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1 Introduction

The absence of new physics at the LHC puts significant pressure on solutions of the hierar-

chy problem at the TeV scale. The message, already suggested by precision measurements

at LEP, is that the new physics must lie at a high scale m∗ & few TeV significantly larger

than the Higgs mass mh, leaving the hierarchy m2
∗/m

2
h unexplained, i.e. tuned. Never-

theless, as long as m∗ is stabilized in the TeV ballpark, such a setting offers a far more

convincing picture compared to scenarios with no physics beyond the Standard Model (SM)

up to the ultimate cutoff of particle physics, the Planck scale.

Still, even this point of view faces an important challenge (or an opportunity, in the

absence of direct experimental probes of energies beyond the TeV), when one inspects

processes that are very rare within the SM, such as baryon and lepton number violation,

flavor-changing neutral-current transitions and electric dipole moments. Considering order

one couplings between the SM and the new physics one finds that the proton lifetime and

neutrino masses put m∗ in the 1011−13TeV range. Flavor and CP violation instead suggest

the new mass threshold has to be in excess of 102−5TeV.

Taking these numbers at face value, one should not expect new physics in the TeV ball-

park. But the truth is that some of these constraints might be evadable if the new physics

enjoys approximate global symmetries. The SM itself has global symmetries, appearing as

accidents of the leading, dimension-four Lagrangian. A typical extension of the SM will

have its own accidental symmetries, and the couplings between the two sectors might leave

some combination of these unbroken. If this is the case then one can easily imagine new

physics scenarios in which the most severe bounds, from proton decay and neutrino masses,

are completely removed because a generalized baryon and lepton numbers is preserved.

To explain the suppression of flavor and CP violation is more challenging if, as we will

do here, one wishes to rely on a framework in which the flavor structure of the SM is moti-

vated by some dynamical mechanism. A very appealing flavor paradigm that achieves this

goal goes under the name of Partial Compositeness (PC). This framework finds a natural

implementation within models of Higgs compositeness, where indeed it first emerged [1–5],

but it is in fact more general and may be realized in other extensions of the SM. The

defining assumption of PC is the existence of a new flavorful strongly-coupled sector (with

or without global symmetries) that breaks the SM flavor symmetries via a mixing between

the SM fermions and “composite” fermions of the new sector. Under quite reasonable

assumptions this picture can explain the curious pattern of masses and mixings in the SM,

and predict the structure of flavor and CP violation beyond the SM. There is no hierarchy

of parameters in the UV description: all hierarchies in the low energy theory derive from

large renormalization group effects within the strong flavorful sector. In this sense, PC

does not rely on the presence of a suitable flavor structure in the UV.

Even in the most unstructured realizations of PC (that we will refer to as anarchic

scenarios) the bounds of order m∗ > 102−5TeV from quark flavor violation are significantly

relaxed down to a few tens of TeVs. The most severe constraints on the new physics scale

then come from CP violation (in particular the electric dipole moments for the neutron and

the electron) and lepton flavor violation (most notably µ → eγ). The main focus of this

paper is precisely on these two crucial aspects, and their connection with neutrino masses
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and mixing. Leptonic observables in PC [6–10] have not received as much attention as the

analogous observables in the quark sector so far, partly because the latter, and in particular

the top quark sector, is more likely to be probed by high energy colliders. Still, it is fair to

say that leptonic observables appear to be quite problematic for vanilla realizations of PC,

and a dedicated study is missing, especially for scenarios that retain the PC explanation

of fermion masses and mixings. Furthermore, no systematic investigation of how neutrino

masses arise in PC has been presented before, and in fact we will identify a number of

interesting features for neutrino phenomenology that went unnoticed.

In section 2 we introduce the PC paradigm. Some of the basic elements are discussed

in greater detail than in the existing literature. This care is not necessary when analyzing

the so-called anarchic versions of PC, where the flavorful sector has no internal structure

(no symmetries). However, our derivation turns out to be essential when studying the

predictions in non-generic scenarios with additional flavor or CP symmetries. Some general

properties of the compositeness framework are collected in appendix A.

In section 3 we study Majorana neutrino masses within PC. We will prove that the

neutrino mass texture in anarchic PC scenarios must belong to one of three classes, which

we identify and contrast with neutrino data. We provide explicit examples for each of

these classes and discuss their main differences. Some of these models are novel and their

predictions could be investigated in detail e.g. by embedding them in a warped extra

dimension. In appendix B we corroborate the generality of our classification of the neutrino

textures. Dirac neutrino masses are discussed in appendix C.

An analysis of the dominant constraints from charged lepton observables is presented

in section 4. Here we first discuss the bounds in a rather model-independent fashion (our

assumptions are clearly stated and the derivation of the bounds is detailed in appendix D).

Then, we concentrate on anarchic scenarios of PC. We will see that this picture is in tension

with bounds on flavor and CP violation unless m∗ & 100TeV. Technical aspects and a more

comprehensive list of constraints are collected in appendix E. We are thus motivated to

consider non-anarchic scenarios.

This is done in section 5, where we identify two main realizations of PC that can si-

multaneously preserve its defining property (namely the ability to generate fermion mass

hierarchies from a UV description with no large or small numbers), and relax the exper-

imental constraints. The first is based on the assumption that the flavorful sector has a

U(1)3×CP symmetry. In the second non-anarchic realization of PC the flavorful dynamics

is characterized by several flavor-dependent mass scales, rather than a single one. We will

see that in both cases it is possible to keep the new physics scale close to a few TeVs. The

structure of neutrino masses is also analyzed in the two non-anarchic scenarios, and we

find for instance that the lightest neutrino mass may be naturally very small.

As a concrete application of our results, in section 6 we discuss the long-standing

anomaly in semi-leptonic, neutral-current b → s transitions. We identify the PC scenarios

that can reproduce the excess while still being compatible with leptonic data. This is done

by analyzing the correlations between different channels predicted by our flavor scenarios.

We also discuss a tentative PC scenario where the bounds on flavor and CP violating

transitions in the quark sector are compatible with the size of the anomaly.

We summarize and discuss perspectives in section 7.

– 3 –
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2 Flavor hierarchy from flavor anarchy

The basic assumption of PC is that the SM flavor symmetry is dominantly broken by a

mixing between “elementary” fermions ψ = ℓL, eR, qL, uR, dR, and fermionic “composite”

operators Oψ of an exotic dynamics. Schematically, we postulate that at some UV cutoff

ΛUV we have:

λψ
aiO

ψ
aψi + h.c. , (2.1)

where λψ
ai is a coupling, i = 1, 2, 3 the SM flavor index, a = 1, · · · , na a flavor index in the

new dynamics. More explicitly, the PC couplings for the lepton sector read λℓ
aiO

ℓ
a(ℓL)i +

λe
aiO

e
a(eR)i + h.c.. In order to break the SM flavor symmetry completely and generate

masses for all fermions one needs na ≥ 3. In the following we will simplify our formulas

taking na = 3, commenting on the generalization to na > 3 when useful.

We will never specify what the fundamental degrees of freedom that describe Oψ
a are,

in an attempt to keep our analysis as general as possible, and simply refer to the sector the

operators belong to as “composite sector”, “strong dynamics”, or “conformal field theory

(CFT)” in the following. The operator language breaks down at scales of order TeV or

higher, where the composite sector confines and generates massive resonances, possibly

including a Nambu-Goldstone Higgs doublet H. For simplicity we assume all couplings

and masses of the resonances are controlled by two parameters [11]

g∗ , m∗ , (2.2)

where g∗ ∈ [1, 4π]. Our extra assumptions on the strong sector are collected in appendix A.

What makes PC attractive is the possibility to dynamically generate a flavor hierar-

chy from parameters λψ
ai that have no particular structure. The hierarchy is generated

by renormalization group (RG) effects, provided the CFT violates the flavor symmetry

associated to the index a in the operators Oψ
a . To see this, without loss of generality we

can work in a basis in which Oψ
a have definite scaling dimensions ∆ψ

a ≡ ∆[Oψ
a ]. The key

assumption then reads ∆ψ
a 6= ∆ψ

b for a 6= b. At scales of the order of the CFT mass gap,

m∗, the strong dynamics is integrated out, leaving an effective field theory (EFT) contain-

ing only the SM fields, see (A.1) for details. The flavor-violating couplings, including the

SM Yukawas, are therefore controlled by the parameters (2.1) renormalized at the scale

m∗. At leading order in the small CFT perturbations the RG evolution of λψ is given by

µ d
dµλ

ψ
ai = (∆ψ

a − 5/2)λψ
ai +O(λ3), and its solution for m∗ ≪ ΛUV reads (no sum in a)

λψ
ai(m∗) = εψaλ

ψ
ai , (2.3)

with εψa = εψa (m∗/ΛUV). The specific expression of εψa depends on whether the opera-

tor (2.1) is irrelevant (that occurs when ∆ψ
a > 5/2) or relevant (∆ψ

a < 5/2). In the former

case εψa ≃ (m∗/ΛUV)
∆ψ

a−5/2 is suppressed. In the latter case the coupling grows at lower

scales and may reach a nontrivial IR fixed point.

We want to show now that the hierarchy encoded in εψa translates into a hierarchy of

the flavor-violating couplings in the EFT. It is convenient to label the operators in such a

way that Oψ
3 is more relevant than Oψ

2 , that is more relevant than Oψ
1 , that is more relevant
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than all the others (if present), in formulas: ∆ψ
1 > ∆ψ

2 > ∆ψ
3 and εψ1 < εψ2 < εψ3 . Next, we

redefine the fundamental (i.e. elementary) fermions ψi via unitary rotations, so as to put

λψ
ai in “triangular” form,

λψ
ai(m∗) ≡ g∗ǫ

ψ
ai , (2.4)

ǫψai ≡









ǫψ1

ǫψ2

ǫψ3

















1 cψ1 cψ2

0 1 cψ3

0 0 1









=









ǫψ1 ǫψ1 c
ψ
1 ǫψ1 c

ψ
2

0 ǫψ2 ǫψ2 c
ψ
3

0 0 ǫψ3









,

where g∗ is the strong-sector low-energy coupling, cψ1,2,3 are unknown complex numbers of

order unity, and

ǫψi ≡ λψ
ii(m∗)

g∗
, ǫψ1 < ǫψ2 < ǫψ3 . (2.5)

Note that the ǫψi can be taken real and positive by choosing the phase of ψi.
1 Note that

the parameters ǫψi inherit a hierarchy from εψa . The quantities ǫψi measure the amount

of “compositeness” of the SM fermions at scales of order m∗. Without loss of generality,

these parameters are real, positive and normalised to one in the limit of a fully composite

fermion. It is important to keep in mind that the quantities that actually enter the EFT

at the scale m∗ are a function of a non-diagonal matrix, ǫψai (not just powers of ǫ
ψ
i !). The

off-diagonal elements of ǫψai will play an important role when discussing CP violation (see

section 2.1) and non-anarchic models (see section 5).

The hierarchy in εψa finally translates into a hierarchy in the SM Yukawa couplings.

Indeed, at leading order in λψ, the Yukawa couplings of the charged fermions read

yuij = g∗(ǫ
q
ai)

∗ǫubj cuab , (2.6)

ydij = g∗(ǫ
q
ai)

∗ǫdbj cdab ,

yeij = g∗(ǫ
ℓ
ai)

∗ǫebj ceab ,

= g∗[(ǫ
ℓ)†ce(ǫe)]ij ,

1The generalization to na operators is conveniently done by arranging the composite fermions in an na-

dimensional vector Oψ
a = (Oψ

na
, Oψ

na−1, · · · , O
ψ
5 , O

ψ
4 |O

ψ
1 , O

ψ
2 , O

ψ
3 ), with ∆ψ

a>3 > ∆ψ
1 , that implies εψa>3 < εψ1 .

To make λψ triangular one defines ψ′
3 ∝ λψ

i3ψi as the combination that couples to the most relevant operator

O3. The remaining two states ψ′
1,2 are orthogonal and can be rotated among each other so that only ψ′

2

couples to O2. With this choice ψ′
1 couples only to O1, ψ

′
2 couples to O1,2 and ψ′

3 couples to O1,2,3. The

phases in the diagonal elements can be removed via U(1) rotations of ψ′
i. (LV acknowledges K. Agashe for

illustrating this useful basis.) With these conventions (2.4) is generalized to

ǫψai ≡

























ǫψna

· · ·

ǫψ4

ǫψ1

ǫψ2

ǫψ3

















































cψ cψ cψ

· · · · · · · · ·

cψ cψ cψ

1 cψ cψ

0 1 cψ

0 0 1

























.
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where cψab are model-dependent parameters of order unity arising from the strong dynamics

and we used the same naive-dimensional-analysis (NDA) counting described in eq. (A.1).

Within the assumption that the order-one coefficients c in (2.6) are all comparable (see

appendix A), the masses and mixing angles of the charged fermions are fully controlled by

the compositeness parameters ǫq,u,d,ℓ,ei . For example,

yeij ∼ g∗









ǫℓ1ǫ
e
1 ǫℓ1ǫ

e
2 ǫℓ1ǫ

e
3

ǫℓ2ǫ
e
1 ǫℓ2ǫ

e
2 ǫℓ2ǫ

e
3

ǫℓ3ǫ
e
1 ǫℓ3ǫ

e
2 ǫℓ3ǫ

e
3









. (2.7)

Remarkably, the structure (2.7) and the analogous ones for yu,d are consistent with exper-

imental data on charged fermions [4, 5]. The charged lepton masses are given by

me
i ∼ g∗ǫ

ℓ
iǫ

e
i

v√
2
, (2.8)

where v = 246GeV. It also follows that (yeye†)ij ∝ ǫℓiǫ
ℓ
j , (y

e†ye)ij ∝ ǫei ǫ
e
j , therefore the

unitary matrices that diagonalize them have the structure

U ℓ
ij ∼ min

(

ǫℓi
ǫℓj
,
ǫℓj

ǫℓi

)

=









1 ǫℓ1/ǫ
ℓ
2 ǫℓ1/ǫ

ℓ
3

ǫℓ1/ǫ
ℓ
2 1 ǫℓ2/ǫ

ℓ
3

ǫℓ1/ǫ
ℓ
3 ǫℓ2/ǫ

ℓ
3 1









, (2.9)

and analogously for U e
ij , with ǫℓi replaced by ǫei .

It is useful to identify which of the ǫψi are independent parameters and what is their

range of variation. In the quark sector, the parameters are constrained by the requirement

to reproduce the quark masses and CKM mixing angles. As a consequence,

ǫq1
ǫq2

≃ λC ,
ǫq2
ǫq3

≃ λ2
C ,

ǫq1
ǫq3

≃ λ3
C , (2.10)

where λC ≃ 0.225 is the Cabibbo angle, which works by virtue of the relation θ13 ≃ θ12θ23
among the CKM angles. On the other hand, the parameters ǫu,di can be traded for the

quark masses. One thus concludes that the only free parameter is the overall scale of the

ǫq, that we conventionally choose to be controlled by ǫq3. Its range of variation is

ǫq3 ∈
[√

2mt

g∗v
, 1

]

. (2.11)

In the lepton sector one can choose ǫℓi as free parameters. Imposing that both the left- and

right-handed compositeness are bounded by 1, one finds

ǫℓi ∈
[√

2me
i

g∗v
, 1

]

, i = 1, 2, 3,
ǫℓi
ǫℓj

∈
[√

2me
i

g∗v
, 1

]

, j > i . (2.12)

The lepton singlet parameters ǫei are not independent, because of eq. (2.8). Indeed, ǫei and

ǫei/ǫ
e
j vary in exactly the same ranges as in eq. (2.12), but decreasing as the lepton doublet

parameters increase. The numerical values for the ratios ǫψi /ǫ
ψ
j are summarized in table 1.
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fermion masses (GeV) ǫψi /ǫ
ψ
j

me = 0.490× 10−3 2.8× 10−6/g∗ ≤ ǫℓ,e1 /ǫℓ,e2 ≤ 1

mµ = 0.103 2.8× 10−6/g∗ ≤ ǫℓ,e1 /ǫℓ,e3 ≤ 1

mτ = 1.76 5.9× 10−4/g∗ ≤ ǫℓ,e2 /ǫℓ,e3 ≤ 1

mu = 1.2× 10−3 ǫq1/ǫ
q
2 = λC = 0.225

mc = 0.54 ǫq2/ǫ
q
3 = λ2

C = 0.051

mt = 148 ǫu1/ǫ
u
2 = 0.010

md = 2.4× 10−3 ǫu2/ǫ
u
3 = 0.072

ms = 0.05 ǫd1/ǫ
d
2 = 0.21

mb = 2.4 ǫd2/ǫ
d
3 = 0.41

Table 1. In the left column we show the values of the running fermion masses at µ = 1TeV [12].

In the right column are the corresponding ratios of PC parameters, assuming for definiteness a

strict equality mψ
i = g∗ǫ

ψL

i ǫψR

i v/
√
2 for each SM fermion ψ, and taking λC = 0.225 for the Cabibbo

angle. Of course these ratios are sensitive to variations in the unknown order-one parameters c’s.

2.1 CKM phase and CP-invariant strong sectors

From table 1 we learn that in practice not all ǫψi /ǫ
ψ
j are hierarchical. This is important

since it opens the possibility that CP violation, and in particular the CKM phase, comes

entirely from the mixing λ between elementary and strong sector. This will play a crucial

role when discussing the bounds from the electron Electric Dipole Moment (EDM).

Because the diagonal elements in (2.4) can always be taken to be real , any complex

phase in λψ enters a physical observable with a suppression proportional to the hierarchy

ǫψi /ǫ
ψ
j . In particular, if the strong sector coefficients cψab are real, then the Yukawa coupling

matrices such as (2.7) and the associated mixing matrices such as (2.9) are real, up to

O(ǫψi /ǫ
ψ
j>i) corrections. The most remarkable consequence is that the Jarlskog invariant in

the quark sector schematically scales as (here ψ = q or u or d)

J ∼ λ6
C

[

arg(cab) + max

(

ǫi
ǫj>i

)

arg(λai) +O
(

ǫ2i
ǫ2j>i

)]

. (2.13)

We thus see that if ǫψ1 ≪ ǫψ2 ≪ ǫψ3 then a sizable CKM phase in the quark sector can

be accommodated only if the strong sector itself has CP-violating parameters, i.e. if cu,dab

are complex. Equivalently, when the CFT respects CP the CKM phase is potentially

suppressed by powers of ǫψi /ǫ
ψ
j>i, which may not be phenomenologically acceptable unless

some non-generic cancellation takes place. In practice, however, not all ǫψi ’s are hierarchical,

see table 1. Specifically, ǫd2/ǫ
d
3 ≃ 0.4 is large enough to reproduce the observed value

J ∼ 10−5 even if the cab in (2.6) are all real. This statement, supported by the analytical

expression (2.13), has also been confirmed numerically.

In practice, what we find is that the assumption that CP is a good symmetry in the

strong sector, which forces all composite couplings such as cψab to be real, is phenomenolog-

– 7 –
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ically viable.2 The hypothesis of CP conservation in the strong sector has important con-

sequences on the size of other CP-violating observables, associated to higher-dimensional

operators. This is true especially in the lepton sector. The consequences for neutrino CP-

violating phases and lepton EDMs will be discussed in the following sections. In the quark

sector, however, the assumption of CP invariance of the CFT does not alleviate the strin-

gent bounds on the new physics scale m∗, from the neutron EDM, because phases in the

down sector are not small (an efficient mechanism to achieve this suppression is mentioned

in section 5.1.1).

3 Neutrino masses

One of the main goals of this paper is to assess the pattern PC generates within the neutrino

sector and compare it with experiments. The most striking difference between the charged

and neutral sectors of the SM is that neutrino masses and mixing angles reveal no large

flavor hierarchies. The Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

UPMNS = U ℓ†Uν (3.1)

is a measure of the misalignment between the rotations Uν and U ℓ needed to diagonalize

the neutrino and charged lepton mass matrices, respectively. Experimentally, UPMNS is

found to have all entries of the same order. The structure of U ℓ is provided in eq. (2.9),

whereas Uν depends on the explicit form of mν . To reproduce data it is then necessary to

establish how the neutrinos get a mass.

In generic scenarios the couplings to the strong sector allow the operator

mν
ij

v2
ℓciℓjHH (3.2)

at the scale m∗, with mν ∼ (g∗ǫℓv)2/m∗. Once the parameters ǫℓ are chosen so as to repro-

duce the charged lepton masses via (2.6), the neutrino mass turns out to be unacceptably

large if m∗ ≪ 1015GeV. This indicates that viable scenarios should approximately preserve

a total SM lepton number U(1)ℓ+e, where we adopt the shorthand notation ℓ = ℓL and

e = eR.

Technically speaking, the presence of a total lepton number implies that the CFT

respects a global U(1)c, such that the diagonal combination U(1)L of U(1)c × U(1)ℓ+e is

left intact by the mixings (2.1). If this can be achieved, the mixings can be assigned spurion

quantum numbers under SU(3)ℓ ×U(1)ℓ × SU(3)e ×U(1)e ×U(1)c,

λℓ ∼ (3̄−1, 10,+1) , (3.3)

λe ∼ (10, 3̄−1,+1) ,

2While we agree with the reasoning in [13] that the CKM phase is suppressed for hierarchical ǫψi , we

do not reach the same conclusion in practice, precisely because phenomenologically not all the mixings are

hierarchical.
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while λq,u,d are all singlets. This amounts to assign a zero lepton number to the Higgs

doublet. The choice (3.3) is not only the simplest but also unique, up to unphysical

redefinitions.3

We now turn to the generation of a Majorana mass for neutrinos. The case of a Dirac

mass will be discussed along similar lines in appendix C. In Majorana neutrino models the

U(1)L symmetry must be slightly broken by some CFT perturbation ∆L. The latter has

coupling λ̃ at some high scale Λ/L and in general involves CFT as well as elementary degrees

of freedom ψ, ψ′ ∼ ℓ, e, q, u, d,

∆L = λ̃O , λ̃ψO , λ̃ψψ′O , · · · (3.4)

where the dots refer to operators with additional ψ’s. For definiteness, we will consider a

single type of spurion λ̃ at a time, generalizations being relatively straightforward.

At scales m∗, the neutrino masses are described via the operator (3.2), with mν pro-

portional to powers of λ̃ renormalized at m∗,

λ̃(m∗) ≃ (m∗/Λ/L)
∆−4λ̃, (3.5)

where ∆ is the scaling dimension of the U(1)L-breaking CFT perturbation (3.4). Clearly,

operators with large ∆ are ineffective in the physically interesting regime m∗ ≪ Λ/L. To

quantify this statement, if we take m∗ ∼ 10TeV and Λ/L ∼ 1015GeV, one finds that

mν & 0.05 eV requires, for mν ∝ λ̃n, ∆ . 4 + 1/n. For this reason we will restrict our

analysis to deformations (3.4) with at most two elementary fermions,4 and comment on

some interesting subtleties concerning operators with more elementary fields in appendix B.

The flavor structure of the neutrino mass matrix is determined by the spurion quantum

numbers of the coupling λ̃ under SU(3)ℓ × U(1)ℓ × SU(3)e × U(1)e × U(1)c, as well as by

the fact that the neutrino mass spurion (3.2) transforms as

mν ∼ (6̄−2, 10, 0) . (3.6)

Under our (well-motivated) assumption that only operators in the classes λ̃O, λ̃ψO, λ̃ψψ′O

can contribute, it turns out that the final flavor structure characterizing mν is extremely

3To show this, first note that there is an ambiguity in the definition of U(1)c, and in general of U(1)ℓ ×

U(1)e. By assumption the strong sector has in fact a global U(1)Y × U(1)c symmetry, so the U(1)c
charges are always defined up to a global U(1)Y transformation. Consider now the general assignment

c[Oℓ] = cℓ, c[Oe] = ce and ask: which conditions should we impose on cℓ, ce in order to ensure the

existence of U(1)L? Once the conventional assignments under U(1)ℓ ×U(1)e are assumed, the total lepton

number exists if and only if one can find a generator c′ = αY + βc, for some numbers α, β, so that

c′[Oℓ] = c′[Oe] = +1. It is easy to see that α, β exist unless cℓ − ce/2 = 0: the total lepton number exists

if cℓ − ce/2 6= 0. Then it is always possible to redefine U(1)c so that (3.3) holds.
4Concerning deformations with two elementary fields, note that operators of the form λ̃ψ†σ̄µψOµ have

∆ > 6 in all unitary CFTs [14], thus their contribution to neutrino masses is strongly suppressed for

m∗ ≪ Λ/L. Besides, in natural, non-supersymmetric realizations of PC one should at most consider single

insertions of λ̃ψψ′O, i.e. mν ∝ λ̃. The reason is that O here is a scalar, and to avoid the complete singlet

|O|2 be strongly relevant — thus introducing a fine-tuning problem similar to the Higgs mass in the SM —

one should demand ∆O & 2, therefore ∆ = 3 +∆O & 5.
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constrained by PC, with only three possible neutrino mass textures,

2M : mν
ij = ǫℓaiǫ

ℓ
bj ǫ̃ab

(g∗v)2

m∗
∝









ǫℓ1ǫ
ℓ
1 ǫℓ1ǫ

ℓ
2 ǫℓ1ǫ

ℓ
3

ǫℓ1ǫ
ℓ
2 ǫℓ2ǫ

ℓ
2 ǫℓ2ǫ

ℓ
3

ǫℓ1ǫ
ℓ
3 ǫℓ2ǫ

ℓ
3 ǫℓ3ǫ

ℓ
3









,

1M : mν
ij =

[

ǫℓaiǫ̃aj + ǫℓaj ǫ̃ai

] (g∗v)2

m∗
∝









ǫℓ1 ǫℓ2 ǫℓ3

ǫℓ2 ǫℓ2 ǫℓ3

ǫℓ3 ǫℓ3 ǫℓ3,2









,

0M : mν
ij = ǫ̃ij

(g∗v)2

m∗
∝









1 1 1

1 1 1

1 1 1









, (3.7)

where the dependence on λ̃ is encoded in the ǫ̃ parameters, the explicit relation between the

two being model-dependent. The nontrivial aspect of (3.7) is that the assumption of UV-

anarchy forces the ǫ̃matrices to be anarchic, in both their SM and CFT flavor indices. More

precisely, ǫ̃ab and ǫ̃ij are symmetric matrices with all entries of the same order. In class 1M

the matrix ǫ̃ai is anarchical in the index i, however there are two possibilities for the index a.

When ǫ̃ai are of the same order for each a, one finds mν
33 ∝ ǫℓ3. On the other hand, when the

third row (a = 3) is suppressed by a factor ǫℓ2/ǫ
ℓ
3 (this can naturally happen because of gauge

invariance, see section 3.1), then one findsmν
33 ∝ ǫℓ2. We emphasize that, given the structure

of U ℓ in (2.9), the parametric dependence of (3.7) on the parameters ǫℓi is unchanged when

rotating to the field basis in which the charged lepton mass matrix is diagonal.

The powers of ǫℓ in (3.7) are a simple consequence of the SM lepton charges of the

spurions, see (3.6) and (3.3). The claim that the ǫ̃ are anarchic, irrespective of the U(1)L-

violating deformation considered, is proven in appendix B, where the connection with λ̃ is

explicitly worked out. The overall size of ǫ̃ should be chosen to match the observed neutrino

mass scale. As anticipated above, the origin of such a small scale is model-dependent, and

it will be further discussed in 3.1.

The beauty of our flavor story is that, thanks to (3.7), neutrino data may provide useful

information on the parameters ǫℓ. Specifically, in models of class 2M one finds Uν ∼ Uℓ,

as given in (2.9), so the observed large neutrino mixing immediately tells us that ǫℓi ∼ ǫℓj
is necessary. It follows that the charged-lepton mass hierarchy must be mostly encoded in

the singlet spurions, ǫei . More precisely, if we assume order-one coefficients really close to

one, in class 2M neutrino oscillation data are found to imply [15, 16]

ǫℓ2
ǫℓ3

∼ 1 , 0.2 .
ǫℓ1
ǫℓ2,3

≤ 1 (for class 2M) . (3.8)

This is a very strong restriction on the full range for ǫℓi , that is allowed by charged lepton

masses alone (see table 1). A normal ordering of the neutrino spectrum is preferred when

ǫℓ1 is a few times smaller than the others, while for all the ǫℓi close to each other both quasi-

degeneracy and inverted ordering can be realized, depending on the order-one coefficients.
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Note that the smallness of ∆m2
12/∆m2

23 ≃ 0.03 requires some amount of tuning among

order one parameters. Besides, 2-3 mixing close to maximal does not require an exact

degeneracy of ǫℓ2 and ǫℓ3, since when these two parameters are close, a large 2-3 mixing is

also present from the charged lepton Yukawa.

In the scenario 1M the structure of Uν has a different dependence on ǫℓi with respect to

Uℓ. Irrespectively of the ambiguity in the 33 entry of mν , see (3.7), when ǫℓi are hierarchical

the mass matrix has two eigenvalues of the same order, and one hierarchically smaller, and

it predicts a mixing matrix with angles of order unity. Superficially, this looks like a

viable option. Unfortunately, a careful analysis reveals that one diagonal entry of UPMNS

is always small if ǫℓ1,2 ≪ ǫℓ3, so data cannot be reproduced in this regime. A realistic model

needs [15, 16],

ǫℓ1 . ǫℓ2 ∼ ǫℓ3 (for class 1M). (3.9)

A very small ǫℓ1 is allowed by the smallness of me/mµ,τ , and it is compatible with normal

hierarchy of the neutrino mass spectrum, as long as the 12 and 13 entries of mν are smaller

by a factor of a few with respect to the 22, 23 and 33 entries. It is interesting that, in this

scenario, the main physical effect of a small ǫℓ1 is a suppression of neutrinoless 2β decay,

that is controlled by the 11-entry of mν . The quantitative implications of a vanishing mν
11

are discussed e.g. in [17–19].

Finally, scenario 0M is automatically compatible with the observed large neutrino

mixing angles, because ǫ̃ij is anarchic. This scenario implies

ǫℓi unconstrained (for class 0M), (3.10)

since neutrino masses and mixing are independent from ǫℓ. This shows that PC can be

naturally compatible with anarchy in the neutrino sector. However, it also implies no

testable correlation with flavor-violating processes in the charged lepton sector.

A comment is in order on the leptonic CP-violating phases. In the basis where ǫℓai
is given by (2.4), the lepton-number violating spurions ǫ̃ab, ǫ̃ai, ǫ̃ij are generic complex

matrices, and order-one phases are expected. If the strong sector preserves CP , in some

cases ǫ̃ can be taken real. For example, when ǫ̃ab ∼ cabλ̃ (or when ǫ̃ai ∼ caλ̃i), the CP-

invariance of the strong sector implies that cab (ca) are real, and the overall phase of λ̃ (λ̃i)

can be rotated away. In these special cases (see section 3.1 for explicit realisations) one

can check that CP-violating effects in scenarios 2M and 1M are suppressed by the ratios

ǫℓi/ǫ
ℓ
j>i, similarly to the case of the CKM phase discussed in section 2.1. However, since

neutrino mixing requires ǫℓ2 ∼ ǫℓ3, at least one complex coefficient from ǫℓai induces order-

one CP-violating phases in mν . We conclude that, barring cancellations, the anarchic PC

scenario implies a large CP-violating phase in neutrino oscillations, that is slightly favoured

in current global fits [20–22], as well as large Majorana-type phases, that in principle can

be probed in lepton-number violating processes such as neutrinoless 2β decay.
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3.1 Lepton-number breaking sources

Let us end this analysis with a more detailed discussion of the most interesting U(1)L-

violating operators:

∆L = λ̃ãOã,c=2 ∈ class 2M,

λ̃ijãℓ
iℓjO

(3)
ã,c=0 , λ̃iãℓiOã,c=0 ∈ class 0M,

λ̃iãℓiOã,c=1 , λ̃ijãℓ
iℓjO

(0)
ã,c=0 ∈ class 1M, (3.11)

where we explicitly show the U(1)c charge of the composite operator. Two of these opera-

tors previously appeared in the PC literature.

The first is ∆L = λ̃ãOã,c=2, that induces ǫ̃abg∗ = cabλ̃ã∗(m∗/Λ/L)
∆O−4, where ã∗ labels

the most relevant of the operators Oã with scaling dimension ∆O, and cab = O(1). This

deformation of the CFT may naturally emerge e.g. from heavy singlet neutrinos, Oc=2 =

(ON )2, as discussed in [23]. Singlet neutrinos for Dirac neutrino masses are discussed in

appendix C.

The second operator, λ̃ijãℓ
iℓjO

(3)
ã with the superscript (3) indicating the composite

operator is an SU(2)L triplet, was first proposed by Keren-Zur et al. [9]. In this scenario

ǫ̃ijg∗ ≃ λ̃ijã∗(m∗/Λ/L)
∆O−1, where O

(3)
ã∗ is the most relevant of the scalar composites O

(3)
ã

and ∆O is its scaling dimension.

The operator λ̃iãℓ
iOã,c=0 gives ǫ̃ijg

2
∗ ≃ λ̃iãλ̃jb̃cãb̃(m∗/Λ/L)

2(∆O−5/2) with cãb̃ = O(1). If

a single operator Oã∗ dominates, the neutrino mass matrix would be rank one, therefore

a viable model must have at least two operators of comparable scaling dimension. This

is an interesting alternative to the proposal of [9], because the scaling dimension of ∆L
can naturally be close to four, for ∆O ≈ 5/2, which allows for an arbitrarily large Λ/L.

In contrast, in the case of λ̃ijãℓ
iℓjO

(3)
ã a not too large Λ/L/m∗ is necessary to generate a

realistic mν , given the naturalness bound ∆O & 2.

The two operators in class 1M are associated to the two inequivalent predictions shown

in (3.7). The first, λ̃iãℓ
iOã,c=1, gives ǫ̃aig∗ ≃ λ̃iãcaã(m∗/Λ/L)

∆O−2.5 with caã = O(1). This

implies that the entries ǫ̃ai are all of the same order, resulting in (mν)3i ∝ ǫℓ3 for all

values of i = 1, 2, 3. Note that, since mν requires symmetrization of the flavor indices, two

nonvanishing masses are generated even if a single operator Oã∗ dominates (the sum of two

rank-one matrices has generically rank two).

On the other hand, gauge invariance implies antisymmetry in the flavor indices ij in

λ̃ijãℓ
iℓjO

(0)
ã,c=0, where O

(0) is an SU(2)L singlet. In this scenario one finds ǫ̃ai ≃ cab̃cλ̃ijb̃ǫ
ℓ∗
cj×

(m∗/Λ/L)
∆O−1g∗/(16π2), with cab̃c = O(1), where the sum over j corresponds to integrate

over a loop of the elementary fermion ℓj . One can then verify that the antisymmetry of λ̃

implies ǫ̃a1,a2 ∝ ǫℓ3 while ǫ̃a3 ∝ ǫℓ2, thus in (3.7) one has mν
33 ∝ ǫℓ2. This latter scenario may

be interpreted as a generalization of the Zee model [24].

Note that, in general, there is a crucial difference between weakly-coupled radia-

tive neutrino models, and composite scenarios where mν arises from loops of elementary

fermions ψ: the assumption of composite flavor violation (that is to say, anarchy in the

indices a, ã, . . . ), that lies at the heart of PC, tends to screen the potential hierarchies
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induced by ψ-loops. The only remaining hierarchies are determined by symmetry consid-

erations alone, independently of how many loops are required. For example, in the case of

O(0) discussed above, the fact that λ̃ij ∼ 3 under SU(3)ℓ leads to a hierarchy in the values

of ǫ̃ai. Other radiative neutrino models may arise from U(1)L-breaking sources that involve

elementary fields ψ 6= ℓ. In this case λ̃ is contracted with the appropriate ǫψ, corresponding

to a ψ-loop, and one reduces again to one of the textures in (3.7).

4 Charged-lepton flavor and CP violation

In this section we derive constraints on charged-lepton PC parameters from the experimen-

tal upper bounds on flavor and CP-violating observables. The most relevant observables

are collected in table 2.5

We first translate the bounds into constraints on the coefficients of the leptonic

dimension-six operators, listed in table 3, as defined in the Warsaw basis [29]. In sub-

sequent sections we will confront these bounds first with an anarchic composite sector,

characterised by the two parameters g∗ and m∗ and no flavor nor CP symmetries, and then

discuss how to relax them via symmetries or dynamical separation of mass scales.

Our constraints are summarized in tables 4 and 5. They are derived ignoring the

(small) RG effects from the matching scale down to the experimental scale, and assuming

that a single coefficient dominates the rate under consideration. See appendix D for details.

Our bounds agree, when overlap exists, with e.g. [30–34]. The strongest bounds on the

dipole operators QeW,eB come from µ → eγ and the electric dipole moment (EDM) of the

electron, de. On the other hand, QHe,Hℓ are dominantly constrained by their tree-level

contribution to the exotic lepton decays in table 2. Finally, Qℓe,ℓℓ,ee,eH contribute at tree-

level to the latter processes, and at loop-level to li → ljγ. Loop-induced contributions to

the dipole transitions are not negligible under our hypothesis of single-coupling dominance

(see also the discussion in appendix D).

4.1 Constraints on the anarchic scenario

Let us translate the constraints of tables 4 and 5 into bounds on the PC scenario, assuming

anarchical flavor structure in the composite sector.

PC allows us to determine the Wilson coefficients of the dimension-six operators, up to

unknown and model-dependent numbers c expected to be of order unity. The structure of

the Wilson coefficients can be easily extracted from eq. (A.1). To illustrate this we briefly

discuss explicitly the case of the dipole operator, defined in the Warsaw basis as

Qij
eW ≡

(

ℓ̄iLσ
µνejR

)

σIHW I
µν . (4.1)

From (A.1) one immediately reads [9]

CeW
ij

Λ2
=

m4
∗

g2∗

g2∗
16π2

g∗ǫℓi

m
3/2
∗

g∗ǫej

m
3/2
∗

g∗
m∗

g

m2
∗
ceWij . (4.2)

5The list does not include rare scattering like σ(e+e− → e±τ∓) and σ(e+e− → µ±τ∓). These have been

constrained at LEP and must be 10−6 times smaller than σ(ee → µµ). We find that the resulting bounds

are weaker than those derived below.
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Observable Upper bound on Br (90% CL)

µ → eγ 4.2× 10−13 [25]

µ− → e+e−e− 1.0× 10−12

µ−Au → e−Au 7.0× 10−13

τ → eγ 3.3× 10−8

τ → µγ 4.4× 10−8

τ− → e+e−e− 2.7× 10−8

τ− → µ+µ−µ− 2.1× 10−8

τ− → µ+µ−e− 2.7× 10−8

τ− → e+e−µ− 1.8× 10−8

τ− → e+µ−µ− 1.7× 10−8

τ− → µ+e−e− 1.5× 10−8

Observable Upper bound

|de| 8.7× 10−29 e cm (90% CL) [26]

|dµ| 1.9× 10−19 e cm (95% CL) [27]

|dτ | ∼ 1× 10−17 e cm (95% CL)

∆ae −1.05(0.82)× 10−12

∆aµ 2.68(0.63)exp(0.43)th × 10−9

∆aτ [−0.052, 0.013] (95% CL)

Table 2. Current upper bounds on the most relevant lepton flavor-violating observables, as well as

on the lepton electric and magnetic dipole moments. Bounds are all taken from the Particle Data

Group [28], unless stated otherwise. We defined ∆a = aexp−aSM. A ∼ in the EDM of the τ lepton

emphasizes this quantity suffers from large experimental uncertainties (see [28] for precise values).

Here ceWij is an unknown matrix, that in anarchic models is taken to be complex of order

one and no particular structure. To make contact with the experimental bounds from

ℓi → ℓjγ it is useful to introduce the combinations of dipole operators that correspond to

the mass eigenstates for the gauge bosons,

Qij
eγ ≡ cos θwQ

ij
eB − sin θwQ

ij
eW , (4.3)

Qij
eZ ≡ sin θwQ

ij
eB + cos θwQ

ij
eW , (4.4)

with the dominant constraints coming from the photon observables.

The coefficients for all leptonic operators can be estimated similarly to what done

in (4.2), and they are displayed in table 3 again up to unknown anarchic matrices with

complex numbers of order unity. Some technical aspects of this procedure are analyzed in

appendix E.

We now translate the model-independent constraints of tables 4 and 5 into bounds on

the PC parameters introduced in section 2. We report in table 6 the most stringent bounds
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Effective operator Wilson coefficient

Qij
eW =

(

ℓ̄iLσ
µνejR

)

σIHW I
µν

CeW
ij

Λ2 = 1
16π2

g3∗
m2

∗
ǫℓiǫ

e
jg c

eW
ij = 1

16π2
g2∗
m2

∗

ǫℓi
ǫℓj

√
2me

j

v g ceWij

Qij
eB =

(

ℓ̄iLσ
µνejR

)

HBµν
CeB

ij

Λ2 = 1
16π2

g3∗
m2

∗
ǫℓiǫ

e
jg

′ ceBij = 1
16π2

g2∗
m2

∗

ǫℓi
ǫℓj

√
2me

j

v g′ ceBij

Qij
eH =

(

H†H
)

(

ℓ
i
Le

j
RH

)

CeH
ij

Λ2 = g3∗
m2

∗
ǫℓiǫ

e
j c

eH
ij = g2∗

m2
∗

ǫℓi
ǫℓj

√
2me

j

v ceHij

Q
(1)ij
Hℓ =

(

H†i
↔
DµH

)

(

ℓ
i
Lγ

µℓjL

)

C
Hℓ(1)
ij

Λ2 = g2∗
m2

∗
ǫℓiǫ

ℓ
j c

Hℓ(1)
ij

Q
(3)ij
Hℓ =

(

H†σI i
↔
DµH

)

(

ℓ
i
Lσ

IγµℓjL

)

C
Hℓ(3)
ij

Λ2 = g2∗
m2

∗
ǫℓiǫ

ℓ
j c

Hℓ(3)
ij

Qij
He =

(

H†i
↔
DµH

)

(

eiRγ
µejR

)

CHe
ij

Λ2 = g2∗
m2

∗
ǫei ǫ

e
j c

He
ij = 1

m2
∗

2me
im

e
j

v2
1

ǫℓiǫ
ℓ
j

cHe
ij

Qijmn
ℓℓ =

(

ℓ
i
Lγµℓ

j
L

)(

ℓ
m
L γµℓnL

)

Cℓℓ
ijmn

Λ2 = g2∗
m2

∗
ǫℓiǫ

ℓ
jǫ

ℓ
mǫℓn c

ℓℓ
ijmn

Qijmn
ℓe =

(

ℓ
i
Lγµℓ

j
L

)

(emRγµenR)
Cℓe

ijmn

Λ2 = g2∗
m2

∗
ǫℓiǫ

ℓ
jǫ

e
mǫen c

ℓe
ijmn = 1

m2
∗

2me
mme

n
v2

ǫℓiǫ
ℓ
j

ǫℓmǫℓn
cℓeijmn

Qijmn
ee =

(

eiRγµe
j
R

)

(emRγµenR)
Cee

ijmn

Λ2 = g2∗
m2

∗
ǫei ǫ

e
jǫ

e
mǫen c

ee
ijmn = 1

g2∗m
2
∗

4me
im

e
jm

e
mme

n

v4ǫℓiǫ
ℓ
jǫ

ℓ
mǫℓn

ceeijmn

Table 3. Dimension-six operators involving leptons and no quarks, and the NDA estimate of their

Wilson coefficients, in the anarchic PC scenario. In the last equalities we used eq. (2.8) to eliminate

the parameters ǫei in favour of ǫℓi .

on the products of two mixing parameters, ǫℓi and/or ǫ
e
i . In fact, the dipole (Qij

eγ) and vector

(Qij
Hℓ and Qij

He) operators are the most constraining for PC, and they determine all the

bounds in table 6. An extended list of bounds in the anarchic PC scenario is displayed in

appendix E, table 9.

For the ease of the discussion we considered two interesting phenomenological limits:

(i) Left-right symmetry : ǫℓi ∼ ǫei .

This limit minimizes the bounds coming from the flavor-violating dipole operators.

Indeed, the contribution to the decay rate scales as Γ(µ → eγ) ∼
(

|ǫℓ2ǫe1|2 + |ǫe2ǫℓ1|2
)

[9]

and, taking into account eq. (2.8), it gets minimized when ǫℓi ∼ ǫei . For the numerical

analysis the equality ǫℓi = ǫei has been imposed.

(ii) Left anarchy : ǫℓi ∼ ǫℓj .

We have seen in section 3 that, when the neutrino masses are linked to the composite-

ness of the lepton doublets (classes 2M and 1M), then large mixing angles imply ǫℓ1,2,3
of the same order. For the numerical analysis the equality ǫℓi = ǫℓ has been imposed

for i = 1, 2, 3. Notice that the bounds depend on the unique parameter ǫℓ, and the

hierarchies in the charged lepton masses correspond to the degrees of compositeness

of the lepton singlets, ǫei/ǫ
e
j = mi/mj .

A couple of remarks are in order. Firstly, we quote bounds in terms of the coefficients

c which, in anarchic PC scenarios, are expected to be order one numbers. Hence, the PC

structure provides enough flavor suppression when in table 6 c is bounded by a number

larger than one. On the other hand, when the bounds are much smaller than one, one
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Upper bound on |C| for Λ = 1TeV Observable

Ceγ
12,21 2.1× 10−10 µ → eγ

Ceγ
13,31 2.4× 10−6 τ → eγ

Ceγ
23,32 2.7× 10−6 τ → µγ

ImCeγ
11 , ReCeγ

11 3.8× 10−12, 2.4× 10−6 de,∆ae

ImCeγ
22 , ReCeγ

22 8.4× 10−3, 1.8× 10−5 dµ,∆aµ

ImCeγ
33 , ReCeγ

33 4.4× 10−1, 3.2 dτ ,∆aτ

CeH
12,21 3.5× 10−5 µ → eγ (2-loop)

CeH
13,31 3.0× 10−1 τ → eγ (1- and 2-loop)

CeH
23,32 3.4× 10−1 τ → µγ (1- and 2-loop)

ImCeH
11 , ReCeH

11 6.5× 10−7, 8.4× 10−2 de,∆ae (2-loop)

CHe
12 4.9(39)× 10−6 µAu → eAu (µ → eee)

CHe
13 1.5(1.8)× 10−2 τ → eee (τ → eµ+µ−)

CHe
23 1.3(1.5)× 10−2 τ → µµµ (τ → µe+e−)

C
Hℓ(1,3)
12 4.9(37)× 10−6 µAu → eAu (µ → eee)

C
Hℓ(1,3)
13 1.4(1.8)× 10−2 τ → eee(τ → eµ+µ−)

C
Hℓ(1,3)
23 1.3(1.5)× 10−2 τ → µµµ (τ → µe+e−)

Table 4. Most relevant constraints on the Wilson coefficients of two-lepton operators. These values

(when there is overlap) agree pretty well with [32], except for the 1/2-loop effects (see section D.2),

because we use the latest experimental constraints on radiative decays.

concludes that the PC predictions fail to provide the required flavor suppression to be

compatible with the experimental observables. Our second comment concerns the reference

value for the scale of the strongly coupled dynamics, here taken to be m∗ = 10TeV. This

value has been chosen as reference for two reasons: it provides quite enough suppression

in the quark sector (see for example [9]), and it is also large enough to be consistent with

the non-observation of composite states in direct searches at the LHC. As all the operators

under consideration have dimension six, the constraints scale as m−2
∗ .

An inspection of the results of table 6 shows that it is quite easy to find regions of

parameters space that survive all the constraints coming from observables that involve the

third family of leptons. The true obstacle is represented by transitions between the second

and first generations (µ → e). In the left-right symmetry limit, the optimal case, it is in

principle possible to pass the bound with g∗ = 1, in which case one gets ceγ12,21 < 0.25. Of

course the bound can be satisfied by having a large composite scale, for example ceγ12,21 < 1

when g∗ = 4π and m∗ = 250TeV. In both cases the price to pay is in terms of an unnatural

electroweak scale; a crude estimate of the fine-tuning is provided by ξ ∼ g2∗v
2/m2

∗ . 0.015%.

An even more severe problem of the anarchic scenario is represented by the experimen-

tal bound on the EDM of the electron. This observable, despite being flavor diagonal and
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Upper bound on |C| for Λ = 1TeV Observable

Cℓℓ,ee
2111 2.3× 10−5 µ → eee

Cℓℓ,ee
3111 9.1× 10−3 τ → eee

Cℓℓ,ee
3222 8.0× 10−3 τ → µµµ

Cℓℓ,ee
2321 7.2× 10−3 τ− → e+µ−µ−

Cℓℓ,ee
1312 6.8× 10−3 τ− → µ+e−e−

Cℓℓ,ee
1322 1.3× 10−2 τ → eµ+µ−

Cℓℓ,ee
2311 1.0× 10−2 τ → µe+e−

Cℓℓ,ee
2212,3312 ∼ 6× 10−2 µ → eγ (2-loop)

Cℓe
2111,1121 3.3× 10−5 µ → eee

Cℓe
1311,1113 1.3× 10−2 τ → eee

Cℓe
2322,2223 1.1× 10−2 τ → µµµ

Cℓe
2321,2123 1.0× 10−2 τ− → e+µ−µ−

Cℓe
1312,1213 9.6× 10−3 τ− → µ+e−e−

Cℓe
1322,2213,2312,1223 1.3× 10−2 τ → eµ+µ−

Cℓe
2311,1123,1321,2113 1.0× 10−2 τ → µe+e−

Cℓe
1332,2331 1.1× 10−5 µ → eγ (1-loop)

Cℓe
1222,2221 1.7× 10−4 µ → eγ (1-loop)

Cℓe
1333,3331 1.2× 10−1 τ → eγ (1-loop)

Cℓe
2333,3332 1.4× 10−1 τ → µγ (1-loop)

ImCℓe
1331, ReCℓe

1331 2.0× 10−7, 2.6× 10−2 de,∆ae (1-loop)

ImCℓe
1221, ReCℓe

1221 3.3× 10−6, 4.3× 10−1 de,∆ae (1-loop)

ImCℓe
1111 7.0× 10−4 de (1-loop)

Table 5. Most relevant constraints on the Wilson coefficients of four-lepton operators. We do not

show constraints that allow Wilson coefficients of order unity or larger.

suppressed by the small mass of the electron, is sensitive to very tiny CP violating effects.

In terms of the fundamental parameters of our model we get

Im(ceγ11)
( g∗
4π

)2
(

10TeV

m∗

)2

< 4.3× 10−4 . (4.5)

Without invoking any CP protection we expect Im(c) ∼ 1 and the bound gets saturated

when m∗ = 480TeV and g∗ = 4π, or in the more “weakly” coupled scenario when g∗ = 1

and m∗ = 38TeV. These values clearly imply a large tuning of the electroweak scale.
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Structure Bound ǫℓi ∼ ǫei ǫℓi ∼ ǫℓj

ǫℓ1ǫ
e
2

g3
∗

m2
∗

c×
(

g∗
4π

)2 ǫℓ1
ǫℓ2

< 1.1×10−4 c×
(

g∗
4π

)2
< 1.6×10−3 c×

(

g∗
4π

)2
< 1.1×10−4

ǫℓ2ǫ
e
1

g3
∗

m2
∗

c×
(

g∗
4π

)2 ǫℓ2
ǫℓ1

< 2.4×10−2 c×
(

g∗
4π

)2
< 1.6×10−3 c×

(

g∗
4π

)2
< 2.4×10−2

ǫℓ1ǫ
ℓ
2

g2
∗

m2
∗

c×
(

g∗
4π

)2
ǫℓ1ǫ

ℓ
2 < 3.1×10−6 c×

(

g∗
4π

)

< 1.0 c×
(

g∗
4π

)2
(ǫℓ)2 < 3.1×10−6

ǫe1ǫ
e
2

g2
∗

m2
∗

c× 1
ǫℓ1ǫ

ℓ

2
< 2.9×105 c×

(

g∗
4π

)

< 1.0 c× 1
(ǫℓ)2

< 2.9×105

ǫℓ1ǫ
e
3

g3
∗

m2
∗

c×
(

g∗
4π

)2 ǫℓ1
ǫℓ3

< 7.8×10−2 c×
(

g∗
4π

)2
< 4.6 c×

(

g∗
4π

)2
< 7.8×10−2

ǫℓ3ǫ
e
1

g3
∗

m2
∗

c×
(

g∗
4π

)2 ǫℓ3
ǫℓ1

< 2.7×102 c×
(

g∗
4π

)2
< 4.6 c×

(

g∗
4π

)2
< 2.7×102

ǫℓ1ǫ
ℓ
3

g2
∗

m2
∗

c×
(

g∗
4π

)2
ǫℓ1ǫ

ℓ
3 < 8.9×10−3 c×

(

g∗
4π

)

< 6.6×102 c×
(

g∗
4π

)2
(ǫℓ)2 < 8.9×10−3

ǫe1ǫ
e
3

g2
∗

m2
∗

c× 1
ǫℓ1ǫ

ℓ

3
< 5.3×107 c×

(

g∗
4π

)

< 7.1×102 c× 1
(ǫℓ)2

< 5.3×107

ǫℓ2ǫ
e
3

g3
∗

m2
∗

c×
(

g∗
4π

)2 ǫℓ2
ǫℓ3

< 8.7×10−2 c×
(

g∗
4π

)2
< 3.6×10−1 c×

(

g∗
4π

)2
< 8.7×10−2

ǫℓ3ǫ
e
2

g3
∗

m2
∗

c×
(

g∗
4π

)2 ǫℓ3
ǫℓ2

< 1.5 c×
(

g∗
4π

)2
< 3.6×10−1 c×

(

g∗
4π

)2
< 1.5

ǫℓ2ǫ
ℓ
3

g2
∗

m2
∗

c×
(

g∗
4π

)2
ǫℓ2ǫ

ℓ
3 < 8.2×10−3 c×

(

g∗
4π

)

< 42 c×
(

g∗
4π

)2
(ǫℓ)2 < 8.2×10−3

ǫe2ǫ
e
3

g2
∗

m2
∗

c× 1
ǫℓ2ǫ

ℓ

3
< 2.2×105 c×

(

g∗
4π

)

< 42 c× 1
(ǫℓ)2

< 2.2×105

ǫℓ1ǫ
e
1

g3
∗

m2
∗

Im(c)×
(

g∗
4π

)2
< 4.3×10−4 Im(c)×

(

g∗
4π

)2
< 4.3×10−4 Im(c)×

(

g∗
4π

)2
< 4.3×10−4

ǫℓ1ǫ
e
1

g3
∗

m2
∗

Re(c)×
(

g∗
4π

)2
< 2.6×102 Re(c)×

(

g∗
4π

)2
< 2.6×102 Re(c)×

(

g∗
4π

)2
< 2.6×102

ǫℓ2ǫ
e
2

g3
∗

m2
∗

Im(c)×
(

g∗
4π

)2
< 4.6×103 Im(c)×

(

g∗
4π

)2
< 4.6×103 Im(c)×

(

g∗
4π

)2
< 4.6×103

ǫℓ2ǫ
e
2

g3
∗

m2
∗

Re(c)×
(

g∗
4π

)2
< 9.4 Re(c)×

(

g∗
4π

)2
< 9.4 Re(c)×

(

g∗
4π

)2
< 9.4

ǫℓ3ǫ
e
3

g3
∗

m2
∗

Im(c)×
(

g∗
4π

)2
< 1.4×104 Im(c)×

(

g∗
4π

)2
< 1.4×104 Im(c)×

(

g∗
4π

)2
< 1.4×104

ǫℓ3ǫ
e
3

g3
∗

m2
∗

Re(c)×
(

g∗
4π

)2
< 1.0×102 Re(c)×

(

g∗
4π

)2
< 1.0×102 Re(c)×

(

g∗
4π

)2
< 1.0×102

Table 6. Bounds on the coefficients of the anarchic scenario (i.e. the matrices c are anarchic,

complex, order one) for m∗ = 10TeV. In the first column we show the combination of parameters

that is constrained, and in the second we used eq. (2.8) to remove redundant mixing parameters. The

flavor and operator indices of the coefficients c are understood. In the last two columns, the bounds

are specialized to two phenomenologically relevant limits: left-right symmetry and left anarchy.

5 Scenarios with suppressed flavor and CP violation

We have shown that, if one uses the NDA estimates for PC defined by eq. (A.1), for an

anarchic composite sector with generic complex coefficients c = O(1), the flavor and CP vi-

olating observables, in particular µ → eγ and the electron EDM, push the new physics scale

m∗ well beyond the 10TeV frontier. On the other hand, naturalness arguments suggest

the new physics scale should be not far above the TeV. Thus, the severe experimental con-

straints may be interpreted as an indication that the composite sector cannot be anarchic.

In this section we will pursue two main alternative avenues.

One possibility we will consider is that the composite sector carries some accidental

symmetries, possibly broken by the spurion couplings λ in (2.1). This possibility sounds

reasonable because strongly-coupled systems generically possess global symmetries, as in

the case of QCD. However, while a large flavor symmetry appears to be more adequate to

suppress flavor-violation, such an option is typically at odds with partial compositeness.

Indeed, if the strong sector enjoys a large non-abelian symmetry that forces all Oa to have
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approximately the same scaling dimension, then (2.1) would not be able to generate the

desired hierarchies. We are therefore led to consider scenarios with a U(1)3 symmetry:

this is the largest symmetry compatible with a dynamical generation of flavor. As we will

argue in section 5.1, this option can simultaneously suppress flavor violation and allow

m∗ ∼ 10TeV.6 CP can then be added to suppress EDMs.

An alternative possibility to make m∗ ∼ 10TeV compatible with data is to pos-

tulate the strong dynamics has more, flavor-dependent mass gaps rather than a single,

flavor-universal m∗. An interesting direction is to associate a different ma∗ to each of the

composite operators Oa of eq. (2.1). This way any flavor-violating process involving the

composite index a is controlled by ma∗ and may thus be suppressed by taking ma∗ > m∗
(see section 5.2). The possibility of a large compositeness scale for the fermionic operators

common to the three lepton families (m1∗ = m2∗ = m3∗) has been suggested in [35]. This

is enough to suppress the dipole operators, that govern the most dangerous observables.

However, to be more general we will allow different compositeness scales for each family,

along the lines of [36].

5.1 U(1)3 × CP symmetry

Let us now show how a U(1)3 symmetry in the strong sector suppresses µ → e and, when

combined with a CP symmetry (still in the strong sector only), also de, while preserving

the generation of the fermion mass hierarchy. As far as we know, a study of this scenario

has not been presented in the literature.

To start we postulate the strong sector has a

U(1)c1 ×U(1)c2 ×U(1)c3 (5.1)

family symmetry, with the operators Oℓ,e
a having the same charges under U(1)ca for each

a = 1, 2, 3. In other words, the mixings in (2.1) have spurious charges

λℓ,e
a=1 i ∼ (+1, 0, 0) , λℓ,e

a=2 i ∼ (0,+1, 0) , λℓ,e
a=3 i ∼ (0, 0,+1) , (5.2)

under (5.1). This is assumed to ensure that our model generates Yukawa couplings for the

charged leptons.

A combination of the U(1) associated with each fundamental lepton flavor and (5.1)

may be respected by the mixings in (2.1), in which case one obtains a framework with

an exact U(1)e × U(1)µ × U(1)τ , satisfied by the strong sector as well as the spurions

λ. However, within our view that all global symmetries are accidental, such a possibility

appears very unlikely unless we gauge part or all of the anomaly-free SM lepton symmetries.

If we decide to follow this path, then there is no lepton flavor-violation whatsoever and

all the coefficients in table 3 reduce to combinations of Kronecker deltas. Additional
6Since the strongest experimental constraints on flavor violation involve the electron, one could actually

restrict the requirement to U(1)e×CP . It is rather straightforward to adapt our results to this more minimal

case. Note also that a flavor symmetry SU(3)comp has been considered in [10]. Assuming fully-composite

ℓi or ei that picture naturally reproduces the “minimal flavor violation assumption”. This successfully

suppresses µ → e transitions but unfortunately not the electron EDM. In addition, as stressed above, the

mass hierarchy is not explained.
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sources of flavor-violation need to be introduced in order to reproduce the neutrino mixing

pattern, but this effect can be naturally small and presents no serious problem (see end of

section 5.1.3 for a more detailed discussion). In fact, only the EDMs can set a non-trivial

constraint on this exact U(1)3 scenario. Nevertheless, even the latter may be suppressed if

the U(1)3 symmetry is combined with CP . This extreme picture can thus be easily made

consistent with data with m∗ of order a few TeV. Its main drawback is perhaps the lack

of distinctive signatures and correlations among observables. For this reason we will not

discuss it further until section 6.

In the following we will instead allow the symmetry (5.1) to be broken by the mixings

λ with the SM fermions (2.1). This option is more convincing theoretically, and certainly

more interesting phenomenologically. We will now show that scenarios with a U(1)3 sym-

metry in the strong sector unambiguously predict, up to numbers expected to be of order

unity, the flavor structure of the operators QeW,eB,eH in terms of the charged lepton masses.

The Wilson coefficients of the remaining operators, QHe,Hℓ,ℓℓ,ee,ℓe, instead crucially depend

on the ratios ǫψi /ǫ
ψ
j and are thus more model-dependent.

To see this it is useful to choose a convenient field basis. Let us work under the as-

sumption that Oℓ,e
a have the same U(1)3 charges, see (5.2), but make no a priori assumption

on their scaling dimensions. In other words we do not impose any constraint on the ratios

ǫψi /ǫ
ψ
j at this stage. Yet, we rotate the fundamental fermions to put the mixings in the

triangular form (2.4). Note that this step does not rely on the assumption ǫψ1 < ǫψ2 < ǫψ3 :

one can always choose a basis for the ψi’s in which the mixings take the form (2.4) what-

ever the relative size of the ǫψi ’s is. Once this is done we have no more freedom to rotate

the fields ψ. However, we are still free to order the composite index a, or in other words

the ratios ǫψi /ǫ
ψ
j of (2.4), as we wish. A convenient ordering for the composite fermions is

eventually identified inspecting the charged lepton Yukawa couplings. These are formally

the same as in (2.6), yeij = g∗ǫℓ∗aiǫ
e
bjc

e
ab, though by U(1)3 symmetry the coefficients of order

unity must satisfy ceab = δabca. Thus we get:

ye = g∗









ǫℓ1ǫ
e
1O









1 1 1

1 1 1

1 1 1









+ ǫℓ2ǫ
e
2O









0 0 0

0 1 1

0 1 1









+ ǫℓ3ǫ
e
3O









0 0 0

0 0 0

0 0 1

















, (5.3)

which is a sum of three rank-one matrices because ce is a diagonal matrix. This expression

gives us all the information necessary to single out the phenomenologically viable U(1)3

scenarios. First, an inspection of (5.3) teaches us that a fermion mass hierarchy can only be

obtained, barring unnatural cancellations, if there is a hierarchy among ǫℓiǫ
e
i/ǫ

ℓ
jǫ

e
j . Second,

there is a unique choice of ordering of the composite fermions O1,2,3 that makes sure the

mixing angles between gauge and mass basis are small. Such an ordering is useful because

with small angles an understanding of the pattern of flavor violation beyond the SM may

be achieved via a perturbative expansion. From (5.3) one sees that this requirement is

realized when

ǫℓ1ǫ
e
1 ≪ ǫℓ2ǫ

e
2 ≪ ǫℓ3ǫ

e
3 . (5.4)
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To summarize, we first found a field basis in which the Yukawa matrix acquires the

form (5.3), without loss of generality; from that expression we then learnt that in all

U(1)3 models that can generate a realistic pattern of charged lepton masses we can always

label the composite operators according to (5.4). Each independent ordering of Oℓ
a and

Oe
a, which select different ratios ǫψi /ǫ

ψ
j while still preserving (5.4), constitutes a different

variant of the U(1)3 scenario.

Having identified a convenient flavor basis, we can now study the phenomenological

implications of U(1)3. Thanks to (5.4) the expression for the Yukawa matrix simplifies

ye ∼ g∗









ǫℓ1ǫ
e
1 ǫℓ1ǫ

e
1 ǫℓ1ǫ

e
1

ǫℓ1ǫ
e
1 ǫℓ2ǫ

e
2 ǫℓ2ǫ

e
2

ǫℓ1ǫ
e
1 ǫℓ2ǫ

e
2 ǫℓ3ǫ

e
3









∼
√
2m3

v









m1
m3

m1
m3

m1
m3

m1
m3

m2
m3

m2
m3

m1
m3

m2
m3

1









. (5.5)

Moreover, the matrices U ℓ, U e that diagonalize it have the form

U ℓ,e
ij ∼











1
ǫℓ1
ǫℓ2

ǫe1
ǫe2

ǫℓ1
ǫℓ3

ǫe1
ǫe3

ǫℓ1
ǫℓ2

ǫe1
ǫe2

1
ǫℓ2
ǫℓ3

ǫe2
ǫe3

ǫℓ1
ǫℓ3

ǫe1
ǫe3

ǫℓ2
ǫℓ3

ǫe2
ǫe3

1











ij

∼









1 m1
m2

m1
m3

m1
m2

1 m2
m3

m1
m3

m2
m3

1









ij

= min

(

mi

mj
,
mj

mi

)

(5.6)

and the eigenvalues are me = m1, mµ = m2, mτ = m3. As promised, the ordering defined

by (5.4) implies |U ℓ,e
ij | ≪ 1 for i 6= j irrespective of the ratios ǫψi /ǫ

ψ
j for ψ = ℓ, e separately.

The Yukawa matrix structure (5.5) is to be contrasted with the one for anarchic models,

see (2.7). Importantly, the off-diagonal elements here depend only on the lepton massesmk,

rather than on ǫℓ,ek separately as it was in the anarchic case (2.9). The smaller mixing angles

will have important implications for charged-lepton flavor and CP-violating observables,

as we will see in the next subsection.

Before proceeding it is important to emphasize that the U(1)3 symmetry is here as-

sumed to be satisfied by the “lepton sector” of the strong dynamics, specifically by Oℓ,e
a .

The mixing structure (5.6) may be extended to the quark sector only provided one is will-

ing to accept moderate hierarchies (of the order of one power of the Cabibbo angle) among

the order-one parameters of the mixing matrix ǫd in (2.6). In that case the CKM matrix,

being determined by the rotation in the down sector, can be reproduced [36].

5.1.1 Dipole operators

Let us now consider the implications of U(1)3 on the Wilson coefficients of the dim-6

operators of table 3. Using the field basis identified in the previous subsection, the flavor

structure of these operators can be written schematically as:

Qij
eW,eB,eH : ǫℓ∗aiǫ

e
ajca ,

Qij
Hℓ,He : ǫℓ∗aiǫ

ℓ
ajca , ǫe∗aiǫ

e
ajca ,

Qijmn
ℓe : ǫℓ∗aiǫ

ℓ
cjǫ

e∗
bmǫedn(δacδbdcab + δadδbcc

′
ab) ,

Qijmn
ℓℓ,ee : ǫℓ∗aiǫ

ℓ
ajǫ

ℓ∗
bmǫℓbncab , ǫe∗aiǫ

e
ajǫ

e∗
bmǫebncab ,

(5.7)

where for the last line we took into account the Fierz identity Qijmn
ℓℓ,ee = Qinmj

ℓℓ,ee .
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To go to the mass basis and identify the coefficients to be constrained by tables 4

and 5, one needs to contract with the rotation matrices (5.6). With the aid of eq. (2.4) one

obtains

ǫψ → ǫψUψ = O









ǫψ1 ǫψ1 ǫψ1
m1
m2

ǫψ2 ǫψ2 ǫψ2
m1
m3

ǫψ3
m2
m3

ǫψ3 ǫψ3









, ψ = ℓ, e. (5.8)

We will first focus on the µ → eγ transition and the electron EDM, that set by far the

most remarkable constraints on new physics coupled to leptons.

The operators of interest are associated, together with QeH , to the first class of flavor

structures in (5.7). Being the same as the Yukawa, this structure is not modified signif-

icantly by the rotation to the mass basis. In particular, their Wilson coefficients in the

mass basis continue to be functions dominantly of ratios of masses, irrespective of what

the ratios ǫψi /ǫ
ψ
j are,

(ǫℓU ℓ)†c(ǫeU e) =

√
2m3

g∗v
O









m1
m3

m1
m3

m1
m3

m1
m3

m2
m3

m2
m3

m1
m3

m2
m3

1









. (5.9)

As a result the phenomenology is common to all realistic U(1)3 variants. For example, let

us start with µ → eγ, for which the U(1)3 symmetry implies

Ceγ
12,21

Λ2
≃ g2∗

16π2

e

m2
∗

√
2me

v
ĉeγ12,21 , (5.10)

with ĉ a matrix of order unity (we included a hat to distinguish it from the correspond-

ing matrix in the anarchic scenario). This is to be compared with the best case op-

tion Ceγ
12,21/Λ

2 ≃ (g2∗/16π
2)(e/m2

∗)(
√

2memµ/v)c
eγ
12,21 of the anarchic scenario, found when

ǫℓi ∼ ǫei in table 3. Eq. (5.10) shows that U(1)3 can weaken the constraint by a factor
√

me/mµ ≃ 1/15 relative to the anarchic case. The current 90% CL bound from MEG,

BR(µ → eγ) < 5.7 × 10−13, implies |ĉeγ12,21| < 0.02(0.1) for m∗ = 10(20)TeV and g∗ = 4π.

We may allow ĉeγ12,21 to be order unity if m∗/g∗ & 5TeV.

The electron EDM de can be significantly suppressed by combining the U(1)3 symmetry

with the assumption that the entire strong dynamics is symmetric under CP . Note that this

is a viable option since we have shown in section 2.1 that a realistic value for the CKM phase

can arise from complex entries in the spurions λ. In the CP-symmetric scenarios all strong-

sector order-one parameters such as ceab are real. To see the implications of these ingredients,

observe that de is controlled by the imaginary part of the ee-entry of the dipole operator,

de = 2
Im(U ℓ†CeγU e)ee

Λ2

v√
2
=

g2∗
8π2

e

m2
∗
Im(U ℓ†ǫℓ†ceγǫeU e)ee

g∗v√
2
. (5.11)

The U(1)3 symmetry by itself (ceγab = ceγa δab) in this case does not improve the situation

compared to the anarchic case. On the other hand, when we force ceγ to be real by CP

the imaginary part controlling de gets suppressed by the small mixing angles of the U(1)3
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model. Specifically, the CP-odd phases must be found in (ǫℓ,eU ℓ,e)ae with a 6= 1 because,

as we saw in (2.4), the diagonal elements of ǫai can be made real via rotations of the SM

fields. Generalizing (5.9) to include the CP-odd phases arising from the mixings λ one

can show that Im(U ℓ†ǫℓ†ceγǫeU e)ee ∼ ǫℓ1ǫ
e
1me/mµ, which in turn gives

de ≃
g2∗
8π2

eme

m2
∗

me

mµ
ĉeγ11 . (5.12)

This is a significant me/mµ improvement compared to the anarchic, CP-violating scenario

(see table 3). There is also an improvement with respect to the anarchic scenario with

CP invariance, for which we find Im(U ℓ†ǫℓ†ceγǫeU e)ee ∼ ǫℓ1ǫ
e
1

√

mµ/mτ . Numerically, for

m∗ = 10TeV and g∗ = 4π one verifies that (5.12) is below the current bound of table 2

provided |Im ĉeγ11| . 0.1. In other words, combining U(1)3 with CP invariance makes our

model compatible with data for m∗/g∗ & 2.5TeV.

If one further assumes that the U(1)3 in the composite lepton sector carries over to the

quark sector, then the neutron EDM gets suppressed by a factor ∼ md/ms ∼ λ2
C compared

to the anarchic scenario. This could be enough to make the model with g∗ ∼ 4π,m∗ ∼
10TeV consistent with quark data.

5.1.2 QHe,Hℓ,ℓℓ,ee,ℓe

As opposed to what we saw for the dipoles and QeH , the rotation matrices U ℓ,e may

modify significantly the flavor structures in the second, third and fourth lines of (5.7).

The key difference is that for the bilinears (ǫψ†c ǫψ) (this applies to both ψ = ℓ, e), the

flavor structure in the mass basis depends not only on the charged lepton masses, but

also on the relative size of the parameters ǫi. Because (5.4) can be achieved with different

choices of ratios ǫψi /ǫ
ψ
j , one thus finds that realistic models with a U(1)3 symmetry can have

several, qualitatively different phenomenological predictions for the Wilson coefficients of

QHe,Hℓ,ℓℓ,ee,ℓe. Explicitly we obtain

(ǫU)†c(ǫU) ∼ (5.13)

∼









(ǫ1)
2 +

m2
1

m2
2
(ǫ2)

2 +
m2

1

m2
3
(ǫ3)

2 (ǫ1)
2 + m1

m2
(ǫ2)

2 + m1m2

m2
3

(ǫ3)
2 (ǫ1)

2 + m1
m2

(ǫ2)
2 + m1

m3
(ǫ3)

2

. . . (ǫ1)
2 + (ǫ2)

2 +
m2

2

m2
3
(ǫ3)

2 (ǫ1)
2 + (ǫ2)

2 + m2
m3

(ǫ3)
2

. . . . . . (ǫ1)
2 + (ǫ2)

2 + (ǫ3)
2









,

where we spared ourselves from writing all entries because the matrix is manifestly hermi-

tian. Curiously, these coefficients are ordered in size, i.e. the elements ij of (5.13) satisfy

11 . 12 . 13 . 22 . 23 . 33, independently of the ǫi’s. This is important because it

implies that all U(1)3-invariant realizations satisfy the following general properties: first,

transitions involving heavier leptons are always faster; second, there exists a lower bound

on flavor violation. The most relevant constraints on the off-diagonal entries come from

CHe,Hℓ
ij . For m∗ = 10TeV and g∗ = 4π, the bounds shown in table 4 roughly translate into

an upper bound ∼ 10−6 (∼ 10−2) on the eµ (eτ and µτ) entry of (5.13).

The off-diagonal coefficients in (5.13) control the magnitude of flavor-violation, but

their size strongly depends on ǫψi /ǫ
ψ
j . Here we mention a few paradigmatic examples:
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(i) Left-right symmetry : ǫℓi ∼ ǫei .

Together with (5.4), this implies automatically a normal ordering of the indices,

i.e. ǫ1 < ǫ2 < ǫ3 for both ℓ, e. The Wilson coefficients for the various operators,

expressed in the mass basis, are compactly collected in table 7. For each pair ij

of lepton indices the coefficients are suppressed by a factor min(
√

mi/mj ,
√

mj/mi)

compared to the anarchic case. Explicitly, in the U(1)3-symmetric scenario the coef-

ficients cij , cijmn, that are of order unity in table 3, become

cij ∼ min

(
√

mi

mj
,

√

mj

mi

)

ĉij , (5.14)

cijmn ∼ min

(
√

mi

mj
,

√

mj

mi

)

min

(√

mm

mn
,

√

mn

mm

)

ĉijmn + permut.,

with ĉij , ĉijmn coefficients of order unity emerging from the U(1)3-symmetric dynam-

ics. All flavor-violating channels are therefore suppressed by U(1)3 compared to the

anarchic scenario. Overall in this scenario the dominant bound comes from the dipole

operators that we discussed above, from which we get m∗/g∗ & 5TeV.

(ii) Left anarchy : ǫℓi ∼ ǫℓj .

As in the previous case, when combined with (5.4), this option implies ǫe1 < ǫe2 < ǫe3.

In this case however the flavor-violating coefficients with structure ǫℓ∗aiǫ
e
aj similar to

the Yukawa (see eq. (5.7)) are suppressed by a factor min(mi/mj , 1), while all the

others remain (always at leading order in the mass ratios) parametrically the same

as in the anarchic case,

ceW,eB,eH
ij ∼ min

(

mi

mj
, 1

)

ĉeW,eB,eH
ij , (5.15)

cHℓ,He
ij ∼ ĉHℓ,He

ij ,

cℓℓ,ee,ℓeijmn ∼ ĉℓℓ,ee,ℓeijmn .

More explicit expressions for the Wilson coefficients are presented in table 7. Note

that the relative suppression of the dipole operator in (5.15) is different from that

in (5.14) because the predictions of the anarchic scenario are different in the left-

right symmetric and the left-anarchic cases. In reality, as shown above, the U(1)3

prediction is actually the same in the two cases, see table 7. In summary, for this

scenario µ → eγ is still important, but also the other bounds are relevant. Fixing

g∗ ≃ 1 and m∗ ≃ 10TeV, so that the former rate is safely consistent with data, the

other bounds in table 6 imply

ǫℓ . 2.2 · 10−2 . (5.16)

This reduces the range
√
2mτ/(g∗v) ≃ 1.0 ·10−2 < ǫℓ < 1, that follows from requiring

PC to correctly reproduce the tau lepton mass.

– 24 –



J
H
E
P
1
0
(
2
0
1
8
)
0
1
7

U(1)3 ǫℓi ∼ ǫei ǫℓi ∼ ǫℓj
CeW

ij

Λ2
g2∗

16π2
g∗
m2

∗

√
2min(mi,mj)

g∗v
g ĉeWij

g2∗
16π2

g∗
m2

∗

√
2min(mi,mj)

g∗v
g ĉeWij

CeB
ij

Λ2
g2∗

16π2
g∗
m2

∗

√
2min(mi,mj)

g∗v
g′ ĉeBij

g2∗
16π2

g∗
m2

∗

√
2min(mi,mj)

g∗v
g′ ĉeBij

CeH
ij

Λ2
g3∗
m2

∗

√
2min(mi,mj)

g∗v
ĉeHij

g3∗
m2

∗

√
2min(mi,mj)

g∗v
ĉeHij

C
Hℓ(1,3)
ij

Λ2
g2∗
m2

∗

√
2min(mi,mj)

g∗v
ĉ
Hℓ(1,3)
ij

g2∗
m2

∗
(ǫℓ)2ĉ

Hℓ(1,3)
ij

CHe
ij

Λ2
g2∗
m2

∗

√
2min(mi,mj)

g∗v
ĉHe
ij

g2∗
m2

∗

2mimj

g2∗v
2

1
(ǫℓ)2

ĉHe
ij

Cℓe
ijmn

Λ2
g2∗
m2

∗





2min(mi,mj)min(mm,mn)
g2∗v

2 ĉℓeijmn

+
2min(mi,mn)min(mm,mj)

g2∗v
2 ĉ′ℓeijmn





g2∗
m2

∗





2mmmn
g2∗v

2 ĉℓeijmn

+
2min(mi,mn)min(mm,mj)

g2∗v
2 ĉ′ℓeijmn





Cℓℓ
ijmn

Λ2
g2∗
m2

∗

2min(mi,mj)min(mm,mn)
g2∗v

2 ĉℓℓijmn
g2∗
m2

∗
(ǫℓ)4ĉℓℓijmn

Cee
ijmn

Λ2
g2∗
m2

∗

2min(mi,mj)min(mm,mn)
g2∗v

2 ĉeeijmn
g2∗
m2

∗

4mimjmmmn

g4∗v
4

1
(ǫℓ)4

ĉeeijmn

Table 7. Wilson coefficients of the dim-6 operators in the mass basis, assuming the strong dynamics

has a U(1)3 symmetry broken by the mixings (2.1) (to be compared to the anarchic case of table 3).

Here we show the result for two different assumptions on the values of ǫℓ,ei . As demonstrated in the

text the predictions for CeW,eB,eH are however general and hold for any value of ǫψi .

(iii) Example of “flipped” scenario.

Flipped scenarios are those in which the ǫψi ’s do not satisfy the usual ordering, but

are still consistent with the defining property of our field basis, namely (5.4). These

are typical of the U(1)3 models and cannot arise in the anarchic case. Many options

are available and discussing all of them is beyond the scope of this paper. We prefer

to illustrate some of the possible phenomenological implications by focusing on an

explicit example. We consider ǫℓ1 ∼ ǫe1, ǫ
ℓ
2 ∼ ǫe2, and ǫℓ3 ∼ (mµ/mτ )

2ǫe3, that corre-

spond to ǫℓ1/ǫ
ℓ
2 ∼

√

me/mµ < 1 and the flipped hierarchy ǫℓ2/ǫ
ℓ
3 ∼

√

mτ/mµ > 1. To

assess the viability of this model recall that the constraints on dipole operators are

the same as in section 5.1.1 and are therefore unaffected by the flipping ǫℓ1 < ǫℓ3 < ǫℓ2.

The next to relevant constraints come from µAu → eAu (µ → eee) or τ → ℓiℓjℓk.

In the present flipped scenario the e†e Wilson coefficients are much bigger than the

ℓ†ℓ ones, and very close to the experimental bounds (again for m∗ = 10TeV and

g∗ = 4π). Importantly, it may well be that the dominant experimental signature

comes from QHe rather than the dipole operators as in the anarchic scenarios.

The above three examples reveal that the signatures of the U(1)3 scenario associated to the

operators QHe,Hℓ,ℓℓ,ee,ℓe do depend significantly on the relative size of the ǫψi ’s for ψ = ℓ, e.

This model-dependence only affects these operators because, as we saw in section 5.1.1, our

analysis of the dipoles apply to all U(1)3-symmetric models, irrespective of the numerical

values of the ratios ǫψi /ǫ
ψ
j .
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5.1.3 Neutrino masses

In section 3 the operators O in (3.4) responsible for generating the neutrino masses had

specific charges under the composite lepton number U(1)c. Here the strong sector operators

have well-defined quantum numbers under U(1)3. As a consequence, the mixings in (2.1)

have definite U(1)3-spurious charges, that we chose without loss of generality as in (5.2),

whereas the lepton-breaking couplings are now λ̃ ∼ (c1, c2, c3) under the full U(1)c1 ×
U(1)c2 × U(1)c3 symmetry. The total lepton number of λ̃ is generally non-vanishing, L =

c1 + c2 + c3 + ℓ 6= 0.

There is a major departure from our treatment in section 3. When a U(1)3 is assumed

the ǫ̃ matrices for the classes 2M and 1M in (3.7) are no longer expected to be anarchic,

since their entries have different U(1)c1 ×U(1)c2 ×U(1)c3 quantum numbers:

2M : ǫ̃ab ∼









(−2, 0, 0) (−1,−1, 0) (−1, 0,−1)

(−1,−1, 0) (0,−2, 0) (0,−1,−1)

(−1, 0,−1) (0,−1,−1) (0, 0,−2)









, (5.17)

1M : ǫ̃ai ∼









(−1, 0, 0) (−1, 0, 0) (−1, 0, 0)

(0,−1, 0) (0,−1, 0) (0,−1, 0)

(0, 0,−1) (0, 0,−1) (0, 0,−1)









,

0M : ǫ̃ij ∼ (0, 0, 0) .

The phenomenology is completely determined by these charge assignments.

Because we do not actually know the UV dynamics that gives rise to (3.4), we do not

know which operators and hence which of the representations in (5.17) will be present in

the EFT below ΛUV. We therefore take an agnostic perspective and discuss a few possi-

bilities. In particular we will focus on the case in which a single representation λ̃ in (5.17)

dominates. There are several reasons for this. The first is minimality; interestingly, we will

find a few cases in which a single charge is enough to generate a realistic neutrino texture.

The second is more technical: if several lepton-breaking operators with different U(1)3

quantum numbers were to have non-vanishing coefficients λ̃ in the UV, then their effect

at low energies would be dependent on their anomalous dimensions. But these latter are

generically different because by assumption the operators have different quantum numbers.

Therefore, barring non-generic coincidences, one of the CFT deformations will typically

be more relevant than the others and determine the neutrino mass texture. One recovers

the results of the anarchic scenarios discussed in section 3 when several lepton-breaking

operators break U(1)3 maximally and the corresponding scaling dimensions are similar.

Scenarios belonging to 0M in (3.7) reveal no new features compared to the anarchic

case and will not be discussed. We instead analyze a few examples within classes 2M and

1M. We will demonstrate that in a few interesting cases a single spurion, ǫ̃ 6= 0, is sufficient

to yield a realistic neutrino mass matrix.

As a first concrete case let us consider the U(1)L-violating operator

λ̃ãOã,(c1=1,c2=1,c3=0), which breaks lepton number by two units. Such a deformation

gives rise to a neutrino mass matrix which belongs to class 2M, since two insertions of the
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mixings ǫℓ are required. According to (5.17), only ǫ̃12 = ǫ̃21 is non-zero. Thus, recalling

the triangular form of the mixings, eq. (2.4), we find the neutrino mass matrix reads

mν ∝ ǫℓ1ǫ
ℓ
2









0 1 1

1 1 1

1 1 1









. (5.18)

This texture for mν is completely uncorrelated with the values of ǫℓi/ǫ
ℓ
j . Its entries are all

automatically of the same order except for mν
11 which, after rotation to the field basis in

which the charged lepton mass matrix is diagonal, is suppressed by me/mµ. Note that

because the matrix ǫ̃ is rank two, so is mν . Therefore one eigenvalue is vanishing and strict

normal hierarchy of the neutrino spectrum is predicted, together with a strong suppression

of neutrinoless 2β-decay. We remark that the assumption of single-spurion dominance

implies that the order one numbers in eq. (5.18) depend exclusively on the three complex,

order-one coefficients of ǫℓai, shown in eq. (2.4), with no dependence on strong-sector order-

one coefficients: this makes single-spurion scenarios particularly predictive, in particular

the values of CP-violating phases are correlated with neutrino masses and mixing angles.

One can check that, within the class 2M, this is the only viable possibility to fit neutrino

data with only a single non-zero entry in the spurion matrix ǫ̃ab.

Moving to class 1M, the very same rank-two texture as in eq. (5.18) happens to be

realized by a non-zero spurion ǫ̃a=2 i ∼ (0,−1, 0). In this case the three complex, order-

one coefficients that fully determine the matrix texture are the one in ǫℓ23 and the two

independent ones in ǫ̃2i. A second viable 1M scenario is provided by ǫ̃a=1 i ∼ (−1, 0, 0),

that induces a neutrino mass texture with all entries of the same order. Also in this

scenario mν has rank two, and the vanishing eigenvalue may correspond to either normal

or inverted hierarchy of the neutrino spectrum. Inverted hierarchy is preferred, because in

this case all the entries of mν can have the same size within a factor of two, while normal

hierarchy requires entries different by a factor of five or so [15, 16].

We end this section observing that, as neutrino mixing breaks explicitly U(1)3, one may

wonder whether the analysis of charged lepton flavor violation in section 5.1.1, that relied

on the existence of such (approximate) symmetry, still holds. To quantify how accurate the

U(1)3 symmetry needed to be, recall that main achievement was a significant suppression

of flavor and CP violation in charged leptons, by a factor as small as me/mµ ∼ 1/200 in

the case of de, see eq. (5.12). Thus, in order to be consistent with data when m∗ ∼ 10TeV,

it is sufficient that the U(1)3 symmetry of the strong sector be respected at the percent to

permille level. Now, the naive expectation is that in a concrete model of neutrino masses

a typical source of U(1)3 breaking is controlled by powers of mν/m∗, and therefore it can

be neglected, very much like in the SM. This expectation holds generically in all neutrino

mass models we consider in section 3, with the notable exception of scenarios based on

the lepton-breaking perturbation λ̃ijãℓiℓjOã. The peculiarity of this model is that Oã is

necessarily a scalar of dimension not far from 2, so that |Oã|2 is nearly marginal. From

this follows that the theory might contain an additional, nearly marginal source of U(1)3
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breaking controlled by

c̃ãb̃OãO
∗
b̃
, (5.19)

where c̃ab & λ̃ijãλ̃
∗
ijb̃
/16π2 (of course no U(1)3 breaking would be present if Oã is a singlet).

In none of the other models of section 3 there necessarily exists a nearly marginal operator

within the strong sector that could potentially give rise to a sizable violation of U(1)3 from

loops of elementary leptons. The conservative condition |c̃ab| . 0.1− 1%, identified above,

translates into |λ̃ijã| . 0.1 − 1. As a result, the U(1)3 symmetry invoked in our study of

the charged-lepton flavor and CP violation is accurate in virtually all realistic scenarios for

neutrino masses.

5.2 Multiple flavor scales

In this section we discuss the possibility that the strong sector gives rise to flavor-dependent

scales, mψ
a∗, for the various composite operators Oψ

a in (2.1), see [35, 36]. For simplicity we

will consider mℓ
a∗ = me

a∗, a scale which we simply denote by ma∗, though a similar analysis

can be extended to the general case (see also the discussion at the end of sections 5.2.2

and 6). We take

ma∗ > m∗ . (5.20)

This implies that below ma∗ the operator Oa decouples, and we have to match two different

descriptions, the one at scales µ > ma∗ with the one at scales µ < ma∗.7

The correct degrees of freedom to describe physics at scales above m∗ are the funda-

mental fermions ψ and the operators O of the strong sector. Recall in particular that, if

the strong sector is to provide a natural explanation of the electroweak hierarchy or, in

other words, to be free of unnatural tunings, then at scales well above m∗ (those relevant

to our matching procedure) there should be no weakly-coupled scalar, and in particular

no weakly-coupled Higgs field. Yet the UV description could certainly contain a Higgs

operator OH with the same quantum numbers of the Higgs doublet but, being not weakly-

coupled, having scaling dimension dH > 1. Such a picture does not suffer from a hierarchy

problem if dH & 2, so that |OH |2 is irrelevant. At scales above m∗ we should therefore

describe the strong dynamics in terms of CFT operators O; it is only at energies of order

m∗ that the weakly-coupled Higgs doublet, and possibly other resonances of the strong

dynamics, emerge. At this last stage all operators with the appropriate quantum numbers

can interpolate the Higgs, for instance OH → g∗m
dH−1
∗ H.

We are now ready to present our matching procedure. Schematically:

δLµ>ma∗ =
∑

b

λψ
biO

ψ
b ψi

ma∗−→ δLµ<ma∗ =
∑

b 6=a

λψ
biO

ψ
b ψi +∆La. (5.21)

Here ∆La contains all terms allowed by symmetries written in terms of the CFT operators

O that remain in the EFT, including Ob 6=a, OH , and possibly others (to be discussed below).

A naive dimensional analysis estimate gives:

∆La =
(ma∗)4

g2∗
L̂a
0

(

O

(ma∗)dO
, ǫψbi

g∗ψi

(ma∗)3/2
,
Dµ

ma∗

)

+O
(

g2∗
16π2

)

. (5.22)

7We implicitly assume that both theories are approximate CFTs.
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All parameters, including ǫψ, are evaluated at the scale ma∗, and we have assumed a

universal, a-independent g∗ coupling for simplicity. The effect of the O’s is weighted by the

corresponding scaling dimension dO. One proceeds similarly for all mass thresholds ma∗.

Without loss of generality it is convenient to label the composite operators in such a

way that Oψ
1 decouples before Oψ

2 , that decouples before Oψ
3 , that is

mψ
3∗ ≪ mψ

2∗ ≪ mψ
1∗ , (5.23)

irrespective of their anomalous dimensions. With this convention, and keeping the same

triangular form of (2.4), one finds that operators containing ψi will only be generated at

scalesmψ
a∗ with a 6 i. Furthermore, given a large separation among thema∗, at low energies

the most relevant operators containing ψi will be those generated at mψ
a∗ with a = i.

As a first concrete application of (5.21) and (5.22) we identify the form of the charged

lepton Yukawa couplings that arise within this scenario. First, observe that below ma∗ the

combination of fundamental fermions mixed with Oa, i.e. λ
ψ
aiψi, no longer couples linearly

to the remaining CFT. Its dominant interaction to the strong sector at lower scales is

assumed to be mediated by cab(λ
ψ
ai)

∗λψ′

bi ψ̄OHψ′, with OH a composite operator with the

Higgs quantum numbers and ψ′ another fundamental fermion with appropriate charges.

The Yukawa operators ψ̄OHψ′ have scaling dimension dH + 3, causing a suppression of

order (µ/ma∗)dH−1 of the Yukawa couplings evaluated at a lower scale µ.

Technically speaking, the appearance of cab(λ
ψ
ai)

∗λψ′

bi ψ̄OHψ′ within the EFT (5.22)

relies on the existence of a CFT 3-point function involving Oψ
a , O

ψ′

b , OH . However, in

generic scenarios such a correlator with a 6= b would be hard to reconcile with (5.23): if O1

has unsuppressed interactions with O3 it is not a priori clear why the hypothesism3∗ ≪ m1∗
is radiatively stable. To ensure these hierarchies are stable we will assume that the strong

sector enjoys a U(1)3 symmetry distinguishing the three composite flavors a = 1, 2, 3.

We will see that this operational assumption will lead to phenomenological implications

analogous to those of section 5.1. The main modification is in the order one coefficients.

We now have all the ingredients necessary to determine the charged lepton Yukawa

couplings. These take the same form as in (2.6), yeij = g∗ǫℓ∗aiǫ
e
bjc

e
ab, the presence of flavored

scales being encoded in a non-trivial structure of the U(1)3-invariant coefficients,

ceab =

(

m∗
m1∗

)dH−1

O









1 0 0

0 1 0

0 0 1









+

(

m∗
m2∗

)dH−1

O









0 0 0

0 1 0

0 0 1









+

(

m∗
m3∗

)dH−1

O









0 0 0

0 0 0

0 0 1









≃ ca

(

m∗
ma∗

)dH−1

δab , (5.24)

where the second line follows from (5.23) and ca are complex numbers of order unity. The

Yukawa matrix is well approximated by

ye ∼
√
2m3

v









m1
m3

m1
m3

m1
m3

m1
m3

m2
m3

m2
m3

m1
m3

m2
m3

1









, (5.25)
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where

mi ∼ g∗ǫ
ℓ
iǫ

e
i

(

m∗
mi∗

)dH−1 v√
2
, (5.26)

and we assumed the ordering m1 ≪ m2 ≪ m3 (similarly to (5.4)) so the terms that have

been neglected in (5.25) are automatically of order mi/mj>i. The structure (5.25) is the

same as in the scenario with no hierarchical scales and U(1)3 symmetry.8

The hierarchies in the masses of charged leptons can be entirely reproduced by the hier-

archies in ma∗. In other words, in this multi-scale scenario there is no need for hierarchical

ǫi. For instance, taking ǫℓ,ei = 1 for all flavors, g∗ = 4π, m∗ = 10TeV, and considering for

definiteness a value dH = 2, a realistic pattern of lepton masses can be achieved with

m1∗ ∼ 5× 1010GeV, m2∗ ∼ 2× 108GeV, m3∗ ∼ 1× 107GeV . (5.27)

For ǫℓiǫ
e
i < 1 and/or dH > 2, the scales ma∗ at which the Yukawa operators are generated

are necessarily lower than in (5.27).

5.2.1 Flavor and CP violation

The virtue of the scenario with flavored scales is that it leads to a natural suppression

of flavor and CP-violating transitions. The operators responsible for such processes are

generated at scales ma∗ significantly above m∗. This gives rise to suppressing factors

(m∗/ma∗)α with respect to both the anarchic and U(1)3 scenarios discussed in the previous

sections. Obviously, since the Yukawa operators are also generated at high scales, they are

suppressed as well. Nevertheless, the important question is what is the relative suppression

of the latter compared to the former.

Let us then see how this works for the operators controlling the most important devi-

ations from the SM. First, the dipole operators QeW,eB are here built in terms of ψ’s and

OH , rather than the Higgs doublet, and have dimension dH + 5. For the remaining opera-

tors a few more comments are necessary. QeH at high scales can be obtained by replacing

(H†H)H → OH , but in so doing one would get back the proto-Yukawa ℓ̄OHe.9 In that case

the flavor structure of the Wilson coefficient would be aligned with the SM Yukawa and not

8In the absence of a U(1)3 symmetry the strong-sector coefficients would read

ceab =

(

m∗

m1∗

)dH−1

O









1 1 1

1 1 1

1 1 1









+

(

m∗

m2∗

)dH−1

O









0 0 0

0 1 1

0 1 1









+

(

m∗

m3∗

)dH−1

O









0 0 0

0 0 0

0 0 1









≃

(

m∗

mmin(a,b)∗

)dH−1

cab .

In this case the Yukawa matrix of charged leptons reads the same as eq. (5.25), as long as the ǫℓ,ei do not

exhibit large hierarchies, i.e. ǫℓ,e1 ∼ ǫℓ,e2 ∼ ǫℓ,e3 , which is equivalent to the statement that the hierarchies in

the lepton masses are completely controlled by the hierarchies in ma∗. In fact, as long as this last statement

holds, the flavor structure of this scenario is effectively that corresponding to a U(1)3-symmetric multi-scale

scenario of (5.24), the phenomenological consequences being the same.
9An equivalent way to see this is to observe that OH interpolates both H and (H†H)H at scales of order

m∗.
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mediate new effects. A more interesting option is to postulate there is another scalar opera-

tor O′
H with the quantum numbers of the Higgs, and that it is this that governs QeH . Then

the scaling dimension of QeH above m∗ would be d′H+3. A minimal option is to take O′
H =

OHO†
HOH so that d′H ∼ 3dH . We will consider this possibility in the following and declare

QeH has dimension 3(dH + 1). Regarding QHℓ,He we note that a vector CFT operator is

needed. By unitarity this has dimension ≥ 3, so QHℓ,He must have dimension ≥ 6. To be

conservative we will assume the scaling dimension is minimal. Finally, Qℓℓ,ℓe,ee are made up

of 4 fundamental fermions and always have dimension 6, irrespective of the CFT dynamics.

The overall suppression of a given operator will be determined by its scaling dimension,

while the flavor structure of such a suppression will depend on the scale at which the leading

contribution is generated. Given the U(1)3 symmetry assumed to be present in this scenario

(see the discussion above (5.24)), we can make use of the results presented in section 5.1.1

with the novelty that now the order one coefficients in (5.7) are hierarchical:

Qij
eW,eB : ca ∼ (m∗/ma∗)

dH+1 ,

Qij
eH : ca ∼ (m∗/ma∗)

3dH−1 ,

Qij
Hℓ,He : ca ∼ (m∗/ma∗)

2 ,

Qijmn
ℓe,ℓℓ,ee : cab ∼ (m∗/mmin(a,b)∗)

2 .

(5.28)

The Wilson coefficients of the dim-6 operators in table (3), in the gauge basis, are obtained

by dressing the strong-dynamics coefficients (5.28) with the mixings λψ in (2.1), renormal-

ized at the appropriate flavor scale. Then one can verify that the relative suppression of

these operators compared to the anarchic scenario with one scale m∗ is of order (m∗/ma∗)2

for Qij
eW,eB, (m∗/ma∗)2dH for Qij

eH , (m∗/ma∗)3−dH for Qij
Hℓ,He and finally (m∗/ma∗)4−2dH

for Qij
ℓe,ℓℓ,ee [35]. In the limit dH → 1 of a fundamental Higgs all operators are effectively

dimension 6 and one completely decouples the flavor and CP problems as in the SM. In

a composite Higgs picture, as long as dH < 3, all flavor-violating operators other than

the 4-fermion ones will be relatively suppressed at low energies compared to the standard

anarchic scenario. Qℓe,ℓℓ,ee on the other hand are suppressed only if dH < 2. For defi-

niteness our benchmark point will be dH = 2, that is also close to the minimal dimension

compatible with a solution of the hierarchy problem.

To identify the largest contribution to a given dim-6 operator in the mass basis two

factors are important, first that going to the mass basis introduces mixing angles of order

mi/mj>i, following (5.6), and second that the relative size of the operators generated

at different scales is controlled by mj∗/mi∗ ∼ (mi/mj)
1/(dH−1) and by the ratios of ǫψi ,

according to (5.26). Rather than showing the general expressions for the Wilson coefficients

we decide to focus on the interesting case ǫℓ,ei ∼ ǫℓ,ej (and dH = 2) in which the lepton mass

hierarchies are entirely given by m∗/mi∗. In this case the coefficients would be the same

even if we did not assume the U(1)3 symmetry.

Explicit expression for all the Wilson coefficients in the mass basis are shown in table 8

for this particular case. We find that the leading contribution to QeW,eB and QeH is

generated at the lowest scale m3∗, implying the suppressions parametrized by the factors

of m3/g∗v. The reason for this can be traced back to the power of m∗/ma∗ in (5.28) being
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ma∗ ǫℓ,ei ∼ ǫℓ,ej , dH = 2
CeW

ij

Λ2
g2∗

16π2
g∗
m2

∗

1
(ǫℓǫe)2

2
√
2mimjm3

g3∗v
3 g ĉeWij

CeB
ij

Λ2
g2∗

16π2
g∗
m2

∗

1
(ǫℓǫe)2

2
√
2mimjm3

g3∗v
3 g′ ĉeBij

CeH
ij

Λ2
g3∗
m2

∗

1
(ǫℓǫe)4

4
√
2mimjm

3
3

g5∗v
5 ĉeHij

C
Hℓ(1,3)
ij

Λ2
g2∗
m2

∗

1
(ǫe)2

2mimj

g2∗v
2 ĉ

Hℓ(1,3)
ij

CHe
ij

Λ2
g2∗
m2

∗

1
(ǫℓ)2

2mimj

g2∗v
2 ĉHe

ij

Cℓe
ijmn

Λ2
g2∗
m2

∗

2min(mi,mj ,mm,mn)min′(mi,mj ,mm,mn)
g2∗v

2 ĉℓeijmn

Cℓℓ
ijmn

Λ2
g2∗
m2

∗

(

ǫℓ

ǫe

)2 2min(mi,mj ,mm,mn)min′(mi,mj ,mm,mn)
g2∗v

2 ĉℓℓijmn
Cee

ijmn

Λ2
g2∗
m2

∗

(

ǫe

ǫℓ

)2 2min(mi,mj ,mm,mn)min′(mi,mj ,mm,mn)
g2∗v

2 ĉeeijmn

Table 8. Here we present the Wilson coefficients of the dim-6 operators in the mass basis, assuming

the strong dynamics gives rise to flavor dependent dynamical scales ma∗. The results shown are

for ǫℓ,ei ∼ ǫℓ,ej and dH = 2, therefore they hold whether a U(1)3 symmetry is assumed or not.

We defined min({}) as usual whereas min′({}) as the operation of identifying the next to smallest

element, e.g. min(me,mτ ,mµ,mµ) = me and min′(me,mτ ,mµ,mµ) = mµ.

larger than two. On the contrary, the other operators are suppressed by (m∗/ma∗)2 and

the leading contribution to their Wilson coefficients depends on their flavor. The inverse

proportionality of the coefficients on ǫℓ,e is just a consequence of the fact that the smaller

the degree of compositeness, the lower the flavor scales mi∗ need to be to reproduce the

lepton masses.

The comparison between the present U(1)3-symmetric multi-scale scenario and the

one with a single scale, see table 7, shows that, for dH = 2 and ǫℓ,e = 1, the presence of

dynamical scales is always more effective in suppressing flavor and CP-violating transitions

(except for some 4-lepton operators whose coefficients are equal, up to order one factors).

Let us discuss specifically the predictions for µ → eγ and the electron EDM, which lead to

the most stringent constraints in generic scenarios. For the former the dependence on g∗
cancels out and we get

Ceγ
12,21

Λ2
≃ 1

16π2

e

m2
∗

2
√
2memµmτ

v3
ĉeγ12,21
(ǫℓǫe)2

. (5.29)

For m∗ = 10TeV, ǫℓǫe = 1, dH = 2, and a natural ĉeγ12,21 = 1, the result is more than six

orders of magnitude below the current experimental bound. This is a factor mµmτ/g
2
∗v

2

smaller than in the U(1)3 single-scale scenario, where the prediction for µ → eγ was barely

compatible with data. The constraint associated with (5.29) can also be read as a lower

bound on ǫℓǫe and thus onm3∗, the scale where the leading contribution to Qeγ is generated,

resulting inm3∗ & 15(g∗/4π) TeV, just slightly abovem∗ for maximal g∗. The bound on the

electron EDM is easily satisfied as well due to the extra suppression, of order mµmτ/g
2
∗v

2
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once again, with respect to the U(1)3 × CP scenario,

de ≃
1

8π2

e

m2
∗

2
√
2m2

emτ

v3
ĉeγ11

(ǫℓǫe)2
. (5.30)

Note there is no need to invoke CP-invariance of the strong sector here. The very presence

of multiple scales is enough.

To conclude this section, we emphasize that in the present multi-scale scenario the

electron EDM receives, on top of the tree-level effects discussed here, an additional loop-

level contribution generated at the scale m∗ [36]. This can be seen to arise from one-

loop diagrams involving flavor-independent CP-violating operators suppressed by m∗ (in

particular affecting the Higgs coupling to photons). These turn out to give the largest

contribution to de and keeping them under control requires m∗ & few TeV [37].

5.2.2 Neutrino masses

The structure of the Majorana mass matrix (3.2) depends, as in the scenarios discussed

above, on the properties of the lepton-breaking perturbation λ̃. In this regard, note that

we should still assume the strong sector has at least an approximately conserved lepton

number U(1)c, since otherwise neutrino masses would be unacceptably large. To see this

explicitly, note that the Weinberg operator (3.2) would receive a minimum contribution

from a term ℓℓOHOH , generated along with the proto-Yukawa of the tau at the scale mℓ
3∗,

mν ∼ (ǫℓ3)
2 (g∗v)

2

m∗

(

m∗
mℓ

3∗

)2dH−1

&
2m2

τ

mℓ
3∗

&
2m2

τ

m∗

(√
2mτ

g∗v

) 1
dH−1

& 500 eV ,

where in the first and second inequalities we made use of (5.26) and ǫℓ,e3 ≤ 1, while in the last

inequality we used dH ≥ 2, g∗ = 4π and m∗ = 10TeV, that correspond to mℓ
3∗ ∼ 107GeV,

see (5.27). Such a neutrino mass scale is at least three orders of magnitude too large.

Having stablished the necessity of a composite lepton number, the parametric depen-

dence of the neutrino mass matrix is still provided by three classes 0M, 1M, 2M as in (3.7),

though now the strong sector coefficients are not anarchic. Here we find

2M : mν
ij = ǫℓaiǫ

ℓ
bj ǫ̃ab

(g∗v)2

m∗
, ǫ̃ab = ǫ̃cνab , cνab ≃ δabca

(

m∗
mℓ

a∗

)dT−1

, (5.31)

1M : mν
ij =

[

ǫℓaiǫ̃aj + ǫℓaj ǫ̃ai

] (g∗v)2

m∗
, ǫ̃ai = ǫ̃ic

ν
ai , cνai ≃ cai

(

m∗
mℓ

a∗

)dT−1

,

0M : mν
ij = ǫ̃ij

(g∗v)2

m∗
,

where the last equation in each class shows the expectation for the U(1)3-invariant strong

sector coefficients, with ca, cai complex numbers of order unity.10 Here dT is the scal-

ing dimension of a triplet scalar operator, OT , which at m∗ interpolates to HH, that

10If we relax the assumption of U(1)3 the only difference with respect to (5.31) is in class 2M, where we

now have cνab ≃ cab(m∗/m
ℓ
min(a,b)∗)

dT−1.
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is OT → g2∗m
dT−2
∗ HH. At high energy scales, mℓ

a∗, the operator ℓℓOT is generated, fi-

nally interpolating the Weinberg operator (3.2) at m∗. The minimal example would be

OT = OHOH , in which case dT ≃ 2dH . Other possibilities are well-motivated as well,

for instance that the CFT contains OT as an independent scalar operator, as long as (in

analogy with OH) the dimension of the singlet operator |OT |2 is & 4.

For class 0M, the U(1)L-breaking deformation ǫ̃ij is associated with couplings of ℓi
to the strong sector that are independent from the multiple flavor scales, therefore the

neutrino mass texture is not affected compared to scenarios with a single mass scale.

Because of U(1)3, neutrino masses in classes 1M and 2M depend on which lepton-

breaking perturbation (5.17) is turned on. The viable neutrino textures turn out to be

the same as those discussed in section 5.1.3: the spurion ǫ̃ ∼ (−1,−1, 0) in class 2M, and

either ǫ̃ ∼ (−1, 0, 0) or ǫ̃ ∼ (0,−1, 0) in class 1M can fit neutrino data. The only difference

in the multi-scale scenario is in the neutrino mass scale. The 2M neutrino mass matrix

in eq. (5.18) is here further suppressed by a factor (m∗/mℓ
1∗)

dT−1 ∼ (m1/ǫ
ℓ
1ǫ

e
1)

∆, where

∆ = dT−1
dH−1 and we used the relation (5.26) with mℓ

a∗ = me
a∗. Similarly, the overall size of

the neutrino matrix in the two viable models in class 1M is determined by the fact that

now ǫ̃a=1 i ∼ (m∗/mℓ
1∗)

dT−1 and ǫ̃a=2 i ∼ (m∗/mℓ
2∗)

dT−1 ∼ (m2/ǫ
ℓ
2ǫ

e
2)

∆.

If one drops the assumption of U(1)3 symmetry, there are important consequences for

the neutrino mass matrix in classes 1M and 2M. Let us focus our discussion on the former,

the conclusions for the latter being qualitatively the same. In class 1M the structure of

mν is determined by the fact that below the scale ma∗, where the operator Oℓ
a decouples,

the strong sector remains linearly coupled to the ℓ’s via the lepton-breaking perturbation.

Recalling that in the absence of U(1)3 the ǫ̃ matrix is anarchic, the resulting neutrino mass

matrix is

mν ∝









m∆
1 m∆

2 m∆
3

m∆
2 m∆

2 m∆
3

m∆
3 m∆

3 m∆
3









, (5.32)

where we chose ǫℓ,ei ∼ ǫℓ,ej , such that the hierarchy of flavor scales completely determines the

charged lepton masses, according to (5.26). The texture (5.32) exhibits a hierarchical struc-

ture, at odds with the observed neutrino mass anarchy. Similar hierarchies are obtained in

class 2M, as well as in models with U(1)3-symmetric strong sector, but several comparable

U(1)L-violating spurions ǫ̃ at the relevant scales, see the discussion below (5.17).

Finally, let us comment on one interesting multi-scale scenario where the PMNS ma-

trix is reproduced, still in classes 1M and 2M and without U(1)3 symmetry, relaxing the

assumption that both operators Oℓ
a and Oe

a decouple at the same scale. This case is the

multi-scale analog of scenarios with ǫℓi ∼ ǫℓj , where the charged lepton masses are deter-

mined by the ǫei ’s. We assume all the Oℓ
a (or at least Oℓ

2,3 if class 1M) decouple at a single

scale mℓ
∗ < me

a∗, that is below any of the scales where Oe
a decouple. The resulting neutrino
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mass matrix is, for ǫℓi ∼ ǫℓj , completely anarchic

mν∝ ǫ̃

(

m∗
mℓ

∗

)dT−1

O









ζ 1 1

1 1 1

1 1 1









, (5.33)

its overall size being determined by ǫ̃ and mℓ
∗. These latter quantities are now uncorrelated

with the charged lepton masses, that are controlled by me
a∗. In (5.33) we introduced the

parameter ζ to differentiate between class 1M with mℓ
1∗ ≫ mℓ

2∗,3∗ ≡ mℓ
∗, where ζ = me/mµ,

and class 2M or class 1M with a flavor-universal mℓ
∗, for which ζ = 1.

Remarkably, in the present scenario the results of section 5.2.1 concerning operators

involving right-handed leptons, most importantly the Yukawa couplings and dipole oper-

ators, are not affected. However, operators with only lepton doublets, i.e. QHℓ and Qℓℓ,

could be significantly enhanced if mℓ
∗ is low and ǫℓ ∼ 1, since their Wilson coefficients are

predicted to be CHℓ,ℓℓ/Λ2 ∼ (g∗/mℓ
∗)

2. Constraints from µ → e conversion in nuclei and

µ → eee then require

mℓ
∗ &







5.7× 103TeV
(

g∗ǫℓ

4π

)

(Q
(1),(3)
Hℓ )

2.6× 103TeV
(

g∗ǫℓǫℓ

4π

)

(Qℓℓ)
, (5.34)

while, if in class 1M mℓ
1∗ ≫ mℓ

∗, the bounds are relaxed by a factor
√

me/mµ ≃ 1/15.

We should also point out that, if the strong sector enjoys a custodial SU(2)L × SU(2)R
symmetry, as required in composite Higgs models, then a PLR parity [38] can enforce a

suppression of the non-standard (flavor-changing) couplings of the Z boson to fermions. If

the composite operators Oℓ coupled to the lepton doublets are such that PLR is respected,

then the coefficients of the operators Q
(1)
Hℓ and Q

(3)
Hℓ satisfy CHℓ(1) = −CHℓ(3) at tree level.

Then, eq. (D.8) implies that the first bound in (5.34) is significantly relaxed, leaving the

bound from Qℓℓ as the only relevant constraint on mℓ
∗. We will invoke this scenario in

section 6, to address the anomaly in the b → sl+l− transitions.

6 Anomalies in semi-leptonic B decays

In recent years, a series of experimental results have been showing a coherent pattern of

deviations from the SM predictions in semi-leptonic decays of B-mesons. These “flavor

anomalies” can be grouped in two sets of observables: deviations in semi-leptonic decays

in flavor changing neutral current (FCNC) [39–44, 44–46] and deviations in semi-leptonic

decays in flavor changing charged current (FCCC) [47–49] . In both cases the significance

of the departure from the SM surpasses the 4σ level. Assuming (optimistically) that these

effects are coming from new physics, what data is suggesting is a departure from lepton

flavor universality (LFU), a key feature of the gauge interactions of the SM. The structure

of the violation of LFU hinted by data can be summarised as follows:

1. an enhanced rate of the decays involving the τ lepton in b → cτν compared to

the same transitions involving muons or electrons, whose rates agree with the SM

predictions;
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2. a destructive interference of the new physics with the SM in processes involving the

muon in b → sµ+µ−, without significant deviation in similar processes involving

electrons;

3. absence of evidence of lepton flavor violating effects (LFV);

4. a good description of data in both the FCCC and FCNC processes is obtained invok-

ing new physics in left currents only (both for quarks and for leptons), in particular

at the scale of the bottom mass we can make use of the effective Lagrangian

Leff ⊃ − 1

Λ2
CC

cLγ
µbLτLγµνL +

1

Λ2
NC

sLγ
µbLµLγµµL + h.c. , (6.1)

with a best fit value for the charged and neutral current given by ΛCC = 2.4 TeV

and ΛNC = 31 TeV respectively, see for example [50].

We observe that the new physics effects required to explain the FCCC anomalies have to

be very large, as hinted by the low scale ΛCC = 2.4TeV. This is in part due to fact that

the anomalies are observed in decay channels where the SM contributes at tree level. Any

explanation of the charged current anomalies beyond the SM has to face a series of stringent

constraints coming from other flavor observables like the decay rate of B → K(∗)νν, meson

mixing observables, LFV decays of the τ lepton, possible modification of the W and Z

couplings to the third families of quarks and leptons and also direct resonance searches at

the LHC. The explanation of this class of anomalies in PC looks disfavoured and a complete

assessment of the viability of potential explanations requires a non-trivial analysis that goes

beyond the purpose of this work. We refer to [51–53] for recent discussions on this topic.

We will focus then on the flavor anomalies in b → sℓℓ transitions. The higher

value ΛNC = 31TeV compared to the previous case makes the interpretation in terms

of new physics much more feasible (in absolute terms the ratio of amplitudes scales like

Λ2
NC/Λ

2
CC = O(100)). The analysis of the semi-leptonic operators, such as those in

eq. (6.1), inevitably requires a discussion of the quark sector. It is well known that in

the context of PC (see e.g. [9, 54, 55]) the anarchic scenario cannot remain natural while

evading all the bounds coming from indirect searches (in particular those coming from the

EDM of the neutron and from mixing observables in the K and charm systems).11 On the

other hand the focus of our work is on the lepton sector so as a first step we want to un-

derstand the potential physical implications of the anomalies relying as little as possible on

the structure of the quark sector. After having identified what are the viable options from

a purely leptonic point view, we will sketch at the end of the section a possible realization

that is phenomenologically viable also in the quark sector.

The needed operator sLγ
µbLµLγµµL matches at the scale m∗ to SU(2)L×U(1)Y gauge

invariant operators of the following form

Leff ⊃
∑

ijlk

g2∗
m2

∗

[

cijkl1 (qiγµqj)(ℓ
k
γµℓ

l) + cijkl3 (qiγµσaqj)(ℓ
k
γµσ

aℓl)
]

. (6.2)

11Interesting attempts to explain the anomalies in the context of compositeness include [56–60].
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The flavor anomaly in b → sµ+µ− is reproduced when

( g∗
4π

)2
(

10 TeV

m∗

)2(c23221 + c23223

0.11

)2

≃
(

31 TeV

ΛNC

)2

, (6.3)

where for instance in the anarchic PC case we have c2322i ∼ ǫq2ǫ
q
3ǫ

ℓ
2ǫ

ℓ
2.

Our strategy in this section is simple: we fix the new physics contribution in the

b → sµ+µ− as in (6.3) and then derive bounds on the new physics parameters in the

lepton sector using processes with the same down-to-strange flavor transitions (b → s) but

different lepton flavor combinations.12

As a first step we introduce a normalisation of the new physics effect required to

reproduce the best fit value of the anomalies, comparing its strength with those induced

by the SM in the same left-currents vector operator

k ≡
CBSM
bLℓL

CSM
bLℓL

= −0.15 , (6.4)

where the values and the definitions of the Wilson coefficients CbLℓL are taken from [61].

This means that the new physics gives a destructive interference of about 15% of the SM

amplitude.

Operators in eq. (6.2) induce flavor transitions with different leptons in the final states

both with charged particles b → sl+i l
−
j and with neutrinos b → sνiνj .

13 To overcome

the model dependence coming from the quark sector we define the following dimensionless

ratios of new physics amplitudes induced by the operators in eq. (6.2)14

Xℓ
ij ≡

Aℓ
b→sl+i l−j

Aℓ
b→sµµ

∼
Aℓ

b→sνiνj

Aℓ
b→sνµνµ

. (6.5)

All the chiralities of the particles involved in the above expression are left-handed and the

last equality has to be understood up to order-one numbers. Correlations between different

isospin elements of the lepton doublets depend on the ratio of the triplet and singlet Wilson

coefficients in (6.2), but again in the spirit of our analysis effects in charged leptons and

neutrino channels are equal up to order 1 numbers. For similar reasons Xℓ
ij ∼ Xℓ

ji. The

most relevant bounds on the Xℓ
ij are coming from three distinct classes of processes:

12The assessment of the constraints from other transitions, associated with other semi-leptonic operators,

or with purely leptonic or quark operators, requires a comprehensive analysis within a complete flavor

scenario, which is beyond the scope of this simple work (see however the proposal at the end of section 6.1).
13We denote with li the charged lepton contained in the lepton doublet ℓi.
14The new physics amplitudes might receive extra contributions from other operators such as

H†
↔

DµH ℓ
i
γµℓj or H†

↔

DµH qiγµqj , involving the Higgs current. Let us note that the contribution of the

first only arises at loop level or in combination with the second, thus subleading. Also, the second operator,

associated with Z-mediated quark flavor transitions, does not contribute to the ratios RK(∗) at leading order

in the new physics scale, being LFU. We will neglect the effects of such type of operators in our analysis,

which in practice amounts at neglecting non-generic cancellations between non-standard contributions. The

bounds presented in this section can then be considered as conservative when applied only to 4-fermion

semi-leptonic operators.
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1. Neutrino channels (b → sνiνj).

Due to the absence of experimental information on the flavor of the neutrinos in the

final state, this channel can be used to bound all the entries of the Xℓ matrix. The

phenomenological input is given by [62, 63]

B(B → K(∗)νν)

B(B → K(∗)νν)SM
< 4.8 , (6.6)

which can be translated into

1

3



3+2k
3

∑

i=1

Xℓ
ii+k2

3
∑

i,j=1

(Xℓ
ij)

2



< 4.8 →
{

−17<Xℓ
ee,X

ℓ
ττ < 30

|Xℓ
eµ|, |Xℓ

eτ |, |Xℓ
µτ |< 16

. (6.7)

2. Flavor conserving charged lepton channels (b → sl+i l
−
i ).

More stringent bounds on Xℓ
ee can be derived using inclusive b → s transitions as

well as requiring not too large effects in the anomalous observable RK . This leads to

B(B+ → Xse
+e−)[1,6]

B(B+ → Xse+e−)SM[1,6]
≈ (1 + kXℓ

ee)
2 → −2.1 < Xℓ

ee < 2.0 , (6.8)

RK =
B(B+ → K+µ+µ−)[1,6]
B(B+ → K+e+e−)[1,6]

≈ (1 + k)2

(1 + kXℓ
ee)

2
→ −0.6 < Xℓ

ee < 0.8 , (6.9)

where the subscript [1, 6] denotes the q2 region (in GeV2) where the differential

branching ratios have been integrated, with q2 the invariant mass of the di-lepton

system.

Concerning Xττ , a bound can be derived from the upper limit on B(B+ → K+τ+τ−)

B(B+ → K+τ+τ−)

B(B+ → K+µ+µ−)
≈ (1 + kXℓ

ττ )
2

(1 + k)2
→ |Xℓ

ττ | < 400 , (6.10)

which is much less constraining than that derived from B(B → K(∗)νν). Notice that

in the approximate formula above we also considered the τ to be massless.

The phenomenological inputs used are summarized in the table below:

Input Reference

RK = 0.745+0.090
0.074 ± 0.036 [42]

B(B+ → Xse
+e−)[1,6] = (1.73± 0.12)× 10−6 [64]

B(B+ → Xse
+e−)SM[1,6] = (1.93± 0.55)× 10−6 [65]

B(B+ → K+µ+µ−) = (4.29± 0.22) · 10−7 [41]

B(B+ → K+τ+τ−) < 2.25 · 10−3 [66]

(6.11)

3. Flavor violating charged lepton channels (b → sl+i l
−
j ).
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The most relevant constraints are coming from the B+ → K+l+i l
−
j decays. Once

normalised to the muon mode, their expression simplifies to

B(B+ → K+l+i l
−
j )

B(B+ → K+µ+µ−)
=

k2

(1 + k)2
|Xℓ

ij |2 . (6.12)

The experimental inputs with the associated bounds in our parametrization are re-

ported in the following table

Experimental bound Xℓ bound

B(B+ → K+e+µ−) < 9.1× 10−8 [66] |Xℓ
eµ| < 2.5

B(B+ → K+e−µ+) < 1.3× 10−7 [66] |Xℓ
µe| < 3.0

B(B+ → K+e+τ−) < 4.3× 10−5 [66] |Xℓ
eτ | < 55

B(B+ → K+e−τ+) < 1.5× 10−5 [66] |Xℓ
τe| < 32

B(B+ → K+µ+τ−) < 4.5× 10−5 [66] |Xℓ
µτ | < 56

B(B+ → K+µ−τ+) < 2.8× 10−5 [66] |Xℓ
τµ| < 44

(6.13)

In PC, operators with lepton singlets are also generically induced with a strength correlated

with those of the lepton doublets, via their Yukawa couplings.15 For this reason we report

also the bounds on these operators. As before, we can define the matrix Xe (induced by

qγµqeγµe operators) normalized to the effect required by the anomalies:

Xe
ij ≡

Ae
b→sl+i l−j

Aℓ
b→sµµ .

(6.14)

In this case we miss the channels with neutrinos, the bounds from lepton flavor conserving

transitions gets softened because of the very small interference with the SM, while LFV

bounds on Xe are the same as for Xℓ.

Collecting the most stringent constraints we have

|Xℓ| ≤









0.8 2.5 55

3.0 1 56

32 44 30









, |Xe| ≤









3.5 2.5 55

3.0 1 56

32 44 400









. (6.15)

6.1 Predictions from partial compositeness

With these inputs we now make the connection with the PC framework discussed in the

previous sections. The strong constraints from the electron EDM and µ → eγ require to

go beyond the anarchic scenario in the lepton sector and to consider instead one of two

suppression mechanisms: a U(1)3 symmetry or multiple flavor scales.

We address first the case of a U(1)3-symmetric strong sector. In section 5.1 we showed

this scenario is phenomenologically viable, in particular it evades the bounds from µ → eγ

15A breaking of this correlation could arise, for instance, in the presence of pseudo-Goldstone bosons with

specific gauge quantum numbers, see for example [56]. See also the discussion at the end of section 6.1.
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for m∗ & 5g∗TeV, which is associated with a relatively low degree of electroweak fine-

tuning, ξ ∼ g2∗v
2/m2

∗ . 0.2%. Keeping this in mind, let us analyze the implications of the

B-meson semi-leptonic constraints, for two limiting values of the PC parameters, already

introduced in section 5.1:

(i) Left-right symmetry : ǫℓi ∼ ǫei .

In this limit eq. (5.13) implies that the Xℓ matrix takes the form

|Xℓ| =









me
mµ

me
mµ

me
mµ

∗ 1 1

∗ ∗ mτ
mµ









=









4.8 · 10−3 4.8 · 10−3 4.8 · 10−3

∗ 1 1

∗ ∗ 17









, (6.16)

so the bounds can be easily satisfied given the present experimental situation. Notice

that the value of Xℓ
ττ is just a factor 2 below the current bound, therefore in this sce-

nario we predict visible effects in B(B → K(∗)νν) at Belle II in the forthcoming years.

Also note that since the right leptons couple with similar strength to the strong sector,

then Xe = Xℓ. Bounds on Xe are however weaker or at most equal to those on Xℓ.

(ii) Left anarchy : ǫℓi ∼ ǫℓj .

Left anarchy predicts Xℓ
ij = O(1), which is consistent with present bounds. A

diligent comparison with (6.15) shows that possible effects should be visible in flavor

conserving processes involving electrons, B(B+ → Xse
+e−) or B(B+ → K+e+e−),

as well as in LFV decays, B(B+ → K+e±µ∓). In this scenario it is also important

to check the size of operators with lepton singlets. Given a degree of left-handed

compositeness ǫℓ, we can predict ǫei from the mass relation (5.5), and then use

eq. (5.13) to arrive at Xe
ij =

2
g2∗v

2ǫ4ℓ
mimj . Numerically:

|Xe| = 1

g2∗

(

2.2 · 10−2

ǫℓ

)4









3.7 · 10−5 7.7 · 10−3 0.13

∗ 1.6 26

∗ ∗ 440









. (6.17)

The reference value for ǫℓ is the largest allowed by (5.16), which corresponds to the

conservative benchmark point g∗ = 1 and m∗ = 10TeV. The comparison with (6.15)

then shows that already for the largest ǫℓ, and up to the g∗ suppression, B+ → K+ττ

could be within discovery reach, the LFV decay B+ → K+µτ constitutes an extra

discovery channel, and the anomalous B+ → K+µµ should receive contributions

also from a right-handed muon current.

We would like to note that presently the FCNC anomalies are well fitted either by a purely

left-handed muon current, or by a vector muon current (for fit practitioners, C9 6= 0, C10 =

0). Incidentally, the range for ǫℓ predicted in both the left-right and left anarchy limits

implies a similar degree of compositeness of the left- and right-handed muon, compatible

with the vector current hypothesis. This pattern could be confirmed once new data will

become available.
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The predicted correlations among various semi-leptonic channels should allow to test

the U(1)3 symmetry in the near future, as well as to discriminate cases (i), (ii), or other

possible values of the mixing parameters ǫℓi . Recall that neutrino mixing in the U(1)3

scenario is independent from the hierarchies in ǫℓi .

Let us add a final remark on the role of the U(1)3 × CP symmetry for the B-meson

FCNC anomalies. If such symmetry were to be respected also by the elementary-composite

mixings (2.1), as briefly discussed in section 5.1, the constraints from LFV transitions

(µ → eγ) and CP violation (electron EDM) would be significantly relaxed. Therefore,

lower (more natural) values of m∗/g∗ would be viable, as low as allowed by precision tests

of the flavor-diagonal electroweak couplings of leptons, and four-lepton flavor-preserving

operators. Such a scenario is perfectly aligned with the B-anomalies, which currently do

not show any sign of LFV. Under the exact symmetry hypothesis, the limits from LFV

semi-leptonic processes are trivially satisfied, and only the diagonal entries of the matrices

in (6.15) provide relevant constraints.

We discuss now the multi-scale scenario of section 5.2. We focus here on two cases, both

of them consistent with experimental constraints from flavor and CP violation, whose main

difference is in the compositeness scale of lepton doublets, with important consequences

for the B-anomalies.

(i) Left-right symmetry : mℓ
a∗ = me

a∗.

In this case both left and right leptonic scales are correlated with the charged lepton

Yukawa. The prediction for the Xℓ matrix, for a Higgs scaling dimension dH = 2, is

given by (we are implicitly assuming here the unique dynamical scale in the quark

sector is m∗)

Xℓ
ij =

mimj

m2
µ

→ Xℓ =









2.3 · 10−5 4.8 · 10−3 8.1 · 10−2

∗ 1 17

∗ ∗ 283









, (6.18)

which is in tension with the upper bound on Xℓ
ττ from B(B → K∗νν). Values of dH

closer to the elementary limit dH = 1 could alleviate such a tension, however they

are at odds with keeping the Higgs-squared operator not relevant. We conclude that

this scenario is not well-suited to explain the flavor anomalies.

(ii) (Partial) left anarchy : me
a∗,m

ℓ
1∗ ≫ mℓ

2∗ ∼ mℓ
3∗.

The problem of the previous case can be easily fixed if the flavorful scales associated

with the muon and tau lepton doublets are similar. In this case it is natural to assume

that the charged lepton masses are entirely reproduced by the hierarchies in the lepton

singlet scales, for dH = 2 we have mi ∝ 1/me
i∗. This modifies the matrix Xℓ with

respect to (6.18) in the τ -row (and column), which now reads Xiτ = (me/mτ , 1, 1),

safely consistent with semi-leptonic processes. The ee and eµ entries remain the same,

since the breaking of the LFU in the electron-muon sector (hinted by the anomalies)

is achieved by the hierarchy mℓ
1∗ ≫ mℓ

2∗.
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Even if in the scenario (ii) the scales mℓ
2∗ ∼ mℓ

3∗, which from now on we simply denote

as mℓ
∗, are not related to the charged lepton masses, this model is particularly attractive

for what concerns the B-anomalies. In fact, we can successfully extend this particular idea

to the quark sector, along the lines of [36]. For the down-quark sector we consider then

md
a∗,m

q
1∗ ≫ mq

2∗ & mq
3∗ ∼ m∗ , (6.19)

where we take the compositeness scale of the third generation quark doublet to be (ap-

proximately) the same as that of the Higgs, for considerations of electroweak naturalness

(and in fact also mu
3∗ ∼ m∗ for the same reason). The scale associated with the second

generation quark doublet is kept low, relatively close to m∗, since, as we show below, it

might play an important role in explaining the anomalies. In this scenario we assume the

down and up quark masses are reproduced via suitable hierarchies of the right scales, md
a∗

and mu
a∗ respectively, and the CKM matrix is aligned with the left-handed down rota-

tion, i.e. UCKM ∼ Ud (for the same reasons discussed in section 5.1, the mixing angles are

determined by ratios of quark masses and such ratios are smaller in the down sector).

The bounds on a quark sector with multiples scales have been discussed at length

in [36] and we report here their main results adapted to our analysis:

m∗ & 5(xt ,
√
g∗xt) TeV , mq

2∗ & 240xtTeV , (6.20)

with xt = ǫq3/ǫ
u
3 (recall yt ∼ ǫq3ǫ

u
3g∗) and we have taken ǫq2 ∼ ǫq3 for simplicity. The first

two bounds, on m∗, come from K- (ǫK) and B-meson (∆MBb,s
) mixing, while the last is

from ∆MK . Interestingly, these bounds are not too far from those in the lepton sector,

discussed in section 5.2.2. Given our breaking of LFU, mℓ
1∗ ≫ mℓ

∗, one finds that the

strongest constraints arise from µ → eee and µAu → eAu. Following the discussion

below (5.34), we will assume a PLR symmetry acting on ℓ is at work, such that the bound

from µ → e conversion in nuclei is avoided. In this case

mℓ
∗ & 15g∗(ǫ

ℓ)2TeV . (6.21)

The size of the semi-leptonic operator giving rise to the anomaly, eq. (6.2), depends on the

interplay between the scales above. Given the absolute size of the anomaly, the best case

scenario is that in which (6.2) is generated at mℓ
∗ & m∗.

Then, if mq
2∗ > mℓ

∗, only semi-leptonic operators with third generation quark doublets

q3 are generated at mℓ
∗. After taking into account a rotation by (UCKM)32, one arrives at

1

Λ2
NC

∼ λ2
C(ǫ

q
3)

2(ǫℓ)2
(

g∗
mℓ

∗

)2

.
xt
g∗

1

(ǫℓ)2

(

1

65TeV

)2

, (6.22)

where the inequality follows from (6.21). Amusingly, the anomaly can be reproduced for

suitable values of xt, g∗, and ǫℓ: comparing the bounds in (6.20) and (6.21), our assumption

that mℓ
∗ & m∗ simply requires xt/g∗ . 3(ǫℓ)2, a condition that allows a relatively low

ΛNC & 37TeV, a value consistent with the flavor anomalies given the O(1) accuracy of our

estimates. We should note that the scale of the anomaly is predicted to be largest when

mℓ
∗ is close to m∗, which for e.g. xt = 1 and g∗ = 1 is around 5TeV. While such a low m∗
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is welcome for naturalness considerations, the correspondingly low mℓ
∗ implies potentially

large contributions to leptonic processes precisely measured at LEP. Fortunately in our

construction problematic 4-fermion operators involving electrons are suppressed due to the

hierarchy mℓ
1∗ ≫ mℓ

∗ while, due to PLR, only the neutrino couplings to the Z, but not

Zµµ̄, are modified, the deviation being of order (ǫℓg∗v/mℓ
∗)

2 . 10−3 and thus consistent

with the measured Z decay width to invisible.

If, on the other hand, mq
2∗ < mℓ

∗, then semi-leptonic operators with second generation

quark doublets q2 are also generated at mℓ
∗. In this alternative case we find

1

Λ2
NC

∼ (ǫq3)
2(ǫℓ)2

(

g∗
mℓ

∗

)2

.
xt
g∗

1

(ǫℓ)2

(

1

15TeV

)2

, (6.23)

where one needs to take into account that mq
2∗ < mℓ

∗ is consistent with the bounds on mq
2∗

in (6.20) for xt/g∗ . (ǫℓ/4)2 ≤ 1/16. In this case the anomaly can be reproduced consis-

tently with current constraints in both the quark and lepton sectors only if an accidentally

large order-one factor is present in (6.23) (a factor of 4 suffices).

The upshot of this example, which is born out of a consistent picture of flavor, is that if

the flavor anomalies are confirmed, non-standard effects in both purely quark and leptonic

processes (ǫK , ∆MBb,s
, ∆MK , and µ → eee or the electron EDM, respectively), should be

close to the current sensitivity.

7 Conclusions

In this paper we focused on the paradigm of Partial Compositeness (PC), a very appealing

and predictive picture of charged-fermion flavor. In this context we believe the spectrum

of model building possibilities has not been fully explored, and our work aims to close a

few of the remaining important gaps. Our main original results concern

• neutrino masses and mixing;

• scenarios with suppressed flavor violation in the lepton sector;

• CP symmetry.

We pointed out that PC is very predictive in the neutrino sector. Anarchic realizations,

in which the composite sector violates maximally flavor and CP symmetries, generate one

of three possible neutrino mass textures, see eq. (3.7). Two textures are correlated with

the degree of compositeness of the lepton doublets, that is forced to be of the same order

for the second and third families. We argued there exists a natural mechanism to suppress

neutrinoless 2β decay, and showed that, order-one PMNS phases are predicted in all tex-

tures. Concrete models that realize such textures have been identified and briefly discussed.

These models encompass (a strongly-coupled version of) most well-known mechanisms of

neutrino mass generation, but they do not suffer from a naturalness problem even for a

large lepton-number breaking scale.

We then carried out a thorough analysis of charged lepton flavor- and CP-violating

processes, updating the constraints and presenting them in a model-independent fashion.
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Because of the absence in the near future of direct experimental access to energies beyond

those probed by the LHC, the remarkable experimental sensitivity of indirect searches may

turn out to be crucial to unravel where the scale of new physics might be. Indeed, when

considering PC, we find that anarchic scenarios require the typical new physics scale m∗
and coupling g∗ to satisfy m∗ & 40g∗TeV in order to be compatible with data: here the

dominant constraint comes from the electron EDM, with a slightly weaker bound from

µ − e transitions. This severe constraint implies a large hierarchy with the electroweak

scale, m2
∗/m

2
h ≫ 1, suggesting the presence either of a large fine-tuning of the Higgs mass,

or an additional mechanism to address the leftover hierarchy problem. Retaining a low

new physics scale makes the flavor puzzle a concrete issue, and this motivated us to look

at more structured realizations of PC, departing from the minimal anarchic hypothesis.

The first non-anarchic scenario we considered is based on the assumption that the

strong sector has a global U(1)3 × CP symmetry, generically broken by the mixing with

the elementary sector. We proposed the flavor group U(1)3 because this is the simplest

symmetry compatible with the PC generation of the SM fermion mass hierarchy. The

resulting pattern of flavor violation and neutrino masses is very different from that of

anarchic PC. When married with the assumption that the composite sector respects CP,

our construction is capable of passing the stringent constraint from the electron EDM and

µ → eγ with m∗ & 5g∗TeV, a remarkable improvement compared to anarchic scenarios.

These observables remain the most sensitive probes of this scenario although, depending on

the degree of compositeness of the lepton doublets, µ → eee can also saturate the current

experimental bound. In addition, in this framework the neutrino mass texture strongly

depends on the U(1)3 charges of the most relevant operator that violates lepton number.

This may lead to interesting correlations among neutrino masses, mixing and phases, and

in particular a massless active neutrino is predicted in minimal models.

The second non-generic realization of PC relaxes the hypothesis that the composite

sector is characterized by a unique m∗, assuming that it develops different mass scales

for different flavors. The resulting suppression of flavor and CP violation is very efficient,

and all constraints can be satisfied with m∗ (here the scale of Higgs/top compositeness)

of order a few TeV and higher compositeness scales for leptons. While processes mediated

by dipole operators become out of reach, channels like µ → eee could be close to discovery

for example when me
∗ ≫ mℓ

∗ ∼ 200g∗TeV. Realistic neutrino masses can be obtained

if the lepton-number breaking source is independent from the flavored scales mℓ
∗, or an

approximate U(1)3 symmetry selects a single dominant contribution to mν , or a unique

compositeness scale for the three lepton doublets is assumed.

Our results have also implications in the quark sector. First of all, we demonstrated

that CP can be a good assumption in the composite sector, and specifically this hypothesis

is well compatible with the generation of a CKM phase. The reason is that a source of

CP violation is expected to be injected by the mixing with the elementary sector and, as a

matter of fact, this is enough to ensure the correct size of the CKM phase. A combination

of CP with an appropriate U(1)3 may be used, as done for leptons, to relax the strong

bounds from the neutron EDM. However, as opposed to the lepton sector, some tweaking

of O(1) parameters is necessary to generate the observed quark mixing pattern.
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As a final application of our findings, we analyzed the compatibility of PC and the

current anomalies in semi-leptonic B-meson decays. We find that each of the above realiza-

tions predicts a characteristic pattern of violation of flavor and lepton flavor universality.

Whether or not these are fully compatible with data depends however on the quark ob-

servables as well. Interestingly, we found that scenarios with multiple flavor scales can be

consistent with all current constraints, and simultaneously introduce the breaking of lepton

universality necessary to explain the anomalies in neutral-current B decays. Besides, we ar-

gued that the option of a U(1)3×CP symmetry respected also by the elementary-composite

mixings turns out to be particularly interesting. In this extreme setting all lepton flavor

violation is controlled by the mechanism of neutrino mass generation and the scale of lep-

ton compositeness can be lowered down to m∗ ∼ g∗TeV, which is optimal for naturalness,

leaving as main signature the violation of flavor universality in flavor-conserving processes.

Other anomalies currently present in lepton observables, such as the ∼ 4σ discrepancies

in b → clν̄ transitions and in the muon anomalous magnetic moment, seem to require new

physics states close or below the TeV, as a necessary and not sufficient condition to be

accommodated. Therefore, their explanation is highly model-dependent, as the spectrum

of low-lying composite resonances cannot be characterized by the PC framework alone.
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A Assumptions on the strong sector

Our key assumptions can be stated as follows:

(a1) The operators Oψ
a are part of a flavorful strongly-coupled conformal field theory

(CFT). Such a CFT is described in terms of operators O of a given scaling dimen-

sion ∆[O]. To allow us to make concrete predictions we will assume that scaling

dimensions algebraically sum, so that ∆[O1O2] = ∆[O1] + ∆[O2].

(a2) The CFT is perturbed by the couplings λψ defined in (2.1), and other small couplings,

e.g. SM gauge couplings and possibly higher-dimensional operators, as those breaking

lepton number, see section 3.

(a3) The strong sector develops a mass gap and composite resonances at low energies,

much below ΛUV. The self-couplings g∗ and masses m∗ of these states are assumed
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to be all of the same order. In section 5 we will allow the presence of more scales in

the composite sector.

(a4) The CFT can have its own global symmetries, but these are interpreted as acciden-

tal, as in the SM. This means in particular that, unless motivated otherwise, such

symmetries are broken by the mixing (2.1) with the SM, and by higher-dimensional

operators like those in section 3. A CFT with no flavor symmetries will be called

anarchic. More structured CFTs are discussed in section 5.

(a5) UV interactions between the SM and the CFT are anarchic in flavor space, meaning

that all couplings (in general in the form of matrices) have no special structure in

the UV (unless enforced by gauge symmetries).

The hypothesis (a1) of conformality is necessary to stabilize a large hierarchy m∗ ≪ ΛUV

without introducing unnatural fine-tuning. The conformal symmetry is assumed to be

abruptly broken at ∼ m∗, where the quanta of the strong dynamics manifest themselves.

The assumption (a3) of one coupling and one scale [11] allows us to estimate the

coefficients appearing in the EFT at the scale m∗, up to unknown numbers of order unity,

that we denote by c. Specifically, we postulate the low energy effective Lagrangian has the

form dictated by naive dimensional analysis [11],

LNDA =
m4

∗
g2∗

[

L̂0

(

g∗H

m∗
, ǫψai

g∗ψi

m
3/2
∗

,
Dµ

m∗

)

+
g2∗

16π2
L̂1

(

g∗H

m∗
, ǫψai

g∗ψi

m
3/2
∗

,
Dµ

m∗

)

+O
(

g2∗
16π2

)2
]

,

(A.1)

with L̂n that depend on order-one coefficients ca··· that in general violate the composite

flavor index a. In section 5 we will either introduce symmetries in the strong sector, or

allow the presence of more than one scale in the strong sector. Both changes have the effect

of selecting a specific structure for the order one coefficients.

Note that (A.1) assumes the Higgs is maximally coupled to the CFT sector. In this

sense we will consider scenarios with a composite Higgs. One may relax this assumption

by replacing g∗H/m∗ → g∗ǫHH/m∗ in (A.1), thus allowing even the Higgs to be “partially

composite”.

Finally, we want to qualify what we mean by anarchy and hierarchy. We will often

use the terms “order one”, “anarchic”, and “non-hierarchical” throughout the paper, but

the truth is that the real meaning depends on the context, and more precisely on the

parameters ǫψi involved. A number c is said to be order unity (a matrix is said to have

numbers of order one) whenever the pattern ǫψ1 ≪ ǫψ2 ≪ ǫψ3 remains valid even if one of

these ǫψi is multiplied by c. This statement of course depends on the hierarchy in the ǫψi ’s.

For example, from table 1 we see that any |c| . 10 may be considered order unity when

dealing with the up-type quarks, whereas in the down-quark sector a c of order one must

be literally close to one. An anarchic, or non-hierarchical, matrix is one whose entries have

ratios of order unity. Our assumption (a5) of UV anarchy is equivalent to the statement

that all flavor hierarchies follow from ǫψ1 ≪ ǫψ2 ≪ ǫψ3 .
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B Derivation of the neutrino mass textures

We now show that, under the hypothesis that only operators with at most two funda-

mental fermions contribute significantly to the neutrino mass — an assumption motivated

below (3.5), — there are only three classes of Majorana neutrino mass textures, shown

in (3.7), and that the corresponding ǫ̃ matrices are anarchic.

Let us begin with operators of the form λ̃O, that have no fundamental fields. These are

the simplest ones because they can only contribute to mν after the PC couplings (3.3) are

included, in particular λℓ. This is because λ̃ can carry only U(1)c charges, but no fundamen-

tal quantum numbers, i.e. λ̃ ∼ (10, 10,−c) under [SU(3)ℓ×U(1)ℓ]×[SU(3)e×U(1)e]×U(1)c,

where c is the “composite” lepton number of the operator O. As a consequence, it should

be immediately clear to the reader that these models belong to class 2M in (3.7). As a

further remark, the relation between ǫ̃ and λ̃ depends on the charge c, and is therefore

model-dependent. Fortunately, this aspect plays no role in our analysis because the flavor

structure is completely determined by ǫℓ. Moreover, it is easy to see that ǫ̃ ∝ λ̃n, where

n c = 2 (if this condition cannot be satisfied, mν will not be generated). The overall size

of ǫ̃ then depends on both the scaling dimension of O and its U(1)c charge.

The impact of CFT deformations of the form λ̃ψO is also easy to understand. The

first point to observe is that, once we choose a basis in which λℓ,e,q,u,d are as in (2.4), we

cannot put λ̃ in triangular form as well. It then follows that λ̃ at the scale m∗ will be

anarchic in this field basis. To further proceed is useful to consider separately the case

where ψ = ℓ and ψ 6= ℓ. Let us start with the latter. In this case the flavor indices

of λ̃, associated with ψ 6= ℓ, must be contracted with ǫψ 6=ℓ to yield a spurion with no

fundamental quantum numbers, but only a definite U(1)c charge. The resulting spurion

λ̃eff ≡ λ̃ · ǫψ 6=ℓ † ∼ (10, 10,−ceff) is of the same form as the λ̃O discussed above, thus these

models belong to class 2M as well. The associated ǫ̃ab will be suppressed by the entries in

ǫψ 6=ℓ, but such ǫ̃ matrix will anyway be anarchic: the strong dynamics is, by assumption,

flavor blind, being only sensitive to the U(1)c quantum number.

Certainly more interesting are models where ψ = ℓ, where λ̃ ∼ (3̄−1, 10,−c). By

recalling that ǫℓ ∼ (3̄−1, 10, 1) and we need to induce mν ∼ (6−2, 10, 0), it is easy to

identify the three relevant U(1)c charge assignments: for c = −3, the contraction ǫ̃ ∝ ǫℓ · λ̃†

realizes neutrino masses in class 2M; for c = 1, ǫ̃ ∝ λ̃ leads to class 1M; for c = 0, ǫ̃ ∝ λ̃ · λ̃
belongs to class 0M. This can be easily understood by noticing that the U(1)c charges of

ǫ̃ is −2, −1 and 0 for classes 2M, 1M and 0M respectively, see (3.7). Different values of c

may lead to less minimal models, where ǫ̃ includes extra powers of ǫℓ · λ̃† ∼ (10, 10, c), that

reduce to the previous ones upon contraction of the indices. Importantly, because the only

relevant CFT quantum number is lepton number, the contractions above do not give rise

to any flavor structure, meaning the ǫ̃ matrices are anarchic. Finally note that, in general,

when ǫ̃ depends on some elementary spurion ǫψ, neutrino masses arise at one loop, with

the fundamental fermion ψ in the internal line.16

16In general, the number of elementary loops needed to generate mν from a spurion λ̃ associated with nℓ

lepton doublets and nψ fermions ψ 6= ℓ is nloops = |nψns|+min(|nℓns|, |2− nℓns|) where ns is the number

of spurions required, i.e. mν ∝ λ̃ns , and negative values of nℓ,ψ should be interpreted as the number of

ℓ†, ψ† while negative ns means mν is proportional to powers of λ̃†.
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If one considers a bilinear deformation λ̃ψψ′O, similarly to the previous case the cou-

pling λ̃ will generically be anarchic in the basis of (2.4). The spurion quantum numbers

of λ̃ will be again fixed by the transformation properties of ψ and ψ′. One important

difference is that a bilinear deformation has scaling dimension ∆ & 5, therefore neutrino

masses at O(λ̃2) are too suppressed for m∗ ≪ Λ/L, as the effective dimension of the CFT

perturbation becomes 2∆ & 10. Therefore one needs to realise mν ∝ λ̃.

In the case ψ, ψ′ 6= ℓ, the quantum numbers of mν can only be reproduced if the

fundamental indices of λ̃ are contracted with ǫψ,ψ
′ 6=ℓ, giving rise to an effective spurion

λ̃eff ≡ ǫψ
′ 6=ℓ † · λ̃ · ǫψ 6=ℓ † ∼ (10, 10,−ceff). The resulting neutrino mass matrix belongs to

class 2M, with ǫ̃ anarchic. Similarly, whenever ψ 6= ℓ or ψ′ 6= ℓ, generating neutrino

masses requires a λ̃eff ≡ λ̃ · ǫψ 6=ℓ † ∼ (3̄−1, 10,−ceff), which, as explained above, gives rise

to neutrino masses in classes 2M, 1M or 0M depending on ceff . Finally, let us discuss

models where ψ, ψ′ = ℓ, with λ̃3 ∼ (3−2, 10,−c) or λ̃6̄ ∼ (6̄−2, 10,−c), the two possibilities

arising from the tensor product (3̄⊗ 3̄)−2. Note that the CFT deformation, even with the

assumption of UV-anarchy, could naturally select either λ̃3 or λ̃6̄, depending on the gauge

quantum numbers of O, either a weak singlet or triplet respectively, as explicitly shown in

section 3.1. For this reason we analyze these two U(1)L-violating perturbation separately.

From λ̃3 neutrino masses in class 1M are generated, with ǫ̃ ∝ ǫℓ † × λ̃3. Importantly, the

anti-symmetry of λ̃3 implies that the resulting ǫ̃ai is not fully anarchic, the third row (a = 3)

being suppressed by ǫℓ2/ǫ
ℓ
3 with respect to the others. From λ̃6̄ it should be evident that

the resulting mν belongs to class 0M, with ǫ̃ ∝ λ̃6̄, anarchic. In both these cases c = 0 must

be required for neutrino masses to be generated at leading order in λ̃. We note again that,

in the cases where ǫ̃ = ǫ̃(ǫψ, ǫψ
′
), neutrino masses require loops of fundamental fermions.

Finally, let us briefly comment on U(1)L-violating sources beyond those of type λ̃O,

λ̃ψO, λ̃ψψ′O. We therefore relax our assumption, by allowing CFT deformations with e.g.

more than two elementary fields. Let us consider e.g. ∆L = λ̃ijkãℓ
iℓjℓkOã,c=−1, with scaling

dimension ∆ & 6 (we assume O has spin 1/2, and therefore dimension ≥ 3/2 by unitarity).

In this case the possible SU(3)ℓ quantum numbers of λ̃ are 3̄⊗ 3̄⊗ 3̄ = 1⊕ 8⊕ 8⊕ 10. Let

us suppose for a moment that only an adjoint component is present, given by (λ̃8)ijk =

(λ̃8)
l
iǫljk + (λ̃8)

l
jǫlik, symmetric under i ↔ j. Such contraction is certainly curious, since it

gives rise to ǫ̃ij ≃ (λ̃8)ijkãǫ
ℓ ∗
akcãa(m∗/Λ/L)

∆O+1/2g∗/(16π2), and for i = j = 3 the term with

k = 3 vanishes by antisymmetry. As a consequence, the resulting neutrino mass matrix

belongs to class 0M, but it has a suppressed 33 entry, mν
33 ∝ ǫℓ2, while the other entries

are proportional to ǫℓ3. However, it is difficult to imagine how to select the above form

for λ̃: in fact, gauge interactions can distinguish only between O(2) and O(4), where the

subscript indicates the SU(2)L representation of the operator. Choosing a single operator

does not select the adjoint flavor contraction used above. This shows how difficult is to

avoid anarchy in the entries of ǫ̃. Similar features are expected whenever one tries to depart

from the assumptions leading to (3.7).
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C Dirac neutrinos

When total lepton number U(1)L is conserved, the neutrinos cannot acquire Majorana

masses. However, one can introduce an additional set of elementary chiral fermions, Ni ≡
NRi, singlet under electroweak interactions, with L(Ni) = 1. In this case Dirac masses can

arise in the EFT from the operator

yνijℓiNjH . (C.1)

The presence of sterile neutrinos implies the existence of an additional approximate acci-

dental symmetry U(nN ), with nN ≥ 2 the number of Ni families. This symmetry must be

broken by couplings to the CFT, in such a way that the operator (C.1) can emerge in the

low energy theory. Yet, if the neutrinos are to be (approximately) Dirac, an approximate

U(1)L=ℓ+e+N+c is still necessary, in order to suppress the operator (3.2).

Following a logic similar to the one leading to eq. (3.7) here we find two basic scenarios,

2D : yνij = g∗ǫ
ℓ∗
aiǫ

N
bjc

ν
ab ,

0D : yνij = g∗ǫ
ν
ij , (C.2)

where cνab are numbers of order unity when the strong sector is anarchic. In order for yν to

have rank ≥ 2, one needs a number of sterile neutrinos nN ≥ 2. In addition, in class 2D the

sum over b has to include at least two (three) terms to provide yν with rank two (three).

The neutrino mass matrix structure of class 2D is analogous to the charged lepton one (2.6),

thus both Uν and Uℓ are controlled by the hierarchies in ǫℓ. Indeed, it is easy to check that

yνyν† has the same flavor structure of class 2M in eq. (3.7), therefore eq. (3.8) holds with the

corresponding discussion. Anarchy of ǫij in class 0D ensures that neutrino masses are of the

same order and large mixing angles can be reproduced naturally, as in class 0M of eq. (3.7).

In particular, eq. (3.10) holds, and the same comments we made there apply here as well.

We identify two minimal, representative models that lead to eq. (C.2):

∆L = λN
aiO

N
a,c=1Ni ∈ class 2D,

λijaℓiNjOa,c=0 ∈ class 0D. (C.3)

The first is a straightforward generalization of (2.1) and (2.6) to the lepton sector. In this

case the smallness of the neutrino mass relatively to the charged lepton mass relies on ON

being significantly more irrelevant than Oe, such that ǫN ≃ (λN/g∗)(m∗/ΛUV)
∆N−5/2 ≪ ǫℓ.

For the bilinear model in class 0D, first suggested in [67], naturalness requires the operator

to have dimension ∆ & 5, thus in this case neutrino masses are naturally suppressed at low

energies, since λ(m∗) ≃ (m∗/ΛUV)
∆−4λ. We stress in passing that there is only one more

operator breaking U(nN ) and allowed to have scaling dimension close to five: NNOc=−2.

However, by U(nN ) invariance it follows that such a CFT deformation can induce mν only

if λNON
c=1N (λℓNOc=0) is also included, in which case the first (second) option in eq. (C.3)

would inevitably dominate the neutrino Yukawa matrix, as the new operator contributes

only via a loop of N fermions.
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Let us briefly discuss the impact of a U(1)3 symmetry of the strong sector on Dirac

neutrino masses. In class 0D the flavor structure of yν is independent from the strong

sector flavor symmetry. On the contrary, in class 2D the U(1)3 symmetry has important

consequences. Consider three sterile neutrinos Ni and three spurions with different U(1)3

charges: ǫNa=1 i ∼ (−1, 0, 0), ǫNa=2 i ∼ (0,−1, 0), ǫNa=3 i ∼ (0, 0,−1). In this case one has

cνab = cνaδab, and the matrix ǫNai can be brought to the triangular form (2.4) by a choice of

basis for the Ni fields. As a consequence, yν takes the form of eq. (5.3), with ǫei replaced by

ǫNi , therefore the neutrino masses and mixing angles are controlled by the three quantities

yνi ≡ g∗ǫℓiǫ
N
i , up to order one parameters. In order to reproduce oscillation data, we find

that one needs either 0 ≤ yν3 . yν1 ∼ yν2 , or 0 ≤ yν2 . yν1 ∼ yν3 . Note that yν3 (or yν2 )

can vanish, therefore only two spurions ǫNa=1,2 i (ǫ
N
a=1,3 i) are sufficient, and in this limit one

neutrino would be massless. On the other hand all three yνi can be of the same order, and

yν1 can be smaller than the others by at most a factor of five or so. If only two sterile

neutrinos exist, the matrix yν maintains the same flavor structure with the first column

dropped, and the quantities yνi should satisfy the same relations as in the case of three Ni.

Extensions to more than three sterile neutrinos, or more than three spurions ǫNa , do not

lead to qualitatively different flavor patterns.

Regarding the impact of multiple scales on Dirac neutrino masses, let us first note

that we could also introduce dynamical scales where the (three) sterile neutrinos decouple,

mN
a∗. In class 2D the interplay of these with mℓ

a∗ determines the structure of yν . Indeed,

assuming ǫℓ ∼ ǫN , the lightness of neutrinos compared to charged leptons immediately

requires mN
a∗ ≫ mℓ

a∗. The neutrino Yukawa matrix takes the same form as in the charged

lepton sector, eq. (5.25), with mν
i fixed entirely by mN

i∗ . Reproducing the PMNS matrix

then requires mν
1 . mν

2 ∼ mν
3 , which is achieved via mN

1∗ & mN
2∗ ∼ mN

3∗. In class 0D instead

the presence of flavorful scales does not have an impact on Dirac neutrino masses.

We end this section stressing that sizable violations of U(1)L can immediately bring us

back to the Majorana models of section 3. As a typical example one can consider adding

a mass mN ≡ Λ/L ≤ ΛUV for N , corresponding to a specific source of U(1)L breaking. The

physics below mN is now captured by the analysis of section 3.1. In particular, at scales

m∗ < mN we can integrate out N , thus obtaining an EFT involving the fields ℓ, e, q, u, d

and appropriate U(1)L-violating spurions.

D Derivation of the constraints on the Wilson coefficients

In this appendix we go through the list of operators defined in table 3 and identify the

most constraining observable for each of them. Two are the main assumptions:

(1) RG effects are ignored. This hypothesis introduces a small uncertainty of order a few

percent and allows us to write C(m∗) = C(µ).

(2) We constrain a single coefficient C(µ) at a time. This simplifying assumption neglects

possible destructive and constructive interference among different contributions to the

same rate, which can result in a change of order unity on the actual bounds.
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Our choice of neglecting the RG is motivated by the fact that the present analysis

inevitably suffers from an O(1) uncertainty in the estimate of the coefficients c in table 3.

RG effects are parametrically of order α
4π ln(m∗/µ) and hence much smaller. Importantly,

within our picture the RG evolution does not generate new coefficients via mixing either.

Indeed, our EFT is assumed to contain non-vanishing Wilson coefficients for all operators

already at m∗. Since these have natural size at the matching scale, as dictated by NDA,

operator mixing will simply correct them by the same small factor α
4π ln(m∗/µ). In fact, the

simplifying hypothesis that a single coefficient C(µ) dominates the observable affects our

analysis more significantly, as this may result in an over- or under-estimation of our con-

straints by O(1) (still in line with our uncertainty of order unity from the NDA estimates).

Consistently with our assumptions (1) and (2), we will often include radiative effects

when they correspond to the leading contribution of a single coefficient. Our Lagrangian is

formally defined in the MS scheme, so we will adopt this scheme also for radiative effects.

D.1 Qeγ

The strongest bounds on this operator are from µ → eγ, the electron EDM de and anoma-

lous magnetic moment ae, and then µ → e in nuclei. In terms of the Wilson coefficient

Ceγ
ij , we have

Br (µ → eγ) = 48π2 v6

Λ4m2
µ

(

|Ceγ
12 |2 + |Ceγ

21 |2
)

, (D.1)

de =
2v√
2Λ2

Im[Ceγ
ee ]

∆ae =
4vme√
2eΛ2

Re[Ceγ
ee ].

Completely analogous expressions hold for the heavier leptons. Imposing the experimental

constraints in table 2 with Λ = 1TeV we find the results of table 4.

The dipole Qeγ contributes to Br (µ → eee) at tree level as well. However, this latter

process has a rate parametrically suppressed by a factor of order e2/16π2 and the resulting

bound is therefore less constraining.

D.2 QeH

The operator QeH contributes at tree-level to three body decays li → ljlk l̄l, via a Higgs

exchange.

More constrained are however loop contributions to µ → eγ, here reported in the MS

scheme. The latter are collected for example in [68]. For the radiative decay of li one finds

(we do not make distinctions between chiralities, since they contribute equally)

Ceγ
IR

∣

∣

1−loop
=

√
2eme

i

8π2v

1

12m2
h

yei√
2

v2CeH√
2

(

3 ln
m2

h

m2
i

− 4

)

, (D.2)

and

Ceγ
IR

∣

∣

2−loop
=

√
2eme

i

8π2v

1

m2
h

v2CeH√
2

× 0.055

(

1.78 GeV

me
i

)

. (D.3)
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Note that within our assumptions the Wilson coefficients are interpreted as renormalized

at ∼ me
i . The 1-loop effect depends on the Yukawa coupling and the mass (needed for the

necessary chirality-flip) of the decaying lepton. There is no need for a chirality flip in the

2-loop diagrams, which are therefore lepton independent. It turns out that for µ decays

the one-loop is negligible compared to the 2-loop contribution, whereas for the τ the two

contributions are of the same order. Overall we get

Ceγ
IR = CeH ×

{

6.0× 10−6 (µ)

7.4× 10−6 (τ)
. (D.4)

With the help of eq. (D.4) we derive the bounds of table 4.

D.3 Qℓℓ,ee,ℓe

We begin observing that in our convention the operator

Qijmn
ℓℓ,ee = Qmnij

ℓℓ,ee = Qinmj
ℓℓ,ee = Qmjin

ℓℓ,ee

is included only once in the effective Lagrangian, by fixing i ≥ m and j ≥ n, with Wilson

coefficient normalised as Cℓℓ,ee
ijmn/Λ

2.

All 4-lepton operators contribute at tree-level to three-body decays. One finds

Br(l−i → l−j l
−
j l

+
j )=

m5
i

1536π3Λ4Γi

(

|Cℓe
jijj |2+ |Cℓe

jjji|2+2|Cℓℓ
jijj |2+2|Cee

jijj |2
)

, (D.5)

Br(l−i → l−j l
+
k l

−
k )=

m5
i

1536π3Λ4Γi

(

|Cℓe
jikk|2+ |Cℓe

jkki|2+ |Cℓe
kijk|2+ |Cℓe

kkji|2+ |Cℓℓ
jikk|2+ |Cee

jikk|2
)

,

Br(l−i → l+j l
−
k l

−
k )=

m5
i

1536π3Λ4Γi

(

|Cℓe
kikj |2+ |Cℓe

kjki|2+2|Cℓℓ
kikj |2+2|Cee

kikj |2
)

,

where the factors of 2 arise combining a combinatoric 4 in the Feynman rule and a 1/2 in

the phase space. These results agree with [69] except for the second line of (D.5), where

we corrected an error in [69] (in that paper Cℓe
kijk and Cℓe

kkji are erroneously identified with

Cℓe
jkki and Cℓe

jikk, respectively).

The same operators also contribute to radiative decays at loop level. At one-loop the

authors of [69] find (using MS)

(Ceγ
IR)ij,ji =

∑

k=e,µ,τ

eyek
16π2

Cℓe
ikkj,jkki . (D.6)

In table 5 we show these bounds assuming that a single Wilson coefficient is present at

a time (a unique k). The operators Qℓℓ,ee first renormalize Ceγ at two-loop order. This

requires a chirality flip on one external lepton line, and an electroweak gauge boson ex-

changed between the lepton loop and one external lepton line. We do not make an explicit

calculation, but rather observe that the effect can be parametrized as

(Ceγ
IR)ij,ji = c

∑

k=e,µ,τ

eyemax(i,j)

16π2

g2

16π2
Cℓℓ,ee
ikkj,jkki , (D.7)

with c a number of order one. Using this rough estimate, we find that τ radiative decays

lead to weak constraints, |Cℓℓ,ee| < O(1). On the other hand, µ → eγ sets an order of

magnitude bound as shown in the table.
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D.4 QHe,Hℓ

The main effects of these operators are mediated by tree-level Z0 exchange. In fact, at

scales well below the Z0 mass, QHe,Hℓ contribute to several 4-fermion operators,

LZ
eff = − 2

Λ2

[

CHe
ij eRiγ

µeRj +
(

C
Hℓ(1)
ij + C

Hℓ(3)
ij

)

eLiγ
µeLj +

(

C
Hℓ(1)
ij − C

Hℓ(3)
ij

)

νLiγ
µνLj

]

×
∑

ψ=eR,eL,νL,uL,uR,dL,dR

[

ψk

(

T3ψ − s2wQψ

)

ψk

]

, (D.8)

where T3 is the weak isospin, Q the electric charge, and sw the sine of the weak mixing angle.

The four-lepton operators in (D.8) can induce the LFV decays li → ljlk l̄l. The branching

ratios are obtained plugging the corresponding coefficients in (D.5). The resulting bounds

are listed in table 4. The two-quark, two-lepton operators in (D.8) can contribute to µ → e

conversion on nuclei, dominantly via the up and down quark vector currents. Using the

formalism of [70] to compute the rate for µ−Au → e−Au, we find a bound on CHe,Hℓ
12 that

is stronger than the one from µ → 3e, as shown in table 4.

The contribution of QHe,Hℓ to radiative decays is of order

Br(µ → eγ)

Br(µ → eee)
∼ e2

16π2
≪ 1. (D.9)

As the experimental bounds on the branching ratios are just a factor of a few apart, it

is clear that radiative decays are less constraining. Similarly, exotic Z decays can also

constrain these operators, but current limits are an order of magnitude weaker than those

presented in table 4.

E Extracting constraints on PC

There are some technical subtleties in the derivation of the constraints on PC using (A.1) to

directly extract the coefficients of the Warsaw basis operators defined in table 3. The reason

is that from eq. (A.1) we can also determine coefficients of operators that are not indepen-

dent from those of table 3. Once these are removed via field redefinitions or the equations

of motion, the coefficients of the operators in the table may receive contributions that are

parametrically different from those estimated using (A.1) directly on the Warsaw basis.

We find there is only one instance in which this subtlety may be relevant. To appreciate

this, note there is another class of flavor-violating operators we can write at dimension-6:

g′ℓ̄iLγ
µℓjL∂νB

ν
µ = g′2ℓ̄iLγ

µℓjLJ
B
µ (E.1)

g′ēiRγ
µejR∂νB

ν
µ = g′2ēiRγ

µejRJ
B
µ

gℓ̄iLγ
µτaℓjL(DνW

ν
µ )

a = g2ℓ̄iLγ
µτaℓjLJ

a
µ ,

where JB,a
µ are the SM currents (including fermions and the Higgs doublet) of the hyper-

charge and the SU(2) gauge bosons respectively. The above equalities hold up to correc-

tions due to operators of higher dimension. Now, the operators on the left-hand side of

eq. (E.1) have, according to (A.1), coefficients of order ǫiǫj/m
2
∗. However, because they are
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Operator Λ (TeV)(C = 1) PC bound (m∗ = 10 TeV) Observable

(QeW )12, (QeB)12 6.9× 104 |c| ×
(

g∗
4π

)2 ǫℓ1
ǫℓ2

< 1.1× 10−4 µ → eγ

(QeW )21, (QeB)21 6.9× 104 |c| ×
(

g∗
4π

)2 ǫℓ2
ǫℓ1

< 2.4× 10−2 µ → eγ

(QeH)12 1.7× 102 |c| ×
(

g∗
4π

)2 ǫℓ1
ǫℓ2

< 3.6× 10−2 µ → eγ [2-loop]

(QeH)21 1.7× 102 |c| ×
(

g∗
4π

)2 ǫℓ2
ǫℓ1

< 7.5 µ → eγ [2-loop]

(Q
(1)
Hℓ)12, (Q

(3)
Hℓ)12 4.5× 102 |c| ×

(

g∗
4π

)2
ǫℓ1ǫ

ℓ
2 < 3.1× 10−6 µAu → eAu

(QHe)12 4.5× 102 |c| × 1

ǫℓ1ǫ
ℓ
2
< 2.9× 105 µAu → eAu

(Qℓℓ)2111 2.1× 102 |c| ×
(

g∗
4π

)2
(ǫℓ1)

3ǫℓ2 < 1.5× 10−5 µ → 3e

(Qee)2111 2.1× 102 |c| ×
(

g∗
4π

)−2 1

(ǫℓ1)
3ǫℓ2

< 2.4× 1019 µ → 3e

(Qℓe)2111 1.7× 102 |c| ×
ǫℓ2
ǫℓ1

< 3.8× 108 µ → 3e

(Qℓe)1121 1.7× 102 |c| ×
ǫℓ1
ǫℓ2

< 1.9× 106 µ → 3e

(Qℓe)2221 77 |c| ×
ǫℓ2
ǫℓ1

< 9.5× 106 µ → eγ [1-loop]

(Qℓe)1222 77 |c| ×
ǫℓ1
ǫℓ2

< 4.6× 104 µ → eγ [1-loop]

(Qℓe)2331 2.9× 102 |c| ×
ǫℓ2
ǫℓ1

< 4.0× 104 µ → eγ [1-loop]

(Qℓe)1332 2.9× 102 |c| ×
ǫℓ1
ǫℓ2

< 1.9× 102 µ → eγ [1-loop]

(QeW )13, (QeB)13 6.5× 102 |c| ×
(

g∗
4π

)2 ǫℓ1
ǫℓ3

< 7.8× 10−2 τ → eγ

(QeW )31, (QeB)31 6.5× 102 |c| ×
(

g∗
4π

)2 ǫℓ3
ǫℓ1

< 2.7× 102 τ → eγ

(QeH)13 1.7 |c| ×
(

g∗
4π

)2 ǫℓ1
ǫℓ3

< 9.3× 10−1 τ → eγ [2-loop]

(QeH)31 1.7 |c| ×
(

g∗
4π

)2 ǫℓ3
ǫℓ1

< 3.2× 103 τ → eγ [2-loop]

(Q
(1)
Hℓ)13, (Q

(3)
Hℓ)13 8.4 |c| ×

(

g∗
4π

)2
ǫℓ1ǫ

ℓ
3 < 8.9× 10−3 τ → 3e

(QHe)13 8.2 |c| 1

ǫℓ1ǫ
ℓ
3
< 5.3× 107 τ → 3e

(Qℓℓ)1311 10 |c| ×
(

g∗
4π

)2
(ǫℓ1)

3ǫℓ3 < 5.8× 10−3 τ → 3e

(Qee)1311 10 |c| ×
(

g∗
4π

)−2 1

(ǫℓ1)
3ǫℓ3

< 5.6× 1020 τ → 3e

(Qℓe)1311 8.8 |c| ×
ǫℓ3
ǫℓ1

< 1.5× 1011 τ → 3e

(Qℓe)1113 8.8 |c| ×
ǫℓ1
ǫℓ3

< 4.3× 107 τ → 3e

(QeW )23, (QeB)23 6.1× 102 |c| ×
(

g∗
4π

)2 ǫℓ2
ǫℓ3

< 8.7× 10−2 τ → µγ

(QeW )32, (QeB)32 6.1× 102 |c| ×
(

g∗
4π

)2 ǫℓ3
ǫℓ2

< 1.5 τ → µγ

(QeH)23 1.6 |c| ×
(

g∗
4π

)2 ǫℓ2
ǫℓ3

< 9.3× 10−1 τ → µγ [2-loop]

(QeH)32 1.6 |c| ×
(

g∗
4π

)2 ǫℓ3
ǫℓ2

< 10 τ → µγ [2-loop]

(Q
(1)
Hℓ)23, (Q

(3)
Hℓ)23 8.8 |c| ×

(

g∗
4π

)2
ǫℓ2ǫ

ℓ
3 < 8.2× 10−3 τ → 3µ

(QHe)23 8.8 |c| × 1

ǫℓ2ǫ
ℓ
3
< 2.2× 105 τ → 3µ

(Qℓℓ)2322 11 |c| ×
(

g∗
4π

)2
(ǫℓ2)

3ǫℓ3 < 4.9× 10−3 τ → 3µ

(Qee)2322 11 |c| ×
(

g∗
4π

)−2 1

(ǫℓ2)
3ǫℓ3

< 5.4× 1013 τ → 3µ

(Qℓe)2322 9.5 |c| ×
ǫℓ3
ǫℓ2

< 3.0× 106 τ → 3µ

(Qℓe)2322 9.5 |c| ×
ǫℓ2
ǫℓ3

< 1.8× 105 τ → 3µ

(QeW )11, (QeB)11 5.1× 105 Im(c)×
(

g∗
4π

)2
< 4.3× 10−4 de

(Qℓe)1111 38 Im(c)×
(

g∗
4π

)2
< 8.1× 109 de [1-loop]

(Qℓe)1221 5.5× 102 Im(c)×
(

g∗
4π

)2
< 1.9× 105 de [1-loop]

(Qℓe)1331 2.3× 103 Im(c)×
(

g∗
4π

)2
< 6.6× 102 de [1-loop]

(QeW )22, (QeB)22 11 Im(c)×
(

g∗
4π

)2
< 4.6× 103 dµ

(QeW )33, (QeB)33 1.5 Im(c)×
(

g∗
4π

)2
< 1.4× 104 dτ

Table 9. Bounds on Wilson coefficients and corresponding constraints on Anarchic PC.
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linear combinations of Qℓℓ,ee,eℓ,Hℓ,He, they appear in our formalism as corrections of order

δCℓℓ,ee,eℓ,Hℓ,He ∼ ǫ2g2/m2
∗ to the estimates in our table. But these are parametrically differ-

ent from the ones obtained using (A.1) to directly estimate the coefficient of Qℓℓ,ee,eℓ,Hℓ,He!

In general this observation can have important implications, but fortunately not in

anarchic PC. In fact, the contribution δCHℓ,He in (E.1) is smaller than the one considered

in table 3 by a factor g2/g2∗ ≪ 1 or g′2/g2∗ ≪ 1 and can thus be neglected. What about

the new contribution to δCℓℓ,ee,eℓ in (E.1)? Here the point is that in scenarios of PC the

bound on the unknown factors of order unity coming from Qℓℓ,ee,eℓ is typically weaker com-

pared to that from QHℓ,He, so the overall Cℓℓ,ee,eℓ (including the new contribution δCℓℓ,ee,eℓ

from (E.1)) does not affect our analysis in practice. To see this, recall from (D.8) that at

low scales QHℓ,He become combinations of the 4-fermion operators Qℓℓ,ee,eℓ with coefficients

∼ CeH,ℓH ∝ g2∗ǫ
2, and that these are parametrically larger than Cℓℓ,ee,eℓ(m∗) ∝ g2∗ǫ

4 (see

table 3) as well as δCℓℓ,ee,eℓ ∝ g2ǫ2 from (E.1). Hence, when comparing experiments with

the predictions of PC, the dominant constraints on 4-fermions operators actually translate

into a bound on QHℓ,He, not on Qℓℓ,ee,eℓ. Note that these arguments heavily rely on our

power-counting, that is, they hold as long as the coefficients c in table 3 are of order one for

all the operators. Without a concrete assumption on the UV, it would not be possible to

neglect the operators on the left-hand side of (E.1) nor, in general, compare different Wilson

coefficients. We also checked that in the scenarios of section 5 and 6.1 the operators (E.1)

do not lead to stronger constraints than those already discussed in the main text.

A final comment regarding QeH is in order. After having integrated out the Higgs at

tree-level, this operator generates Qℓe with a coefficient δCℓe that is typically larger than

the one induced by the heavy physics directly at the scale m∗. Indeed, ∆F = 1 processes

are affected by a single insertion of QeH , whereas ∆F = 2 require two:

δCℓe

Cℓe
∼







g∗ySMv2

ǫLǫRm2
h
∼ g2∗v

2

m2
h

(∆F = 1)

(g2∗v
2)2

m2
hm

2
∗

(∆F = 2)
(E.2)

Since g∗ > 1 this means thatQeH effectively generates a larger contribution to the 4-fermion

operator Qℓe. In the quark sector, the analogous ∆F = 2 effects are very dangerous, and

are usually suppressed under reasonable assumptions about the UV physics [71]. Here

we do not necessarily need this assumption. Indeed, in the context of lepton observables,

4-fermion transitions are not as constraining. The main constraint on QeH comes from

loop-induced contributions to radiative decays, but these are negligible compared to those

directly arising from Qeγ .

We also provide a collection of the bounds on PC parameters in table 9.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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