d |∆d,+1/2 φ−∆d,−1/2 φ|2∑
d

(
|∆d,+1/2 φ|+ |∆d,−1/2 φ|+ ϵ φd,ref

)2 , (2.58)

where φ = φ(U) is a user-defined function of the conserved variables, ϵ is a constant,
∆d,±1/2 φ are defined in the position i along the direction d as ∆d,±1/2 φ = ±(φi±1 − φi),
and φd,ref = |φi+1|+ 2|φi|+ |φi−1|.

Refinement is achieved by defining a set of nonoverlapping boxes in the computational
domain, in such a way that all cells that verify χ > χr are covered by the boxes. Within
these, zones are evenly divided by a factor rl along each direction. After doing so, new
conserved variables are assigned to the newly created zones by interpolating values from
the surrounding cells, following schemes that maintain the conservative properties of the
solutions (see [201]). Once this step is finished, the already-refined cells can continue to be
divided recursively a maximum number lmax of times, thus creating a hierarchy of refinement
levels. The refinement factors rl depend in general on the current level l, and can be chosen by
the user for every particular setup. In this way, the equivalent resolution of the grid, i.e., the
resolution that would be needed using an uniform grid to achieve the smallest cell size of the
adaptive grid, is equal to

∏lmax

l=1 (rl)
D
∏D

d=1Nd, where D denotes the number of dimensions,
and Nd is the initial (l = 0) resolution along the direction d.

Parallelization is achieved by using the Message Passing Interface (MPI) standard5. The
implementation in PLUTO divides the global domain into n maximally cubic subdomains,
being n the number of processors that are used. In this way, computations are run in parallel
using one processor per each subdomain. When AMR is used, each refinement level is divided
for parallelization in the already-created boxes, which are solved individually using at most
one processor per box.

5https://www.mpi-forum.org/

https://www.mpi-forum.org/


Chapter 3

Simulations of the BdHN model

The dynamics of an expansive baryon-loaded e−e+ plasma in the fireshell model has been
extensively studied in [139–142, 144, 145, 229, 230] by means of one-dimensional computa-
tions based on the assumption that most of the energy is contained within a shell of constant
width. This simplified approach suffices to compute the temporal evolution of the expansive
pulse in regimes of low baryon loading, and is able to fastly produce time-dependent spectra
and light curves that can be readily compared with observations. However, this method is
unable to capture the dynamical properties of the expansive wave in situations where such
geometrical description is inaccurate, typically occurring in the BdHN model when the
plasma encounters regions of high density in the SN ejecta.

This chapter focuses on several implementations of the just described HRSC methods
made throughout the last three years in an attempt to provide a description of so far inexplored
processes proposed to occur in the BdHN model. We start by making a comparison of the
hydrodynamical approach and the mentioned constant-width approximation, part of which has
been published in [56, 161]. We then explore the plausibility and observational consequences
of the BdHN model for X-ray flares, summarizing the approach followed in [56, 161, 170] and
showing some of the results there included. Finally, we study the dynamics and observational
properties of the radiation emitted at reflected waves produced by the impact of the plasma
onto the SN ejecta. This interaction is studied both by means of a simplified analytical model
and a 2D RHD simulation, recently submitted for publication [231].

3.1 The fireshell model

In the BdHN model, the dynamics of the interaction between the expanding e−e+ plasma
and the SN material depends on the amount of baryonic matter encountered by the plasma
along each expansion direction. To parametrize this quantity, we define a direction-dependent
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baryon load B as the ratio Mc2/Ee−e+ , where Ee−e+ is the total internal energy of the plasma
and M is the mass of an object whose density profile ρ(r) corresponds to the profile along
the selected direction. In general, for B ≪ 1, the structure of the shell is not affected by
the distribution of matter swiped during its evolution. Contrarily, bigger values of B can
lead to a dependence of the dynamics on the particular form of ρ(r), and produce a spatial
broadening of the plasma pulse or reflected waves. We explore such limit in Sections 3.2 and
3.3, whereas for now we focus on the B ≪ 1 case.

It has ben proposed in [140] that most of the pulse’s mass and energy can be assumed
to be contained in a region of constant width as long as1 B ≤ 10−2. This conclusion results
from a series of 1D hydrodynamical simulations in which the RHD equations are solved
in spherical coordinates following Wilson’s approach (see Chapter 1). In the same paper,
a simplified code that makes use of this assumption is introduced, in which the plasma is
assumed to be contained in a slab of constant width. Within this slab, the mass density, the
pressure, and the velocity are assumed to be homogeneous, and their evolution is entirely
determined by the conservation of total energy-momentum, entropy, and baryon number. In
addition, baryonic matter is assumed to be initially contained in a region r ∈ [rin, rout], and
to interact inelastically with the expanding slab, reaching instantaneous thermal equilibrium.
This approximate code has been used to model the expansion of the pulse in the low-B
directions of the SN material and its posterior interaction with the CBM, with the aim of
predicting the observed light curves and spectra (see, e.g., [160, 229]).

As mentioned in Chapter 1, it is known today that the numerical schemes used in [140]
are highly diffusive, and fail to produce accurate solutions if high Lorentz factors (γ ≳ 2)
are involved. We have therefore attempted to reproduce the same results by applying the
shock-capturing methods explained in Chapter 2. To this purpose, we have performed a
series of simulations choosing B values slightly under and above 10−2. As in [140], we
have solved the RHD equations assuming spherical symmetry, thus describing the radial
evolution of the fluid along selected directions. This approach is valid as long as the described
region is far enough from the BH to neglect any curvature effect. In our simulations, the left
boundary of the computational domain is set at r ∼ 108 cm, which largely exceeds the typical
Schwarzschild radius for the BdHN model (∼ 105 cm).

As long as photons are trapped in the expanding plasma, which is controlled by computing
its optical depth, we can safely apply the hydrodynamical approach. Since the fluid is radiation–
dominated throughout most of its evolution, we implement the constant-Γ EoS given in Eq.
(2.9) with Γ = 4/3, as in [140]. A discussion of the applicability of this EoS to radiation–

1This baryon load is also consistent with the observational constraint given by the compactness problem;
see Section 1.2.1.
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dominated e−e+–baryon plasmas is given in Appendix B. We have chosen initial conditions
similar to those used in [140], defined as

ρ(r) = ρ0 + ρ1 e
−(r−r0)2/2σ2

ρ

pg(r) = p0 + p1 e
−(r−r1)2/2σ2

p

vr(r) = v0 e
−(r−r1)2/2(4σp)2 .

(3.1)

In the starting point of these simulations, the shell is already formed, and its internal energy
is initially concentrated around a radius r1. The initial velocity of the wave front is fixed by
setting a velocity v0 in a region that contains most of the pulse energy. This has been set
using a smooth velocity profile to prevent the formation of unphysical reflection waves due to
the initial relaxation of the system. The value of v0 is expressed as a function of the initial
Lorentz factor of the pulse γ0, as v0 = 1/

√
1− (1/γ0)2. On the other hand, the SN ejecta is

modelled by setting an initially still density profile centered at a given radius r0 > r1. For
both the density and the pressure profiles, we have fixed the minimum values ρ0 (≪ ρ1) and
p0 (≪ p1) since the methods described in Chapter 2 require that both fields are positive in the
whole domain. In particular, we have chosen ρ0/ρ1 = 1016, in such a way that the integral of
ρ0 in the whole domain is 109 times smaller than the mass of the ejecta. Simulations have
been run on a 1D uniform grid of 105 zones.

The acceleration of the shell is driven by the conversion of internal into kinetic energy, and
therefore its evolution is characterized by a transition between an initial radiation–dominated
expansive phase and a final matter–dominated coasting phase. The dynamical properties
of both regimes can be simply derived from the conservation of total energy-momentum,
and are consequently the same as those of relativistic fireballs, described in [75, 77]. In
the radiation–dominated regime, the mean Lorentz factor of the pulse increases as γ ∝ r,
whereas in the matter–dominated regime it approaches a constant value given approximately
by 1/B. In Fig. 3.1, we have represented the mean γ value of the pulse as a function of its
radial position, for a simulation with Eint = 5 × 1050 erg and B = 6.7 × 10−3. We have
calculated this quantity as the radial average of γ using as weighting function the energy
density E defined in Eq. (2.8). As expected, the shell is initially accelerated as γ ∝ r. As
in [140], this expansion is slowed down as the mass in the SN ejecta is engulfed, and the
behavior γ ∝ r is recovered as soon as this process ends. Our simulations are stopped during
the transition from the radiation– to matter–dominated regimes, which occurs while the
plasma is still optically thick. We have compared these results with a simulation produced
with the mentioned approximate code, which is carried until the transparency moment (see
Fig. 3.1), defined as the time when the optical depth across the shell is 1. The curves of γ(r)
obtained with both methods show a high degree of consistency, and are also consistent with
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Fig. 3.1 Evolution of the mean Lorentz γ factor of the expanding shell, obtained by solving
the 1D spherically symmetric RHD equations using the PLUTO code (violet squares), and
with the 1D approximate code (green curve). The slope of γ ∝ r, expected during the
initial radiation–dominated stage, is shown for comparison. Reproduced from [56] with
modifications.

the expected asymptotic value of γ (∼ 150) in the matter–dominated phase. However, these
results depend on the conservation of the total integrated energy-momentum in the shell,
which is guaranteed even if its width is not constant.

To check the validity of the constant width approximation, we have studied the form
of the pulse during its propagation. Radial profiles of the laboratory frame density ργ,
internal energy density (computed as Eint = E|ρ=0), and γ obtained in the formerly described
simulation are shown in Fig. 3.2 for different evenly spaced times between 0 and 0.14 s. In
Fig. 3.3, we show the same profiles resulting from a different simulation where we have
increased the total baryonic mass, in such a way that B = 6.7× 10−2. In the latter case, the
shape of the pulse is significantly changed after it interaction with the SN material, and an
inward-traveling reflected wave is produced. As the baryon load is further increased, the
plasma departs even more from its initial shell-like geometry, as we will show in Sections
3.2 and 3.3. Contrarily, in the simulations made with B = 6.7× 10−3 and lower (not shown
here), we have seen that the geometry of the plasma remains that of a sharp pulse. These
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Fig. 3.2 Laboratory frame density, internal energy density, and Lorentz factor profiles for the
simulation with B = 6.7× 10−3, for 0 < t < 0.14 s.

results are consistent with the mentioned limiting value of B = 10−2 proposed in [140]. In
both cases, it can be seen in Figures 3.2 and 3.3 that the Eint profile broadens as the SN ejecta
is swiped, which is in contradiction with the constant width approximation.

We have studied the broadening of the pulse once the baryonic matter has been completely
swiped by plotting a series of profiles in different moments of the expansion, between t = 0.67

s (when the pulse has already engulfed the surrounding matter) and t = 6 s (close to the
end of the simulation). In Fig. 3.4a, we show r2E profiles2 obtained from the simulation
with B = 6.7× 10−3. To compare the shape of these profiles, we have overlapped them by
plotting them as functions of (r − ct), since the pulse expands with vr ∼ c. The resulting
profiles show that the pulse gets broader with time. Measuring its width along the fixed value
given by r2E = 1042 erg cm−1, we obtain a 30% growth between t = 0.67 and 6 s.

One possible cause of this broadening is the numerical diffusion introduced by our solving
scheme, which should decrease if the resolution is increased. We have therefore run a new
simulation with B = 6.7× 10−3, this time locally increasing the resolution around the pulse
by applying the AMR techniques described in Section 2.3.4. We have used a grid of 105

2The reason why we multiply the energy by r2 is that, for constant width, E should decrease as 1/r2, which
follows from conservation of energy; e.g., it can be seen by integrating Eq. (2.5) in a region that contains the
pulse.
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Fig. 3.3 Same as Fig. 3.2, for the simulation with B = 6.7× 10−2.
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Fig. 3.4 Snapshots of r2E between t = 0.67 s and t = 6 s taken every 0.67 s, represented as a
function of r − ct to compare their shape. Results are shown for the simulations made with
uniform (a) and adaptive (b) grids, with B = 6.7× 10−3.

zones at level 0 with 4 refinement levels and a refinement ratio rl = 2 for each of them, so
that the resolution at the location of the pulse is 16 times larger than in the rest of the spatial
domain. To follow the pulse, we have set φ(U) = E as refinement variable (see Eq. (2.58)).
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Fig. 3.5 Lorentz γ profiles between t = 0.67 s and t = 6 s as functions of (r− ct), computed
in the AMR simulation with B = 6.7× 10−3.

The r2E profiles resulting from these simulations are shown in Fig. 3.4b. In that figure, it can
be seen that the pulse at t = 0.67 s is thinner than in the simulations made with an uniform
grid, which means that the pulse’s broadening when crossing the SN ejecta is reduced when
the resolution is increased. However, at t = 6 s, the widths obtained in both simulations are
comparable.

Physical reasons for this broadening are studied in [232], where it is shown that thermal
spreading is in general negligible for typical parametres of GRBs when compared to the
hydrodynamical spreading of the pulse. The latter phenomenon occurs due to the variation
of γ(r) across the pulse, being most important in regions with increasing γ. In [88, 233], it
is shown that the thickness l of such regions increases as

l(R) = R0 +
R

2

(
1

γ2
i

− 1

γ2
e

)
, (3.2)

where R is the radial position of the pulse, R0 its initial width, and γi and γe are respectively
the Lorentz factors at the internal and external boundaries of the region, with γe > γi. In this
model, the pulse’s width remains constant as long as R ≪ 2R0

(
1
γ2
i
− 1

γ2
e

)
. The variation

of γ across the pulse can be seen in Fig. 3.5, where we have represented γ as a function of
(r − ct) for the simulation made with an adaptive grid. These profiles have two increasing
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Fig. 3.6 Mean comoving temperature as a function of r for the RHD (violet squares) and
constant-width (green curve) simulations with B = 6.7× 10−3. RHD simulations show a
faster decrease of Tcomov than predicted by the approximate code.

regions separated by a slightly decreasing plateau. The overall growth of γ observed in this
plot is therefore consistent with a physical broadening of the pulse.

The hydrodynamical spreading of the pulse has an impact on intensive quantities such
as the matter density and the total pressure, that should in consequence decrease faster than
predicted by the constant-width model. In Fig. 3.6, we show the variation of the pulse’s mean
temperature Tcomov measured in the fluid’s comoving frame, computed with both the RHD
and the approximate codes (we have used a static uniform grid in the first case). We can see
in this plot that Tcomov decreases faster in the hydrodynamical code than in the approximate
one, although the difference of both values is smaller than 20% in the considered range. This
is due to the fact that the main variation of the pulse’s volume is due to its radial expansion,
whereas its broadening occupies a second order of importance. We therefore conclude that the
constant-width assumption is reasonable as a first approximation and can accurately reproduce
the γ factors obtained with the RHD code forB ≤ 10−2, although it can overestimate intensive
quantities such as the comoving temperature in the late stages of the expansion (in particular,
at the time of the emission).
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3.2 Early X-ray flares in GRBs

3.2.1 Observational data and theoretical models

Since its launch in November 2004, the Swift satellite has provided data of numerous GRBs
with unprecedented reaction times. Moreover, the Burst Alert Telescope (BAT) and the XRT
on board of this satellite are able to provide measurements in the X-ray bands 15− 150 keV
and 0.3− 10 keV, respectively [34]. This led in 2005 to the discovery of flares in the X-ray
afterglow of some GRBs (see Fig. 3.7). These X-ray flares, which are observed in roughly
1/3 of all GRBs, can occur between 30− 105 s after the burst trigger [234] (typically within a
few hundred seconds, as shown in [235]), exhibit a significant re-brightening of the observed
flux (up to a factor of 500), and are associated with the release of large isotropic equivalent
energies, sometimes comparable to the energy released during the prompt phase. Because
of their fast rise/decay time, the most widely accepted explanation for the occurrence of
X-ray flares is a late central engine activity [33, 236–243]. Other possible explanations for
their origin include delayed magnetic dissipation activity as the ejecta decelerates [244] and
strongly anisotropic emission in the comoving frame of the emitting material [245].

A different model of this phenomenon has been presented in [161], where it was proposed
that X-ray flares can be emitted in BdHNe due to the breakout of shocks created in high-denity
regions of the SN ejecta due to their interaction with the expanding e−e+ plasma. In this
picture, both the prompt emission and the flares are emitted towards the observer due to the
system’s rotation (see Fig. 3.8). This model is supported by the significant thermal component
found in the spectra of 7 of the 16 GRBs included in the sample considered in that work,
which were fitted as a sum of blackbody and power-law functions. The sample considered in
[161] was constructed excluding GRBs with flares having a low (< 20) signal-to-noise ratio,
those with X-ray flares which coincide with gamma-ray flares, those in which the integrated
energy of the flares observed by Swift/XRT is higher than the gamma-ray energy observed
by Swift/BAT, which would point to an incomplete coverage of the prompt emission, and
those with late X-ray flares observed at t > 300 s (in the rest frame) after the triggering.
Apart from having in general a low signal-to-noise ratio [241], such late X-ray flares cannot
be explained by the BdHN model, since the dimensions of the system required to explain
such times largely exceed those of the SN ejecta in BdHNe. All of the 16 GRBs satisfying
these conditions were identified as BdHNe I, as they are all long GRBs with Eiso ≳ 1052

erg. Apart from characterizing these flares by obtaining correlations between Eiso and the
energy of the flares, their occurrence time and their duration, the thermal component of
their spectra was studied in detail to obtain the velocity of the emitting region. A special
attention is paid in that article to GRB 081008, observed at z = 1.967 with an isotropic
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Fig. 3.7 Light curve of GRB 081008 measured by Swift/XRT, reproduced from [161]. This
source has a redshift z = 1.967, as reported by VLT [246]. Optical data are from [247].

energy of Eprompt = (1.35± 0.66)× 1053 erg in the prompt phase and an X-ray flare with
Eiso,f = (6.56± 0.60)× 1051 erg [161] (see Fig. 3.7). The thermal component of this flare is
computed in [161] to be between 20% and 30% of Eiso,f , which translates into at least 1% of
Eprompt (see Fig. 3.9). Assuming that this radiation is produced by a spherically symmetric
blackbody emitter, the temporal variation of the luminosity and the observed temperature has
been used to infer an emitting radius of 1011−1012 cm in the source’s rest frame, and a mildly
relativistic Lorentz factor γ ≲ 4 for the emitting region. Such dimensions are consistent with
those predicted by the BdHN model [167].

Due to the large B values involved in the propagation of the e−e+ plasma in the high-
density regions of the SN ejecta (see [161, 167]), the constant-width approximation cannot
be applied to this process. In the following subsections we show a series of RHD simulations
of this model, and explore its observational consequences.

3.2.2 Numerical approach

Our description of the SN ejecta is based on the simulations made in [167] in the context of
the IGC. In these, the evolution of the SN ejecta is described by means of N-body Newtonian
simulations (see Fig. 3.8), together with a description of the accretion process onto the
NS based on the Bondi formalism (recently these simulations were improved via the SPH
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Fig. 3.8 Two snapshots of the matter distribution in the equatorial plane of the progenitor’s
binary system. The panel on the left corresponds to the moment in which the BH is formed
and a large portion of the e−e+ plasma starts to self-accelerate in a low-density environment
(B ≲ 10−2) towards the observer, producing the GRB prompt emission. The panel on the
right corresponds to the moment when the shock created by the plasma inside the high-density
SN ejecta (B ∼ 101 − 102) breaks out and produces an X-ray emission, which is directed
toward the observer due to the rotation of the ejecta in the equatorial plane. This figure,
reproduced from [161], was made with data from the simulations shown in [167].

formalism; see [168]). To obtain typical parameters of this process, we have used the results
of a simulation made considering a NS with an initial mass of 2M⊙ and a COcore obtained
from a progenitor with a zero-age main-sequence mass MZAMS = 30 M⊙, which leads to
a total ejecta mass of 7.94 M⊙. The orbital period of this system is of 5 minutes, with a
binary separation of 1.5× 1010 cm. For these parameters, the NS reaches the critical mass
and collapses to form a BH. Two snapshots of this simulation are shown in Fig. 3.8 at the
moment of the collapse and 100 s after it.

Due to the asymmetry of the SN ejecta, the e−e+ plasma engulfs different amounts of
baryonic mass in each expansion direction. We have produced 1D spherically symmetric
RHD simulations3 of this process which represent the propagation of the e−e+ along one
direction at a time, and therefore cannot reproduce effects due to the system’s rotation. As
before, we ignore the gravitational effects of the newly formed BH, and follow a purely special
relativistic approach. Given these considerations, we can describe both the plasma and the
SN ejecta following a single-fluid approach, applying the RHD equations.

3The Thomson optical depth along the directions of propagation studied here is of the order of 107 − 1010,
so radiation remains trapped in the SN ejecta throughout the entire propagation of the shock. Since the energy
of photons largely exceeds that of material particles in the shocked region, a hydrodynamical description is
possible even in regions which are transparent to absorption but opaque to scattering (see Chapter 5).
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Fig. 3.9 Thermal evolution of GRB 081008 (z = 1.967) in the observer frame. The X-ray
flare of this GRB peaks at 304(±17) s. Upper panel: Swift/XRT spectrum from 280 s to 300
s. Lower panel: Swift/XRT spectrum from 300 to 320 s. The gray points are the observed
data, while the blue points are corrected for hydrogen absorption. The data are fit with a
combination of power-law (dotted–dashed lines) and blackbody (dotted lines) spectra. The
power-law + blackbody spectra are shown as solid curves. The temperature decreases from
∼ 0.44 keV to ∼ 0.31 keV, but the ratio of the thermal component rises from ∼ 20% to
∼ 30%. Reproduced from [161].

The EoS of an equilibrium e−e+–baryon plasma is studied in Appendix B. For the
radiation– and matter–dominated regimes (pg ≫ ρ and pg ≪ ρ, respectively), this EoS
predicts an effective polytropic index Γeff of 4/3 and 5/3 in each of these cases respectively.
The simulations presented in this section have been made using the EoS given in Eq. (2.9),
with Γ = 4/3. The reason to do this is that we have set an initially negligible pressure in the
SN ejecta, and therefore the only regions of space where the enthalpy density h is significantly
affected by the choice of the EoS are the shocked ones, which verify Γeff = 4/3 during the
whole evolution. For consistency, we have verified this claim applying the EoS derived in
Appendix B to the computed pressure and density profiles, obtaining that Γeff = 4/3 with a
maximum error of 0.2% in all shocked regions.

Initial conditions have been set consistently with the parameters of the BdHN model and
GRB 081008. At the initial time, the e−e+ plasma has an energy Ee−e+ = 1.35× 1053 erg, a
negligible baryon load, and is distributed homogeneously within a region of radii of the order
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of 108 − 109 cm. The surrounding SN ejecta has a mass density radial profile given by

ρ ∝ (R0 − r)α (3.3)

where the parameters R0 and α, with 2 < α < 3, as well as the normalization constant,
are chosen to fit the profiles obtained in [167] and represented in Fig. 3.8. In this way, the
initial spatial dimension of the SN ejecta is determined by the parameter R0, set in this
case as 4 × 1011 cm. The initial radial velocity is set as vr ∝ r in order to reproduce the
homologous expansion of the SN ejecta before its interaction with the expanding plasma.
The computational domain is set as [0, 3.6× 1012] cm, with reflective and outflow conditions
in the inner and outer boundaries, respectively. The simulations are run on an adaptive grid
of 1.5× 105 zones at the coarsest level, using 3 refinement levels with a refinement ratio of 2
for each of them, and choosing φ(U) = E (see Section 2.3.4).

3.2.3 General results

The evolution from these initial conditions leads to the formation of a shock which expands
until reaching the outermost part of the SN ejecta; that moment is marked as the shock
breakout. After an initial expansion where γ may reach values of several tenths, the shock
rapidly elgulfs enough mass to decelerate and reach a nonrelativistic velocity, typically in
t < 1 s. The transition to the matter–dominated regime originates an inward-moving reflected
wave, while the frontal shock continues to move outwards with β = vr/c ≲ 0.1. Such
nonrelativistic expansion is maintained until the breakout, in which the sudden decrease of
the density causes the shock to reach relativistic velocities, as shown in Fig. 3.10. From then
on, the entire mass of the ejecta keeps expanding while cooling down. In Fig. 3.10, we show
two radial distribution profiles of the velocity and laboratory frame mass density, computed
for B = 200 at two selected values of the laboratory time. The velocity distribution peaks at
the shock front, behind which the accelerated ejecta expands with 10−3 ≲ β ≲ 1.

As the shock propagates, photons are trapped inside the SN ejecta. Contrarily, at the
breakout, the shock reaches the ejecta’s photosphere and photons begin to diffuse out, thus
breaking the assumptions of RHD in that region. In this model, such photon emission is
later measured as an X-ray flare. Since the Lorentz factor estimated in [161] is that of the
emitter’s photosphere, we must determine the location of that region in the simulations in
order to make any comparison with observations. As shown, e.g., in [153], most photons are
lastly scattered close to the photospheric radius Rph, namely the radius at which the optical
depth τ calculated from the observer’s line of sight equals 1. Therefore, we can estimate the



60 Simulations of the BdHN model

10-3

10-2

10-1

100

101

102
γ
β

t1

t2

0 1 2 3 4 5
r (cm) ×1011

10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

ρ
la

b
 (g

/c
m

3
)

Fig. 3.10 Top panel: distribution of the velocity inside the SN ejecta at the two fixed values
of the laboratory times t1 (during the propagation of the shock within the SN ejecta) and t2
(the breakout time). We have plotted the quantity γβ, recalling that γβ ∼ β when β ≪ 1 ,
and γβ ∼ γ when β ∼ 1 . Bottom panel: corresponding distribution of the mass density of
the SN ejecta in the laboratory frame (ρlab ≡ ργ). These particular profiles have been made
using a baryon load B = 200. The dashed vertical lines indicate the location at each time
of the photospheric radius Rph, defined as τ(Rph) = 1. This figure is an update of the one
appeared in [161].

observed γ factor in our simulations as γ(Rph). In this calculation, we consider that Thomson
scattering constitutes the main source of opacity in the photosphere (see Chapter 5).

In a still medium, the scattering opacity of photons emitted at a radius r and observed at
infinity can be computed as

τ(v=0) =

∫ ∞

r

σT ne dl , (3.4)

where σT = 6.65× 10−25 cm2 is the Thomson cross-section, and ne is the electron density.
The latter can be obtained in terms of the mass density as ne = Zρ/ma, where ma and Z

are, respectively, the mean nuclear mass and atomic number, while the mass of electrons is
neglected. We assume Z = 1 and ma = mp, where mp is the proton mass. This computation
is more complicated for moving matter distributions, as it requires the integration of dτ along
individual photon paths while taking into account the material’s motion. In particular, τ is
Lorentz-invariant, as the number of scattering events along a same wordline must be the same
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for different observers. A Lorentz-invariant definition of this quantity is given in [248] (see
also [249]) as dτ = −σT jµdx

µ, where jµ is the four-current of particles and dxµ is measured
along the photon wordline. We can make use of this property by first considering a thin slab
of constant width ∆R0 (in the laboratory frame) and uniform electron density, moving at
constant speed. In the slab’s comoving frame, where the width is ∆R′, the optical depth of a
photon that crosses the slab from side to side is τ = σT ne∆R′, where ne is the comoving
electron density. The path ∆R crossed by the photon in the laboratory frame is related to
∆R′ as ∆R = γ (1 − β)∆R′, which yields τ = σT neγ (1 − β)∆R (see, e.g., [250]). On
the other hand, ∆R is related to the slab’s width ∆R0 as ∆R0 = (1− β)∆R, from which
τ = σTneγ∆R0. Therefore, under the condition that the ejecta’s density does not change
considerably along the photons’ path, we estimate the optical depth of photons emitted at a
given instant at a radius r (in the laboratory frame) as

τ(r) =

∫ ∞

r

σT ne γ dl , (3.5)

and estimate at each time the radius of last scattering by inverting the implicit relation
τ(Rph) = 1.

The values of γ(Rph) obtained in this way are shown from the breakout time in Fig. 3.11
as a function of the observation time, for several values of B corresponding to the expansion
of the e−e+ plasma along several different directions inside the SN ejecta. Following [141],
the arrival time of photons emitted at t in the source’s rest frame is computed as

tobs = t0 + (1 + z)(t− r(t)/c) , (3.6)

where r(t) is the position of the shock and t0 is the arrival time of the prompt emission peak
due to the expansion in the low-B directions, taken here as t0 = 0. From this analysis we
conclude that, in order to obtain observed γ values smaller than 4 with the chosen parameters,
B must be greater than ∼ 50. This result is as well approximately valid for other Ee−e+ values,
since γ is scale invariant. Thus, γ(Rph) depends solely on the location of Rph at the breakout,
and its value is roughly maintained if the length and mass scales are changed in such a way to
maintain B constant.

To exemplify the way this model is being used to study GRBs in which multiple flares
are observed, we now show the results of an ongoing analysis of GRB 160625B. The light
curve of this GRB shows in its prompt emission a structure of three peaks, observed at t0 =
190, 198, and 205 s (see Fig. 3.12a, extracted from [251]), followed by a series of three
X-ray flares (XRF1, XRF2, and XRF3) at tobs ≈ 527, 580, and 660 s (see Fig. 3.12b). The
total energies of these bursts, measured by the detectors on board of the Fermi and Swift
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Fig. 3.11 Lorentz γ factor at the photospheric radius as a function of the arrival time for
Ee−e+ = 1.35× 1053 erg and various selected values of the baryon load B, corresponding to
the expansion along different directions inside the SN ejecta. This figure is an update of the
ones appeared in [56, 161].

satellites, were determined as Eprompt = (3.05 ± 0.01) × 1054 for the prompt phase and
Ef = (2.87±0.01)×1053 for the flares [251]. In the BdHN IV model, a possible explanation
for these features is given by the emission of three separate bursts from the BH. In this
scenario, the shocks created in each of these emission episodes expand in high-B directions
within the SN ejecta, consequently emitting three X-ray flares.

For each of the three flares, we have made an independent simulation like the ones already
described in this section. In each of them, the initial plasma energy is set as Eprompt/3. For
consistency with the parameters of the BdHN model, the proportionality constant in Eq. (3.3)
is fixed for each R0 in such a way that the equivalent isotropic mass of the density profile is
M = 6.7 M⊙, and hence B = 12 for each shock. For each simulation, R0 is fixed in such
a way to reproduce the observed times, which are computed from Eq. (3.6) with a redshift
z = 1.406 [251]. In this way, we obtain constraints on the system size and the observed
Lorentz factors. The breakout radius rb, defined as the shock’s position at the breakout, and
the observed Lorentz factor at the breakout are shown for each flare in Table 3.1, together
with the corresponding values of R0.
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(a)

(b)

Fig. 3.12 Fermi/GBM NaI (8−1000 keV) light curve of GRB 160625B (extracted from [251]),
where we have indicated the three flares considered by our analysis, and their corresponding
peaks in the prompt phase (red characters). (a): Full light curve, including the precursor, the
prompt emission, and the X-ray flares. (b): Detail of the X-ray flares.

This analysis method has the disadvantage of relying on the manual identification of
the origin of the different peaks observed in the light curves (see, e.g., [170], where the
same approach is followed). For instance, the three peaks in the prompt emission are here
interpreted as originated in the irregular activity of the central engine, whereas in other GRBs
they are interpreted as being originated in the interaction of a single emitted shell with an
irregularly shaped CBM (see [229]). Furthermore, no explanation is yet given by this model
for what could be identified as a fourth X-ray flare at tobs ≈ 743 s (see Fig. 3.12b). Therefore,
the above analysis must be regarded as a consistency check of the model depending on an
ad-hoc assumption made for the shape of the light curve.

3.2.4 Observed radiation

Since radiation decouples from matter at the photosphere, a large fraction of photons diffuses
out instead of staying in equilibrium and accelerating the outermost regions of the SN ejecta
up to relativistic speeds. Since radiation is the main source of pressure in the shocked region,
we could expect matter in the photosphere to be accelerated to smaller Lorentz factors than
those predicted by our hydrodynamical computations. Therefore, the obtained γ factors at Rph
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Flare R0 (×1012 cm) rb (×1012 cm) γobs

XRF1 3.78 3.92 3.43
XRF2 4.28 4.44 3.40
XRF3 5.10 5.30 3.38

Table 3.1 Values of the initial radius of the SN ejecta (R0), the breakout radius (rb) and the
observed Lorentz factor (γobs = γ(Rph)) resulting from the 1D RHD simulations of the X-ray
flares in GRB 160625B.

must be regarded as an upper limit4. However, we can make some additional observational
estimations with the data from the already-made simulations.

A key element of this model is the assumption that the described breakout process produces
a Doppler-shifted blackbody spectrum given by Planck’s law,

NBB(E) ∝ E2

eE/kBTobs − 1
, (3.7)

whereN ≡ dN /dE is the numberN of photons measured in the energy interval (E,E+dE).
The observed temperature Tobs is related to the comoving temperature Tcomov as

Tobs =
Tcomov

γ(1− β)(1 + z)
(3.8)

(see, e.g., [142]), where z is the redshift of the source. The panorama gets more complicated
when considering emission from different points of a radiating surface, in which case we
should observe a multicolor blackbody. This effect is not considered in [161], where the
fitting of the thermal component is made using a blackbody law to give an estimate of the
comoving temperature. Under this assumption, we can estimate the observed temperatures
from the RHD simulations by approximating Tcomov = T (Rph) in Equation (3.8). In Fig.
3.13 we have plotted this quantity from the breakout time for the parameters of GRB 081008,
as a function of the arrival time. The observed temperature of this GRB is (0.32± 0.03) keV,
which is consistent with the values predicted for B ≳ 50. The temperatures reported in [161]
are in the range 0.32− 0.92 keV for similar values of Eiso, which are in good agreement with
the values shown in Fig. 3.13.

The spectrum produced by the shock breakout depends in general on the processes
occurring in the photosphere before photons are lastly scattered. Since in that region scattering

4In Chapter 5, it is shown how this γ estimation is likely to be accurate even if radiation transport is
considered.



3.2 Early X-ray flares in GRBs 65

102

Arrival time (s)

10-2

10-1

100

101

T
ob

s (
ke

V)

B=12.0
B=19.0
B=30.1
B=56.9
B=79.0
B=87.0
B=113.8
B=207.0

Fig. 3.13 Observed temperature as a function of the arrival time for Ee−e+ = 3.16 × 1053,
z = 1.967, and various selected values of the baryon load B.

is the main source of opacity, an initial thermal-like photon distribution can be significantly
modified by incoherent Compton scattering (i.e., involving energy transfer; see Section 4.1.3).
This is studied, e.g., in [252] for mildly relativistic shock breakouts in supernovae, and in
[153, 253] for highly relativistic outflows. A main feature of these models is that the departure
from a blackbody spectrum should be more important for matter–dominated than for radiation–
dominated flows, since in the latter case the energy budget of heating through this process
is negligible compared with the total thermally distributed photon energy. Due to the high
baryon loads considered in this model, the shocked regions are always matter–dominated
at the breakout, even for the lowest values of B and the highest initial energies. Thus, it is
likely that the emitted spectrum is modified by Compton scattering, which can increase the
peak energy of the observed distribution (see, e.g., [253]). Hence, more precise computations
of this process (e.g., Monte Carlo simulations) are required in order to compute the emitted
spectra at the breakout. On the other hand, Comptonization tends to significantly reduce the
slope of the low-energy part of the spectrum if the emitting flow is relativistic (see [253]),
which can be fitted as a power law

N(E) ∝ Eα , (3.9)
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Fig. 3.14 Thickness (blue circles) and optical depth (purple circles) at the breakout time of
the region containing 1% of Eprompt in the simulation of the X-ray flare of GRB 081008,
plotted as a function of the total isotropic mass Miso. The corresponding values of the baryon
load B used in each case are shown in the upper axis.

where α is the low-energy photon index. The determination of α can provide useful infor-
mation of the processes occurring in the emitting region, as it can be used to distinguish
departures from the α = 1 value predicted by the Rayleigh-Jeans law (NBB(E) ∝ E for
E ≪ kBT ). However, in this case, the low-energy parts of the measured spectra are dominated
by the power-law component arising from other processes (e.g., synchrotron emission; see
e.g. [162]), and therefore this phenomenon cannot be observed.

On average, the total energy emitted in X-ray flares is 10% of the energy emitted in the
15 − 150 keV band during the prompt phase [243]. In some cases, a large fraction of this
energy is in the observed thermal component [161]. An example is given by GRB 081008,
for which the energy in the flaring phase is at least 1% of Eprompt. Using the above-described
shock breakout model, we can estimate the time in which this energy is emitted by computing
the diffusion timescale tdiff due to photon scattering. We estimate this quantity as

tdiff ≈ 3τ l

c
(3.10)

(see, e.g., [254]), where l and τ are, respectively, the width and optical depth of the region
in which 1% of the injected energy is contained. For B = 50, we obtain l ≈ 1011 cm



3.3 Model of the prompt emission in GRB 190114C 67

and τ ≈ 3 × 107, which gives tdiff ≈ 3 × 108 s. Similar values are obtained for different
values of B, since both l and τ stay within the same orders of magnitude for different initial
configurations, as shown in Fig. 3.14. This time can be compared to the dynamical timescale
of the expansion, in particular with the time during which the emission takes place. In our
simulations, the spectral peak energy associated to the observed temperature falls under the
observable limit of Swift/XRT (∼ 0.3 keV) approximately 10 s after the breakout, due to the
adiabatic cooling of the material. In that entire time, the optical depth of the region containing
1% of Eprompt remains of the order of 107. Therefore, the material remains opaque, and most
of the internal energy is converted into the kinetic energy of the outflow instead of being
radiated. This conclusion is supported by the preliminary radiative transfer computations
shown in Chapter 5. Conversely, we can estimate the energy emitted at the breakout by
computing the energy contained in the photosphere at that moment. This gives an energy
E ∼ 1046 erg, and a diffusion time of tdiff ∼ 10−2 s, which is much smaller than the dynamical
times. We should therefore expect an initial emitted power of 1048 erg/s lasting ∼ 10−2 s,
followed by a fast decay and a posterior slow diffusion of the photons from the inner layers
of the ejecta. We conclude that an additional mechanism must be included in this model to
explain the complete thermal emission observed in X-ray flares. Possible alternatives, still
unexplored in this model, are the reheating of the ejecta due to its interaction with energetic
particles emitted from the BH, the emission of photons due to proton-proton interaction
within the ejecta, and different mechanisms for the reignition of the central engine.

3.3 Model of the prompt emission in GRB 190114C

We now explore a model for the particular form of the light curve of GRB 190114C in
its prompt phase. The isotropic energy of this GRB in the range 1 keV−10 MeV has been
determined as Eiso = (2.48±0.22)×1053 erg [107], and its redshift as z = (0.4245±0.0005)

[255]. The light curve of GRB 190114C measured by the Gamma-ray Burst Monitor (GBM)
of the Fermi satellite is shown in Fig. 3.15, where two emission events can be distinguished.
Within the first structured spike (between 0 and 6 s in the observer’s frame), the emission
between t = 2.7 and 6 s is interpreted in the BdHN model as being originated by the expansion
of the e−e+ plasma in the low-B directions of the SN ejecta, and its posterior interaction with
the CBM. The isotropic energy of this last interval is E ′

iso = (1.47± 0.2)× 1053 erg in the
mentioned energy range [256]. On the other hand, we see a second spike that starts after 16 s
and lasts for 13 s, whose isotropic energy is 5% of Eiso. The time-integrated spectrum of this
spike is best-fitted by a cut-off power law N(E) = (E/Epiv)

αe−E/E0 , with α ≲ −1.6 [107].



68 Simulations of the BdHN model

0 20 40 60 80 100
Time (s)

5000

10000

15000

20000

25000

30000

Ra
te

 (c
nt

s/
s)

Light Curve
Background
Selection
Bkg. Selections

Fig. 3.15 Count light curve of the prompt phase of GRB 190114C measured by Fermi/GBM
(8 keV−30 MeV), extracted from [107].

As mentioned in Chapter 1, such α values are below the fast-cooling limit of synchrotron
shock models.

As well as X-ray flares, the occurrence of irregular spikes in the prompt emission is
commonly explained in the literature as being originated in the irregular activity of the central
engine (see, e.g., [257]). A different interpretation of this particular spike is given by the
BdHN model [231]. Numerical simulations of the interaction between the SN ejecta and
the NS (see [167]) in BdHNe I show that, just prior to the BH formation, the accreting NS
is surrounded by a low-density cavity (see Fig. 3.8). Once the NS has collapsed, the e−e+

plasma expands inside this cavity and eventually impacts its walls, producing a significant
increase of their temperature. This process creates a reflected wave that propagates from
the cavity walls towards its interior. Since the cavity is transparent to radiation, thermal
radiation emitted at its walls escapes in the observer’s direction. The emission of most of the
internal energy of the reflected wave is thus proposed in this model to produce the mentioned
second spike. In Section 3.3.1 we provide a simplified analytical description of this process
and obtain an estimate of the temperature reached by the cavity walls after the collision. In
Section 3.3.2, we show the results of an RHD simulation of the same process, and discuss
some observational consequences of this model.
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Fig. 3.16 Schematic representation of the cavity in the SN ejecta surrrounding the newly
formed BH in the BdHN model. Reproduced from [231].

3.3.1 Simplified model of the interaction of the e−e+ plasma and the SN
ejecta

We now show a simplified model of the cavity within the SN ejecta, and its interaction with the
e−e+ plasma. A spherical cavity of initial radius R0 is located close to the outermost regions
of a spherical matter distribution of radius Rej and total mass Mej, which here represents
the SN ejecta (see Fig. 3.16). The cavity has an opening, which is in this model directed
towards the observer (see the left panel of Fig. 3.8). The e−e+ plasma, initially located in the
center of the cavity, expands isotropically as a blast wave due to its own internal pressure
(see Section 3.1). Part of this outburst is directed towards the observer, whereas the portion
of the plasma that is emitted towards the SN goes through the cavity and reaches its walls.
When the impact occurs, a strong shock wave forms and propagates inside the SN ejecta
while decelerating, until it stalls at a radius R. Through this process, the kinetic energy of the
e−e+ plasma is converted into internal energy in the ejecta. The temperature of the shocked
region can be estimated by using conservation of energy-momentum, as we now show.

Assuming that the density of the SN ejecta is uniform, its value can be estimated as

ρ =
3Mej

4πR3
ej

, (3.11)
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We model the interaction between the e−e+ plasma and the SN ejecta as an inelastic collision.
Assuming that no energy is lost in radiation during this interaction, we can integrate the
energy-momentum conservation laws (Eqs. (2.5) and (2.6)) in a volume D that contains the
shocked region. This yields the following conservation equations:

d

dt
(Mγ +Wγ) = 0

d

dt
(Mγv +Wγv +W ′γv) = 0 ,

(3.12)

where γ = 1/
√
1− v2 is the Lorentz factor of the shocked material, v its bulk velocity

(assumed to be uniform in D), M is the mass of the ejecta swept up by the shock wave, and
W and W ′ are defined as

W =
1

γ

∫
D

[
(ϵ+ p)γ2 − p

]
dV

W ′ =
1

γ

∫
D
p dV ,

(3.13)

where ϵ and p are, respectively, the comoving internal energy density and pressure of the
expanding material. For simplicity, we neglect W ′ as a first approximation, since W ′/W ∼
1/γ2 for large γ. On the other hand, Wγ gives the value of the integrated covariant internal
energy of the plasma. We can now use (3.12) to compare two states: one where matter is at
rest and the radiation–dominated plasma approaches the walls at v ∼ c, and a posterior one
after the walls of the cavity have been impacted. This yields

E +Mc2 =
(
Mc2 +W

)
γ, (3.14)

E c =
(
Mc2 +W

)
γv , (3.15)

where E is the initial energy of the e−e+ plasma. We now introduce the new variables

B =
Mc2

E
, ω =

W

Mc2
, u = γ

v

c
(3.16)

and rewrite the energy-momentum conservation as

B−1 = (ω + 1)
√
u2 + 1− 1, (3.17)

B−1 = (ω + 1)u. (3.18)
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Fig. 3.17 Lorentz γ factor of the shock wave generated by the impact of the e−e+ pulse on
the walls of the cavity as a function of the engulfed mass, parametrized by B = Mc2/E.
Reproduced from [231].

The solution to this system reads [254]

u =

(
B

√
1 +

2

B

)−1

,
W

E
= ωB =

1

u
−B. (3.19)

The bulk Lorentz factor can be computed from this expression as γ =
√
1 + u2. The resulting

function γ(B) is shown in Fig. 3.17, from where it is clear that the shock wave becomes
nonrelativistic when

E = Mc2. (3.20)

Assuming that the ejecta has a constant density, the radius R at which this happens can
be computed by inverting the following relation:

M =
4π

3
ρ
(
R3 −R3

0

)
, (3.21)

from where

R = Rej

[(
R0

Rej

)3

+
E

Mejc2

]1/3
. (3.22)
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For the typical parameters of the model, we have (R0/Rej)
3 ≪ E/Mejc

2, which gives the
following stalling radius:

R ≃ 2.7× 1011
(

E

1053 erg

)1/3(
Mej

4M⊙

)−1/3
Rej

1012 cm
cm . (3.23)

Finally, considering that at that radius all of the internal energy is uniformly contained within
a region of thickness l ≪ R, we can estimate the temperature of the shocked region as

T =

(
W

4πaRR2 l

)1/4

≃ 17

(
E

1053 erg

)1/12(
Rej

1012 cm

)−1/2(
Mej

4M⊙

)−1/6(
l

1010 cm

)−1/4

keV.

(3.24)

where aR is the radiation constant and we have taken W ≃ E (see Eq. (3.14)). In particular,
these results are independent of R0 under the condition (R0/Rej)

3 ≪ E/Mejc
2, which means

that they also hold in the particular case in which there is no initial cavity (R0 = 0). In
that case, the mentioned reflected wave should also be formed due to the interaction of the
expanding plasma with the SN material. Since a low-density region is formed in either case
by the blast wave itself, the results of this model do not depend on the existence of a cavity
before the expansion of the e−e+ plasma.

3.3.2 RHD simulation

We have studied the above-described model in more detail by performing a 2D RHD simu-
lation, where the initial conditions have been set following the simplified model shown in
Fig. 3.16. Given the axial symmetry of this setup, we have solved the RHD equations in
cylindrical coordinates, using a uniform grid of resolution 2048× 1024. For this approach to
be valid, we must assume local thermal equilibrium between photons and material particles
during the time of the simulation. As in Section 3.2, we have self-consistently verified that
applying the EoS for an e−e+–baryon plasma (see Appendix B) is equivalent to assuming
a constant polytropic index Γ = 4/3 in all regions occupied by the plasma and Γ = 5/3 in
all unshocked regions. This time we impose this by applying the Taub-Mathews EoS (Eq.
(2.10)).

We consider a SN ejecta in initial homologous expansion with a radial velocity of 3×10−3 c.
This matter distribution is assumed to have an initial homogeneous density, in such a way
that the total mass of the ejecta is Mej = 4 M⊙. We locate a spherical cavity centered at a
distance of 1.4× 1011 cm from the edge of the SN ejecta, so that the latter has an opening, as
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Fig. 3.18 Spatial distribution of matter density at different instants of time: the formation of a
reflected wave at t ≈ 7.3 s due to the impact of the e−e+ plasma on the cavity walls (top),
the propagation of this wave at t = 10 s (middle), and the moment it reaches the origin at
t = 13.5 s (bottom). Reproduced from [231].

portraited in Fig. 3.16. The initial radii of the cavity and the ejecta are set as R0 = 1.7× 1011

cm and Rej = 1012 cm respectively. These values are chosen in such a way to reproduce the
timing of the second spike in the considered light curve. Outside the ejecta and within the
cavity, a minimum initial density is fixed as ρcav = 10−7 g/cm3. As in Section 3.2, the e−e+

plasma is represented as an initially still uniform energy distribution located in a region of
radius 1010 cm around the center of the cavity, in such a way that its total energy is E0 = 1053

erg.
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Fig. 3.19 Spatial distributions of matter density (top), Lorentz factor (middle) and comoving
temperature (bottom) at t = 11 s, showing the mildly relativistic reflection wave propagating
in the cavity, as well as the ultrarelativistic e−e+ plasma wave propagating outside of it. A
shock wave propagating inside the SN material can also be seen. Reproduced from [231].

Since the baryon load in the cavity is small (B ∼ 10−4), the e−e+ plasma expands and
reaches a bulk Lorentz factor of a few tenths before it impacts on the walls of the cavity at
timp = 4.5 s. The baryons inside the cavity are swept by the expanding plasma, which reduces
its matter density to ρ ∼ 10−14 g/cm3, as shown in Fig. 3.18. The portion of the plasma that
expands towards the opening continues to accelerate to γ ∼ 100 as described in Section 3.1,
and produces in this scenario the initial stages of the prompt emission. This process can be
seen in Fig. 3.19, where we have plotted the Lorentz factor, matter density, and comoving
temperature distributions at t = 11 s in a plane that contains the axis of symmetry. Due to the
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Fig. 3.20 Spatial distributions along the axis of matter density, total energy E , |γβy| and
comoving temperature at t = 11 s. At y ≈ 6× 1011 cm, the shock created by the collision
between the plasma and the SN ejecta propagates with |γβy| ∼ 1, with a comoving temperature
Tcomov ≈ 12 keV. A reflected wave with a maximum Lorentz factor of ∼ 4 and maximum
Tcomov ≈ 5 keV propagates towards the observer at y ≲ 7.9 × 1011 cm. Between 8 × 1011

and 1.2× 1012 cm, baryons have been evacuated by the e−e+ plasma, which at that time has
been accelerated to a maximum bulk Lorentz factor of about 60 in the low-density regions at
y ≈ 1.2× 1012 cm. Reproduced from [231].

impact of the e−e+ plasma onto the cavity walls, the temperature of the SN material rises up to
14.5 keV in a region of width of the order of ∼ 1010 cm, in agreement with the analysis made
in Section 3.3.1. This collision produces a shock wave that propagates inside the SN material
(see Figs. 3.18 and 3.19). The bulk speed of this wave remains relativistic (γ ∼ 10 − 30)
until t ≈ 7.3 s, when the shock stalls. This occurs once the shock has propagated a distance
R ≈ 2.2 cm from its origin, which is slightly under the value estimated in Section 3.3.1 (see
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Eq. (3.23)). From that moment, most of the energy in this shock continues to be transported
inside the SN ejecta with γ ∼ 1, as shown in Fig. 3.20, where we have plotted ρ, E , γβ and
the comoving temperature of the material along the axis of symmetry. At that time, part of
the shock’s energy is converted into a radiation–dominated reflected wave (see Figs. 3.18–
3.20), that propagates towards the interior of the cavity. This wave, initially nonrelativistic,
accelerates up to γ ∼ 5 due to its own internal pressure and reaches the center of the cavity
at t = 13.5 s, maintaining throughout this evolution a comoving temperature of ∼ 5 keV.

Since the interior of the cavity is transparent to radiation (its optical depth along the
symmetry axis between y = 7.5 × 1011 and 1.15 × 1012 cm drops to 10−3 at t = 11 s),
radiation can freely stream in it from the front of the reflected wave. In this model, this marks
the beginning of the secondary photon emission observed in the light curve. At that moment,
the separation of the outward-moving relativistic shock and the cavity walls along the axis of
symmetry is equal to R0. Since the expansion of the plasma occurs at v ∼ c, ∆tobs can be
computed as

∆tobs = (1 + z)R0/c ≈ 16 s, (3.25)

which justifies the choice of the R0 parameter. On the other hand, we estimate the emitted
energy by computing the total internal energy contained in the cavity once the reflected wave
reaches its center, which gives a value of Er = 8.3× 1051 erg. Provided a large fraction of
this energy is emitted towards the observer through the opening, the total emitted energy in
this event roughly agrees with the energy in the second spike in the light curve in Fig. 3.15.

If we assume that photons are thermal near the front of the reflected wave, we can expect
the radiated spectrum to correspond to a Doppler-shifted blackbody with a peak energy of
Tp =

3kBTcomov

γ(1−β)
∼ 50 keV. However, in that region, matter is moving relativistically towards the

observer with a nonnegligible scattering optical depth. Consequently, the radiation generated
by the walls of the cavity will experience inverse Compton scattering on the relativistically
moving matter, which shifts the peak energy towards higher values. If this process is dominant
with respect to the free-streaming of thermal photons, we can expect the observed spectrum
to be similar to a Comptonized blackbody (see [253]), peaked at Ep ∼ γ23kT ≃ 200− 300

keV.5 This qualitatively agrees with the observed time-integrated spectrum of the second
spike of GRB190114C, which has a peak energy Ep = 252 keV [259]. On the other hand,
as shown in [253], Comptonization can also explain the low-energy photon index α ≲ −1.6

inferred for this spike. Furthermore, the time-resolved spectrum shows a decreasing tendency
of the peak energy, in agreement with the cooling of the expanding walls of the cavity (see
[107]).

5 This comes from the fact that inverse Compton scattering increases the photon energy by a factor of the
order of γ2 [258].
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The above model has been proposed in [231, 259] to explain a series of spikes observed
in the light curves of GRBs 090926A, 130427A, and 160625B. These light curves have a
rather complex structure, and the identification of the emission produced by the reflected
wave is entirely manual. A systematic analysis of more sources with a similar behavior
is thus required in order to support the plausibility of this model, and further theoretical
developments are required in order to produce observables that help distinguish this scenario
from other possible explanations (for instance, internal shocks in relativistic fireballs).

We finally recall that, since the cavity becomes transparent due to the expansion of the
e−e+ plasma, LTE cannot be assumed in its interior, which renders the hydrodynamical
description inapplicable in that region of space. Yet, we can safely expect that this does not
significantly affect matter dynamics inside the cavity, since at those times most energy is
contained in the SN ejecta. However, since the cavity walls irradiate part of their energy, the
reflected wave could in principle have smaller speeds than predicted by our adiabatic model.

3.4 Conclusions

We have studied three different processes occurring in the BdHN model: (I) the expansion
of an e−e+ plasma from the BH in low-density regions of the SN ejecta, proposed to be
responsible for the prompt emission; (II) the breakout of shocks in regions of high density,
proposed to produce X-ray flares; and (III) the creation of reflected waves due to the interaction
of the plasma and the SN ejecta in high-density regions, proposed to emit secondary bursts in
some GRB light curves.

We studied the validity of the constant-width approach by making 1D RHD simulations
of the accelerating (radiation–dominated) stages of the e−e+ plasma in a low-B regime. We
have compared these results with a simplified simulation made assuming that all energy is
contained in a shell of constant width. In both approaches a similar bulk Lorentz factor is
obtained at all instants of the pulse’s evolution, owing to the conservation of total energy-
momentum. Contrarily, intensive quantities like the mass density and the pressure have a
sharper decrease in the RHD approach due to the spreading of the pulse. We have studied
the pulse’s shape using different resolutions, obtaining that this spreading is caused partially
by numerical diffusion. On top of this, the velocity gradients across the pulse are consistent
with the occurrence of some hydrodynamical spreading, in accordance with previous studies
of this process. In particular, we have shown that the constant-width approximation tends to
underestimate the decrease of the plasma’s comoving temperature.

We have explored the BdHN model for X-ray flares through a series of 1D RHD simula-
tions. The initially relativistic shock created by the expansion of the e−e+ plasma is slowed
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down typically in t < 1 s, producing a nonrelativistic shock that crosses the SN ejecta. The
shock’s velocity is increased again at its breakout, reaching a bulk Lorentz γ factor of a few
tenths. For the parameters of GRB 081008, the values of γ at the ejecta’s photosphere are
consistent with those estimated in [161] (γ ≲ 4) if the direction of expansion is such that
B ≳ 50. We have used this same approach to make an estimation of the dimensions of the
SN ejecta in GRB 160625B needed to reproduce the observed times of three X-ray flares
observed in its light curve. We have discussed the observational properties of this model,
concluding that the emitted spectrum should exhibit a significant degree of Comptonization.
Assuming perfect Blackbody emission, we have estimated the observed temperature obtaining
values consistent with GRB 081008 and other GRBs studied in [161] with similar values
of Eiso. We have shown that, despite this model can self-consistently explain the observed
times and temperatures of the flares, it cannot produce an efficient energy emission in the
required timescales, due to the opacity of the SN ejecta. Hence, additional processes must be
considered in the BdHN model in order to better explain the observed thermal emission.

We have studied an emission mechanism for a peak observed 16 s after the main episode in
the light curve of GRB 190114C, consisting in the creation of a reflected wave in the SN ejecta
due to its interaction with the expansive e−e+ plasma. We have made a simplified analytical
estimation of the maximum temperature at the shocked region in the ejecta, obtaining a value
of T ∼ 17 keV for typical parameters. We have performed a 2D RHD simulation of this
process that confirms this estimation, where we have fixed the system’s dimensions in such a
way to explain the observed times while being consistent with typical BdHN parameters. In
it, the expansive e−e+ plasma creates a low-density cavity that becomes optically thin, and
allows the photons emitted at the cavity walls to stream towards a distant observer. Provided
that a large fraction of the internal energy contained in the cavity when the reflected wave
reaches its center is emitted, this model explains the total energy of the second peak in the
light curve. Additionally, the observed peak spectral energy and low-energy photon index can
be explained by assuming the emitted radiation is highly Comptonized. A systematic analysis
of more sources is needed in order to support the plausibility of this model, as well as the
development of new theoretical predictions that enable a search for more precise signatures
of this process.



Chapter 4

Radiative transfer

While ideal fluid dynamics provides a strong, versatile framework able to deal with multiple
physical systems by means of conservation laws, its applicability is limited when describing
systems out of LTE. In the previous chapters we have seen how this is the case in astrophysical
flows when particle densities are low enough to allow for free transport of photons. We
introduce in this chapter a numerical code for Rad-RMHD able to deal with such phenomena,
built as a module within the PLUTO code. We first discuss the assumptions that lead to the
form of the Rad-RMHD equations used in the code, after which we explain the implemented
numerical methods, focusing on the description of the included IMEX schemes and the
new HLLC Riemann solver for radiation transport. The algorithm performance is later
demonstrated through a series of numerical benchmarks by investigating various different
configurations with a particular emphasis on the behavior of the solutions in the free-streaming
and diffusion limits. Finally, we study the scalability of the code. All of the results shown in
this chapter have been published in [260], and the presented module will be included in the
future releases of PLUTO.

4.1 Radiation hydrodynamics

4.1.1 The radiative transfer equation

We begin this section by outlining the main properties of the radiative transfer equation, from
which the Rad-RMHD equations will be derived in the following subsections.

The radiative transfer approach consists in a statistical description of systems of many
photons. In this approach, the system’s state is completely determined by the radiation specific
intensity Iν , defined as the amount of energy per unit area transported in a time interval dt
through an infinitesimal solid angle around the direction given by n, in a range of frequencies
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between ν and ν + dν. In general, Iν is a function of time, space, photon frequency, and the
direction of propagation n. An intuitive definition of this quantity can be given in terms of
the photon distribution function fR, defined such that fR(t,x,p)d3p is the number of photons
per unit volume at (x, t) with momenta in the range (p,p+ dp) (see [179]). If this function
is known, Iν can be obtained by multiplying it by the energy transported per photon per unit
time (equal to hPνc, where hP is the Planck constant). This yields the following relation:

Iν(t,x,n) =
h4
Pν

3

c2
fR(t,x, (hν/c)n), (4.1)

where the term ν3 on the right-hand side comes from the product of the photon energy and a
factor ν2 arising from d3p. This description in terms of distribution functions of pointlike
particles is entirely analogous to the approach followed in the kinetic theory of gases. In
particular, the temporal dependence of Iν can be obtained as a Boltzmann equation for photon
transport (see, e.g., [179]) that can in turn be transformed into the radiative transfer equation
in the following form:

∂Iν
∂t

+n ·∇Iν = ην −κν Iν −σν Iν +

∫ ∞

0

dν ′
∮

dΩ′ σ̂(ν, ν ′,n,n′, t,x)Iν′(t,x,n
′) . (4.2)

This Lorentz-covariant equation describes the temporal variation of Iν in terms of photon
transport, accounted for by the second term on the left-hand side, and radiation–matter
interaction, computed by the different terms on the right-hand side. The first of these, known
as emissivity, represents the rate of energy release by the material due to spontaneous processes.
These can be, for example, the occupation of a bound state in an atom by a previously unbound
electron which emits a photon in the process (radiative recombination); the emission of a
photon due to the interaction between an unbound electron and an ionized atom, giving as
a result an unbound electron in a lower energy state (bremsstrahlung); and the transition of
an electron between bound states in an atom due to its collision with another particle, in
which a photon is emitted (collisional de-excitation). The inverse processes (respectively,
bound-free, free-free, and bound-bound absorption) are considered in the second term, which
accounts for the energy removed from the radiation field and turned into thermal motion in
the material1. Scattering losses are taken into account in the third term, which as well as the
second one, is proportional to Iν . The proportionality coefficients, κν and σν , are known
respectively as the frequency-dependent absorption and scattering coefficients. Finally, the
last term in Eq. (4.2) represents the change in Iν(t,x,n) due to photons that are scattered

1A more comprehensive description of the absorption and emission processes taken into account in Eq. (4.2)
is given in [261].
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to the direction n with frequency ν from all other directions and frequencies (n′, ν ′). The
function σ̂(ν, ν ′,n,n′, t,x) is related to σν as

σν =

∫ ∞

0

dν ′
∮

dΩ′ σ̂(ν, ν ′,n,n′, t,x) , (4.3)

where the
∮

sign represents integration over all solid angles.
In general, solving Equation (4.2) in the presented form is rather problematic, since

integration must be carried out over multiple variables by concurrently taking into account
changes in the material. As well, a precise knowledge of the functions ην , κν , σν , and σ̂ν

is required, including effects due to the material’s motion such as the anisotropy caused by
the Doppler shift. Instead of attempting a full solution, we adopt a frequency-integrated
moment-based approach: we integrate Equation (4.2) over the frequency domain and com-
pute convenient averages of Iν in angle and frequency (the moments) that can be naturally
introduced in the equations of RHD and RMHD. This procedure is described in the next two
subsections.

4.1.2 Energy-momentum conservation and moment formalism

We now explicitly derive a set of conservation laws describing the coupled evolution of
matter, EM, and radiation fields. Although in this approach photons are treated as pointlike
particles, net EM fields are here regarded as classical fields. While RMHD quantities and
radiation fields are calculated in the laboratory frame, absorption and scattering coefficients
are best obtained in the comoving frame, following the mixed-frame formalism described in
[179]. The convenience of this choice relies on the fact that the opacity coefficients can be
easily averaged without taking into account anisotropies due to the fluid’s velocity, while the
hyperbolic form of the conservation equations is kept. In this formalism, we split the total
energy-momentum stress T µν into matter, EM, and radiative contributions, as

T µν = T µν
g + T µν

em + T µν
r . (4.4)

The first two of these have been defined in Eqs. (2.1) and (2.13), while T µν
r can be written in

terms of the specific intensity as

Tαβ
r =

∫ ∞

0

dν

∮
dΩ Iν(t,x,n)n

αnβ, (4.5)

where nµ ≡ (1,n) denotes the direction of propagation, dν the differential frequency, and dΩ

the differential solid angle around n. This expression is by definition covariant, since it is the
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integral over all angles and frequencies of the outer product of the photon four-momemtum
(equal to hPνn

µ in units such that c = 1) with itself, multiplied by the invariants Iνν−3 and
νdνdΩ (see e.g. [179]). The components of T µν can be easily interpreted using the notation

Tr =

(
Er F i

r

F j
r P ij

r

)
, (4.6)

where

Er =

∫ ∞

0

dν

∮
dΩ Iν(t,x,n) (4.7)

F i
r =

∫ ∞

0

dν

∮
dΩ Iν(t,x,n)n

i (4.8)

P ij
r =

∫ ∞

0

dν

∮
dΩ Iν(t,x,n)n

i nj (4.9)

are the first three moments of the radiation field, namely, the radiation energy density, the
flux, and the pressure tensor. In our scheme, we follow separately the evolution of Er and
F i
r , and define the pressure tensor in terms of these fields by means of a closure relation,

described in Section 4.1.4.
Following these definitions, and imposing conservation of matter and total energy and

momentum, we have
∇µ(ρu

µ) = 0 (4.10)

and
∇µT

µν = 0. (4.11)

From equations (4.4) and (4.11), we immediately obtain

∇µ

(
T µν
g + T µν

em

)
= −∇µT

µν
r . (4.12)

The desired connection with the radiative transfer equation can thus be obtained from the
right-hand side of this equation, by noting that integrating the left-hand side of Eq. (4.2)
leads to: ∫ ∞

0

dν

∮
dΩ

(
∂Iν
∂t

+ n · ∇Iν

)
nα = ∇µT

µα
r . (4.13)

The equations of Rad-RMHD can then be obtained combining Eq. (4.12) with Eq. (4.2) by
defining the radiation–matter interaction terms as

Gµ = −
∫ ∞

0

dν

∮
dΩ (· · · )nµ , (4.14)
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where the term in parentheses contains the right-hand side of Eq. (4.2). Thus, this four-vector
satisfies

∇µ

(
T µν
g + T µν

em

)
= Gµ (4.15)

∇µT
µν
r = −Gµ , (4.16)

from which the equations of Rad-RMHD can be derived. The interaction terms can be
simplified provided some conditions are met, as we show in the next section.

4.1.3 Interaction terms

We now derive an expression for Gµ in the comoving frame, from which we can compute its
components in the laboratory frame by means of a Lorentz boost. The covariant form of the
equations guarantees that, in the comoving frame, this four-vector can also be expressed as in
Equation (4.14), replacing all quantities by their comoving values. From now on, and except
for the opacity coefficients, which are always understood to be measured in the comoving
frame, we label all comoving quantities with a tilde.

In this work we assume coherent scattering, which means that the photon frequency
remains unchanged in scattering events, and hence the function σ̂ is proportional to δ(ν − ν ′).
This is a valid assumption, for instance, for Thomson scattering. We are here neglecting
any anisotropy due to the fluid’s mean velocity, since we are computing all quantities in the
comoving frame. As well, Doppler shifts caused by thermal motion of particles in the fluid
can be safely neglected as long as the typical thermal velocities are much smaller than c. We
also assume isotropic scattering, which in the comoving frame means that σ̂ is independent
of both n and n′. This means that, after a scattering event, all emission directions are equally
likely regardless of the direction of the incident photon. If that is not the case, the angular
dependence can be accounted for by introducing a phase function Φν(n,n

′), defined in such
a way that Φν(n,n

′)dΩ/4π is the probability for a photon of frequency ν of changing its
direction from n′ to n, as measured in the scattering center’s comoving frame (see, e.g.,
[184]). Therefore, this function must be normalized as

1

4π

∮
dΩ′Φν(n,n

′) = 1, (4.17)

which turns the last term in Eq. (4.2) into

σν

4π

∮
dΩ′Φν(n,n

′)Ĩν(t,x,n
′) . (4.18)



84 Radiative transfer

For Thomson scattering, for instance, the phase function is

Φν(n,n
′)Thomson =

3

4

(
1 + (n · n′)

2
)

(4.19)

(see e.g. [262]), whose minimum and maximum values are, respectively, 3/4 and 3/2. The
anisotropy of this function can be safely ignored in the chosen moment approach, as we now
show. When computing the zeroth component of G̃µ, we must integrate Eq. (4.18) over all
frequencies and solid angles, as∫ ∞

0

dν

∮
dΩ

σν

4π

∮
dΩ′ Φν(n,n

′)Ĩν(t,x,n
′) . (4.20)

If the product Φν(n,n
′)Ĩν(t,x,n

′) is a continuous function of n and n′, we can exchange the
order of the angle integrals (see, e.g., [263]), which yields∫ ∞

0

dν

∮
dΩ′ σν

(
1

4π

∮
dΩΦν(n,n

′)

)
Ĩν(t,x,n

′) =

∫ ∞

0

dν

∮
dΩ′ σν Ĩν(t,x,n

′) ,

(4.21)
where we have used the normalization of Φν (Eq. (4.17)). This is the same result that would
be obtained with an isotropic phase function, and hence the zeroth component of Gµ can
be obtained assuming isotropic scattering. Since we have not used the precise form of the
Thomson phase function, this results holds in general for any phase function that allows
for the exchange of the angular integrals. On the other hand, the computation of the spatial
components of Gµ involves the evaluation of∫ ∞

0

dν

∮
dΩn

σν

4π

∮
dΩ′ Φν(n,n

′)Ĩν(t,x,n
′) . (4.22)

Reordering the integrals in the same way as before, we obtain that this expression is equal to∫ ∞

0

dν

∮
dΩ′ σν Ĩν(t,x,n

′)gν , (4.23)

where we have defined gν , the first moment of the phase function, as

gν =
1

4π

∮
dΩ′Φν(n,n

′)n′ . (4.24)

Since gν = 0 for the Thomson phase function, the result of the whole integral is zero, which
again coincides with the result that would be obtained with an isotropic phase function. In
conclusion, the equations of Rad-RMHD are the same for isotropic and Thomson scattering.
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Furthermore, this procedure gives a method to include the effects of anisotropic scattering in
the equations. Since phase functions depend on n · n′, i.e., they are axially symmetric around
n, we can see using Eq. (4.24) that the perpendicular components to n are null, and therefore
gν is of the form gνn. Inserting this expression in the definition of Gµ, it is straightforward to
show that the resulting interaction terms correspond to those obtained for isotropic scattering,
with an effective scattering coefficient equal to (1− gν)σν . This shows that the form of the
equations of Rad-RMHD is maintained even in the case of highly anisotropic scattering2.

Using Eq. (4.2) under the aforementioned assumptions, we arrive to the following expres-
sion for the interaction terms in the comoving frame:

G̃µ =

∫ ∞

0

dν

∮
dΩ

(
χν Ĩν − σν J̃ν − η̃ν

)
nµ , (4.25)

where J̃ν is the angle-averaged value of Ĩν , and we have defined the frequency-dependent
total opacity coefficient as

χν = κν + σν . (4.26)

We must now assume a form for η̃ν . If matter and radiation are in LTE in the comoving
frame, then Ĩν becomes isotropic, and the radiative transfer equation is reduced to

η̃ν = κν Ĩν . (4.27)

Hence, in LTE, the amount of energy absorbed by the material equals the energy it emits, for
every frequency and direction. In this state, Ĩν corresponds to its equilibrium value given by
the Planck’s spectral radiance,

Bν(T ) =
2hPν

3/c3

ehP ν/kBT − 1
, (4.28)

2 When studying radiative transfer in other frameworks, isotropic scattering (Φν(n,n
′) ≡ 1) cannot

be assumed unless the directional dependence of Φν is considered to be weak enough to be neglected. In
astrophysical contexts (see e.g. [264], [153]), this is often assumed for simplicity. However, the error introduced
by this approximation is smaller the more opaque the material is due to such processes, since multiple scattering
events tend to randomize the direction of photons. For instance, using Eq. (4.19), we can see that the phase
function for two consecutive Thomson scatterings is proportional to (1 + cos (2θ) /27) ≈ 1, where θ is
the angle a photon is deviated after both events. On the other hand, in optically thin materials, matter and
radiation dynamics are advection-dominated, and scattering plays a secondary role. Hence, in general, the error
of assuming isotropic scattering is mostly important in intermediate regions, where the average number of
scattering events per photon is approximately 1; for instance, in stellar photospheres. An interesting comparison
of the effects of isotropic and Thomson scattering in the context of relativistic outflows is given in [153], where
the function Iν is computed through Monte Carlo simulations in different opacity regimes.
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where T is the equilibrium temperature and kB the Boltzmann constant. Therefore, we can
compute the equilibrium value of η̃ν as

η̃ν,LTE = κνBν(T ) , (4.29)

which is known as the Kirchhoff-Plack relation. This relation can be assumed whenever gra-
dients of physical properties over a photon destruction length are very small [179]. Although
its validity is assumed in most codes for radiation HD, in reality it can lead to significant
errors when free transport of radiation occurs. However, to describe possible departures
from equilibrium due to radiative or inelastic collisional processes, we would need to solve
non-LTE rate equations for all interactions relevant in the problem at hand, which would
radically increase the complexity of the method. Such procedure would also require a different
treatment for matter dynamics, since LTE of material particles is also one of the assump-
tions of HD. In this work, we shall assume the validity of Eq. (4.29) regarding it as a first
approximation.

We are now in conditions to carry out the angle integrals in Eq. (4.25), which yields

G̃0 = 4π

∫ ∞

0

dν κν

(
J̃ν −Bν(T )

)
(4.30)

G̃i =

∫ ∞

0

dν χνF̃
i
ν , (4.31)

where F̃ν =
∮
dΩ Ĩνn. These expressions can be easily integrated if the material behaves

as a grey body, i.e., if the opacities are independent of the photon frequency, which most
times is not the case. Depending on which source of opacity is dominant, opacity coefficients
can be substantially different in different bandwidths3. An approximate solution to this issue,
followed in our work, is the replacement of the frequency-dependent opacities by a set of
effective frequency-averaged values. Even though this procedure does not give an exact
solution, since a correct averaging of the opacity coefficients would require the knowledge
of J̃ν and F̃ν , it provides a reasonable first approximation to the problem of transfer of total
energy and momentum densities. An option for doing so is the replacement of κν and χν by

3For LTE free-free transitions, the absorption coefficient depends on the frequency roughly as κν ∝ ν−3

[265]. In the case of photoionization processes, κν is zero for all frequencies below a threshold value, after
which κν also decays as ν−3 [265]. For bound-bound transitions, κν is zero except for a narrow band centered in
ν = ∆E/hP , where ∆E is the energy difference between both bound levels. On the other hand, for Thomson
scattering, σν is frequency-independent [262].
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their Planck and Rosseland mean values, given respectively by

κP =

∫ ∞

0

dν κνBν(T )∫ ∞

0

dν Bν(T )

, χR =

∫ ∞

0

dν

(
∂Bν(T )

∂T

)
∫ ∞

0

dν χ−1
ν

(
∂Bν(T )

∂T

) . (4.32)

The first of these values is particularly accurate in optically thin materials, whereas the second
one tends to its correct limit in the diffusion regime [179]. We thus arrive to the final form of
the interaction terms in the comoving frame:

G̃µ = ρ
[
κ
(
Ẽr − 4πB(T )

)
, χF̃r

]
, (4.33)

where B(T ) = σSBT
4/π is the integrated value of Bν(T ), σSB is the Stefan–Boltzmann

constant, and κ, σ, and χ = κ + σ are the values of the mentioned frequency-averaged
opacities per unit density. In the code, these can either be set as constants, or defined by the
user as functions of any set of local fields (for instance, ρ and T ). The temperature can be in
turn determined from the ideal gas law,

T =
µmp pg
kB ρ

, (4.34)

where µ is the material’s mean molecular weight and mp is the proton mass.

Once G̃µ is known in the comoving frame, its components in the laboratory frame can be
computed as

Gµ = Λµ
α(v) G̃

α , (4.35)

where Λµ
α(v) is the tensor representation of a Lorentz boost in the fluid’s velocity v. In this

expression, G̃α still depends on the radiation fields in the comoving frame, which can be
expressed as functions of the fields in the laboratory frame by means of the transformation
law

T̃ µν
r = Λ µ

α (v)Λ ν
β (v)Tαβ = Λµ

α(−v)Λν
β(−v)Tαβ , (4.36)

which yields
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Ẽr = γ2
(
Er − 2viF

i
r + vivjP

ij
r

)
(4.37)

F̃ i
r = −γ2viEr + γ

[
δij +

(
γ − 1

v2
+ γ

)
vivj

]
F j
r − γ

(
δik +

γ − 1

v2
vivk

)
vjP

jk (4.38)

P̃ ij
r = γ2vivjEr − γ

(
viδjk + vjδik + 2

γ − 1

v2
vivjvk

)
F k
r

+

(
δik +

γ − 1

v2
vivk

)(
δjl +

γ − 1

v2
vjvl

)
P kl
r ,

(4.39)

where δij is the Kronecker delta. Finally, using the transformation laws given in Eqs. (4.35)–
(4.39), we obtain the following interaction terms in the Eulerian frame:

G0 =− 4πρκγB(T ) + ργ
(
κ− σ||u||2

)
Er

− ρ
[
κ− σ

(
γ2 + ||u||2

)]
ujF

j
r − ρσγujukP

jk ,
(4.40)

Gi =− 4πρκuiB(T )− ρσγ2uiEr

+ ργ
[
χδij + 2σuju

i
]
F j
r − ρ

(
χujδ

i
k + σuiujuk

)
P jk ,

(4.41)

which, using Eq. (4.6), can be summarized as

Gµ = −κρ (T µα
r uα + 4πB(T )uµ)− σρ

(
T µα
r uα + Tαβ

r uαuβu
µ
)
. (4.42)

However intricate and nonlinear in both radiation and matter fields, these terms count with
the advantage of depending exclusively on local values of these fields, and hence they can be
computed locally as any other source term in the code.

4.1.4 Rad-RMHD under the M1 closure

Under the assumptions summarized in Sections 2.1.1 and 2.1.2, the explicit form of the
left-hand side of Eq. (4.15) can be extracted from Eqs. (2.17) and (2.18). Together with Eqs.
(2.16), (4.16), (4.40), and (4.41), we obtain the equations of Rad-RMHD in quasi-conservative
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form:

∂ (ργ)

∂t
+∇ · (ργv) = 0 (4.43)

∂E
∂t

+∇ · (m− ργv) = G0 (4.44)

∂m

∂t
+∇ ·

(
ρhγ2vv −BB− EE

)
+∇p = G (4.45)

∂B

∂t
+∇× E = 0 (4.46)

∂Er

∂t
+∇ · Fr = −G0 (4.47)

∂Fr

∂t
+∇ · Pr = −G, (4.48)

where, as in Chapter 2, we assume the relation E = −v ×B. In our current scheme, these
equations can be solved in Cartesian, cylindrical or spherical coordinates. The precise form
that these equations take in curvilinear coordinates is detailed in Appendix C.

A further closure relation is needed for the radiation fields, i.e., an equation relating P ij
r to

Er and Fr. The simplest choice we can make is the Eddington approximation, which consists
in assuming P̃ ij

r = (Ẽr/3) δ
ij . However, this is a good approximation only in the case where

Iν is quasi-isotropic in the fluid frame, which is only verified in general in optically thick
media. Instead, we have chosen to implement the M1 closure, proposed by [199], which
is able to handle both the optically thick and optically thin regimes. In this closure, it is
assumed that Iν is isotropic in some inertial frame, to which we shall refer as radiation
frame. Under this assumption, we can use the covariance of Eq. (4.5) to carry out the angular
integrals in the radiation frame, obtaining T̄ µν

r = diag(Ēr, Ēr/3, Ēr/3, Ēr/3), where we
have indicated fields measured in the radiation frame with an upper bar. This expression is
enough to determine P ij

r as a function of Er and F i
r , as we now show following the procedure

described in [190]. Defining uµ
R as the components of the four-velocity of the radiation frame

measured in the laboratory frame, we can write T̄ µν
r as

T̄ µν
r =

4

3
Ērū

µ
Rū

ν
R +

1

3
Ērη

µν . (4.49)

Applying a Lorentz boost in the radiation frame’s velocity, this tensor can be written in the
laboratory frame as

T µν
r =

4

3
Ēru

µ
Ru

ν
R +

1

3
Ērη

µν , (4.50)
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from which we get the following relations:

ηµνT
tµ
r T tν

r =
Ē2

r

9

(
ηtt − 8

(
ut
R

)2)
T tt
r =

Ē2
r

3

(
ηtt + 4

(
ut
R

)2)
.

(4.51)

Since the left-hand sides of Eqs. (4.51) are functions of (Er,Fr), this defines a system of two
equations in two unknowns, Ēr and ut

R. Once these are determined, the spatial components
of uµ

R can be found from T ti
r using Eq. (4.50), and thus we can write all components of T µν

r

as functions of (Er,Fr). This procedure yields the desired closure relation, which is defined
through the following equations:

P ij
r = DijEr, (4.52)

Dij =
1− ξ

2
δij +

3ξ − 1

2
ninj, (4.53)

ξ =
3 + 4f 2

5 + 2
√

4− 3f 2
, (4.54)

where now n = Fr/||Fr||, and f = ||Fr||/Er. Since the choice of the laboratory frame is
arbitrary, these equations are covariant and hold in any reference frame once the existence
of the radiation frame is assumed. As well, they are well behaved, as Eqs. (4.7) and (4.8)
provide an upper limit to the flux, namely

||Fr|| ≤ Er, (4.55)

and therefore 0 ≤ f ≤ 1.
In the diffusion limit, namely, if ||Fr|| ≪ Er, the M1 closure leads to P ij

r = (δij/3)Er,
which corresponds to an isotropic specific intensity, i.e., the Eddington limit. Likewise, in the
free-streaming limit given by ||Fr|| = Er, the pressure tensor tends to P ij

r = Er n
inj , which

corresponds to a delta-like Iν pointing in the same direction and orientation as Fr. However,
the above derivation is not valid in that case, since the existence of the radiation frame would
imply ||vR|| = c and Ēr = 0. Nonetheless, since Equations (4.52)–(4.54) yield the correct
free-streaming limit, such case can be simply regarded as the limit when ||vR|| → c of this
assumption.
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(a) Radiation intensity resulting from the contri-
butions of two anisotropic beams.

(b) Axially symmetric distribution for which the
Eddington factor is lower than 1/3.

Fig. 4.1 Angular distribution of the radiation intensity Iν as a function of the emission direction
n for two cases where the M1 closure is not exact.

We point out that, even though both the free-streaming and diffusion limits are reproduced
correctly, the M1 closure may fail in cases where there is no reference frame in which Iν is
isotropic; for instance, if Iν is not axially symmetric. An example of this is shown in Fig. 4.1a,
which shows the directional dependence of a given Iν produced by two anisotropic beams.
In that case, the M1 closure causes both beams to interact wherever they converge, which
can lead to unphysical instabilities [190, 191]. Another example where the M1 is inaccurate
is given by the axially symmetric distribution shown in Fig. 4.1b, where it can be seen that
there is no boost that can render the radiation intensity isotropic. A consequence of this can
be measured through the Eddington factor, defined for axially symmetric distributions as
P zz
r /Er, where we have taken z to be the axis of symmetry. In this case, the M1 closure

yields P zz
r /Er = χ(f), which can only take values in the interval [1

3
, 1], where the minimum

value corresponds to an isotropic distribution. However, the distribution shown in Fig. 4.1b
gives an Eddington factor of 0.27, which is below the minimum value allowed by the M1
closure. This may be verified in radiative shocks, as studied in [266], where it is shown by
means of a direct solution of the radiative transfer equation that the Eddington factor can
be slightly under 1/3 close to the emitting layer, provided that photons in that region have
a larger mean free path in the parallel directions to the shock front than in the normal one.
Thus, in such cases, the M1 closure is only approximate.
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4.2 Numerical scheme

As in Chapter 2, the Rad-RMHD equations can be summarized as

∂U
∂t

+∇ · F(U) = S(U) , (4.56)

where now U ≡ (ργ, E , m, B, Er, Fr)
⊺ are the conserved fields, F(U) is the flux tensor and

S ≡ (0, G0,G,0,−G0,−G)
⊺ contains the radiation–matter interaction terms. The explicit

expressions of F can be extracted from Equations (4.43)–(4.48).
Equation (4.56) differs from the RMHD equations in the inclusion of the radiation fields

and the source terms. To solve this new system, the new Rad-RMHD module maintains
several convenient features of PLUTO, such as its parallelization and AMR capabilities, and
its adaptability to different coordinate systems. In this section, we will describe the additional
numerical techniques implemented to solve the Rad-RMHD equations.

In particular, the introduction of source terms poses a numerical challenge due to the
fact that radiation–matter interaction may occur in timescales that are much smaller than
any dynamical characteristic time. Thus, an explicit integration of S would either lead to
instabilities or to excessively large computing times. For this reason, we discretize Equations
(4.56) in time by means of IMEX–Runge-Kutta (IMEX–RK) schemes [204], as described in
Section 4.2.1. In this approach, fluxes and geometrical source terms are integrated explicitly
in the explicit step by means of Godunov-type solvers, as detailed in Section 4.2.2. Within this
stage, we have included a new Riemann solver for radiation transport, which we introduce in
Section 4.2.3. On the other hand, the integration of Gµ is performed implicitly in a separate
step (the implicit step), as described in Section 4.2.4.

4.2.1 Implemented IMEX schemes

IMEX schemes consist in prescriptions for the integration of differential equations in which
some terms are integrated explicitly and others implicitly. These methods are of great utility
for solving equations with stiff source terms, i.e., terms that cause the described problem to
undergo processes that occur in highly disparate timescales. In the Rad-RMHD equations,
such is the case of the radiation–matter interaction terms.

In our approach, we have implemented two different IMEX–RK schemes, which are built
by combining implicit and explicit Runge-Kutta methods. In general, the convergence and
overall stability of these schemes are strongly dependent on details such as the ordering and
number of substeps, and the coefficients used on each of them for the integration prescriptions.
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One of the IMEX–RK methods we have implemented is the commonly used second-order
IMEX–SSP2(2,2,2) scheme by [204]. When applied to (4.56), this method results in the
following discrete scheme:

U (1) = Un + a∆tnS(1)

U (2) = Un +∆tnR(1) +∆tn
[
(1− 2a)S(1) + aS(2)

]
Un+1 = Un +

∆tn

2

[
R(1) +R(2)

]
+

∆tn

2

[
S(1) + S(2)

]
.

(4.57)

Here we maintain the notation used in Chapter 2: U represents an array of volume averages
inside the zone i, j, k (indices have been again omitted), n denotes the current step number,
∆tn is the time step, a = 1−

√
2/2, and the operator R, which approximates the contribution

of (−∇ · F), is computed in an explicit fashion as detailed in Sections 2.3.3 and 4.2.2.
Potentially stiff terms (i.e., those proportional to κ and σ) are included in the operator S,
which is solved implicitly during the first and second stages in Eq. (4.57). In short, terms on
the right-hand side of these equations whose step indices coincide with those on the left-hand
side are solved implicitly, while the rest of them are integrated explicitly.

An alternative scheme which we also consider in the present context is the following
scheme (IMEX1 henceforth):

U (1) = Un +∆tnRn +∆tn S(1)

U (2) = U (1) +∆tnR(1) +∆tn S(2)

Un+1 =
1

2

(
Un + U (2)

)
,

(4.58)

This method is an extension to the second-order RK2 method shown in Section 2.3.3, where
we have just added an implicit step after every flux integration. In the same way, we have
included in the code a third-order version of this scheme that extends the third-order Runge-
Kutta scheme by [220]. Both the second- and third-order versions of this method are similar
to those described in [193].

Using general methods for IMEX–RK schemes [204], it can be shown that IMEX–
SSP2(2,2,2) and IMEX1 are of order 2 and 1 in time and L- and A-stable respectively4,
which makes IMEX–SSP2(2,2,2) a seemingly better option when it comes to the schemes’

4 In the theory of implicit Runge-Kutta methods (see, e.g., [267]), some stability criteria can be obtained for
a particular scheme by applying it to the equation dy

dt = λy, with λ ∈ C. For Re(λ) < 1, the exact solution of
this equation approaches zero as t → ∞. It is therefore desirable that the numerical solution satisfies the same
property, and that it does not grow between time steps. With this in mind, if the numerical solution verifies
|yn+1/yn| ≤ 1 for Re(λ) ≤ 1, the method is called A-stable. Furthermore, if it also satisfies the property that
|yn+1/yn| approaches 0 for λ → ∞, it is called L-stable. In general, both properties favor the overall stability
of a given method.
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stability. However, as we have observed when testing the module, the explicit addition of
previously-calculated source terms in the last step of IMEX–SSP2(2,2,2) can cause inaccu-
racies whenever interaction terms are stiff and there are large differences in the orders of
magnitude of matter and radiation fields (see Sections 4.3.5 and 4.3.6). Contrarily, IMEX1
seems to have better positivity-preserving properties and a higher accuracy in those cases. In
general, as it is shown in Section 4.3, we have obtained equivalent results with both methods
in every other case. Whenever source terms can be neglected, both methods reduce to RK2,
which makes them second-order accurate in time for optically thin transport.

4.2.2 Explicit step

Each explicit step in the IMEX1 and IMEX–SSP2(2,2,2) methods consists in an explicit
integration of the fluxes in Eq. (4.56), taking S ≡ 0. Therefore, we can apply the same
methods for homogeneous hyperbolic systems used for RHD and RMHD in Section 2.3, with
a few modifications owing to the particular form of the Rad-RMHD equations. We now
describe such changes.

Firstly, we define the set of primitive fields as

V = (ρ, pg, v, B, Er, Fr)
⊺ . (4.59)

These are just the RMHD variables with the addition of the radiation fields, which remain
equal to the conserved ones. The conversion between U and V can then be achieved by
applying the same methods used for RMHD, leaving the radiation components unchanged.
Furthermore, this choice for V makes it possible to straightforwardly enforce Equation (4.55)
during the reconstruction step, in addition to the constraints mentioned in Section 2.3.1. As
we have verified in tests, this condition is essential to guarantee the stability of the solutions.

As in Section 2.3.2, fluxes are computed by approximately solving local Riemann problems
at cell interfaces. Since we are taking S ≡ 0, the Rad-RMHD equations can be divided into
two independent systems, one corresponding to RMHD (Eqs. (4.43)–(4.46)) and the other one
to radiation transport (Eqs. (4.47)–(4.48)). In particular, RMHD fluxes are independent of
the radiation variables, and vice versa. Consequently, the Jacobian matrices of the full system
are block-diagonal, and characteristic wave speeds can be obtained from the eigenvalues of
each block (the details of this computation are shown in Appendix A). In principle, we can
expect the maximum and minimum signal speeds of both systems to be, in the frozen limit5,
different. We therefore solve the two subsystems separately, using for each of them the set of

5 In the theory of stiff relaxation systems, the frozen limit refers to the small time step regime, when the
effect of source terms on the characteristic waves is still negligible.
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characteristic speeds obtained from each corresponding block. In this manner, as it is pointed
out in [190], we avoid the excessive numerical diffusion that occurs when the same signal
speeds are used to update both radiation and RMHD fields. This has been verified in our
tests.

To compute the RMHD fluxes, we can apply any of the Riemann solvers mentioned in
Section 2.3.2. On the other hand, radiation fluxes can be computed using either the LFR
solver (Eq. (2.50)), the HLL solver (Eq. (2.45)), or the HLLC solver introduced in [260],
which will be shown in the next section. Once fluxes are computed, the explicit integration
step can be applied following the prescription in Equation (2.53) to compute the operator R.

4.2.3 HLLC solver for radiation transport

We now present a novel Riemann solver for the solution of the homogenous subsystem formed
by Eqs. (4.47)–(4.48) with Gµ = 0. To this purpose, we restrict our attention to a single
direction chosen to be the x-axis, without loss of generality. In Cartesian coordinates, the
resulting equations take the form

∂Ur

∂t
+

∂Φ

∂x
= 0 (4.60)

where Ur = (E, F)⊺ while Φ = (Fx, Pxx, Pyx, Pzx)
⊺ and we have omitted the subscripts r

for clarity purposes (we shall maintain that convention throughout this section). From the
analysis carried out in Appendix A, we know that the Jacobian Jx of this system has three
different eigenvalues {λ1, λ2, λ3}, satisfying λ1 ≤ λ2 ≤ λ3. Since the system is hyperbolic,
the breaking of an initial discontinuity will involve the development of (at most) as many waves
as the number of different eigenvalues (see Chapter 2). On this basis, we have implemented a
three-wave Riemann solver.

Following [268], we define the following fields:

βx =
3ξ − 1

2

Fx

||F||2
E

Π =
1− ξ

2
E ,

(4.61)



96 Radiative transfer

where ξ is given by Eq. (4.54). With these definitions, the fluxes in Eq. (4.60) can be written
as

Φ =


Fx

Fx βx +Π

Fy βx

Fz βx

 , (4.62)

and Fx can be shown to satisfy Fx = (E +Π) βx. These expressions are similar to those of
RHD, where βx, Π and F play, respectively, the role of vx, pg and m while E tantamounts
to total energy. With the difference that there is no field corresponding to mass density, the
equations are exactly the same as those corresponding to energy-momentum conservation of
a fluid, with a different closure relation.

With this in mind, we follow analogous steps to those in [203] in order to construct a HLLC
solver for the system defined by Equations (4.60). In this case, instead of the intermediate
constant state considered in the HLL solver, we include an additional noncompressive middle
wave of speed λ∗ that separates two intermediate states U∗

L and U∗
R, where

λL ≤ λ∗ ≤ λR . (4.63)

In this way, the full approximate solution verifies

Ur(0, t) =


Ur,L if λL > 0

U∗
r,L if λL ≤ 0 < λ∗

U∗
r,R if λ∗ ≤ 0 ≤ λR

Ur,R if λR < 0 .

(4.64)

The corresponding fluxes are

Φhllc(0, t) =


ΦL if λL > 0

Φ∗
L if λL ≤ 0 < λ∗

Φ∗
R if λ∗ ≤ 0 ≤ λR

ΦR if λR < 0 .

(4.65)

States and fluxes are related by the Rankine-Hugoniot jump conditions across the outermost
waves, λS (S = L,R),

λS (U∗
r,S − Ur,S) = Φ∗

S − ΦS . (4.66)
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A similar condition must also hold across the middle wave, so that when Equation (4.66) is
applied to all three waves, one has a system of 12 equations for the 17 unknowns (U∗

r,L, U∗
r,R,

Φ∗
L, Φ∗

R, and λ∗), and therefore further assumptions must be made. From the results of the
tests performed with the HLL solver, we have verified that βx and Π are conserved along
the intermediate noncompressive mode for all of the obtained solutions. This property is
proven in [269]. Since λ2(E,F) = βx(E,F), we impose the constraints λ∗ = β∗

x,L = β∗
x,R

and Π∗
L = Π∗

R. These conditions are analogous to those satisfied by the contact discontinuity
in RHD, across which pg and vx are conserved, and where the latter coincides with the
propagation speed (we hence apply the term contact wave to this mode). Following [203],
we assume that Φ∗ can be written in terms of the five variables (E∗,Π∗, β∗

x, F
∗
y , F

∗
z ) in the

following way:

Φ∗ =


F ∗
x

F ∗
x β

∗
x +Π∗

F ∗
y β

∗
x

F ∗
z β

∗
x

 , (4.67)

where, for consistency, we have defined F ∗
x ≡ (E∗ + Π∗)β∗

x. Under these constraints, the
jump conditions across the middle wave are automatically satisfied, and Eq. (4.66) is reduced
to the following system of 8 equations in 8 unknowns:

E∗(λ− λ∗) = E(λ− βx) + Π∗λ∗ − Π βx

F ∗
x (λ− λ∗) = Fx(λ− βx) + Π∗ − Π

F ∗
y (λ− λ∗) = Fy(λ− βx)

F ∗
z (λ− λ∗) = Fz(λ− βx) ,

(4.68)

which holds for both subscripts L and R (we shall maintain this convention in what follows).
The first two equations in Eq. (4.68) can be turned into the following quadratic expression,
from which λ∗ can be obtained:

(ALλ
∗ −BL)(1− λRλ

∗) = (ARλ
∗ −BR)(1− λLλ

∗), (4.69)

with

A = λE − Fx (4.70)

B = (λ− βx)Fx − Π. (4.71)
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Once λ∗ is known, we can compute Π∗ as

Π∗ =
Aλ∗ −B

1− λλ∗ , (4.72)

and the remaining fields from Eq. (4.68). Similar to the RHD counterpart, among the two
roots of Equation (4.69) we must choose the only one that guarantees λ∗ ∈ [−1, 1], which in
our case corresponds to that with the minus sign. As shown in Appendix D, this definition of
λ∗ satisfies Eq. (4.63). We have also numerically checked that the intermediate states U∗

L and
U∗
R constructed in this way satisfy Equation (4.55), which guarantees the positivity of our

HLLC scheme. However, unlike the RHD case, the coefficients {AL, BL, AR, BR} defined
in Equations (4.70) and (4.71) can simultaneously be equal to zero, meaning that λ∗ can no
longer be determined from Equation (4.69). This happens under the conditions ||F|| = E

for both L and R, and FxL/||FL|| ≤ FxR/||FR||, in which case the jump conditions lead to
the formation of vacuum-like intermediate states. We overcome this issue by switching the
solver to the standard HLL whenever these conditions are met.

As for the HLL solver, signal velocities must be limited when describing radiation transfer
in highly opaque materials in order to reduce numerical diffusion (see Appendix A). Whenever
this occurs, we also switch to the standard HLL solver, and limit λL and λR according to
Equation (A.10). Hence, we can only expect the HLLC solver to improve the accuracy of
the obtained solutions in optically thin regions of space, whereas the results should be the
same for both HLL and HLLC everywhere else. Finally, although the use of the HLLC
solver can reduce the numerical diffusion when compared to the HLL solver, this can cause
spurious oscillations around shocks that would be damped with a more diffusive method. As
for the HLLC solver for RHD and RMHD included in PLUTO, this problem can be reduced by
implementing an additional flattening in the vicinity of strong shocks [203].

4.2.4 Implicit step

We now describe the algorithm employed for the implicit integration of the radiation–matter
interaction terms. A typical implicit step of an IMEX scheme (see Eqs. 4.57 and 4.58) takes
the form

U = U ′ + s∆tn S , (4.73)

where s is a constant and primed terms denote some intermediate state value. Equation (4.73)
shows that the mass density, computed as ργ, as well as the total energy and momentum
densities, defined as Etot = E + Er and mtot = m + Fr, must be conserved during this
partial update owing to the particular form of the source terms. This yields the following
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implicit relations between V and Ur:

E(V) = Etot − Er

m(V) = mtot − Fr.
(4.74)

We can then solve Eq. (4.73) in terms of the following reduced system:

Ur = U ′
r − s∆tn G , (4.75)

with G ≡ (G0,G)⊺, where Gµ is given in Eqs. (4.40) and (4.41). In Eq. (4.75), radiation
fields can be regarded as functions of the RMHD fields and vice versa by means of Eq. (4.74),
and therefore the system can be solved in terms of either one of these.

In order to solve Equation (4.75), we have implemented and compared three different
multidimensional root finder algorithms, which we now describe.

1. Fixed-point method. This method (originally proposed in [192]) is based on iterations
of Ur and follows essentially the same approach outlined in [270] in the context of
resistive RMHD. In this scheme, all of the RMHD primitive variables, as well as Dij ,
are written at a previous iteration with respect to Ur. In that manner, G can be written
at a given iteration m as

G(m) = M(m)U (m+1)
r + b(m), (4.76)

where M is a matrix and b is a column vector, both depending on V and Dij , and the
numbers in parentheses indicate the iteration in which the fields are evaluated. Inserting
this into Equation (4.75), the updated conserved fields can be computed as

U (m+1)
r =

(
I + s∆tnM(m)

)−1 (U ′
r − s∆tn b(m)

)
, (4.77)

after which primitive fields can be updated using Eq. (4.74).

2. Newton’s method for radiation fields, implemented in [190] and [193]. This scheme
consists in finding the roots of the nonlinear multidimensional function

Q(Er,Fr) = Ur − U ′
r + s∆tn G, (4.78)

updating the radiation variables on each iteration as

U (m+1)
r = U (m)

r −
[
J (m)

]−1Q(m), (4.79)
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where we have defined the Jacobian matrix J as Jij = ∂Qi/∂U j
r . The elements of

J are computed numerically, taking small variations of the iterated fields. As in the
fixed-point method, matter fields are computed from Ur for each step by means of an
inversion of Eq. (4.74).

3. Newton’s method for matter fields, implemented in [193]. This procedure is identical
to the previous one, with the difference that in this case the iterated fields are the
fluid’s pressure and the spatial components of its four-velocity, which we denote as
W = (pg,u)

⊺. These are updated as

W(m+1) = W(m) −
[
J (m)

]−1Q(m), (4.80)

where now Jij = ∂Qi/∂Wj and Q is regarded as a function of W . This scheme is
much faster than the previous one, since the computation of Ur from W by means of
Eq. (4.74) is now straightforward and no longer requires a cumbersome inversion of
conserved to primitive fields.

For each of these methods, iterations are carried out until convergence is reached, which
is controlled by means of some error function. In the first of them, this function is chosen
as the norm of the relative differences between successive values of V , whereas in the last
two of them it is defined as the norm of Q(m+1). If E ≪ Er, the errors of the matter fields
can be large even when radiation fields converge, since Eq. (4.74) implies that E and Er have
the same absolute error, as well as m and Fr. Therefore, having small relative differences
of Er does not guarantee the same for E , which can lead to nonnegligible inaccuracies if
the second method is used. Equivalently, the same problem can occur whenever E ≫ Er if
method 3 is chosen [193]. To overcome this issue, we have included in the code the option of
adding to the convergence function the norm of the relative differences of E when using the
second method and of Er when using the third one. We have seen in the performed tests that
the fixed-point method converges rather fast, meaning that the number of iterations that it
requires frequently coincides with that obtained with the last two methods. This scheme has
sufficed to perform all of the tests carried out in this work and has often been the fastest one
when compared to the other two, having been overcome only by method 3 in a few cases.

4.3 Numerical benchmarks

We show in this section a series of numerical benchmarks to verify the code performance, as
well as the correctness of the implementation under different physical regimes and choices of
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coordinates. Unless otherwise stated, we employ the HLLC solver introduced in Section 4.2.3;
the domain is discretized using a fixed uniform grid, and outflow boundary conditions are
imposed for all fields. Magnetic fields are neglected in all of the considered problems, except
in Section 4.3.7. Furthermore, all of the tests have been run with both the IMEX–SSP2(2,2,2)
and IMEX1 methods, obtaining equivalent results unless indicated otherwise.

4.3.1 Riemann problem for optically thin radiation transport

We first validate the implemented radiation transport schemes when any interaction with
matter is neglected. To this end, we have run several 1D Riemann problems, setting all of the
interaction terms to zero and focusing only on the evolution of the radiation fields. The initial
setup of these consists of two regions of uniform Er and Fr, separated by a discontinuity at
x = 0. The full domain is defined as the interval [−20, 20]. We show here two of such tests,
exploring the case ||Fr|| < Er (test 1) and the free-streaming limit, ||Fr|| ≃ Er (test 2).

In the first test, initial states are assigned at t = 0 as

(Er, F
x
r , F

y
r )L,R =


(
1, 0, 1

2

)
for x < 0

(1, 0, 0) for x > 0
(4.81)

The solution, plotted in Fig 4.2 at t = 20 with a resolution of 214 zones (solid black line),
shows a three-wave pattern, as it is expected from the eigenstructure of the radiation transport
equations (see Section 4.2.3 and Appendix D). The left and right outermost waves are,
respectively, a left-facing shock and a right-going expansion wave, while the middle wave is
the analogous of a contact wave. The fields Π and βx, defined in Section 4.2.3, are constant
across the contact mode. In the same Figure, we show the solution obtained with the HLL
and HLLC solvers at the resolution of 256 zones using a first-order reconstruction scheme
[see 203]. As expected, the employment of the HLLC solver yields a sharper resolution of
the middle wave.

For the second test, the initial condition is defined as

(Er, F
x
r , F

y
r )L,R =


(

1
10
, 1

10
, 0
)

for x < 0

(1, 0, 1) for x > 0
(4.82)

Results obtained with the first-order scheme and the HLL and HLLC solvers are plotted in
Fig. 4.3 together with the reference solution (solid black line) at t = 20. As for the previous
case, a three-wave pattern emerges, formed by two left- and right-going shocks and a middle
contact wave. It can also be seen that Π and βx are again continuous across the contact wave.
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Fig. 4.2 Radiation fields in the optically thin Riemann test 1 at t = 20. Two solutions obtained
with the HLL solver (solid blue line) and the HLLC solver (solid orange line), computed
using 28 zones in both cases, are compared to a reference solution obtained with 214 zones.
These show a left shock at x ≈ −11, a right expansion wave at x ≈ 11, and a central contact
discontinuity at x ≈ −1, along which the fields Π and βx are continuous. Reproduced from
[260].

Differences between HLLC and HLL are less pronounced than the previous case, with the
HLL (HLLC) overestimating the left-going shock position by 50% (30%).

For both tests, we have conducted a resolution study covering the range [26, 210] using
first-order as well as second-order reconstructions making use of the second-order harmonic
mean limiter by [271]. In Figure 4.4, we plot the L1-norm error of Er (computed with respect
to the reference solution) as functions of the resolution. The Courant number is Ca = 0.4 for
both cases. Overall, the HLLC yields smaller errors when compared to the HLL, as expected.
This discrepancy is more evident in the first-order case and it is mitigated in the case of a
second-order interpolant (a similar behavior is also found in [203]).
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Fig. 4.3 Same as Fig. 4.2, but for the optically thin Riemann test 2. The solutions exhibit a
leftward-moving shock, a contact discontinuity, and a rightward-moving shock at x ≈ −2.2,
4.5, and 7, respectively. Reproduced from [260].

4.3.2 Free-streaming beam

A useful test to investigate the code’s accuracy for multidimensional transport is the propaga-
tion of a radiation beam oblique to the grid (see, e.g., [187, 272]). This problem is also useful
to quantify the numerical diffusion that may appear when the fluxes are not aligned with the
axes. We again neglect the gas–radiation interaction terms and solely follow the evolution of
the radiation fields.

The initial setup consists of a square Cartesian grid of side L = 5 cm, where the radiation
energy density is set to Er,0 = 104 erg cm−3. At the x = 0 boundary, a radiation beam is
injected by fixing Er = 108Er,0 and Fr = (1/

√
2, 1/

√
2)Er for y ∈ [0.30, 0.44] cm. Thus,

the injected beam satisfies the equality ||Fr|| = Er, which corresponds to the free-streaming
limit. Outflow conditions are imposed on the remaining boundaries.

Again, we compare the performance of the HLL and HLLC solvers, this time using the
fourth-order linear slopes by [273] and resolutions of 150× 150 and 300× 300 zones. The
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Fig. 4.4 L1 error of Er in the optically thin Riemann tests 1 and 2, computed in each case with
respect to a reference solution obtained using 214 zones. The errors are plotted for several
resolutions as a function of 1/dx, where dx is the cell’s width in each case. Different results
are shown using first-order (upper panels) and second-order (lower panels) reconstruction
schemes. Reproduced from [260].

Courant number is Ca = 0.4. The energy density distribution obtained with the HLLC solver
at the largest resolution is shown in Fig. 4.5 at t = 5 × 10−10 s. In every case, a beam
forms and reaches the upper boundary between x = 4 and 5 cm, after crossing a distance
equivalent to roughly 64 times its initial width. Since no interaction with matter is considered,
photons should be transported in straight lines. As already mentioned, the free-streaming limit
corresponds to a delta-like specific intensity parallel toFr. Hence, photons are injected in only
one direction, and the beam’s structure should be maintained as it crosses the computational
domain. However, in the simulations, the beam broadens due to numerical diffusion before
reaching the upper boundary. For this particular test, due to its strong discontinuities, we
have seen that this effect is enhanced by the flattening applied during the reconstruction step
in order to satisfy Equation (4.55), which is necessary for stability reasons.

In order to quantify this effect and its dependency on the numerical resolution, we have
computed several time-averaged Er(y) profiles along vertical cuts at different x values. As an
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indicator of the beam’s width, we have computed for each x the standard deviation of these
profiles as

σy =

√∫ L

0

[y − y]2 φ(y) dy , (4.83)

with
y =

∫ L

0

φ(y) y dy , (4.84)

where the weighting function φ(y) is defined as

φ(y) = Er(y)

/∫ L

0

Er(y) dy , (4.85)

being Er the time-averaged value of Er. We have then divided the resulting values of σy by
σy0 ≡ σy(x = 0) in order to show the relative growth of the dispersion. The resulting values
of σy/σy0 are shown in Fig. 4.5, where it can be seen that the beam’s dispersion grows with
x. The difference between σy/σy0 and its ideal value (σy/σy0 ≡ 1) gets reduced by a factor
between 2 and 2.5 when the highest resolution is used. In the same figure, it can be seen
that the dispersion is only slightly reduced when the HLLC solver is used instead of HLL. A
similar plot of σy/σy0 is obtained with the second-order limiter by [271], where the values of
the relative dispersion increase roughly between 30% and 40%, showing as in Section 4.3.1
that the accuracy of these methods not only depends on the chosen Riemann solver but is
also extremely sensitive to the chosen reconstruction scheme.

4.3.3 Radiation–matter coupling

In order to verify the correct integration of the interaction terms, we have run a test proposed in
[274], in which matter and radiation approach thermal equilibrium in a homogeneous system.
This is achieved by solving the radiation RHD (Rad-RHD) equations in a single-cell grid,
thus removing any spatial dependence. In this configuration, due to the form of Equations
(4.43)–(4.48), all fields but the energy densities of both radiation and matter remain constant
for t > 0. Using conservation of total energy, the resulting equation for the evolution of the
gas energy density (in cgs units) is

1

c

dE
dt

= ρκ (Er − 4πB (T )) . (4.86)



106 Radiative transfer

Fig. 4.5 Free-streaming beam test. A radiation beam is introduced in a 2D grid from its lower
left boundary, at 45◦ with respect to the coordinate axes. The values of log10Er obtained with
the HLLC solver using a resolution of 300× 300 zones are plotted as a function of (x, y) at
t = 5× 10−10 s (color scale). The relative dispersion σy/σy0 along the y-direction is shown
in the lower-right corner as a function of x (cm) for the selected resolutions of 150 × 150
(black lines) and 300× 300 (blue lines). In both cases, the solid and dashed lines correspond
respectively to the results obtained with the HLL and the HLLC solvers. Reproduced from
[260].

This can be simplified if the chosen initial conditions are such that Er is constant throughout
the system’s evolution. In that case, Equation (4.86) can be solved analytically, leading to an
implicit relation between E and t that can be inverted using standard methods.

We have run this test for two different initial conditions, using in both cases ρ = 10−7

g cm−3, Er = 1012 erg cm−3, opacities κ = 0.4 cm2 g−1 and σ = 0, and a mean molecular
weight µ = 0.6. A constant-gamma EoS has been assumed, with Γ = 5/3. We have chosen
the initial gas energy density to be either E = 1010 erg cm−3 or E = 102 erg cm−3, which
are, respectively, above and below the final equilibrium value of around 7× 107 erg cm−3.

The gas energy density is plotted as a function of time for both conditions in Fig. 4.6.
Simulations are started with an initial time step∆t = 10−10 s. An additional run for t ≤ 10−10
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Fig. 4.6 radiation–matter coupling test. The gas energy density E is plotted as a function of
time for the two chosen initial conditions, until thermal equilibrium is reached. The obtained
numerical values (empty squares) are shown here to match the analytical solutions (solid
lines) for both initial conditions. Reproduced from [260].

s is done for each initial condition with an initial ∆t = 10−16 s, in order to show the evolution
in the initial stage. In every case, the gas radiation energy goes through an initial constant phase
that lasts until t ∼ 10−14 s, after which it varies towards the equilibrium value. Equilibrium
occurs when the condition Er = 4πB(T ) is reached (see Eq. (4.86)), i.e., when the power
emitted by the gas equals its energy absorption rate. This happens around t ≈ 10−7 s for both
initial conditions. As shown in Fig. 4.6, the numerical solutions match the analytical ones in
the considered time range.

4.3.4 Shock waves

We now study the code’s ability to reproduce general shock-like solutions without neglecting
the interaction terms. To this purpose, we have reproduced a series of tests proposed in
[275]. As in Section 4.3.1, we place a single initial discontinuity at the center of the 1D
domain defined by the interval [−20, 20]. At t = 0, both matter and radiation fields are
constant on each side of the domain and satisfy the condition for LTE between matter and
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Test ρL pg,L ux
L Er,c,L ρR pg,R ux

R Er,c,R Γ κ

1 1.0 3.0× 10−5 0.015 1.0× 10−8 2.4 1.61× 10−4 6.25× 10−3 2.51× 10−7 5/3 0.4
2 1.0 4.0× 10−3 0.25 2.0× 10−5 3.11 0.04512 0.0804 3.46× 10−3 5/3 0.2
3 1.0 60.0 10.0 2.0 8.0 2.34× 103 1.25 1.14× 103 2 0.3
4 1.0 6.0× 10−3 0.69 0.18 3.65 3.59× 10−2 0.189 1.3 5/3 0.08

Table 4.1 Parameters used in the shock tests, in code units. The subscriptsR andL correspond,
respectively, to the initial conditions for x > 0 and x < 0.

radiation, that is, Ẽr = 4πB(T ). Additionally, the fluxes on each side obey F̃ x
r = 0.01× Ẽr.

A constant-gamma EoS is assumed, scattering opacity is neglected, and a Courant factor
Ca = 0.25 is used.

Initial conditions are chosen in such a way that the system evolves until it reaches a final
stationary state. Neglecting time derivatives, Equations (4.43)–(4.48) lead to

∂x (ρu
x) = 0 (4.87)

∂x (m
x
tot) = 0 (4.88)

∂x (m
xvx + pg + P xx

r ) = 0 (4.89)

∂x (F
x
r ) = −G0 (4.90)

∂x (P
xx
r ) = −Gx. (4.91)

A time-independent solution demands that quantities under derivative in Equations (4.87)–
(4.89) remain constant, and this condition must also be respected by the initial states. In
addition, Equations (4.90) and (4.91) show that the final F x

r and P xx
r must be continuous,

although their derivatives can be discontinuous. This does not necessarily imply that the final
Er profile must also be continuous, since any value of P xx

r (Er, F
x
r ) can correspond to up to

two different Er values for fixed F x
r . However, in the particular case where F x

r < P xx
r , it can

be shown using Eqs. (4.52)–(4.54) that the inversion of P xx
r (Er, F

x
r ) in terms of Er leads to

unique solutions, and thus Er must be continuous. In the same way, we have verified that this
condition is equivalent to F x

r /Er < 3/7.

We have performed four tests for different physical regimes. All of the initial values
are chosen to coincide with those in [275]. In that work, as in several others where the
same tests are performed (see, e.g., [190, 200, 276]), the Eddington approximation, given by
P̃ xx
r = Ẽr/3, is used instead of the M1 closure. Therefore, our results are not comparable

with these unless the final state satisfies P̃ xx
r ≃ Ẽr/3 in the whole domain. We now outline

the main features of each test, whose parameters are summarized in Table 4.1:
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Fig. 4.7 Final profiles of the nonrelativistic strong shock test obtained using 3200 zones (solid
black line) and 800 zones (open blue circles; plotted every 10 values). Reproduced from
[260].

1. Nonrelativistic strong shock. A gas-pressure–dominated shock moves at a nonrelativis-
tic speed in a cold gas (pg ≪ ρ), with a maximum ux of 0.015. The final profiles of ρ,
pg, ux, Ẽr, and F̃ x

r are shown in Fig. 4.7. As in the nonradiative case, the first three
show an abrupt change at x = 0, while radiation fields seem continuous.

2. Mildly relativistic strong shock. The conditions are similar to the previous test, with the
difference that a mildly relativistic velocity (ux ≤ 0.25) is chosen. The final profiles
(see Fig. 4.8) look similar to those in Fig. 4.7, with the difference that Ẽr exhibits a
small discontinuity close to x = 0.

3. Highly relativistic wave. The initial conditions are those of a highly relativistic gas-
pressure–dominated wave (ux ≤ 10, ρ ≪ P̃ xx

r < pg). In this case, as it can be seen in
Fig. 4.9, all profiles are continuous.

4. Radiation-pressure–dominated wave. In this case we study a situation where the
radiation pressure is much higher than the gas pressure, in a shock that propagates
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Fig. 4.8 Same as Fig. 4.7, but for the mildly relativistic shock test. Reproduced from [260].

at a mildly relativistic velocity (ux ≤ 0.69). As in the previous case, there are no
discontinuities in the final profiles (see Fig. 4.10).

In order to test the convergence of the numerical solutions, we have performed each
simulation twice, dividing the domain into 800 and in 3200 zones. In every case, as shown
in Figs. 4.7-4.10, both solutions coincide. However, our results do not coincide with those
obtained in the references mentioned above. The most noticeable case is the test shown in Fig.
4.8, where the ratio P̃ xx

r /Ẽr reaches a maximum value of 0.74 close to the shock, instead of
the value of 1/3 that would be obtained within the Eddington approximation. The result is a
much smoother Ẽr profile than the one shown in, for instance, [275]. Yet, our results show
a good agreement with those in [192], where the tests are also performed assuming the M1
closure.

We point out that, in the nonrelativistic strong shock case, the characteristic fluid speeds
are ∼ 35 times smaller than those corresponding to radiation transport. Still, the computations
do not show a significant increase of numerical diffusion owing to such scale disparity. The
same conclusion holds if the computations are done in the downstream reference frame (not
shown here).
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Fig. 4.9 Same as Fig. 4.7, but for the highly relativistic wave test. Reproduced from [260].

4.3.5 Radiation pulse

Following [190], we have tested the evolution of a radiation pulse in the optically thin
and optically thick limits. These two regimes allowed us to assess, respectively, the code
performance when choosing different coordinate systems and its accuracy in the diffusion
limit, as summarized below.

Optically thin case

We considered an initial spherically symmetric radiation energy distribution contained around
the center of a 3D box of side L = 100. Radiation energy is initially set as Er = 4πB(Tr),
with

Tr = T0

(
1 + 100 e−r2/w2

)
, (4.92)

where r is the spherical radius, while T0 = 106 and w = 5. Similarly, gas pressure is set in
such a way that T (ρ, pg) = T0, which means that the system is initially in thermal equilibrium
far from the pulse. We also set ρ = 1, vx = 0 and F x

r = 0 in the whole domain, Γ = 5/3,
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Fig. 4.10 Same as Fig. 4.7, but for the radiation-pressure–dominated wave test. Reproduced
from [260].

Ca = 0.4, κ = 0, and a small scattering opacity σ = 10−6. In this way, the total optical depth
of the box from side to side is τ = ρ σL = 10−4 ≪ 1; i.e., the box is transparent to radiation.

We have computed the departure from these conditions using 1D spherical and 3D
Cartesian coordinates. In the Cartesian case, we have employed a uniform grid resolution of
200× 200× 200 zones. On the other hand, in spherical geometry, our domain is the region
r ∈ [0, L/2] using a uniformly spaced grid of 100 zones, in order to have a comparable
resolution with the 3D simulations. In this last case, reflective boundary conditions have been
set at r = 0.

As shown in Fig. 4.11, the pulse expands and forms a nearly isotropic blast wave, which
slightly deviates from the spherical shape in the Cartesian case due to grid noise. The
evolution of the radiation energy profiles in both simulations is shown in the two upper panels
of Figure 4.12. Since no absorption in the material is considered, the total radiation energy is
conserved, and thus the maximum energy density of the formed expanding wave decreases as
1/r2. As it can be seen in Fig. 4.12, this dependence is effectively verified once the blast wave
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Fig. 4.11 Radiation energy density map of the optically thin radiation pulse computed using
a 200× 200× 200 uniform Cartesian grid. Values of log10Er on the plane z = 0 are shown
at t = 35, when the blast wave has already been formed. Reproduced from [260].

is formed. The same kind of analysis is possible if radiation is contained entirely on the plane
z = 0. In this case, the maximum energy density decreases as 1/R, with R =

√
x2 + y2.

We have verified this behavior in 1D cylindrical and 2D Cartesian coordinates, employing
uniform grids of 100 zones in the first case and 200× 200 in the second (see the two lower
panels in Fig. 4.12). In every case, the same simulations performed with different coordinate
systems show a good agreement.

Optically thick case

We now consider the case where the scattering opacity is nine orders of magnitude larger than
in the previous simulations, i.e., σ = 103, and all other parameters remain unchanged. In that
situation, the optical thickness of the box from side to side is τ = 105 ≫ 1, which means that
the box is largely opaque to radiation. Here we solve the evolution equations on a Cartesian
1D grid with uniform spacing. Using a resolution of 101 zones, the optical thickness of a
single cell is τ ∼ 103. For this reason, signal speeds are always limited according to Eq.
(A.10).

Under these conditions, the system evolves in such a way that |∂tF x
r | ≪ |∂xP xx

r | and
|F x

r | ≪ Er, and therefore P xx
r ≃ Er/3, as pointed out in Section 4.1.4. Neglecting the
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Fig. 4.12 Radiation energy density profiles in the optically thin pulse test (solid colored lines),
computed at y = z = 0. From top: profiles obtained using 3D Cartesian, 1D spherical, 2D
Cartesian and 1D cylindrical coordinates, shown every ∆t = 5.0. The dependence of the
maximum energy on 1/r2 (1/R) is shown with dashed black lines in the first (last) two cases.
Reproduced from [260].

term ∂tF
x
r in Eq. (4.48) and assuming P xx

r = Er/3, the radiation flux can be written as
F x
r = −∂xEr/3ρχ. Hence, assuming the density remains constant, the radiation energy

density should evolve according to the following diffusion equation:

∂Er

∂t
=

1

3ρχ

∂2Er

∂x2
. (4.93)
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Fig. 4.13 Radiation energy density and flux profiles in the optically thick pulse test shown at
t = 103, 104 and 4× 104 (solid black lines). The analytical solution of the diffusion equation
(Eq. (4.93)) is superimposed (dashed colored lines). Reproduced from [260].

With the chosen initial conditions, this equation can be solved analytically, e.g., by means of
a Fourier transform in the spatial domain. The exact and numerical solutions are shown in
Fig. 4.13. Our results show a good agreement between the analytical and numerical solutions.
Furthermore, we have verified that, if radiation–matter interaction is not taken into account
for the signal speed calculation, i.e., if the limiting given by Eq. (A.10) is not applied, the
pulse gets damped much faster than what it should be expected from Eq. (4.93), due to the
numerical diffusion that occurs when signal speeds are overestimated.

Finally, we have seen that this test leads to inaccurate values of F x
r if IMEX–SSP2(2,2,2)

is used, although the values of Er remain close to the analytical ones. This problem lies in the
fact that both the gradient of the flux of F x

r and its source term largely exceed F x
r and are not

compensated in the last explicit step of the method (see Eq. (4.57)). When these conditions
are met, we have observed that IMEX–SSP2(2,2,2) can lead to inaccuracies and instabilities
due to failure in preserving energy positivity (see Section 4.3.6). On the contrary, IMEX1
shows better performance in those cases, as the flux and the source terms are more accurately
balanced during the implicit steps (see Eq. (4.58)).
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The limiting scheme in Eq. (A.10) depends on the optical depth of individual cells,
which is inversely proportional to the resolution. Therefore, when AMR is used, there can
be situations where this limiting is applied at the coarser levels but not at the finer ones.
Furthermore, when using HLLC, the solver is replaced by HLL for every zone where Eq.
(A.10) is enforced. To study the code’s performance under these conditions, we have run this
test on a static AMR grid using 128 zones at the coarsest level with 6 levels of refinement
with a jump ratio of 2, yielding an equivalent resolution of 8192 zones. We choose σ = 50 so
that levels 0–4 are solved with the HLL solver limiting the maximum signal speeds according
to Eq. (A.10), while levels 5 and 6 are solved using the HLLC solver. The solution thus
obtained converges to the analytic solution of Eq. (4.93) at all refinement levels (see Fig.
4.14).

However, we have observed the formation of spurious overshoots at the boundaries between
refinement levels. These artifacts are drastically reduced if the order of the reconstruction
scheme is increased—for instance, if the weighted essentially nonoscillatory (WENO) method
of [277] or the piecewise parabolic method (PPM) of [278] are used, as shown in Fig. 4.14.
We argue that such features, which are not uncommon in AMR codes [279, 280], can be
attributed to the refluxing process6 needed to ensure correct conservation of momentum and
total energy (see [201]). In addition, the presence of source terms requires additional care
when solving the Riemann problem between fine-coarse grids due to temporal interpolation
[281]. We do not account here for such modifications and defer these potential issues to
future investigations.

4.3.6 Shadows

One of the most important features of the M1 closure is its ability to reproduce the behavior
of physical systems in which the angular distribution of the radiation specific intensity has
strong spatial variations. One such example is a system where a free-streaming radiation
field encounters a highly opaque region of space, casting a shadow behind it. To test the code
performance when solving such problems, we have performed a test in which a shadow is
formed behind a high-density elliptic cylinder, following [282] and using the same parameters
as in [187].

Computations are carried out in the 2D domain given by {(x, y) ∈ [−0.5, 0.5] cm × [0, 0.6] cm}.
Reflective boundary conditions are imposed at y = 0. A constant density ρ0 = 1 g cm−3 is
fixed in the whole space, except in the elliptic region, where ρ = ρ1 = 103 g cm−3. In order

6At the boundary between two different levels l and l+ 1, fluxes at the level l+ 1 must be averaged in space
and time before being used for the time integration at level l.
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Fig. 4.14 Radiation energy density (top) and flux (bottom) profiles in the optically thick pulse
test with σ = 50 using a static AMR grid with six refinement levels. Solutions are shown at
t = 1500 using linear reconstruction (red triangles), WENO (green circles), and PPM (blue
squares). Refinement levels are marked by colored boxes (top panel), with red corresponding
to the base level grid. The analytical solution of Eq. (4.93) is plotted for comparison, while a
close-up view of the interface between the first two grid levels is shown in the bottom panel.
Reproduced from [260].

to have a smooth transition between ρ0 and ρ1, the initial density field is defined as

ρ (x, y) = ρ0 +
ρ1 − ρ0
1 + e∆

, (4.94)

where

∆ = 10

[(
x

x0

)2

+

(
y

y0

)2

− 1

]
, (4.95)

with (x0, y0) = (0.10, 0.06) cm. In such a way, the region with ρ = ρ1 is approximately
contained in an ellipse of semiaxes (x0, y0). Initially, matter is set in thermal equilibrium
with radiation at a temperature T0 = 290 K, and fluxes and velocities are initialized to
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zero. The absorption opacity in the material is computed according to Kramers’ law, i.e.,
κ = κ0

(
ρ
ρ0

)(
T
T0

)−3.5

, with κ0 = 0.1 g−1cm2, while scattering is neglected. Therefore, the
cylinder’s optical thickness along its largest diameter is approximately τ ≈ 2× 104, which
means that its width exceeds τ ≫ 1 times the photons’ mean free path in that region. On the
contrary, above y > y0, the optical thickness is τ = 0.1, so that the exterior of the cylinder is
transparent to radiation while its interior is opaque.

Radiation is injected from the left boundary at a temperature (cEr/4σSB)
1/4 = 1740 K

> T0, with a flux Fr = cEr êx. Hence, the radiation field is in initially in the free-streaming
limit and should be transported at the speed of light in the transparent regions.

We have initially computed the system’s evolution in a fixed uniform grid of resolution
280× 80, using a fourth-order reconstruction scheme with a Courant factor Ca = 0.4, and
with Γ = 5/3. Simulations show a radiation front that crosses the space at light speed
from left to right, producing a shadow behind the cylinder. After interacting with it, the
shadow settles into a final stable state that is ideally maintained until the matter distribution
is modified due to its interaction with radiation. The radiation energy density distribution is
shown in the upper panel of Fig. 4.15 at t = 10 tc, where tc = 1 cm/c = 3.336× 10−11 s is
the light-crossing time, namely, the time it takes light to cross the domain horizontally in the
transparent region. Behind the cylinder, the radiation energy density is roughly equal to its
initial equilibrium value of (4σSB/c)T

4
0 . This value is slightly affected by small waves that

are produced in the upper regions of the cylinder, where the matter distribution stops being
opaque to radiation along horizontal lines. Above the cylinder, the radiation field remains
equal to the injected one. The transition between the shadowed and transparent regions is
abrupt, as can be seen in Fig. 4.15. The shape of the Er profile along vertical cuts is roughly
maintained as radiation is transported away from the central object.

When IMEX–SSP2(2,2,2) is used, we have noticed that Er frequently goes below zero on
the left edge of the cylinder, where the radiation field impacts it. Still, the obtained solutions
are stable and convergent as long as Er is floored to a small value whenever this occurs. As
in Section 4.3.5, the radiation flux is much smaller in those zones than both its flux and the
source terms, and the problem does not occur if IMEX1 is used.

We have used this same problem to test the code’s performance when AMR is used in
a multidimensional setup. In this case, we have run the same simulation using an initially
coarse grid of resolution 80 × 16 set to adapt to changes in Er and ρ [see 201]. We have
used 5 refinement levels, in every case with a grid jump ratio of 2, which gives an equivalent
resolution of 2560 × 512. The resulting energy profiles are plotted in the lower panels of
Figure 4.15, for t = 0.2 tc, 0.6 tc, and 10 tc, and agree with those computed using a fixed grid.
In each panel, we have superimposed the refinement level.
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Fig. 4.15 Radiation energy density maps obtained in the shadow test. Upper panel: radiation
energy at t = 10 tc, obtained with a fixed uniform grid of resolution 280× 80. The radiation
front crosses the domain from left to right, casting a shadow behind an elliptic cylinder
centered at (0, 0). From top to bottom, we show the numerical solutions obtained, respectively,
on a static uniform grid with resolution 280× 80 at t = 10 tc and on the AMR grid (80× 16
zones on the base level) at t = 0.2 tc, 0.6 tc, and 10 tc. The radiation front crosses the domain
at the speed of light in the transparent regions. Refinement levels are superimposed with
colored lines in the lower halves of these figures, corresponding to l = 0 (blue), 1 (red), 2
(green), 3 (purple), 4 (pink), and 5 (white), where l is the refinement level. Reproduced from
[260].
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4.3.7 Magnetized cylindrical blast wave

We now examine a case in which matter is affected by both radiation and large-scale EM fields.
We consider the case of a cylindrical blast wave, represented in a 2D Cartesian grid as in the
planar configurations described in Section 4.3.5. In the context of MHD, this kind of problem
was formerly used to check the robustness of the employed methods when handling relativistic
magnetized shocks, as well as their ability to deal with different kinds of degeneracies (see,
e.g., [216, 283]). In our case, we draw on this configuration as an example system that can
switch from radiation–dominated to magnetically dominated regimes, depending on the
material’s opacity. To this end, we set up a cylindrical explosion from an area where the
magnetic pressure is of the same order as the gas pressure and both are smaller than the
radiation pressure. Under this condition, matter dynamics is magnetically dominated when
the opacities are low and radiation–dominated in the opposite case. The latter case also serves
to investigate the high-absorption regime in which both the diffusion approximation and LTE
are valid.

We consider a square domain defined as (x, y) ∈ [−6, 6]× [−6, 6], initially threaded by a
uniform magnetic field, B = B0 êx, with B0 = 0.1. Gas pressure and density are initially set
as follows: (

p

ρ

)
=

(
p1

ρ1

)
δ +

(
p0

ρ0

)
(1− δ) (4.96)

where p0 = 3.49 × 10−5 and ρ0 = 10−4 are the ambient values, while p1 = 1.31 × 10−2

and ρ1 = 10−2 identify the overpressurized region. Here R =
√

x2 + y2 is the cylindrical
radius, while δ ≡ δ(R/R0) is a taper function that decreases linearly for R0 < R ≤ 1 (we
use R0 = 0.8). The ideal EoS with Γ = 4/3 is used throughout the computations.

A radiation field is initially introduced in equilibrium with the gas. Since v = 0 in the
whole domain, the condition of LTE is initially satisfied if Er = 4πB(T ) and Fr = 0. These
conditions are chosen in such a way that, close to the center of the domain, pg ∼ B2/2 < Er/3,
where B2/2 gives the initial magnetic contribution to the total pressure (see Eq. (2.20)). To
guarantee the condition ∇·B = 0, necessary for the solutions’ stability, we have implemented
in every case the constrained transport method.

Figure 4.16 shows a set of 2D color maps representing the fields’ evolution at t = 4,
using a resolution of 360× 360 zones. The two upper rows correspond to computations using
σ = 0 and κ = 1 (top row) or 1000 (middle row). For κ = 1, the initial optical depth along
the central sphere is τ ≈ ρ1κ∆x = 0.02 ≪ 1, and therefore the material’s expansion should
not be noticeably affected by the radiation field. Indeed, in this case, the radiation energy
profile expands spherically, as in Section 4.3.5. The dynamic is magnetically dominated, and
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matter is accelerated up to γ ∼ 1.7 along the magnetic field lines along the x-axis, which is
why the hydrodynamic variables are characterized by an elongated horizontal shape.

The middle row of Fig. 4.16 shows analog results obtained with κ = 1000, where
τ ≈ 20 ≫ 1. In this case, the interaction of the radiation field with the gas during its
expansion produces a much more isotropic acceleration. This acceleration is still maximal
along the x-direction, due to the joint contributions of the magnetic field and the radiation
pressure. This is why the Lorentz factor is larger in this case, reaching γ ∼ 2.7. Gas density
and pressure reach their maxima along an oblated ring, instead of the previous elongated
distributions obtained with κ = 1. As shown in the same figures, the magnetic field lines
are pushed away from the center as matter is radially accelerated, producing a region of high
magnetic energy density around the area where γ is highest, and a void of lower magnetic
energy inside. Also different from the previous case, the radiation energy distribution is no
longer spherically symmetric due to its interaction with the matter distribution.

For high values of ρκ, it is expected that the radiation reaches LTE with matter, as Eqs.
(4.33), (4.47), and (4.48) lead to Ẽr → 4πB(T ) and F̃ i

r → 0 for smooth field distributions
that do not vary abruptly in time. In this limit, Eqs. (4.43)–(4.48) can be reduced to those of
RMHD, redefining the total gas pressure as

ptot = p′g +
E2 +B2

2
, (4.97)

with p′g = pg + p̃r, and the enthalpy density as

ρhtot = ρhg + Ẽr + p̃r, (4.98)

where P̃ ij
r = p̃r δ

ij , which follows from the M1 closure in this limit. Taking a constant-Γ
EoS with Γ = 4/3 in every case, the EoSs of both systems of equations coincide in the
large-opacity limit and therefore the results obtained with both of them are comparable.

The bottom row of Fig. 4.16 shows the results of an ideal RMHD simulation performed
in such a way, using the same initial conditions as before. To compute the gas pressure
represented herein, it was assumed that p′g ≃ p̃r = 4πB(T )/3, from where it is possible to
extract T and then pg. Following the same idea, an effective Er was computed boosting its
comoving value, assumed to be equal to 4πB(T ), and taking F̃ i

r = 0. The resulting plots
thus obtained are in fact similar to those computed with κ = 1000, with slight differences
that can be explained by taking into account that κ has a finite value and that close to the
shocks the fields do not satisfy the conditions of being smooth and varying slowly with time.
Consequently, the value of Ẽr can be different than 4πB(T ) in the regions of space that are
close to discontinuities, which means that the hypothesis of LTE, assumed by ideal RMHD,
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Fig. 4.17 Values of log10
(
Ẽr/4πB(T )

)
in the cylindrical blast wave for κ = 1000, computed

at at t = 4. The condition for LTE is here verified except in the closest regions to the shocks
(see Fig. 4.16). Reproduced from [260].

is not satisfied in the whole domain. This is verified in Figure 4.17, where it is shown that, for
κ = 1000, the ratio Ẽr/4πB(T ) differs from 1 only in the regions that are close to shocks,
shown in Fig. 4.16.

4.3.8 Parallel Performance

Parallel scalability of our algorithm has been investigated in strong scaling through 2D and
3D computations. For simplicity, we have chosen the (unmagnetized) blast-wave problem
of Section 4.3.7 with κ = 10 leaving the remaining parameters unchanged. For reference,
computations have been carried out with and without the radiation field on a fixed grid of
23042 (in 2D) and 2883 (in 3D) zones, a constant time step, and the solver given by Eq. (2.50).
The number of processors—Intel Xeon Phi7250 (KnightLandings) at 1.4 GHz—has been
varied from NCPU = 8 to NCPU = 1024.

The corresponding speed-up factors are plotted in Fig. 4.18 as a function of NCPU (solid
lines with symbols), together with the ideal scaling-law curve ∝ NCPU. We compute the
speed-up factors as S = Tref/TNCPU

where Tref is a normalization constant while TNCPU
is

the total running time for a simulation using NCPU processors.
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Fig. 4.18 Speed-up for the 2D (blue) and 3D (red) blast-wave tests, with and without radiation
fields (triangles and squares) as a function of the number of processors. The ideal scaling law
(dashed black line) is shown for comparison. Reproduced from [260].

Overall, favorable scaling properties are observed in two and three dimensions with
efficiencies that remain above 90% up to 256 cores and drop to ∼ 70% when NCPU =

1024. Slightly better results are achieved when radiation is included, owing to the additional
computational overhead introduced by the implicit part of the algorithm that uses exclusively
local data without requiring additional communication between threads.

Note that, for convenience, we have normalized the curves to the corresponding running
time without the radiation field. This demonstrates that, by including radiation, the code is
(approximately) four times more expensive than its purely hydro counterpart, regardless of
the dimensionality.

4.4 Conclusions

We have presented a relativistic radiation transfer code, designed to function within the PLUTO
code. Our implementation can be used together with the RHD and RMHD modules of PLUTO
to solve the equations of radiation transfer under the gray approximation. Integration is
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achieved through one of two possible IMEX schemes, in which source terms due to radiation–
matter interaction are integrated implicitly and flux divergences, as well as every other source
term, are integrated explicitly. The transition between optically thick and thin regimes is
controlled by imposing the M1 closure on the radiation fields, which allows us to handle
both the diffusion and free-streaming limits. Opacity coefficients can be arbitrarily defined,
depending on the problem at hand, as functions of the primitive variables.

In our implementation, a novel HLLC Riemann solver for radiation transport has been
introduced. The new solver is designed to improve the accuracy of the solutions with respect
to it predecessors (such as HLL) in optically thin regions of space. The module has been
designed to function with either Cartesian, cylindrical, or spherical coordinates in multiple
spatial dimensions, and it is suitable for either serial or parallel computations. Extension to
adaptive grids, based on the standard implementation of the CHOMBO library within the code,
has also been presented.

We have performed a series of numerical benchmarks to assess the module performance
under different configurations, including handling of radiation transport, absorption, and
emission in systems with different characteristics. Our results demonstrate excellent stability
properties under the chosen parameters in both the free-streaming and diffusion limits. In
the latter case, numerical diffusion is successfully controlled by limiting the signal speeds
of the radiation transport equations whenever the material is opaque across single grid cells.
Overall, the transition between both regimes has been properly captured by the code in all of
the considered cases. For optically thin transport, our HLLC solver produces more accurate
solutions when compared to HLL. Regarding the implemented IMEX schemes, we have
seen a similar performance of both IMEX–SSP2(2,2,2) and IMEX1 except in tests where
the order of magnitude of the radiation flux is much smaller than both its source terms and
the divergence of its own flux, in which IMEX1 seems to have better stability and positivity-
preserving properties. When AMR is used, the obtained solutions exhibit a similar overall
behavior to those computed using a fixed grid. Good agreement is also shown with standard
tests whenever the comparison is possible. Finally, parallel performance tests show favorable
scaling properties that are comparable to those of the RHD module of PLUTO.





Chapter 5

Ongoing work and perspectives

In this chapter, we show some preliminary results of an ongoing application of the radiative
transfer module presented in Chapter 4, in the context of the model of shock breakouts in
BdHNe described in Chapter 3. After discussing these results, we briefly outline a different
ongoing application in the context of the fireshell model, and conclude by mentioning a few
lines of research to be followed in the near future.

5.1 Shock breakouts in BdHNe

In Chapter 3 we have shown RHD simulations of relativistic shock breakouts in the context of
a model for X-ray flares within the BdHN scenario. There we have mentioned two aspects of
the dynamics of this process that are not described by the hydrodynamical approach: firstly,
the LTE assumption does not allow us to compute the amount of radiation that escapes the SN
ejecta; secondly, the feedback on matter dynamics of radiative losses is also not considered,
and consequently the fluid’s bulk Lorentz factor could be in principle overestimated close
to the photosphere. In this section we show a series of preliminary calculations aimed to
address these issues through the application of the module for radiative transfer described in
Chapter 4.

As shown in Section 3.2.4 (see Fig. 3.14), the total optical depth of the SN ejecta in the
regions of interest for this model can be as large as τ ∼ 107. This renders the source terms
in the Rad-RHD equations too large to be stably handled by the IMEX schemes shown in
Section 4.2, unless prohibitively large resolutions are used.1 However, we can still apply these

1Generally, for such large opacities, flux-limited diffusion (FLD) techniques are preferred to the M1 approach
(see, e.g., [188]). In these, the magnitude of the flux is computed as Fr = −D∇Er, where D is a function
of the radiation fields built in such a way to reproduce both the free-streaming and diffusion limits. However,
despite this method is particularly accurate in optically thick regions of space, it depends on an ad-hoc definition
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methods to study this process if we reduce the computational domain to a region near to the
photosphere and start the simulations in the moments prior to the breakout. To obtain the
initial conditions, we use the results of the simulations of GRB 160625B shown in Section
3.2.3, choosing an initial ejecta radius R0 = 3.78× 1012 cm.

The new 1D spherically symmetric Rad-RHD simulation starts at a time ti = 268.8

s after the beginning of the shock’s expansion, when the homologous expansion of the
ejecta has increased its radius up to Rej,i = 3.923× 1012 cm, while the shock is located at
Rs,i = 3.865× 1012 cm. The lower boundary of the domain is set at Rej,i, while the upper
boundary is set at 4.05× 1012 cm. Initial conditions are chosen in such a way that the initial
mass profile coincides with that in the RHD simulation, while Er and pg are fixed to small
values (≪ ρc2). The expansive shock is introduced into the system by setting all of the
conserved fields at the lower boundary to their values in the shocked region computed with
the RHD code. To obtain the separate values of the comoving pressure of both matter and
radiation, we assume them to be at LTE in the injected flow. Assuming this, the total pressure
ptot computed in the RHD simulation equals the sum of the LTE values of pg and p̃r (such
that P̃ ij

r = p̃rδ
ij) computed at the same temperature. As in section 4.3.7, the fact that pg is

much smaller than p̃r simplifies the computation of the temperature, which can be obtained
by inverting the relation ptot ≃ aRT

4/3 and then used to compute pg. Although we know that
LTE is in general not satisfied in the vicinity of shocks, this is a reasonable first approximation
since the shock is radiation–dominated, and hence the accurate determination of pg plays
no role in the dynamics of the system as long as its value is much smaller than ptot. Once
these comoving values are determined, the radiation fields injected at the lower boundary are
computed as

Er = γ2 (3 + v2) p̃r

Fr = 4 γ2 p̃r v
(5.1)

(see Eqs. (4.37) and (4.38)), where Fr is the radial component of the radiation flux and v

is the initial radial velocity of the fluid, computed in terms of the Lorentz γ factor of the
shocked material as v(r) =

√
1− γ−2, with γ = 1.54. This expression is obtained by setting

F̃r = 0, which follows from the limit σ → ∞ in the Rad-RHD equations (see Eq. (4.33)).
Equation (5.1) is based on the assumption that matter and radiation are tightly coupled

due to Thomson scattering. This is justified by the fact that the mean free path due to this

of D, which can make it inaccurate in optically thin regions. An intermediate approach is given in [284] in the
context of neutrino transport in NS–BH mergers, where fluxes are computed with the M1 closure and replaced
by their values in the difussion limit in optically thick regions. Although this method can be applied to systems
with high optical depths (∼ 1010), we are not certain that it ensures an accurate handling of energy-momentum
transport.



5.1 Shock breakouts in BdHNe 129

Fig. 5.1 Profiles obtained in the Rad-RHD simulation of a shock breakout, shown at t = ti,
ti + 1 s and ti + 5 s with blue, orange, and green solid lines respectively. From top to bottom:
comoving mass density ργ, Lorentz γ factor, radiation energy density Er, and ratio |Fr|/cEr

between the radiation flux and energy density, normalized by the speed of light. Dashed lines
mark the location of the photospheric radius at each time (indicated with the same colors).

process is λT ∼ 103 cm in the shocked region, which is much smaller than any length of
interest in this problem. In particular, the Thomson optical depth along a path that crosses
the SN ejecta from the shock’s radius is τT = 68 at t = ti. Additionally, we can estimate
the absorption coefficient in the shocked region by using its value for free-free absorption,
since there the temperature (∼ 1 keV) is well above the ionization energies of both H and
He, both of the order of 10 eV (see Appendix B). The Rosseland mean of this coefficient is
κR ≈ 7.4× 1022 ρ T−7/2 for a pure hydrogen ionized gas.2 For the temperatures and densities
of the shocked region, this gives κR/σ ∼ 10−8, where σ is the scattering coefficient in g−1

cm2, computed in terms of the Thomson cross section and the proton mass as σ = σT/mp.
On the other hand, we cannot use this expression to compute the absorption opacity of the
unshocked region, since we do not count with an estimation of the temperature of the SN
ejecta coming from the BdHN model. In the simulations, we simply assume that Thomson
scattering is the only source of opacity in the described part of the ejecta, and set κ = 0.

2This usual expression can be obtained by applying the second of Eqs. (4.32) to the frequency-dependent
free-free opacity coefficient given, e.g., in [265].
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Fig. 5.2 Same as Fig. 5.1, for the RHD simulation of the same process.

We have computed the system’s evolution using a fixed uniform grid of 50000 zones. The
resulting profiles are shown in Fig. 5.1 at t = ti, ti+1 s and ti+5 s. For comparison, we have
run a similar simulation with the RHD module, where we inject at the left boundary a fluid
with total pressure ptot = pg + p̃r. The profiles obtained in this RHD simulation are shown in
Fig. 5.2, where we have computed equivalent values of Er and Fr by using their expressions
in the σ → ∞ limit given by Eq. (5.1). A comparison between these figures shows that
the profiles obtained with both approaches are almost identical in the entire domain, since
most of the expanding flow is contained below the photosphere. This is illustrated in both
figures by showing at each time the location of the photospheric radius Rph, computed as in
Section 3.2.3 by inverting the relation τ(Rph) = 1. In both cases, the radiation flux tends
to its free-streaming limit (Fr = cEr) as r approaches the shock’s radius Rs. In the RHD
simulation, as well as in the Rad-RHD one far below the photosphere, this occurs because
the tight coupling of matter and radiation fields causes the latter to be transported at the
fluid’s velocity, which approaches the speed of light close to Rs. Because of this large opacity,
photons remain trapped in the SN ejecta throughout its evolution; hence, the energy of the
radiation field is mainly converted into the bulk kinetic energy of the material, in agreement
with the preliminary analysis made in Section 3.2.4. On the other hand, the resulting γ
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Fig. 5.3 Top: profile of F̃r/c Ẽr at t = ti + 5 s in the Rad-RHD shock breakout simulation.
Bottom: ratio between the values of Er computed in the Rad-RHD and RHD simulations,
plotted as a function of r at the same time. The vertical dashed line indicates the position of
Rph.

profiles are identical in both simulations (their relative difference is always below 1%), which
validates the values of γ(Rph) computed in the RHD simulations shown in Section 3.2.

As expected, the main differences between the profiles obtained with the two considered
approaches can be observed close to the photosphere, where Er is significantly smaller in
the Rad-RHD simulation that its estimated value in the RHD one. This is a consequence
of the fact that the scattering opacity has a finite value, and hence the coupling between
matter and radiation is not perfect. As a result, the comoving value of the radiation flux can
differ from zero, and therefore Eq. 5.1 is not verified in the whole domain. This can be
seen in Fig. 5.3, where it is shown that F̃r/c Ẽr ∼ 10−1 at the photosphere in the Rad-RHD
simulation. Because of this, a transition zone is created near the photosphere, in which the
radiation fields smoothly vary between their downstream and upstream values.3 In particular,
in this transition zone, adiabatic compression at the shock front causes the matter pressure
to be higher than the radiation pressure before the latter rises to its scattering–dominated
value within the ejecta (see Fig. 5.4). Contrarily, in the RHD approach, the LTE value of
the radiation pressure (estimated as p̃r ≈ ptot) rises abruptly, which causes the observed
disparity between the values of Er in Figures 5.1 and 5.2. The ratio between the Er values

3Transition zones are a general feature of radiative shocks (see, e.g., [285, 286]). They can also be seen in
the shock tests shown in Section 4.3.4 (see Figs. 4.7–4.10).
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Fig. 5.4 Comoving values in dyn cm−2 of the radiation (p̃r) and gas (pg) pressures close to the
shock boundary, obtained at t = ti + 5 s in the Rad-RHD simulation of the shock breakout.
The dashed line indicates the position of Rph.

computed in both simulations is shown in Fig. 5.3 as a function of r, where it can be seen
that, at Rph, Er is overestimated in the RHD approach by a factor of ∼ 103. Therefore, the
results of these simulations point to a possible overestimation of the observed temperatures
in the RHD approach if blackbody emission is assumed, even if it is considered that not all
emitted photons are lastly scattered at Rph. However, since free-free absorption provides an
additional coupling between radiation and matter that brings the gas pressure closer to its
LTE value, it remains to be seen in the future how this result changes if κ ̸= 0.

5.2 Discussion and future projects

We have made RHD and Rad-RHD simulations of shock breakouts in the BdHN model,
produced when the shock created by the expansion of the e−e+–baryon plasma reaches the
outermost regions of the SN ejecta. The chosen parameters in these simulations correspond
to the expansion along a direction such that B = 12, which is among the lowest values
considered by the model for X-ray flares studied in Chapter 3. On top of this, the initial
plasma energy of 1054 erg is of the highest order of magnitude considered in this model.
Despite both of these choices are the most favorable ones for the emission of radiation in this
scenario, the results of the Rad-RHD simulation show that radiation remains tightly coupled
to the SN material throughout its entire evolution; in particular, the obtained profiles are
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almost identical to those in the RHD simulation. In agreement with the discussion made in
Section 3.2.4, these results indicate that the scattering opacity of the SN ejecta is too high
to allow for the observed energy release in the considered X-ray flares, which consequently
cannot be explained by this model alone in its current form. Therefore, these results encourage
the exploration of additional scenarios, such as the reheating of the SN ejecta due to energetic
particles coming from the BH, the photon emission due to proton-proton interactions in the
SN ejecta, and the reignition of the central engine. On the other hand, the radiation energy
density at the photosphere is significantly lower in the Rad-RHD simulation than in the RHD
one. However, the additional coupling between radiation and matter caused by free-free
absorption should bring the radiation and gas pressures closer to their LTE values. This can
be studied in the future by using the temperature profiles obtained in SPH simulations of the
SN ejecta (see, e.g., [168]) to compute realistic values of the absorption coefficients. Further
improvements can be made by considering a time-dependent energy and mass injection at the
lower boundary, in order to represent the variation of these quantities behind the shock front.
Finally, the expansion of the shock along different directions could be better described by
running simulations in a higher number of dimensions, which could also describe effects due
to the system’s rotation that cannot be accounted for in the 1D approach.

Apart from the simulations shown in this chapter, we are currently running 1D spherically
symmetric Rad-RHD simulations of the evolution of the ultrarelativistic e−e+–baryon plasma
in the fireshell model. These computations are aimed to obtain a better description of the
shell during the emission of the P-GRB, and to compute approximate frequency-averaged
lightcurves if possible. The main caveat of this approach is that it depends on a description
of the shell’s expansion along distances that exceed its initial width by many orders of
magnitude (between 6 and 8), which means that a wide range of length scales must be
covered. Even with the aid of AMR, computing the pulse’s expansion throughout long
distances (and consequently using a large number of time steps) introduces a considerable
amount of numerical diffusion unless very large resolutions are employed. Since the geometry
of the shell is largely influenced by this effect, the timescale of the emitted light curve is
unphysically prolonged, and the luminosities consequently reduced. Furthermore, due to the
mentioned resolution requirements and our current computational capabilities, so far we have
not integrated the equations for a long enough time to see a detachment of the radiation from
the shell, nor to reach optical depths smaller than 1 by at least one order of magnitude.

Finally, apart from these applications, it is our intention to keep making changes to the
numerical methods implemented in the radiative transfer module. The immediate next step
will be to develop a nonrelativistic version of this code, applicable to lower-energy physical
systems such as star atmospheres and protoplanetary disks. This poses a new velocity scale
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disparity, as the described velocities in such systems are much smaller than the speed of light.
To overcome this issue, one possibility is to change our formalism by including an artificially
reduced value of the speed of light, similarly to the approaches followed in [287, 288]. In
general, this technique can be applied to nonrelativistic systems only if describing the free
transport of radiation at its actual speed is of no importance for the desired results. On the
other hand, we are also interested in modifying the AMR scheme in such a way to take into
account the influence of the source terms on the fluxes employed in the refluxing step, in
order to avoid inaccuracies at the boundaries between different levels when large opacities
and small resolutions are used (see Section 4.3.5). Such an approach is followed in [281, 289],
where source terms are integrated explicitly. In our case, we would like to develop a similar
method that can be integrated to the IMEX schemes presented in Section 4.2.1.
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H. A. Krimm, T. A. McKay, M. E. Özel, A. Phillips, R. M. Quimby, G. Rowell,
W. Rujopakarn, B. E. Schaefer, W. T. Vestrand, J. C. Wheeler, and J. Wren. ApJ,
711:870–880, March 2010.

[248] Jürgen Ehlers. In Relativity, astrophysics and cosmology, pages 1–125. Springer, 1973.

[249] R. Ruffini, I. A. Siutsou, and G. V. Vereshchagin. ApJ, 772(1):11, 2013.

[250] M. A. Abramowicz, I. D. Novikov, and B. Paczynski. The Astrophysical Journal,
369:175–178, 1991.

[251] B.-B. Zhang, B. Zhang, A. J. Castro-Tirado, Z. G. Dai, P.-H. T. Tam, X.-Y. Wang, Y.-D.
Hu, S. Karpov, A. Pozanenko, F.-W. Zhang, et al. Nature Astronomy, 2(1):69, 2018.

[252] N. Sapir, B. Katz, and E. Waxman. ApJ, 774(1):79, 2013.

[253] A. G. Aksenov, R. Ruffini, and G. V. Vereshchagin. MNRAS, 436(1):L54–L58, 2013.

[254] R. Ruffini, G. V. Vereshchagin, and Y. Wang. A&A, 600:A131, 2017.

[255] A. Castro-Tirado et al. GCN Circular 23708, 2019.

[256] R. Ruffini, L. Li, R. Moradi, J. A. Rueda, Y. Wang, S.-S. Xue, C. L. Bianco, S. Campion,
J. D. Melon Fuksman, C. Cherubini, S. Filippi, M. Karlica, and N. Sahakyan. arXiv
preprint arXiv:1904.04162, 2019.

[257] S. Kobayashi, T. Piran, and R. Sari. ApJ, 490:92, 1997.

[258] G. R. Blumenthal and R. J. Gould. Reviews of Modern Physics, 42(2):237, 1970.

[259] L. Li, J. A. Rueda, R. Ruffini, and Y. Wang. Extension of the self-similarity laws and
of the supernova shock breakout discovered in grb. in preparation.

[260] J. D. Melon Fuksman and A. Mignone. ApJS, 242(2):20, 2019.

[261] A. Peraiah. An Introduction to Radiative Transfer: Methods and applications in
astrophysics. Cambridge University Press, 2002.

[262] J. D. Jackson. Classical electrodynamics, 1999.

[263] T. W. Körner. Fourier analysis. Cambridge university press, 1989.

[264] S. L. Shapiro. ApJ, 472(1):308, 1996.



References 149

[265] F. H. Shu. The physics of astrophysics. Volume 1: Radiation. University Science
Books, Mill Valley, CA (USA), 1991, 446 p., ISBN 0-935702-64-4.

[266] M. W. Sincell, M. Gehmeyr, and D. Mihalas. Shock Waves, 9(6):391–402, 1999.

[267] E. Hairer and G. Wanner. Solving ordinary differential equations II. Springer Berlin
Heidelberg, 1996.

[268] C. Berthon, J. Dubois, B. Dubroca, T.-H. Nguyen-Bui, and R. Turpault. Adv. Appl.
Math. Mech, 2(3):259–285, 2010.

[269] T. Hanawa and E. Audit. Journal of Quantitative Spectroscopy and Radiative Transfer,
145:9–16, 2014.

[270] C. Palenzuela, L. Lehner, O. Reula, and L. Rezzolla. MNRAS, 394(4):1727–1740,
2009.

[271] B. van Leer. Journal of computational physics, 14(4):361–370, 1974.

[272] S. Richling, E. Meinköhn, N. Kryzhevoi, and G. Kanschat. A&A, 380(2):776–788,
2001.

[273] G. H. Miller and P. Colella. Journal of computational physics, 167(1):131–176, 2001.

[274] N. J. Turner and J. M. Stone. ApJS, 135(1):95, 2001.

[275] B. D. Farris, T. K. Li, Y. T. Liu, and S. L. Shapiro. Phys. Rev. D, 78(2):024023, 2008.

[276] O. Zanotti, C. Roedig, L. Rezzolla, and L. Del Zanna. MNRAS, 417(4):2899–2915,
2011.

[277] G.-S. Jiang and C.-W. Shu. Journal of Computational Physics, 126(1):202–228, 1996.

[278] P. Colella and P. R. Woodward. Journal of Computational Physics, 54(1):174–201,
1984.

[279] D.-I. Choi, J. David Brown, B. Imbiriba, J. Centrella, and P. MacNeice. Interface
conditions for wave propagation through mesh refinement boundaries. Journal of
Computational Physics, 193:398–425, January 2004.

[280] S. H. Chilton and P. Colella. Damping of spurious wave reflections from coarse-fine
adaptive mesh refinement grid boundaries. In Abstracts IEEE International Conference
on Plasma Science, 2010.

[281] M. J. Berger and R. J. LeVeque. SIAM J. Numer. Anal., 35(6):2298–2316, 1998.

[282] J. C. Hayes and M. L. Norman. ApJS, 147(1):197, 2003.

[283] S. S. Komissarov. MNRAS, 303(2):343–366, 1999.

[284] F. Foucart, E. O’Connor, L. Roberts, M. D. Duez, R. Haas, L. E. Kidder, C. D. Ott,
H. P. Pfeiffer, M. A. Scheel, and B. Szilagyi. Physical Review D, 91(12):124021, 2015.



150 References

[285] Y. B. Zel’dovich and Y. P. Raizer. Physics of Shock Waves and High-Temperature
Hydrodynamic Phenomena. Academic Press, 1967.

[286] R. P. Drake. Physics of Plasmas, 14(4), 2007.

[287] Y.-F. Jiang, J. M. Stone, and S. W. Davis. ApJS, 199(1):14, 2012.

[288] J. Rosdahl and R. Teyssier. MNRAS, 449(4):4380–4403, 2015.

[289] A. S. Almgren, V. E. Beckner, J. B. Bell, M. S. Day, L. H. Howell, C. C. Joggerst,
M. J. Lijewski, A. Nonaka, M. Singer, and M. Zingale. ApJ, 715(2):1221–1238, 2010.

[290] A. M. Anile. Relativistic Fluids and Magneto-Fluids. Cambridge Univ. Press, 1989.

[291] E. Audit, P. Charrier, J.-P. Chièze, and B. Dubroca. arXiv preprint astro-ph/0206281,
2002.

[292] A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team. NIST Atomic Spectra
Database (ver. 5.6.1), [Online]. Available: https://physics.nist.gov/asd [2019,
May 23]. National Institute of Standards and Technology, Gaithersburg, MD., 2018.

[293] L. D. Landau and E. M. Lifshitz. Statistical Physics (Part 1). Pergamon Press Oxford
New York, 1980.



Appendix A

Signal speeds

In this appendix, we describe the computation of the characteristic signal speeds used to
construct approximate Riemann solvers for RHD, RMHD (Section 2.3.2), and radiation
transport (Sections 4.2.2 and 4.2.3). For any homogeneous hyperbolic system of equations,
these speeds can be computed for every direction d as the eigenvalues of the Jacobian matrix
Jd (see Section 2.2.1). All of the Riemann solvers implemented in this work approximate
maximum and minimum signal speeds as the maximum and minimum eigenvalues of Jd,
although different estimations are in general possible (see e.g. [208]).

As pointed out in Section 4.2.2, the Rad-RMHD equations reduce for S ≡ 0 to two
decoupled systems of equations; one corresponding to the RMHD equations and the other
one to radiation transport. The resulting Jd are block-diagonal, where the blocks correspond
to the Jacobian matrices of each subsystem. Consequently, the full set of characteristic speeds
can be obtained by computing the eigenvalues of each of these blocks individually. We now
outline the procedures followed for this calculation.

A.1 RHD and RMHD

For a given direction d, maximum and minimum eigenvalues of the Jacobian matrix of the
RHD equations can be obtained as the roots of the quadratic equation in λ

(λ− vd)
2 = σs(1− λ2) , (A.1)

where σs = c2s/(γ
2(1− c2s)), while cs is the sound speed of the gas (see [203]). This speed

can be generally computed as c2s =
(
∂pg
/
∂e
) ∣∣

S
, where e is the internal energy density and

the derivative is taken at constant entropy. The result of this calculation depends on the chosen
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EoS, and can take in our case one of the following two forms (see [206]):

c2s =


ΓΘ
h

Constant−Γ law

Θ
3h

5h−8Θ
h−Θ

Taub−Mathews
. (A.2)

RMHD maximum and minimum signal speeds are computed by making use of the
characteristic decomposition of the RMHD equations, which is extensively analyzed in [211]
and [290]. These are obtained as the maximum and minimum roots of the following quartic
equation in λ:

ρh
(
1− c2s

)
a4 =

(
1− λ2

) [(
bµbµ + ρhc2s

)
a2 − c2sB2

]
, (A.3)

where a = γ (λ− vx), B = bx − λb0 and we have defined the four vector

bµ = γ
(
v ·B,B/γ2 + (v ·B)v

)
. (A.4)

To find the roots of equation (A.3), we follow [203]: if the total velocity or the normal
component of the magnetic field vanish, the equation is reduced, respectively, to a biquadratic
or quadratic form. Otherwise, the full quartic equation is solved.

A.2 Radiation transport

The treatment needed for the radiation characteristic wave speeds is rather simpler, as a short
calculation shows that, for every direction d, the radiation block depends only on the angle
θ between Fr and êd, and on f = ||Fr||/Er. This simplifies the calculation, which can
be performed analytically as shown in [291] and [191]. The full set of eigenvalues of the
radiation block, which we denote as {λr1, λr2, λr3}, can be computed as

λr1 =
f cos θ − ζ(f, θ)√

4− 3f 2
, (A.5)

λr2 =
3ξ(f)− 1

2f
cos θ, (A.6)

λr3 =
f cos θ + ζ(f, θ)√

4− 3f 2
, (A.7)
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where

ζ(f, θ) =

[
2

3

(
4− 3f 2 −

√
4− 3f 2

)
+ 2 cos2 θ

(
2− f 2 −

√
4− 3f 2

)]1/2
. (A.8)

When f = 0, λr2 is replaced by zero, i.e., its limit when f → 0. It can be seen from Equations
(A.5)–(A.8) that the following inequalities hold for every value of f and θ:

λr1 ≤ λr2 ≤ λr3. (A.9)

In the free-streaming limit (f = 1), all of these eigenvalues coincide and are equal to
cos θ, which gives λrj = ±1 in the parallel direction to Fr, and λrj = 0 in the perpen-
dicular ones for j = 1, 2, 3. On the other hand, in the diffusion limit (f = 0), we have
(λr1, λr2, λr3) = (−1/

√
3, 0, 1/

√
3) in every direction.

The above analysis can be applied to homogeneous hyperbolic systems. Although the
equations of Rad-RMHD do not belong to this category, this is not a problem for small
opacities and densities, and in general when radiation transport dominates over radiation–
matter interaction. On the contrary, in the diffusion limit, the modules of the maximum
and minimum speeds, equal to 1/

√
3 in both cases, may be too big and lead to an excessive

numerical diffusion. In those cases, the interaction terms need to be taken into account
for the speed calculations. With this purpose, following [190], we include in the code the
option of locally limiting the maximum and minimum speeds by means of the following
transformations:

λr, L → max

(
λr, L,−

4

3τ

)
λr,R → min

(
λr,R,

4

3τ

) , (A.10)

where τ = ρ γ χ∆x is the optical depth along one cell, with ∆x its width in the current
direction. Hence, this limiting is only applied whenever cells are optically thick. These
reduced speeds are computed considering a diffusion equation with a stationary flux, with a
diffusion coefficient of 1/3χ.





Appendix B

Equation of state of an equilibrium
e−e+–baryon plasma

We give here the details of the obtention of an EoS of a fully ionized1 e−e+–baryon plasma.
Assuming LTE, we compute the total comoving internal energy and pressure by adding the
contributions of electrons, positrons, photons and baryons, as

ϵ = ϵe− + ϵe+ + ϵγ + ϵB (B.1)

pg = pe− + pe+ + pγ + pB . (B.2)

The number and energy densities of the different species, as well as their pressure, can be
computed in natural units (c = ℏ = kB = 1) in terms of their equilibrium distribution
functions as

ne− = AT 3

∫ ∞

0

f(z, T,me, µe−) z
2 dz (B.3)

ne+ = AT 3

∫ ∞

0

f(z, T,me, µe+) z
2 dz (B.4)

ϵe− = AT 4

∫ ∞

0

f(z, T,me, µe−)
√
z2 + (me/T )2 z2 dz −mene− (B.5)

ϵe+ = AT 4

∫ ∞

0

f(z, T,me, µe+)
√
z2 + (me/T )2 z2 dz −mene+ (B.6)

1 In LTE, the degree of ionization of a given species is given by the Saha equation (see, e.g., [179]). A
sufficient condition for fully ionization is that the equilibrium temperature is well above all relevant ionization
energies, although high degrees of ionization can still occur for lower temperatures. For instance, hydrogen
is strongly ionized even in the case εH/kBT ∼ 10, where εH = 13.6 eV is the ionization energy of atomic
hydrogen, as extracted from [292]. Other relevant values are the first and second ionization energies of helium,
of 24.6 and 54.4 eV respectively.
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pe− = A
T 4

3

∫ ∞

0

f(z, T,me, µe−)
z4√

z2 + (me/T )2
dz (B.7)

pe+ = A
T 4

3

∫ ∞

0

f(z, T,me, µe+)
z4√

z2 + (me/T )2
dz (B.8)

ϵγ = aR T 4 (B.9)

pγ =
aR T 4

3
(B.10)

ϵB =
3

2
nBT (B.11)

pB = nBT , (B.12)

where
f(z, T,m, µ) =

1

e
√

z2+(m/T )2−µ/T + 1
, (B.13)

is the (rescaled) Fermi-Dirac distribution at a temperature T and a chemical potential µ,
me is the electron mass, nB the nuclei number density, aR is the radiation constant, and
A = 15 aR/π

4 (see, e.g., [293]).

If the pair annihilation rate is zero, i.e., if the process e− + e+ ⇆ 2γ is in equilibrium,
then the equality µe− = −µe+ ≡ µ holds, since equilibrium photons have zero chemical
potential. Besides, charge neutrality implies

ne−(µ, T )− ne+(µ, T ) = Z nB, (B.14)

where Z is the average atomic number. An additional relation can be obtained by adding the
contribution of all species to the total mass density, as

ρ = manB +me(ne− + ne+) , (B.15)

where ma is the average nuclear mass in the plasma. Together with Equation (B.14), Eq.
(B.15) completely defines the mass density as a function of (µ, T ). Thus, the desired EoS
that relates pg, ϵ and ρ is defined implicitly as the parametric surface

{(ρ(µ, T ), ϵ(µ, T ), pg(µ, T )) : T > 0, µ ≥ 0} (B.16)
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Fig. B.1 Curves of Γeff(ρ, T ) at constant ρ for ρ ∈ [10−5, 102] g cm−3 and T < 10 keV.

that satisfies all of the above relations.
Departures of this EoS from the constant-Γ law (Eq. (2.9)) can be evaluated by defining

an effective Γ index as
Γeff = 1 +

pg
ϵ
. (B.17)

In Fig. B.1, the value of Γeff obtained from Eq. (B.16) with Z = 1 (i.e., for pure hydrogen) is
plotted as a function of T taking different values of ρ in the range [10−5, 102] g cm−3. In every
case, Γeff decreases from its nonrelativistic value (5/3) to its relativistic limit (4/3) as the
temperature increases. For increasing values of the density, it can be seen that Γeff remains
close to 5/3 in a larger temperature range. This is due to the fact that, for higher baryon and
electron densities, the total energy and pressure start being dominated by the contributions
of material particles, which are nonrelativistic since we have taken kBT ≪ me = 511

keV≪ mbaryons.
In the simulations shown in Sections 3.1 and 3.2, we have verified that Γeff ≈ 4/3 with a

maximum error of 0.2% in all regions occupied by the plasma.





Appendix C

Curvilinear coordinates

In this appendix we show the formalism used in this work to write conservation laws in
spherical and cylindrical coordinates. Although we will now focus on the form taken by the
radiation part of the Rad-RMHD equations (Eqs. (4.47) and (4.48)), the same procedure is
applied to the RMHD subsystem.

When using curvilinear coordinates, it is convenient to write all vector and tensor fields
in such a way that all of their components have the same dimensionality. With this purpose,
we write them in terms of their physical components, defined at each point of the Minkowski
space M as their coordinates in a chosen orthonormal basis (tetrad) of its tangent space. For
a system of coordinates {xµ}, a basis of the tangent space of M is given by B = {∂µ}, with
µ = 1, 2, 3, 4. Therefore, the components of a given tetrad in this basis, denoted by {ϵ µ

α }
with α = 1, 2, 3, 4, must satisfy the property of orthogonality given by

(ϵα|ϵβ) = gµνϵ
µ
α ϵ

ν
β = ηαβ , (C.1)

where gµν represents the components of the metric tensor in the basis B. The tensor gµν can
be in turn written in terms of the tetrad components as

gµν = ϵαµϵ
β
νηαβ . (C.2)

Using these definitions, we can write the physical components of any four-vector v and rank-2
tensor T in terms of its components in B, as

vα = ϵαµv
µ (C.3)

Tαβ = ϵαµϵ
β
νT

µν . (C.4)
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This choice radically simplifies the calculations, since in this way inner products between
spatial vectors in R3 such as velocities and fluxes do not require the inclusion of metric
coefficients (for instance, the inner product (v|u) is just

∑3
i=1 viui).

Let us now consider the case where the spatial components of the Minkowski metric are
writen in spherical cordinates (r, θ, ϕ), i.e.,

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θ dϕ2) , (C.5)

where θ and ϕ are, respectively, the zenithal and azimuthal angles. In this case, a tetrad is
given by the basis {ϵ µ

α } whose only nonzero components in B are

ϵ 0
t = 1 , ϵ 1

r = 1 , ϵ 2
θ =

1

r
, ϵ 3

ϕ =
1

r sin θ
. (C.6)

When projected on any constant-t hyperplane, the last three vectors in this tetrad become the
basis of R3 given by Bs = {êr, êθ, êϕ}. With this choice of coordinates, Equations (4.47)
and (4.48) can be written in terms of physical components by projecting Eq. (4.16) onto the
tetrad’s vectors, as

ϵαν∇µT
µν = −ϵαν G

ν , (C.7)

where we have omitted the subindex r to avoid confusion with the coordinate indices. The
value of ∇µT

µν can be computed by applying the usual law for the covariant derivative of
rank-2 tensors,

∇µT
µν = ∂µT

µν + Γµ
µσ T

σν + Γν
µσ T

µσ , (C.8)

where the Christoffel symbols Γµ
σρ are defined as

Γµ
σρ =

1

2
gµν (∂σgνρ + ∂ρgνσ − ∂νgσρ) . (C.9)

Finally, writing T µν in terms of physical components by inverting Eq. (C.4), we arrive to the
form of Equations (4.47) and (4.48) in spherical coordinates:

∂E

∂t
+∇ · F = −G0 (C.10)

∂F r

∂t
+∇ ·Pr = −Gr +

P θθ + P ϕϕ

r
(C.11)

∂F θ

∂t
+∇ ·Pθ = −Gθ +

cot θ P ϕϕ − P rθ

r
(C.12)

∂F ϕ

∂t
+∇r ·Pϕ = −Gϕ, (C.13)
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where

∇ · F =
1

r2
∂(r2F r)

∂r
+

1

r sin θ

∂(sin θ F θ)

∂θ
+

1

r sin θ

∂F ϕ

∂ϕ
(C.14)

∇r · F =
1

r3
∂(r3F r)

∂r
+

1

r sin2 θ

∂(sin2 θ F θ)

∂θ
+

1

r sin θ

∂F ϕ

∂ϕ
, (C.15)

and Pi =
(
P ir, P iθ, P iϕ

)
.

This procedure can be applied in the same way to obtain the form these equations take in
cylindrical coordinates (R, ϕ, z). In that case, spatial components are expressed in the basis
Bc = {êR, êϕ, êz}, which yields

∂E

∂t
+∇ · F = −G0 (C.16)

∂FR

∂t
+∇ ·PR = −GR +

P ϕϕ

R
(C.17)

∂F ϕ

∂t
+∇R ·Pϕ = −Gϕ (C.18)

∂F z

∂t
+∇ ·Pz = −Gz, (C.19)

with

∇ · F =
1

R

∂(RFR)

∂R
+

1

R

∂F ϕ

∂ϕ
+

∂F z

∂z
(C.20)

∇R · F =
1

R2

∂(R2FR)

∂R
+

1

R

∂F ϕ

∂ϕ
+

∂F z

∂z
, (C.21)

and Pi =
(
P iR, P iϕ, P iz

)
. In the code, the terms that appear in the right-hand side of

Equations (C.11), (C.12) and (C.17) that are not of the form −Gµ are integrated explicitly as
shown in Eq. (2.53).





Appendix D

Semi-analytical proof of Equation (4.63)

In order to check the validity of Equation (4.63), we have verified the following relations:

λR ≥ max

(
BR

AR

,
BL

AL

)
(D.1)

λL ≤ min

(
BR

AR

,
BL

AL

)
. (D.2)

As in Section 4.2.3 and Appendix C, we omit the subindex r, as it is understood that only
radiation fields are considered here.

We begin by proving the positivity of AR. From its definition in Equation (4.70), we have

AR

ER

= λR − fx,R = max(λ3,L, λ3,R)− fx,R , (D.3)

where λ3,L/R = λ3(fL/R, θL/R). Since E > 0, we can conclude from Eq. (D.3) that AR ≥ 0

is automatically satisfied if

λ3(f, θ) ≥ f cos θ ∀ (f, θ) . (D.4)

From Eq. (A.7), this condition can be rewritten as

ζ(f, θ) ≥ f cos θ (∆− 1) , (D.5)

where ∆ =
√
4− 3f 2. Taking squares at both sides and rearranging terms, this condition

reads
X(f) + Y (f) cos2 θ ≥ 0, (D.6)
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where X(f) = 2
3
(4 − 3f 2 − ∆) and Y (f) = (1 − f 2)(4 − 3f 2 − 2∆). Since only the

second of these terms can be smaller than zero, it is enough to prove that Eq. (D.6) holds for
cos2 θ = 1, since that yields the minimum value that the left-hand side can take when Y < 0.
Hence, it is enough to prove

X(f) + Y (f) =
1

3
∆2(5− 3f 2 − 2∆) ≥ 0 , (D.7)

which holds, since the last term in parentheses is always greater than or equal to zero. This
finishes the proof of Eq. (D.4). Using the same equations, we can see that λ3(f, θ)− fx = 0

is only satisfied if f = 1. An analog treatment can be used for AL, from which we arrive to
the following inequalities:

AR ≥ 0, and AR > 0 ∀ f ∈ [0, 1) (D.8)

AL ≤ 0, and AL < 0 ∀ f ∈ [0, 1). (D.9)

We now proceed to verify Equations (D.1) and (D.2), firstly considering the case fL, fR <

1, in which AL/R ̸= 0. Under this condition, the ratio BS/AS depends only on (fL, fR, θL, θR)
as

BS

AS

≡ α(λS, fS, θS) =
(λS − λ2,S)fS cos θS − (1− ξ(fS))/2

λS − fS cos θS
, (D.10)

with S = L,R. In order to verify Eq. (D.1), we must prove λR ≥ BR/AR and λR ≥ BL/AL.
Since λR = max(λ3,L, λ3,R), we can write the first of these conditions considering the cases
λR = λ3,R and λR = λ3,L, as

λ3,R ≥ α(λ3,R, fR, θR) ∀ (fR, θR) (D.11)

λ3,L ≥ α(λ3,L, fR, θR) ∀ (fR, θR) : λ3,R < λ3,L ∀λ3,L ∈ [−1, 1]. (D.12)

The first of these can be verified from the graph of λ3(f, θ) − α(λ3(f, θ), f, θ), where it
can be seen that this function is always positive and tends to zero for f → 1. Similarly,
we have checked the second one numerically by plotting λ3,L − α(λ3,L, fR, θR) under the
condition λ3,R < λ3,L, taking multiple values of λ3,L covering the range [−1, 1]. The condition
λR ≥ BL/AL can be proven in a similar fashion by considering the cases λL = λ1,L and
λL = λ1,R. Since λR ≥ λ3,L, it is enough to prove the following conditions:

λ3,L ≥ α(λ1,L, fL, θL) ∀ (fL, θL) (D.13)

λ3,L ≥ α(λ1,R, fL, θL) ∀ (fL, θL) : λ1,R < λ1,L ∀λ1,R ∈ [−1, 1], (D.14)
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which can be verified in the same manner, finishing the proof of Eq. (D.1) for the case
fL, fR < 1. The same procedure can be used to prove the validity of Eq. (D.2).

Unlike the RHD case, the maximum and minimum eigenvalues do not satisfy λL < 0

and λR > 0. However, studying the parabolas defined on both sides of Eq. (4.69), it can be
shown that λ∗ is always contained between BR/AR and BL/AL, regardless of the order of
these two values and of the signs of λL and λR. Hence,

λ∗ ∈
[
min

(
BR

AR

,
BL

AL

)
,max

(
BR

AR

,
BL

AL

)]
. (D.15)

Together with Equations (D.1) and (D.2), this proves Eq. (4.63) for fL, fR < 1. These
results are also valid in the cases fL = 1 and fR = 1 whenever the A functions differ
from zero. Let us now assume fa = 1 and fb ̸= 1. From Eqs. (4.70) and (4.71), we have
Aa cos θa = Ba, and consequently, Aa = 0 implies that Ba = 0. If Aa = 0 and Ab ̸= 0, from
Eq. (4.69) we can extract that λ∗ = Bb/Ab. Finally, from the above analysis, we know that
Eq. λL ≤ Bb/Ab ≤ λR, from which we conclude that (4.63) holds even in this case. The
only remaining case is that in which fL = fR = 1 and AL = AR = 0, already considered in
Section 4.2.3, where the HLLC solver is replaced by the usual HLL solver.
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