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Summary

Type 2 diabetes mellitus (T2DM) is a chronic disease that has reached the levels of a

global epidemic. In order to achieve optimal glucose control, it is often necessary to

rely on combination therapy of multiple drugs or insulin because uncontrolled glucose

levels result in T2DM progression and enhanced risk of complications and mortality.

Several antihyperglycemic agents have been developed over time, and T2DM phar-

macotherapy should be prescribed based on suitability for the individual patient's

characteristics. Pharmacogenetics is the branch of genetics that investigates how

our genome influences individual responses to drugs, therapeutic outcomes, and inci-

dence of adverse effects. In this review, we evaluated the pharmacogenetic evidences

currently available in the literature, and we identified the top informative genetic var-

iants associated with response to the most common anti‐diabetic drugs: metformin,

DPP‐4 inhibitors/GLP1R agonists, thiazolidinediones, and sulfonylureas/meglitinides.

Overall, we found 40 polymorphisms for each drug class in a total of 71 loci, and

we examined the possibility of encouraging genetic screening of these variants/loci

in order to critically implement decision‐making about the therapeutic approach

through precision medicine strategies. It is possible then to anticipate that when the

clinical practice will take advantage of the genetic information of the diabetic patients,

this will provide a useful resource for the prevention of T2DM progression, enabling

the identification of the precise drug that is most likely to be effective and safe for

each patient and the reduction of the economic impact on a global scale.
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1 | INTRODUCTION

Diabetes mellitus is one of the leading causes of mortality worldwide

and is a major cause of blindness, kidney failure, heart attacks, stroke,

and lower‐limb amputation.1 The number of people with diabetes has

risen from 108 million in 1980,1 to 425 million in 2017, and is still

increasing.2 Type 2 diabetes (T2DM) accounts for around 90% of all
- - - - - - - - - - - - - - - - - - - - - - - - - - -
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diabetes cases; it mainly settles because of the body's ineffective

use of insulin and inability of pancreatic β cells to compensate for

the enhanced insulin demand resulting in uncontrolled glucose

homeostasis.1,2 Over time, poor glycemic control affects several body

districts, especially blood vessels and nerves, fostering the develop-

ment and progression of neuropathies, micro and macrovascular

complications, and premature death.1
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Summary box

For each class of oral antidiabetic drugs, we reviewed

pharmacogenetic reports supporting

• associations at GWAS level of significance;

• associations replicated in multiple studies;

• associations with nominal significance lacking

replication (supplementary material).

We collectively identified 64 genes and approximately 200

informative genetic variants. The most robust evidence to

support specific, biologically plausible, gene‐drug

interactions, reguarded

• Several members of the organic cation transporter

family (OCTs), ATM and SLC2A2 loci with MET

response;

• CYP2C9, TCF7L2, ABCC8, KCNJ11 and IRS1 loci with

SUF response;

• PPARG locus with TZDs response;

• GLP1R locus with DPP‐4 inhibitors/GLP‐1 receptor

agonists response.
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Interindividual variability in therapeutic response is partly due to

genetic heterogeneity, and pharmacogenomics is the discipline that

investigates how our entire genome influences individual responses

to drugs, and more specifically, pharmacogenetics focuses on genetic

variation at a population level, and how these variants can affect

therapeutic outcomes and incidence of adverse effects.3 Pharmacoge-

netics, therefore, is a key component of the translational medicine

effort. Nowadays, genetic investigation has reached an incredible

depth of information; single nucleotide polymorphism (SNP) arrays

and Next Generation Sequencing allow the screening of common and

rare genetic variants in our genome,with an unprecedented throughput.

These instruments have already been implemented for the diagnostic

processes of pathologic phenotypes and tomodel prediction of complex

traits, through the creation of panels enriched with preselected infor-

mative targets for diagnostic and research purposes. Oddly enough,

pharmacogenetic studies on oral and injectable anti‐hyperglycemic

drugs have been piling up in the literature, but this ever‐increasing

amount of knowledge is far from being translated into clinical practice

to help define the best therapeutic choice for patients with T2DM.

The aim of this comprehensive review is to discuss pharmacogenetic

evidences published until March 2018, according to T2DM pharmaco-

therapy class (metformin [MET], sulfonylureas/glinides [SUF],

thiazolidinediones [TZDs], and GLP‐1 receptor agonists/DPP‐4 inhib-

itors), in the effort of providing a critical interpretation of existing

findings to offer an overview for their future translation. Defining

the nature of drug‐gene interactions and identifying means through

which trustworthy observations can be translated into clinical

practice settings might help decision‐making about the therapeutic

approach through precision medicine strategies, ameliorate cost‐

effectiveness of existing treatments, and reduce avoidable adverse

side effects.
2 | RESEARCH METHODS

A literature search was performed using MEDLINE with the following

search terms:

(“diabetes mellitus, type 2”[MeSH Terms] OR “diabetes mellitus,

type 2”[MeSH Major Topic] OR t2 dm[Title/Abstract] OR NIDDM

[Title/Abstract] OR type 2 DM [Title/Abstract] OR type II DM [Title/

Abstract] OR (diabet*[Title/Abstract] AND (type 2[Title/Abstract] OR

type‐2[Title/Abstract] OR type II [Title/Abstract] OR non‐insulin

dependent [Title/Abstract]))) AND (“pharmacogenetics”[MeSH Major

Topic] OR “pharmacogenetics”[MeSH Terms] OR pharmacogen*[Title/

Abstract] OR “precision medicine”[MeSH Major Topic] OR “precision

medicine”[MeSH Terms] OR ((“precision”[Title/Abstract] OR

“tailored”[Title/Abstract] OR “personalized”[Title/Abstract] OR

“individualized”[Title/Abstract]) AND (“therapy”[Title/Abstract]

OR “medicine”[Title/Abstract] OR “clinical practice”[Title/Abstract])

AND (“genetics”[Title/Abstract] OR “polymorphism”[Title/Abstract]

OR “snp”[Title/Abstract] OR “gwas”[Title/Abstract] OR “genome

wide association”[Title/Abstract]))) AND “english”[Language].

Manual integration with the bibliography from the most extensive

reviews on the topic has also been carried out.
3 | SUMMARY OF THE LITERATURE

3.1 | Polymorphisms affecting MET response

Metformin (MET) is the only component of the biguanides class used

in clinical practice. MET has been the first line approach for T2DM

patients of novel diagnosis for decades; it produces durable anti‐

hyperglycemic effects independently of body weight, carries a low risk

of hypoglycemia, and has robust cardiovascular safety profile. For all

these reasons, MET is the first choice treatment recommended by

guidelines and is suitable for combination therapies with all other

hypoglycemic agents. It has been showed that genetic factors

influence glycemic response to MET, with a heritability of 34% for

the absolute reduction in HbA1c, adjusted for pretreatment values

(Table 1).4
3.1.1 | Associations at GWAS level of significance

In the first Genome Wide Association study (GWAs) of MET response

performed in two independent subsets of the GoDART cohort and in

the UKPDS, both composed of European subjects affected by T2DM,

the C allele of rs11212617 was found to be associated with reduced

glycemic response to MET (odds ratio [OR] for the ability to achieve

a treatment HbA1c <7% in the 18 months after starting MET = 1·35

95% CI 1·22‐1·49).5 rs11212617 is located downstream the gene

coding for the ATM serine/threonine kinase, associated with ataxia

telangiectasia. After discovery, the researchers were able to link ATM

to MET action through functional studies in vitro.5 Although the



TABLE 1 Summary of genetic variants that influence metformin therapy outcomes in at least one ethnic group

†Gene ‡SNP ‡Alleles ‡Region

‡Start Position
(bp) Function Associated Traits Adverse effect References

Associations at GWAS level of significance

ATM rs11212617 C/A 11q22.3 108412434 Intron MET response 5, 6

SLC2A2 rs8192675 A/G 3q26.2 171007094 Intron MET response 10

Associations replicated in multiple studies

SLC22A2 rs316019 G/T 6q25.3 160249250 Missense Ala270Ser MET PK, HbA1c MET tolerance 40, 41,
43‐47,
50

rs145450955 G/A 160250619 Missense Thr201Met MET PK, HbA1c,
FPG, HOMA‐IR

rs201919874 C/T 160250625 Missense Thr199Ile MET PK
rs3119309 C/T 160264040 Intron MET response,

MET PKrs7757336 G/T 160268526
rs2481030 A/G 160335403 Intergenic

IRS1 rs1801278 G/A 2q36.3 226795828 Missense Gly972Arg Secondary failure 15‐17

SLC22A1 rs34447885 C/T 6q25.3 160121976 Missense Ser14Phe MET PK 20, 21,
23‐27,
31‐35,
37, 38,
40

rs1867351 A/G 160122091 Synonymous Ser52Ser MET PK, HbA1c,
PPG

rs12208357 C/T 160122116 Missense Arg61Cys MET PK MET tolerance
‐ C/A 160122224 Missense Gln97Lys
rs200684404 C/T 160122285 Missense Pro117Leu
rs4709400 C/G 160122578 Intron FPG, PPG
rs34104736 C/T 160132282 Missense Ser189Leu MET PK
rs756787089 C/T 160132332 Missense Arg206Cys
rs36103319 G/T 160132375 Missense Gly220Val
rs4646277 C/T 160136228 Missense Pro283Leu
rs2282143 C/T 160136611 Missense Pro341Leu
rs34130495 A/G 160139792 Missense Gly401Ser
rs628031 G/A 160139813 Missense Met408Val MET response,

FPG
Hypoglycemia,

MET tolerance
rs72552763 ‐/GAT 160139851 inframe_indel

Met420del
MET PK MET tolerance

rs36056065 ‐/ GTAAGTTG 160139876 Intron

rs622342 C/A 160151834 Intron MET response
rs34059508 A/G 160154805 Missense Gly465Arg MET PK
rs2297374 C/T 160154953 Intron HbA1c, FPI

SLC47A1 rs77630697 G/A 17p11.2 19542448 Missense
Gly64Asp

MET PK 26‐28,
30, 48,
51‐54,
58‐60

rs77474263 C/T 19548051 Missense Leu125Phe
rs35646404 C/T 19549655 Missense Thr159Met
rs2289669 G/A 19560030 Intron MET PK, MET

response,
HbA1c

‐ C/T 19560195 Missense Ala310Val MET PK
rs149774861 A/C 19560249 Missense Asp328Ala
rs35790011 G/A 19560278 Missense Val338Ile
rs8065082 C/T 19561878 Intron HbA1c, MET response
rs76645859 G/A 19572813 Missense Val480Met MET PK
rs35395280 G/T 19577330 Missense Cys497Phe

SLC47A2 rs34399035 C/T 17p11.2 19681658 Missense Gly429Arg HbA1c 26, 55,
57, 59,
61, 62

rs373244724 T/C 19706671 Missense Tyr273Cys MET PK
rs562968062 C/A 19707841 Missense Gly211Val
rs146901447 G/A 19712704 Missense Pro162Leu MET PK, MET

response
‐ C/G 19713960 Missense Pro103Arg MET PK
‐ C/A 19715149 Missense Lys64Asn
rs12943590 G/A 19716685 5’ UTR MET PK, MET

response
rs34834489 T/A 19716951 upstream_gene MET PK
rs758427 T/C 19717164 Intron

†HUGO approved gene symbols.
‡dbSNP record from build 147/GRCh38/hg38 (where available); http://www.ncbi.nlm.nih.gov/snp/

Abbreviations: FPI, fasting plasma insulin; FPG, fasting plasma glucose; HbA1c, glycated haemoglobin; MET, metformin; PD, pharmacodynamics; PK, phar-
macokinetics; PPG, postload or 2‐h OGTT plasma glucose.
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genetic association was confirmed through a meta‐analysis of five

cohorts from the United Kingdom and The Netherlands,6 more

recently, no significant differences in MET's effects by rs11212617

genotype on diabetes incidence or change in insulin sensitivity, fasting
glucose levels, HbA1c, or disposition index were observed either in

the large randomized control trial Diabetes Prevention Program

(DPP) carried out in individuals with impaired glucose tolerance

(IGT)7 or in smaller studies.8 It is possible that the latter population

http://www.ncbi.nlm.nih.gov/snp/
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studies failed to replicate the original findings because of inadequate

statistical power or pharmacogenetic MET‐response interaction with

rs11212617 may diverge at different stages of impaired glucose

metabolism. In addition to this, more recently, enhancer assays of

MET‐activated epigenetic sites showed increased enhancer activity

in the ATM intron containing SNPs in LD with rs11212617.9 Interest-

ingly, the LD block encompasses several genes including EXPH5

(Exophilin 5, involved in exosome secretion and intracellular vesicle

trafficking) and DDX10 (DEAD‐box helicase 10), which resulted upreg-

ulated by MET in vitro, while ATM expression was unchanged.9

In a meta‐analysis performed by the Metformin Genetics

(MetGen) Consortium comprising 10 557 participants of European

ancestry, a genome‐wide statistically significant association was found

for the intronic SNP rs8192675, located within SLC2A2, which

encodes the GLUT2 glucose transporter.10 Each copy of rs8192675

C allele was associated with a greater MET‐induced HbA1c reduction

of 0·17% (P = 6·6 × 10−14), which was attenuated after adjusting for

baseline HbA1c (reduction of 0·07%; P = 2 × 10−8). Consistent with

the functional relevance of this variant, the C allele was associated

with lower expression of GLUT2 in the liver. However, there was no

effect of rs8192675 on the efficacy of MET in delaying progression

to diabetes in the DPP study, again raising the possibility that

MET × gene interaction in the prediabetic condition might change

when T2DM is established.

3.1.2 | Associations replicated in multiple studies

Insulin signalling is triggered by the binding of insulin to the insulin

receptor (IR). This activates the IR intrinsic tyrosine kinase activity

and promotes tyrosine phosphorylation of IR substrate (IRS) proteins,

which serve as a docking station for downstream signal

transducers.11,12 The most frequent IRS1 variant is rs1801278

(Gly972Arg),11-13 and the Arg972 allele is associated with early onset

of T2DM;14 IRS1 Gly972Arg polymorphism was found to be

associated with failure to oral hypoglycemic treatment, mostly MET

and SUF, in three Italian case‐control studies.15-17 The relationship

between Gly972Arg and efficacy of MET in lowering HbA1c was

explored in a small sample of Caucasian T2DM patients, and it

returned no significant associations.18

The Organic CationTransporter 1 (OCT1), encoded by SLC22A1 is

the main transporter of MET, and highly polymorphic in humans,19 and

several non‐synonymous variants modulate MET entrance into target

cells. Polymorphism rs628031 (Met408Val) is the only variant

identified in all ethnic groups, Europeans, South Americans, Africans,

and Asians.19 Although no associations were found with treatment

efficacy in a small European cohort of T2DM patients, carriers of the

minor allele (Met408) had a slightly reduced incidence of hypoglyce-

mic events during a 6 months period of combined MET‐SUF

treatments.20 The variant Met408 and its closely related proxy

rs36056065 (8 BP insertion) were shown to predispose to the occur-

rence of symptoms of MET intolerance in another small cohort of

T2DM patients from Latvia.21 Earlier studies had proposed Met408Val

as predictor for MET treatment efficacy, but genotype/phenotype

association has not been consistent across studies.8,22-24 In a small

case‐control study performed on Chinese subjects, the 408Val allele
(the “nonrisk” allele) resulted homozygous in nine out of the 10

patients whose HbA1c declined by less than 1% after 3 months of

MET treatment.25 Polymorphism rs62234226 is the only intronic vari-

ant identified in all ethnic groups, with the exception of Pacific

Islanders,19 and has been proposed as negative predictor for MET

treatment outcomes.23,24 In a European cohort study,27 the C allele

was associated with greater HbA1c reduction in diabetic subjects

treated with MET, but this interaction could not be replicated in other

cohorts of similar ethnicity (American‐European population28,29 and

Central European drug naïve T2DM patients).30 Indeed, in a study

carried out in 122 newly diagnosed, treatment naive T2DM patients

from South India, carriers of the rs622342 C variant were found to

be less responsive to MET action on HbA1c.31 In a small clinical trial

on patients with castration‐resistant prostate cancer, homozygous car-

riers of the rs622342 C variant showed lower‐MET‐related toxicity

and reduced drug efficacy on prostate cancer progression compared

with A allele carriers.32 Caucasian, African, and South American popu-

lations share the presence of two variants: rs12208357 (Arg61Cys)26

and a deletion of the methionine codon in position 420, which can

be induced by any of three polymorphisms: rs35191146‐/G,

rs35167514‐/ATG, and rs72552763‐/TAG.19,26 Earlier studies in non-

diabetic Caucasian subjects have shown altered MET pharmacokinet-

ics and lower transport in the presence of the SNPs rs12208357

(Arg61Cys), rs34130495 (Gly401Ser), rs72552763 (Met420del), and

rs34059508 (Gly465Arg)26,33-35; while, more recently, there was no

effect on the pharmacokinetics of MET in patients carrying the

supposed reduced‐function OCT1 allele at Arg61Cys, Gly401Ser,

Met420del or Gly465Arg.36 The same polymorphisms, together with

the SLC22A1 promoter‐linked synonymous variant rs1867351

(Ser52Ser), were associated with an increase in the renal clearance

of MET, possibly driven by a reduction in OCT1 expression or activ-

ity.37 Similarly, in a small cohort of EuropeanT2DM patients, the num-

ber of OCT1 reduced‐function alleles in Arg61Cys and Met420del was

significantly associated with two‐fold higher odds of the common

MET‐induced gastrointestinal side effects38; nevertheless, a large ran-

domized control trial performed on Scottish subjects (GoDART) and a

large‐scale meta‐analysis on subjects of European ancestry (MetGen)

showed no clinically evident reduction in the ability of MET to lower

HbA1c in individuals withT2DM in presence of the variants Arg61Cys

and Met420del.29,39 A small case‐control study performed on Chinese

T2DM subjects, depicted peculiar phenotype patterns for Ser52Ser

and two intronic polymorphisms, rs4709400 and rs2297374.25

Ser52Ser‐affected HbA1c and postprandial plasma glucose response

to MET, rs4709400 affected both fasting and postprandial glucose

MET modulation, and rs2297374 modulated HbA1c and fasting insulin

levels.25 Experimental studies have demonstrated that

OCT1‐mediated MET uptake is reduced in oocytes expressing

rs2282143 (Pro341Leu) and rs4646277 (Pro283Leu).40 Pro341Leu is

highly frequent in the Asiatic population; a trend toward higher MET

bioavailability was reported in Korean subjects, although it was not

statistically significant, and the analyses were not corrected for

possible confounders.41 Of much rarer distribution, the following

variants have only been assayed in vitro: rs34104736 (Ser189Leu)

and rs36103319 (Gly220Val) have been involved with reduced MET

transport, rs34447885 (Ser14Phe) was shown to increase MET
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uptake,33 and cells expressing the extremely rare mutation Gln97Lys,

rs200684404 (Pro117Leu), or rs756787089 (Arg206Cys) had reduced

MET uptake and pharmacokinetics.24

SLC22A2 encodes the Organic Cation Transporter 2 (OCT2),

which has strong affinity for MET.42 The intergenic variants

rs3119309, rs7757336, and rs2481030 located between SLC22A2

and SLC22A3 within a linkage block, have been recently associated

with the lack of response to MET in a small group of Caucasian

patients with T2DM and reduced levels of circulating MET in carriers

of the risk alleles.43 Three nonsynonymous variants, rs145450955

(Thr201Met), rs316019 (Ala270Ser), and rs201919874 (Thr199Ile),

were repeatedly shown to influence MET uptake, tubular excretion

and clearance, consistent with an increase in circulating MET

concentrations, both in vitro and in vivo.40,41,44-47 Among Iranian

T2DM patients treated with MET, carriers of 201Met exhibited

higher‐HbA1c concentrations, fasting glucose levels, and homeostasis

model assessment of insulin resistance (HOMA‐IR), and a possible sex

specificity, which had never been reported previously.48 In a small

number of Chinese T2DM patients of novel diagnosis, a significantly

stronger decrease in HbA1c was observed in heterozygous compared

with wild‐type 270Ala homozygous after 1 year of treatment with

MET, upon adjustment for baseline HbA1c, exercise, and diet.47 No

effects of Ala270Ser on MET pharmacokinetics or pharmacodynamics

were detected in a small group of nondiabetic Korean subjects.49

Ala270Ser exhibited no genotype/phenotype association when

studied in Caucasian subjects.28-30,37

Notably, in 2013, it has been suggested that interaction with

variants in the multidrug and toxin extrusion (MATE) 1 transporter

(SLC47A1) may mask SLC22A2 Ala270Ser effects on MET clearance.50

Several studies performed in European subjects have identified an

association between the intronic variants of SLC47A1 rs2289669

and rs8065082 (closely in linkage disequilibrium) and response to

MET in subjects withT2DM.26,28,51 Individuals who were homozygous

for SLC22A1 rs622342C allele exhibited a larger‐MET glucose‐

lowering effect, which was exacerbated in presence of one or two

SLC47A1 rs2289669A alleles.27,51,52 rs2289669A by itself was associ-

ated with greater HbA1c decline in newly diagnosed T2DM patients

of Chinese,53 Iranian,54 and European30 ethnicity. Newly diagnosed

Chinese T2DM patients and healthy Koreans carrying the

rs2289669A allele exhibited lower‐MET excretion and renal

clearance.49,53 However, rs2289669 showed no association with

MET clearance in studies performed in Caucasian nondiabetic37 and

T2DM patients,29,55 independently of SLC22A1 rs622342

genotype.29,55 Using knockout experiments on mice, it has been

revealed that alterations of SLC47A1 sequence on both chromosomes

are required in order for MET to accumulate in the liver, fostering

lactic acidosis.56,57 It is, then, likely that inconsistencies about the

effects of rs2289669 and rs622342 might depend on other, more

dramatic, mutations of SLC47A1, occurring at an independent site,

such as the five nonsynonymous variants, identified in a multiethnic

nondiabetic cohort, associated with reduced MET transport

in vitro58-60: rs77630697 (Gly64Asp), rs77474263 (Leu125Phe),

rs35790011 (Val338Ile), rs76645859 (Val480Met), and rs35395280

(Cys497Phe).58 Additionally, three nonsynonymous variants were

demonstrated to be associated with reduced MET transport in vitro:
rs149774861 (Asp328Ala), the extremely rare mutation Ala310Val,

and rs35646404 (Thr159Met) exclusive of Asiatic populations.59,60

SLC47A2 encodes for the transporter MATE2, highly homologous

to MATE1, and, as the latter, is involved in excretion of endogenous

and exogenous toxic electrolytes through urine and bile. Several

non‐synonymous variants in SLC47A2 sequence exhibited reduced

MET transport activity in vitro: The transcript in presence of the rare

mutations Lys64Asn,59 rs562968062 (Gly211Val),57,59 and

rs146901447 (Pro162Leu)57 were not detectable in engineered

HEK293 cells, while Tyr273Cys was localized to the wrong cellular

compartments.57 By contrast, the variant Pro162Leu seemed to

increase the response to MET in vivo in a cohort of African American

subjects.61 The rare mutation Pro103Arg was found to be correctly

expressed at the plasma membrane and to overdouble MET transport

activity.57 Finally, rs34399035 (Gly429Arg) was the only

nonsynonymous variant apparently affecting the long‐term decrease

in HbA1c in European Caucasians, with carriers of the variant showing

a 0·8% (95% CI, 0·02‐1·6; P = 0.05) lower decrease than the wild‐type

carriers.55 The intronic polymorphism rs12943590 was associated

with reduced clinical response to MET in US diabetic subjects of

African or European ancestry.26,61 The non‐coding variant

rs12943590, in the 5' UTR, was found to induce no pharmacokinetic

differences in Koreans41 and in a large meta‐analysis performed on

European T2DM subjects;29 nevertheless, a small group of Korean

nondiabetic volunteers carrying rs12943590 or rs758427 and

rs34834489 exhibited increased promoter activity, with a significant

raise in renal and secretion clearance.62

3.1.3 | Associations with nominal significance lacking
replication (supporting information)
3.2 | Polymorphisms affecting SUF/meglitinides
response

For years, the drug of choice alongside MET has belonged to the

family of SUF/glinides. Both pharmaceutic classes carry weight gain

as side effect and a high risk of hypoglycemia.63 SUF bind the ATP‐

dependent K+ (KATP) channels on beta‐cells membrane therefore

inducing K+ entrance into the cell, the depolarization of the plasma

membrane, and the opening of voltage‐gated Ca2+ channels. The spike

of intracellular Ca2+ levels triggers insulin zymogen fusion with the

plasma membrane and insulin secretion. Over time, the compensatory

efforts of the beta cells may eventually lead to a decline of beta‐cell

mass and secondary failure of sulfonylurea/glinides treatment

(Table 2).64

3.2.1 | Associations replicated in multiple studies

The gene CYP2C8 encodes for an enzyme belonging to the

cytochrome P450 (CYP) superfamily. In presence of the most diffused

dyplotype, CYP2C8*3, defined by the variants rs11572080

(Arg139Lys) and rs10509681 (Lys399Arg), repaglinide metabolism

was reported to be increased,65,66 resulting in reduced drug bioavail-

ability.67 By contrast, the frequency of CYP2C8*3 carriers was



TABLE 2 Summary of genetic variants that influence sulfonylureas/meglitinides therapy outcomes in at least one ethnic group

†Gene ‡SNP ‡Alleles ‡Region

‡Start Position
(bp) Function Associated Traits Adverse Effect References

Associations replicated in multiple studies

CYP2C8 rs10509681 (*3) T/C 10q23.33 95038992 Missense Lys399Arg SUF PK 65‐67
rs11572080 (*3) G/A 95067273 Missense Arg139Lys

CYP2C9 rs1799853 (*2) C/T 10q23.33 94942290 Missense Arg144Cys SUF PK Hypoglycemia 68‐82, 87
rs1057910 (*3) A/C 94981296 Missense Ile359Leu

SLCO1B1 rs4149015 G/A 12p12.1 21130388 Upstream gene Repaglinide response 65, 72, 82‐95
rs4149056 T/C 21178615 Missense Val174Ala SUF PK

ABCC8 rs757110 T/G 11p15.1 17396930 Missense Ala1369Ser SUF response 82, 96‐98,
100‐103,
108, 109

rs1799859 G/A 17397732 Synonymous
Arg1273Arg

SUF response, TG

rs1801261 C/T 17415318 Synonymous
Thr759Thr

SUF response

rs1799854 C/T 17427157 Intron SUF response, TG

KCNJ11 rs5210 G/A 11p15.1 17386704 3’ UTR SUF response 26, 97, 103,
116‐121rs5219 C/T 17388025 Missense Lys23Glu Secondary failure

KCNQ1 rs2237892 C/T 11p15.4 2818521 Intron Repaglinide response 127‐129
rs163184 T/G 2825839 SUF response, FPG
rs2237895 A/C 2835964 Repaglinide response

NOS1AP rs10494366 G/T 1q23.3 162115895 Intron SUF response Mortality 131, 132,
134rs12742393 A/C 162254796 Repaglinide response,

FPG, FPI, HbA1c

IRS1 rs1801278 G/A 2q36.3 226795828 Missense Gly972Arg SUF response, insulin
secretion

Secondary failure 15, 18, 20,
135, 136

TCF7L2 rs7903146 C/T 10q25.2 112998590 Intron SUF response Secondary failure 142‐144
rs12255372 G/T 113049143
rs290487 C/T 10q25.3 113149972 Repaglinide response

†HUGO approved gene symbols.
‡dbSNP record from build 147/GRCh38/hg38 (where available); http://www.ncbi.nlm.nih.gov/snp/

Abbreviations: FPG, fasting plasma glucose; FPI, fasting plasma insulin, HbA1c, glycated haemoglobin; PK, pharmacokinetics; SUF, sulfonylureas/
meglitinides; TG, triglycerides.
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reported to be higher in a small group of T2DM patients who experi-

enced hypoglycemic events while undergoing treatment with SUF

(glimepiride, gliclazide, or glipizide) in respect to wild‐type CYP2C8*1

homozygous subjects, but this difference was not statistically signifi-

cant.68 The closely related CYP2C9 enzyme is the major responsible

for SUF breakdown. The non‐synonymous variants rs1799853

(Arg144Cys) and rs1057910 (Ile359Leu), respectively defined as

CYP2C9*2 and CYP2C9*3, have been reported to determine lower‐

CYP2C9 catalytic activity,69-72 resulting in reduced SUF clearance

and higher‐drug bioavailability across different ethnicities.70,73-79 Of

notice, these evidences translate into increased odds of moderate to

severe hypoglycemic events during treatment with SUF.68,80-82 How-

ever, CYP2C9*2 and *3 have been shown not to carry increased risk of

hypoglycemia in healthy volunteers and T2DM patients taking

glimepiride, glibenclamide, gliquidone,69,78,83,84 or nateglinide.72,85

Caution should be advised when interpreting these data because it

has been recently demonstrated that CYP2C9 catalytic impairment

might be counteracted by the effects of genetic variation at the CYP

oxidoreductase (POR) gene, which is tightly associated with CYP

enzymes and can modulate their activity;86 indeed, in a subset of

subjects from the GoDART database, it has been reported that the

number of CYP2C9*2 and *3 alleles was associated with nearly

three‐fold increased risk of hypoglycaemic events and better response

to SUF only in patients carrying the POR*1/*1 wild‐type genotype.87

The solute carrier organic anion transporter 1B1 (SLCO1B1)

encodes for a transmembrane receptor protein, called OATP1B1,
involved in the removal of anionic compounds from the blood into

the hepatocyte. SLCO1B1 locus is highly polymorphic; its best charac-

terized non‐synonymous variant, rs4149056 (Val174Ala), has been

demonstrated to significantly increase repaglinide bioavailability in

both T2DM and healthy subjects of Caucasian and Asian ethnic-

ity.65,88-93 A larger concentration of nateglinide in the presence of

the low‐metabolizing variant 174Ala has also been reported,72,94 but

the association has not been consistent throughout other studies.89,91

The non‐coding SNP rs4149015, located less than 1 kb upstream

SLCO1B1 has been found to be associated with an increased

glucose‐lowering effect of repaglinide,65 an effect that could be attrib-

uted to the close proximity with rs4149056 polymorphism.95

The ABCC8 gene encodes for a member of the superfamily C of

ATP‐binding cassette (ABC) transporters, which functions as a modu-

lator of KIR6.2 transporters (encoded by KCNJ11), and together, they

form KATP channel complexes. Several SNPs within the ABCC8 locus

have been associated to interindividual variability in the response to

SUF treatment. The intronic polymorphism rs1799854 (exon 16 −3C

➔ −3 T), often combined with the closely linked non‐synonymous

variant rs1801261 (Thr759Thr),26 has been associated with reduced

insulin secretion after tolbutamide infusion in nondiabetic relatives

of T2DM patients.96 T2DM patients on SUF treatment carrying the

rs1799854C/C genotype exhibited significantly lower‐HbA1c levels

compared with the patients with T/T genotype and improved insulin

sensitivity determined by HOMA index in response to repaglinide,

with respect to T carriers.97,98 However, rs1799854 was not

http://www.ncbi.nlm.nih.gov/snp/
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associated with early failure of SUF therapy in a cross‐sectional study

performed on a small cohort of T2DM patients.99 T2DM patients on

SUF treatment carrying the G/G genotype of the synonymous SNP

rs1799859 (Arg1273Arg) had significantly higher‐HbA1c levels

compared with the patients with A/A genotype,98 thus implying

lower‐SUF efficacy. In the same study, no effect of rs757110

(Ala1369Ser) was observed on SUF ability to modulate either fasting

and postprandial glucose levels or HbA1c.98 The latter result has been

confirmed in several studies across different ethnicities.82,100,101 ten

combined with theNevertheless, in two studies, both performed on

Chinese T2DM patients, homozygous carriers of the 1369Ala allele

were reported to exhibit enhanced glicazide efficacy.102,103 The ability

of ABCC8 polymorphism Ala1369Ser to interfere with SUF therapy is

peculiarly controversial because this SNP is in strong linkage

disequilibrium with the non‐synonymous variant Lys23Glu in

KCNJ11,104,105 and it is possible to postulate the existence of a

molecular selective specificity for the genetic variation at KATP

channels.106 Indeed, when compared with ABCC8‐KCNJ11wild‐type

haplotype carriers, 1369Ala‐23Lys haplotype was shown to increase

sensitivity to gliclazide, and mitiglinide,106,107 whereas it was less

responsive to tolbutamide, chlorpropamide, and glimepiride,106 and

no differences have been observed with the use of nateglinide,

repaglinide, glipizide, and glibenclamide.84,106,107 Finally, both ABCC8

polymorphisms rs1799854 and rs1799859 resulted associated with

circulating triglycerides level after SUF therapy.108,109

KCNJ11 (potassium voltage‐gated channel subfamily J member

11) encodes for the pore forming subunit (also named KIR6.2) of the

KATP channel designated to modulate glucose‐dependent insulin

secretion in pancreatic beta cells. Large studies have been able to

prove that the non‐synonymous polymorphism rs5219 (Lys23Glu)26

is more frequent inT2DM102,105,110-112 and in subjects with decreased

insulin secretion,113 although initial reports documented no associa-

tion between genetic variants in KCNJ11 and T2DM.104,109,114,115 In

vitro experiments in human pancreatic islets have demonstrated a

reduction in response to SUF in presence of the non‐synonymous

polymorphism 23Lys,116 which has been confirmed in studies

performed on T2DM patients of Chinese ethnicities undergoing SUF

therapy,117 alongside the nearby non‐coding variant rs5210.26,103

Consistent with the previous observations, 23Lys carriers have been

reported to exhibit higher predisposition to secondary failure when

treated with SUF.116,118-120 By contrast, studies performed on T2DM

patients of Caucasian121 and Asian97 descent have observed a positive

effect of the variant 23Lys in response to SUF or no significant

differences in the glucose lowering action of the drug.98,111 The risk

of hypoglycemic events commonly associated with SUF therapy has

been found to be independent from the presence of the Lys23Glu

variant122 or its non‐synonymous proxy rs5215 (Val337Ile).82

The KCNQ1 gene, located on chromosome 11, belongs to a large

family of voltage‐gated K+ channels. The intronic variant rs2237895 in

KCNQ1 has been found to be associated with reduced insulin secre-

tion in cross‐sectional and prospective studies, conferring increased

T2DM risk across different ethnicities.123-126 The intronic polymor-

phisms rs2237892 and rs2237895 were shown to increase repaglinide

sensitivity,127,128 whereas a third intronic variant, rs163184, was

reported to lower‐SUF effects on fasting plasma glucose levels.129
The gene NOS1AP encodes for the nitric oxide synthase (NOS) 1

adaptor protein, which downregulates the neuronal NOS1 and Ca2+

influx channels. The SNP rs10494366 in the NOS1AP gene has been

associated with QTc prolongation.130 In the Rotterdam study, a

population‐based cohort study of elderly people, carriers of the TG

or GG genotype at rs10494366 treated with glibenclamide exhibited

higher‐glucose levels and mortality rates compared with glibenclamide

users with the TT genotype.131 In addition, in Chinese patients with

T2DM, the TT genotype was associated with an increased effect of

repaglinide on insulin resistance measured by HOMA index.132 By

contrast, pharmacodynamics studies carried out in Korean healthy

volunteers showed no statistically significant differences based on

rs10494366 genotype.84 The intronic variant rs12742393 has been

associated withT2DM in a cohort of Chinese patients with the C allele

showing significant risk for diabetes with an OR of 1·17 (95% CI, 1·07‐

1·26, P = 0.0005).133 Indeed, the effects of repaglinide treatment on

fasting plasma glucose, insulin levels, and HOMA‐IR index were

reduced in patients withT2DM carrying the NOS1AP rs12742393 risk

C allele compared with carriers of the AA genotype.134

As anticipated in Section 3.1.2, IRS1 plays a pivotal role in the

transduction of the insulin signalling cascade. The most frequent vari-

ant of IRS1, Gly972Arg, was found to be associated with failure of the

hypoglycemic treatment with SUF in five case‐control studies.15-18,120

Furthermore, diabetic patients carrying the Arg972 variant receiving

treatment with insulinotropic hypoglycaemic drugs such as SUF

and/or glinides had higher‐HbA1c levels compared with wild‐type car-

riers.18 In vitro experiments performed on a rat beta‐cell line and iso-

lated human islets have proven that the risk allele 972Arg is associated

with a marked reduction of insulin secretion in response to SUF.135,136

The locus of transcription factor 7‐like 2 gene (TCF7L2) is the

strongest known signal associated with T2DM.137 Consistent

evidences have been reported for the intronic polymorphisms of

TCF7L2 (rs12255372 and rs7903146) with increased risk of

T2DM.138-141 Both risk alleles have also been associated to reduced

response to SUF treatment in a large randomized control trial on Euro-

pean subjects,142 and rs7903146 polymorphism was associated to

SUF treatment failure in an independent study on T2DM German

patients.143 A pharmacogenetic study in Asian subjects has assessed

the effects exerted on glimepiride hypoglycemic efficacy by several

intronic variants in the TCF7L2 locus, in a small number of healthy

volunteers84; the SNPs rs290487, rs11196205, and rs12255372,

along with rs7903146, showed no differences when compared with

the wild‐type alleles,84 although the variant rs290487 had previously

been identified as a modulator of repaglinide therapeutic action in

Chinese T2DM patients.144

3.2.2 | Associations with nominal significance lacking
replication (supporting information)
3.3 | Polymorphisms affecting TZDs response

Since the late 1990s, TZDs are a therapeutic option for patients with

T2DM in whom they act by improving insulin sensitivity and preserv-

ing β‐cell secretory function. The net effect of TZDs is an increased
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mass of small insulin‐sensitive subcutaneous adipocytes with

decreased lipolytic activity, resulting in decreased free fatty acids con-

centration and improved adipocytokine profile.145 Similarly to SUF

and insulin treatment, TZDs may lead to weight gain, partly because

of TZDs' most common side effect, fluid retention, which might foster

the formation of peripheral edema in patients with cardiac or renal dis-

ease.146 Because of the potential for long‐term adverse effect, TZDs

use has been subject of debate with one molecule in this class,

troglitazone (TRO) being taken off‐market since the year 2000,

because of increased incidence of drug‐induced hepatitis and

rosiglitazone (ROSI) being suspected of bringing cardiovascular harm

and retracted by the Food and Drug Administration at first, but later,

it has been restored in the US market.147 Pioglitazone (PIO) is the only

TZD still marketable in Europe, and it has actually been reported to

improve cardiovascular events in patients with T2DM and in insulin

resistant nondiabetic individuals (Table 3).148-150

3.3.1 | Associations replicated in multiple studies

Multiple cytochrome P450 enzymes are involved in the metabolism of

TZDs; however, CYP2C8 (previously discussed in Section 3.2.1) is

responsible for the catalysis of most of the biotransformation of PIO

and ROSI.66,151-155 Its most frequent haplotype is CYP2C8*3, mainly

found in Caucasians and Hispanics, designated by the presence of

two non‐synonymous polymorphisms: rs11572080 Arg139Lys and

rs10509681 Lys399Arg.155,156 Carriers of CYP2C8*3 were shown to

have significantly lower‐ROSI area under the curve (AUC), higher‐oral

clearance,157 lower OR of developing edema,158 and a statistically

significant reduced response to ROSI treatment,158,159 although one

early study in a very small cohort detected no association of

CYP2C8*3 with the drug glucose‐lowering effect.160 CYP2C8*3

polymorphisms were shown to reduce PIO AUC as well, resulting in

higher‐PIO clearance.161-164 CYP2C8*11, identified by the presence

of the infrequent nonsense variant rs78637571 Glu274Stop in

subjects of East Asian ethnicity, was reported to increase ROSI AUC
TABLE 3 Summary of genetic variants that influence thiazolidinediones

†Gene ‡SNP ‡Alleles ‡Region

‡Start Position
(bp) Func

Associations replicated in multiple studies

CYP2C8 rs10509681 (*3) C/T 10q23.33 95038992 Misse
rs78637571 (*11) C/A 95045951 Stop
rs11572103 (*2) A/T 95058349 Misse
rs11572080 (*3) A/G 95067273 Misse

PPARG rs1801282 C/G 3p25.2 12351626 Misse

PPARGC1A rs8192678 A/G 4p15.2 23814039 Misse
rs2970847 C/T 23814301 Syno

ADIPOQ rs266729 C/G 3q27.3 186841685 Upst
rs2241766 A/C 186853103 Syno

rs1501299 G/T 186853334 Intro

†HUGO approved gene symbols.
‡dbSNP record from build 147/GRCh38/hg38 (where available); http://www.n

Abbreviations: FPG, fasting plasma glucose; HbA1c, glycated haemoglobin; PIO
TZDs, thiazolidinediones.
and bioavailability in heterozygous subjects.165 Finally, the polymor-

phism rs11572103 Ile269Phe, designated as CYP2C8*2, has been

reported to influence PIO pharmacokinetics in vivo in African

Americans.166

PPARG is a nuclear receptor serving as lipid sensor and the cognate

receptor for TZDs167; its most common variant, rs1801282 (Pro12Ala),

reproducibly associated with decreased risk of T2DM,168-171 has been

widely addressed in pharmacogenetics studies on TZDs efficacy. Sev-

eral reports have been meta‐analysed revealing a better response to

PIO treatment in terms of improvements in fasting glucose, HbA1c

and triglycerides in carriers of the 12Ala allele164,172-174 despite two

studies observed no association,175,176 and one reported that insulin

levels and insulin resistance were lower in carriers of the Pro12Pro

genotype after PIO treatment.172 In response to ROSI, Korean T2DM

patients carrying the 12Ala variant have been shown to have

significantly greater decrease in fasting glucose levels and HbA1c.177

Earlier studies evaluating how the common genetic variation in PPARG

influenced TRO efficacy have revealed a nominal association for

multiple SNPs,178 but several smaller and larger study groups failed at

replicating the previously reported associations.175,179,180

The docking of PPARG to the transcription factor coactivator

PPARGC1A allows the recruitment of two transcription factors to form

a highly efficient transcription complex. In ChineseT2DM patients, the

non‐synonymous polymorphisms (Thr394Thr; rs2970847 and

Gly482Ser; rs8192678) in PPARGC1A appear to influence patient

response to ROSI therapy.158,173,181 To date, no significant differences

were observed when the effects of Gly482Ser were evaluated in

patients treated with PIO.173

ADIPOQ encodes the anti‐inflammatory cytokine adiponectin,

solely expressed in adipose tissue. The variant rs266729, located

approximately 1 kb upstream ADIPOQ has been shown to induce

greater changes in fasting glucose and HbA1c after treatment with

PIO in a study conducted in Chinese T2DM patients,182 and carriers

of the homozygous wild‐type rs266729 genotype, undergoing

treatment with ROSI, exhibited a greater reduction in fasting plasma
therapy outcomes in at least one ethnic group

tion Associated Traits Adverse Effect References

nse Lys399Arg TZD PK Edema 157‐159,
161‐166gained Glu274Stop ROSI PK Hypoglycemia

nse Ile269Phe PIO PK
nse Arg139Lys TZD PK, ROSI

response
Edema

nse Pro12Ala TZD response,
FPG, HbA1c,
TG

164, 172‐174,
177

nse Gly482Ser ROSI response 158, 173, 181
nymous Thr394Thr

ream gene TZD response,
FPG, HbA1c

182‐184, 186
nymous Gly15Gly

n ROSI response,
FPG, HbA1c

cbi.nlm.nih.gov/snp/

, pioglitazone; PK, pharmacokinetics; ROSI, rosiglitazone; TG, triglycerides;

http://www.ncbi.nlm.nih.gov/snp/
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glucose levels.182,183 Another study conducted in diabetic subjects

from Southern China has shown that the synonymous T45G polymor-

phism at rs2241766 (Gly15Gly) is related to PIO response in T2DM

with patients carrying the TG genotype exhibiting a greater reduction

in HbA1c,184 whereas no evidence of pharmacogenetic influence on

HbA1c or fasting glucose levels was observed in response to PIO

treatment in Iranian T2DM patients.185 Together with rs2241766

polymorphism, the intronic SNP rs1501299 has been shown to be

associated with reduced fasting glucose and HbA1c levels after ROSI

therapy,186 while opposing evidences were reported in a large cohort

of Chinese patients in which the therapeutic efficacy of multiple‐dose

ROSI was assessed.183

3.3.2 | Associations with nominal significance lacking
replication (supporting information)
3.4 | Polymorphisms affecting DPP‐4
inhibitors/GLP‐1 receptor agonists response

Dipeptidyl peptidase 4 (DPP‐4) inhibitors and glucagon like peptide 1

(GLP‐1) receptor (GLP‐1R) agonists are considered effective options

to lower glucose levels because they carry moderate to low risk of
TABLE 4 Summary of genetic variants that influence DPP‐4 inhibitors/G

†Gene ‡SNP ‡Alleles ‡Region

‡Start Position
(bp) Func

Associations at GWAS level of significance

GIPR rs13306399 C/G 19q13.32 45670699 Miss

rs13306398 G/T 45674785 Miss
rs13306403 G/T 45677928 Miss

rs1800437 C/G 45678134 Miss
rs10423928 A/T 45679046 Intro

QPCTL rs2287019 C/T 45698914 Intro

GLP1R rs10305420 C/T 6p21.2 39048860 Miss
rs3765467 C/T 39065819 Miss
rs367543060 C/T 39066240 Miss
rs6923761 A/G 39066296 Miss

rs10305492 A/G 39079018 Miss
rs10305493 C/G 39079155 Miss

Associations replicated in multiple studies

KCNQ1 rs151290 A/C 11p15.4 2800385 Intro

rs2237892 C/T 2818521
rs163184 C/A 2825839
rs2237895 A/C 2835964
rs2237897 C/T 2837316

TCF7L2 rs7903146 C/T 10q25.2 112998590 Intro

rs12255372 G/T 113049143

†HUGO approved gene symbols.
‡dbSNP record from build 147/GRCh38/hg38 (where available); http://www.n

Abbreviations: BMI, body mass index; CVD, cardiovascular disease; DPP‐4I, DP
PPG, postload or 2‐h OGTT plasma glucose; PPI, postload 2‐h OGTT plasma in
hypoglycemia, thus offering better life‐quality expectancies to the

patients. Because the incretin hormones GLP‐1 and GIP (gastric inhib-

itory polypeptide) are rapidly cleaved into the bloodstream by DPP‐4

into inactive forms, DPP‐4 inhibitors have been developed to increase

circulating incretins level, for the treatment of T2DM.187 GLP‐1R ago-

nists, by definition, explicate their function by triggering the GLP‐1R

cascade.188-190 Adverse effects induced by GLP‐1R agonists include

transient nausea, vomiting, and diarrhoea,191 although prescription to

patients with a history of pancreatitis, medullary thyroid carcinoma,

and multiple endocrine neoplasia syndrome type 2 should be made

with caution (Table 4).192

3.4.1 | Associations at GWAS level of significance

Although several naturally occurring non‐synonymous polymorphisms

in the gene coding for gastric inhibitory polypeptide receptor (GIPR)

have been characterized, the polymorphism rs13306399 (Cys46Ser)

was the only one capable of altering the binding of GIP,193 while both

rs13306399 and rs13306403 (Arg316Leu) have been shown to

decrease GIP sensitivity in beta cells in vitro.193 The same

polymorphisms, together with the infrequent variants rs13306398

(Gly198Cys) and rs1800437 (Glu354Gln), are also associated with

reduced cell surface expression and basal receptor signalling.193
LP1R agonists therapy outcomes in at least one ethnic group

tion Associated Traits
Adverse
effect References

ense Cys46Ser GIP sensitivity, GIP
expression

193‐196,
198, 199

ense Gly198Cys GIPR expression
ense Arg316Leu GIP sensitivity, GIP

expression
ense Glu354Gln GIPR expression CVD
n GIP response, PPG,

PPI, BMI,
Osteopontin, GIPR
expression

n FPG, PPG 198, 201

ense Pro7Leu Liraglutide response 197, 203‐210,
214‐216ense Arg131Gln GLP1 response

ense Thr149Met
ense Gly168Ser Liraglutide response,

DPP4i response,
PPG, BMI

ense Ala316Thr FPG, PPG, PPI
ense Ser333Cys GLP1R binding

n Incretin response,
GLP‐1 levels, PPI

123‐126,
219‐221

Incretin response, PPI
DPP‐4I response
Incretin response, PPI

n GLP1 response,
DPP‐4I response,
Hb1Ac

221,225–227

GLP1 response

cbi.nlm.nih.gov/snp/

P‐4 inhibitors; FPG, fasting plasma glucose; HbA1c, glycated haemoglobin;
sulin.

http://www.ncbi.nlm.nih.gov/snp/
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Polymorphism rs1800437 was further involved with cardiovascular

disease incidence194 and cultured adipocytes carrying the rs1800437

minor C allele manifested a drastic downregulation of the receptor

desensitization‐resensitization cycle.195 The A allele of the intronic

variant rs10423928 was associated with a lower amount of the splic-

ing isoform required for transmembrane activity.196 Recently a

6 months follow‐up study carried out in a small group of T2DM

patients found no evidence of association with DPP‐4 inhibitors effi-

cacy,197 although carriers of the A allele had been reported to exhibit

0·09 (CI, 0·07‐0·11) mmol/L increase of 2‐h postload glucose levels

during an OGTT, decreased insulin secretion, and a diminished incretin

effect in vivo in large cohort studies,198,199 aside of a reduction in

body mass index (BMI), lean body mass, and waist circumference.199

A molecular connection with osteopontin (OPN) was suggested

because carriers of rs10423928 had lower‐OPN expression in pan-

creas and adipose tissue, both GIP and OPN modulate cytokine‐

induced apoptosis.196,199 The intron variant rs2287019, falling within

the glutaminyl‐peptide cyclotransferase‐like (QPCTL) gene, approxi-

mately 15 kb downstream GIPR, has been associated with BMI at

genome‐wide level.200 The risk C allele was also reported to be

associated with higher fasting glucose but lower 2‐h postload glucose

concentrations during an OGTT.198,201 Taken together, these findings

suggest that GIPR variants could potentially modulate the response to

DPP‐4 inhibitors, nevertheless, to date, this effect has not been

revealed by clinical studies.194,197,202

The GLP‐1 receptor is an important drug target for the treatment

of T2DM, and several non‐synonymous variants of GLP1R have been

carefully characterized: rs367543060 Thr149Met variant, identified

in one Japanese diabetic subject,203 induces a significant loss of func-

tion in vitro204-206 and impairs the insulin secretory response to GLP‐

1 in vivo.203,206 The polymorphism rs10305493 (Ser333Cys) instead

has been proven to preserve peptide response.205,206 The SNP

rs6923761 (Gly168Ser) was nominally associated with reduced insu-

lin secretion in response to GLP‐1 infusion during a hyperglycemic

clamp in nondiabetic American subjects207 and with a weaker

response to the glucose‐lowering effect of DPP‐4 inhibitors in

patients with T2DM.197 On the contrary, the same polymorphism

was associated with higher efficacy of liraglutide,208 and it was

shown to increase weight and fat mass loss after liraglutide treat-

ment,209,210 different types of diet,211 or bilio‐pancreatic diversion

surgery.212 In addition, carriers of the rs6923761 A allele had higher

basal GLP‐1 levels210 and a better cardio‐metabolic profile.213 When

the dyplotype rs6923761 (Gly168Ser)/rs10305420 (Pro7Leu) was

studied, the wild‐type form 7Pro, combined with the mutated

168Ser appeared to give an even bigger contribution to the efficacy

of treatment with liraglutide.208 Heterozygous carriers of the minor

allele of rs3765467 (Arg131Gln) were reported to have higher beta‐

cell response to GLP‐1 infusion during a hyperglycemic clamp,207

but no significant differences were observed when genotypes at

rs3765467 and rs761386 (an intronic variant in perfect linkage dis-

equilibrium with the intronic short tandem repeat at rs5875654

8GA/7GA) were compared in relation to changes in plasma glucose

levels after exenatide treatment. Finally, the minor (A) allele of the

low‐frequency rs10305492 (Ala316Thr) was associated at genome‐

wide level with lower fasting glucose levels,214-216 and lower risk of
T2DM, but lower early insulin secretion and higher 2‐h glucose

during an OGTT.216

3.4.2 | Associations replicated in multiple studies

As anticipated in Section 3.2.1, KCNQ1 channels are involved not only

with the mechanisms of insulin secretion but also in GLP‐1 and GIP

release from the intestinal endocrine cells.217 In a small pilot study,

KCNQ1 polymorphisms rs163184 G was associated with lower‐HbA1c

reduction in response to DPP4 inhibitors treatment,218 consistent

with previous findings in European,125 South American,126 and

Asian123,124 subjects. rs2237895, rs151290, rs2237892, and

rs2237897, all falling within the same intron as rs163184, were found

to be associated with several OGTT‐derived indexes of insulin

secretion, although not during the intravenous glucose tolerance test

(IVGTT), in nondiabetic subjects.219 Regardless, nondiabetic individ-

uals homozygous for the diabetes protective allele (A) at rs151290

exhibited lower‐active GLP‐1 concentrations at 10 minutes during

the OGTT.220

AlthoughTCF7L2 (previously addressed in Section 3.2.2) has been

suggested to regulate proglucagon gene expression, and thus GLP‐1

synthesis in intestinal L cells,221-223 no significant variation in the

concentration of GLP‐1 was observed in carriers of different

genotypes of the risk variant rs7903146.220,223,224 Results reporting

impaired insulin secretion in response to GLP‐1 infusion rather

suggested that two variants (rs7903146, rs12255372) in TCF7L2

might reduce GLP‐1 action on beta cells.224,225 In support of the latter

theory, reduction in HbA1c in response to 24 weeks of treatment with

the DPP‐4 inhibitor linagliptin was reportedly attenuated in homozy-

gous carriers of the risk allele rs7903146 T.226 Nevertheless, other

studies have observed no rs7903146 attributable differences in

GLP‐1‐induced beta‐cell responsiveness.220

3.4.3 | Associations with nominal significance lacking
replication (supporting information)
4 | CONCLUSIONS

Although the development of T2DM is clearly associated with a famil-

ial history of diabetes with a heritability estimated at 30%‐70%,227 the

current set of about 100 established susceptibility loci with robust

association signals, identified primarily through large‐scale GWAS,

captures only 10% of familial aggregation of the disease.228,229 Disap-

pointingly, although the identification of such a large number of novel

susceptibility loci has opened up the opportunity to translate this

genetic information into the improvement of T2DM risk prediction,

the available data suggest that genetic screening is currently of little

value in clinical practice with risk variants adding very little to the

predictive power provided by clinical risk factors alone.230 In addition

to this, we are unaware of how most of those susceptibility loci

contribute to diabetes incidence, especially in the case of non‐coding

polymorphisms or genes that do not translate into proteins; therefore,

we are yet incapable of exploiting them as drug targets for functional

intervention on the disease.
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Genetic investigation has also been dedicated to evaluate the

interindividual variability in the response to oral and injectable

glucose‐lowering agents, and in recent years, many pharmacogenetic

studies of associations between genetic variants and glucose‐lowering

drug response have been published. To a large extent, these studies

were designed to identify subsets of subjects more or less likely to

experience therapeutic response to the drug in question or to develop

side effects. Indeed, the care of patients with T2DM requires an indi-

vidualized approach because of the fact that the disease is heteroge-

neous, alterations in molecular and pathophysiological pathways of

glucose homeostasis differ between subjects, and the variable effects

of existing therapies make it difficult to predict individual response to

glucose‐lowering medications.231 Clearly, an individualized approach is

important because of the multitude of clinical features involved in

decision‐making including age, body weight, disease duration, life

expectancy, glycemic control history, risk of hypoglycemia, adverse

effects of glucose‐lowering medications, presence of complications

and comorbid conditions, and psycho‐socio‐economic factors.232,233

Througout this review, it was definetly shown how ethnicity is also a

major determinant of the outcomes.234-236 The usual approach for

T2DM therapy comprises the stepwise addition of medications to

lifestyle interventions, usually beginning with a single oral drug

and advance to combination therapy, followed by the addition or

substitution of insulin, based on the progressive failure of the

medications to maintain adequate glucose control. In the context of

personalized or precision medicine, pharmacogenetic information

may be useful for patient stratification in order to identify responders

and to balance the benefits of glucose‐lowering medications with

their potential risks.

Testing few genetic markers may be a relatively straightforward

method to evaluate the above‐mentioned biologic factors, keeping in

mind that the individual genetic asset is independent from the time

point of the disease course; thus, it can reveal information that would

otherwise be disguised by the disease itself.

In this comprehensive review, we attempted collecting all the

literature on the pharmacogenetics of diabetes medications. Although

it is recognized that interindividual variability in therapeutic response

is partly due to genetic heterogeneity, the pharmacogenetic studies

herein reported have shown no consistent results. For instance,

although there is evidence that genetic factors influence up to 34%

of the glycemic response to MET,4 the combined effect of the ATM

and SLC2A2 loci on MET response has been shown to be minimal,

suggesting that other genetic determinants of MET response remain

to be revealed. Moreover, a recent Danish study, carried out in a

population‐based cohort predominantly treated with MET (55%), has

investigated the influence of 48 T2DM susceptibility variants on

disease progression assessed as early redemption of either a

glucose‐lowering drug or an insulin drug prescription. Results have

shown that common T2DM‐associated gene variants do not signifi-

cantly affect disease progression requiring additional therapies.237

Several issues can be highlighted about the design of most of the

studies evaluated for this review. It is important to note that none of

the published studies was a prospective randomized clinical trial

specifically conceived to unravel pharmacogenetic associations. Such

approach would be able to limit selection bias and confounding
factors, especially if performed on large‐scale cohorts. Instead, we

collected several observational, cross‐sectional, or retrospective stud-

ies, mostly with a small sample size, devoid of the discovery power

required to identify smaller effect sizes. Many studies have investi-

gated the effects of genotypes on a single‐medication intervention

without including a placebo or a control group. Therefore, it is not

possible to exclude that these studies have reported the effect of

genotype rather than the modification of the response to the

medication. In addition, most studies did not address the issue of

multiple comparisons, so that it is possible that the reported findings

are false positives. Many associations were only assayed in a single

study (supporting information), which most of the time did not

include enough details to judge the rigorousness of the research.

Moreover, a number of studies did not report on testing for

Hardy‐Weinberg proportions and on masking of genotyping person-

nel. Furthermore, genotyping calls obtained with probes or restriction

fragment length analysis were rarely confirmed by sequencing. With

few exceptions, the authors adopted the candidate gene approach,

which raises the concern of selective reporting of results and publica-

tion bias. Overall, the reported effect size of genetic variants on

glucose‐lowering drug response is small and, in many cases, clinically

meaningless.

Notably, we should always assume the presence of the “winner

curse” because of the overestimation of the effect size of a newly

identified genetic association, when the statistical power of the

discovery study is not sufficient to detect the true OR of smaller

magnitude or when positive results are reported and null results are

not. As a consequence, winner curse implies that the power required

to independently confirm the association will be underestimated,

resulting in failure of replication. This type of bias cannot be resolved

by meta‐analyses since the heterogeneity of pharmacogenetic studies,

by itself, precludes comparisons within outcomes and quantitative

synthesis with meta‐analyses. In addition to this, most findings were

only confirmed in one ethnicity. Although each population with its

unique genetic and social fingerprint differs from the others in allele

frequencies, it would be expected that a specific, biologically

supported interaction between gene and drug would be conserved

across different ethnicities.

Finally, most of the studies available in the literature have only

focused on the effects of a single site on drug efficacy, but researchers

have already begun evaluating the joint contribution of T2DM‐related

loci.238

In order to account for such heterogeneity, this review groups the

results in the following categories: associations at GWAS level of

significance, associations replicated in multiple studies, and associa-

tions with nominal significance lacking replication. With this outline,

we have been able to identify 64 genes and approximately 200

informative genetic variants. Keeping in mind the above described

limitations of the studies, some reports seem to provide robust

evidence to support specific, biologically plausible, gene‐drug interac-

tions. The most robust evidence seem to support a role for variants in

OCTs, ATM, and SLC2A2 loci with MET response, CYP2C9, TCF7L2,

ABCC8, KCNJ11 and IRS1 loci with SUF response, PPARG locus with

TZDs response, and GLP1R locus with DPP‐4 inhibitors/GLP‐1

receptor agonists response.
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The incorporation of pharmacogenetic information into clinical prac-

tice in the context of personalized medicine cannot occur without

the results of well‐designed studies proving significant gene‐drug

interactions. The technology of genetic investigations has reached

formidable levels nowadays; commercial probe‐based SNP array

platforms can now genotype, with greater than 99% accuracy, about

one million SNPs at the same time per individual in one assay.

Next‐generation sequencing can deliver the same information that

SNP arrays can produce but with greater resolution and accuracy

and the possibility to extend the approach from target SNPs to

target genes. Furthermore, next generation sequencing can uncover

structural DNA modifications that SNP arrays do not resolve. Cost‐

wise, the machinery required for signal detection of SNP arrays and

next generation sequencing might appear impractical for immediate

applications. Nevertheless, it is widely recognized that diabetes

imposes an important economic burden on national healthcare

system, with the most drainage deriving from hospital inpatient

care after the onset of micro/macrovascular complications. An

additional healthcare cost is related to the therapeutic failure of

drugs as well as serious adverse side effects of drugs on individuals.

It is possible then to anticipate that when the clinical practice will

take advantage of the genetic information of the diabetic patients,

this will provide a useful resource for the prevention of T2DM

progression and the personalization of treatment enabling the

identification of the precise drug that is most likely to be effective

and safe for each patient, and the reduction of the economic impact

on a global scale.
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