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Abstract 

Background. The purpose of the study was to assess biventricular parameters of wall deformation 

with three-dimensional speckle tracking echocardiography (3DSTE) in adolescents and young adults 

with human immunodeficiency virus infection (HIV) on antiretroviral therapy in order to detect a 

possible subclinical myocardial dysfunction. 

Methods. Twenty-one patients aged 12 to 39years with HIV, 21 normal controls of the same age and 

sex, and 21 patients with idiopathic non-ischemic dilated cardiomyopathy (DCM) were studied with 

3DSTE. All HIV patients were stable in terms of HIV infection, with no history of heart disease or 

other chronic systemic disease except HIV infection, and were on highly active antiretroviral therapy 

(HAART) with good immunological control. Standard echocardiographic measures of LV-RV 

function were assessed. 3D LV global longitudinal strain (GLS), circumferential strain, radial strain 

and LV twist (TW) were calculated. Global area strain (GAS) was calculated by 3DSTE as percentage 

variation in surface area defined by the longitudinal and circumferential strain vectors. 3D right 

ventricular (RV) global and free-wall longitudinal strain were obtained.  

Results. LV GLS and GAS were lower in HIV patients compared to normal controls (p=0.002, and 

p=0.01, respectively). There were no significant differences in LV ejection fractions between the 

groups. There was a weak positive correlation between LV GLS and age (r=0.215, p=0.034) and a 

weak negative correlation between LV GLS and nadir-CD4 T-cells count (r=0.198, p=0.043). DCM 

patients had more marked and widespread reduction in LV GLS and GAS compared to controls 

(p<0.001), whereas in HIV patients LV strain impairment (p<0.05) was more localized in basal and 

apical regions. RV free-wall longitudinal strain was significantly reduced in HIV patients when 

compared with the control group (p=0.03). No patient had pulmonary systolic pressure higher than 

35mmHg.  

Conclusions. Three-dimensional speckle tracking echocardiography may help to identify HIV 

patients at high cardiovascular risk allowing early detection of biventricular dysfunction in the 

presence of normal LV ejection fraction and in the absence of pulmonary hypertension. LV strain 

impairment in HIV patients is less prominent and widespread compared to DCM patients. 

 

Key words: Human immunodeficiency virus infection, echocardiography, three-dimensional speckle 

tracking echocardiography, left ventricular function, right ventricular function. 

  



 

 3 

People living with human immunodeficiency virus (HIV) have a high risk for cardiac disease, 

including myocarditis, cardiomyopathy, pericarditis, valvular disease, and pulmonary hypertension 

(1). With the advent of highly active antiretroviral therapy (HAART), there has been a shift from 

severe dilated cardiomyopathy to mildly reduced LV systolic function, often minimally symptomatic, 

or various degrees of impaired diastolic function (2-5). Despite these improvements, evidence from 

both industrialized and developing countries (3,4) suggests that the prevalence of subclinical LV 

dysfunction in patients with well-controlled HIV infection may approach 50% and represent a newly 

recognized comorbid condition. 

Adult studies have shown that asymptomatic HIV-infected patients manifest mild functional 

and morphologic cardiac changes (5-7), in addition to lipid and metabolic derangements, both with 

and without HAART. Also antiretroviral-naïve and antiretroviral-exposed HIV-infected children 

have been shown to have cardiac abnormalities on echocardiography (8,9), the most common being 

left ventricular (LV) dilation and LV hypertrophy. 

Two-dimensional speckle tracking echocardiography (2D-STE) has emerged as a new means 

of assessment of myocardial wall movements and deformation (10,11) and more sensitive compared 

to ejection fraction in detecting early changes in ventricular performance(12-15). 2D-STE capability 

is limited by the changes in heart morphology during the cardiac cycle and the difficulty in tracking 

speckles in different frames because of out of plane motion. The newly developed three-dimensional 

speckle tracking echocardiography(3D-STE) provides quick and comprehensive quantitative 

assessment of ventricular myocardial dynamics and was applied in various pathological 

conditions(16,17) but never in HIV patients during HAART treatment. Accordingly, the goals of this 

analysis were: 1) to determine early changes in global and segmental left(LV) and right(RV) 

ventricular function with 3D speckle-tracking echocardiography(3DSTE) in young patients with 

HIV; 2) to compare these changes with the 3DSTE findings in patients with idiopathic non-ischemic 

dilated cardiomyopathy and severe systo-diastolic dysfunction; 3) to assess strengths and limitations 

of 3DSTE compared to 2DSTE. 
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Methods.  

Population. We enrolled 21 patients infected with HIV(mean age 23.9±3.7 years): 5 

adolescents(age 12-18 years) and 16 young adults(age 19-39 years). Most of these patients(17/21, 

81%) acquired the disease from their mothers antenatally. The study was a retrospective cross-

sectional one involving patients recruited from the HIV clinics in both pediatric and adult Infectious 

Disease Departments. All patients had normal ejection fraction (>55%) and sinus rhythm at the time 

of the echocardiographic study and were on antiretroviral treatment per protocol of the Infectious 

Disease Departments. None had a NYHA (New York Heart Association) functional class >2. DAD 

risk score was assessed taking into account age, gender, total and HDL cholesterol, smoking status 

(current or past), blood pressure, history of diabetes, family history of CVD, and exposure to 

indinavir, lopinavir and abacavir (18). Patients with coronary artery disease, moderate or greater 

valvular heart disease, atrial fibrillation, congenital heart disease, obesity(body mass index 

≥30kg/m2), chronic obstructive pulmonary disease, endocrinological, liver, kidney, or neoplastic 

diseases were excluded from the study. Twenty-one healthy age and sex-matched subjects who were 

seen at the Echo-lab for routine check-ups or sport activities and had normal physical, 

electrocardiographic and echocardiographic findings were recruited as controls. To better understand 

the magnitude and distribution pattern of ventricular strain impairment in HIV-infected patients, we 

selected as further controls twenty-one patients with previously diagnosed idiopathic non-ischemic 

dilated cardiomyopathy, aged 20-44 years, who presented with severe LV systo-diastolic dysfunction 

and strain reduction. All these patients had: 1) LV end-diastolic dimension >112% of the predicted 

value, corrected for age and body surface area; (2) left ventricular ejection fraction (LVEF) <50%; 3) 

NYHA classification ≥IIgrade; 4) no significant coronary artery stenosis on coronary angiography. 

The study was approved by the local Institutional Research Committee. All patients gave written 

consent.  

Echocardiography. Patients were examined in the left lateral decubitus position using a 

Vivid E9 commercial ultrasound scanner(GE Vingmed Ultrasound AS, Horten, Norway) with 
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phased-array transducers. Grayscale recordings were optimized at a mean frame rate of ≥50 

frames/sec. Measurements of cardiac chambers were made by transthoracic echocardiography 

according to established criteria(19,20). LV ejection fraction by modified biplane Simpson method 

and mass index were estimated(19). LV deceleration time (DT) and right ventricular systolic 

pressure(RVSP) were determined(21). Mitral and tricuspid annular velocities(Sa, Ea, Aa) were 

measured  at the lateral corner of the mitral annulus on the transthoracic four-chamber views using 

spectral Doppler myocardial imaging. The mitral and tricuspid E to Ea ratio(E/ Ea) were used as 

indices for LA and RA pressure(22). 

Two-dimensional speckle tracking echocardiography. LV two-dimensional longitudinal 

strain (Figure 1) was calculated in three apical views in relation to the strain value at aortic valve 

closure and measured in 17 segments on the basis of the software bull’s-eye diagram. Strain values 

were not derived in the presence of more than two suboptimal segments in a single apical view. 

Longitudinal systolic deformation was characterized as shortening, and systolic indices provided 

negative values. Circumferential and radial systolic strains were calculated as an average of strain 

values obtained from the basal, mid, and apical parasternal short-axis views. Manual readjustments 

were made only when necessary to ensure accurate tracking. 

To assess regional and global RV systolic function in the longitudinal direction, we adopted 

a 6-segment RV model (basal RV lateral wall, mid RV lateral wall, apical RV wall, apical septum, 

mid septum, and basal septum). Peak systolic strain was recorded for the 3 RV myocardial free wall 

and septal segments and the entire RV wall. The following measurements were obtained: RV GLS= 

global right ventricular longitudinal strain; RV FWLS= free wall right ventricular longitudinal strain. 

Global strain was calculated by averaging local strains along the entire right ventricle using machine 

software (EchoPAC BT13, GE Vingmed Ultrasound, Horten, Norway). 

Three-dimensional speckle tracking echocardiography. The original raw data from three-

dimensional data sets were examined on a separate software workstation(EchoPAC BT13, 4D Auto-

LVQ, GE Vingmed-Ultrasound, Horten, Norway). Ventricular alignment was accomplished in apical 
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and short axis views. For end-diastolic volumes, a point was placed at the center of the mitral annular 

plane and a second point at the LV apex to generate an end-diastolic endocardial border tracing 

including the papillary muscles inside the LV cavity. For the end-systolic volumes, the same process 

was made in end-systole and acquisition of LVEF and volumes was determined. The correct 

endocardial alignment during the cardiac cycle was verified and volume waveforms were obtained. 

A second semiautomated epicardial tracking was made to delineate the region of interest for LV mass 

and strain analysis. The software provided segmental longitudinal, circumferential, radial, and 3D 

strain time curves, from which peak global strain and averaged peak strain at three LV levels (basal, 

midventricular, and apical) were obtained. Global longitudinal strain(GLS), global circumferential 

strain(GCS), global area strain(GAS), and global radial strain(GRS) were determined. Global area 

strain was calculated as the percentage change in endocardial surface area from its original 

dimensions. LV twist (TW) was defined as the net difference(in degrees) of apical and basal rotation 

at isochronal time points(23). The 3D data sets were displayed as multi-planar reconstruction images 

in three short-axis slices from apex to base and apical four-chamber and two-chamber views. 

Adjustments were made in the multi-planar reconstruction images until the landmarks (mitral valve, 

LV apex, and aortic valve) were well positioned in each standard view. The software automatically 

generated LV basal and apical rotation angles and LV twist time curves, from which peak basal 

rotation, peak apical rotation, and peak LV twist were obtained. LV torsion was the normalized twist 

by the LV length from apex to the base. Peak diastolic untwisting velocity and time to peak untwisting 

velocity were measured. Peak untwisting velocity(PUV) was determined as the greatest negative 

deflection following peak twisting velocity. Time to peak untwisting velocity was measured from the 

QRS onset as the time to reach peak value. Global strain values were not determined in the presence 

of more than 3(of 17) uninterpretable segments. A final 17-segment bull’s-eye map of strain values 

was displayed(Figure 1). 

Three-dimensional RV speckle tracking echocardiography was carried out by imaging the RV 

chamber in apical views by using a 4V phased array transducer with high volume rate(≥30 image 
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frames/sec) and six-beat acquisition with a methodology previously described (17,24). The transducer 

was positioned at the modified apical position (more lateral than that in the standard apical view) for 

full RV coverage. RV analysis was performed using multiple reference points all over the endocardial 

contour in order to obtain a 3D ventricular tracing in long-axis and short-axis views. RV three-

dimensional global longitudinal strain was determined using the Echo PAC BT13. 3D longitudinal 

strain of RV free-wall only (FW LS) was then calculated (Figure 1).  

Stress-echo test. Symptom-limited or submaximal (up to 85% of the age-predicted maximum 

heart rate) exercise stress-echo test (25) was performed using a reclining ergometer, with initial 

workload set at 25 W and 25 W increments every 2 minutes. Heart rate and rhythm were recorded by 

12-lead ECG, and blood pressure was measured manually during the last 30 seconds of each stage by 

sphygmomanometry. Exercise testing was interrupted for chest pain, severe systemic hypertension, 

significant ventricular arrhythmia, or muscular exhaustion. Regional wall motion was assessed 

visually (25). Functional and echocardiographic parameters were determined at peak effort. Ischemia 

was defined as the development of new or worsening wall motion abnormalities with exercise, with 

the exception of isolated hypokinesia of the basal inferior and basal inferoseptal segments. Resting 

and exercise strain images were then transferred to the Echopac work station and analyzed off-line. 

Statistics. Categorical variables are presented as numbers and percentages and continuous 

data are expressed as mean ± SD. Linear correlations, univariate and multivariate analysis were used 

for comparisons. Echocardiographic parameters of LV-RV function(standard, 3DSTE) were 

compared between groups using Student’s unpaired t tests. Differences among three or more groups 

were assessed using one-way analysis of variance with post hoc comparisons by Bonferroni test. 

Differences were considered statistically significant when the p value was <0.05. Intra- and inter-

observer variability of strain measurements was evaluated in 10 randomly selected patients. To 

analyze intraobserver variability, measurements of strain parameters were made at multiple sites in 

different patients on 2 different occasions. For interobserver variability, a second investigator 

randomly made measurements at the above different sites without knowledge of other 
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echocardiographic parameters. The intraobserver and interobserver variabilities were determined as 

the absolute difference between each observer’s value divided by the mean of both measurements 

and expressed as a percentage (coefficient of variation). For the assessment of reproducibility of 

measurements intra-class correlation coefficients were also calculated with good agreement defined 

as having a coefficient >0.80. 

 

Results.  

Feasibility. Sixty-three subjects were included in the study (21 HIV-positive patients, 21 

patients with non-ischemic dilated cardiomyopathy and 21 healthy controls). Ninety four subjects 

were initially evaluated. Six patients were excluded from the study due to coexistent disease. LV and 

RV 3DSTE measurements from all segments were not feasible in a total of 25 subjects (8 and 17 

subjects respectively) due to inadequate myocardial tracking. The overall feasibility of LV 3DSTE 

was 89%(63/71), and overall feasibility of RV 3DSTE was 79%(63/80).  

Clinical data. Baseline characteristics of HIV patients and controls are summarized in Table 

1. No differences were present between the two groups of patients in body mass index, body surface 

area, heart rate, and blood pressure. We found a trend toward an increase in systemic blood pressure 

in HIV patients but the difference did not reach statistical significance. 

Standard echocardiographic data. Conventional 2D echocardiographic data are presented 

in Table 2. There was no significant difference in LV ejection fraction and RV fractional shortening 

between HIV patients and controls. HIV patients had increased mean LVMI, MV E/Ea and TV E/Ea 

compared to controls.  

Comparison of HIV strain data with healthy controls. Three-dimensional speckle tracking 

echocardiographic parameters are summarized in Table 3. 3D LV GLS, LV GAS and TW were lower 

in HIV patients compared to normal controls (p=0.002, p=0.01, and p=0.03, respectively). There were 

no significant differences in LV ejection fractions between the groups. 8/21 (38%) HIV patients had 

3D LV GLS <-18% (lower limits of the normal range). There was a weak direct correlation between 
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LV GLS and mean wall thickness(r=0.365, p<0.01), a weak positive correlation between LV GLS 

and age (r=0.215, p=0.034), and a weak negative correlation between LV GLS and nadir-CD4 T-cells 

count (r=0.198, p=0.043). There was no significant relation between 3DSTE parameters and the 

duration of the disease. 

Peak rotation and twist were lower compared to controls. In HIV patients there was a weak 

direct correlation between LV GLS and apical rotation(r=0.314, p<0.01), and a weak inverse 

correlation between LV GLS and twist(r=-0.331, p<0.01). 

RV free-wall longitudinal strain was significantly reduced in HIV patients when compared 

with the control group (p=0.03). No patient had pulmonary systolic pressure higher than 35mmHg. 

3/21 (14%) HIV patients had 3D RVFWLS >-22% (lower limits of the normal range). No patient 

with LV GLS >-18% had RVFWLS >-22% or significant difference in any other measure of RV 

function. 

LV GLS and GCS measured by 2DSTE and 3DSTE showed significant correlations between 

both methods (respectively, r=0.87, p<0.001, and r=0.82, p<0.005). No significant correlation 

between GRS extracted from 3DSTE and from 2DSTE was obtained. The 3DSTE approach gave 

lower values than 2DSTE (Table 3) for both GLS and GCS components (mean absolute difference of 

1.8% between the two modalities).  

The total duration of 3D data analysis averaged 9.2±1.3 min, which was 46% less than the 

time used for 2D analyses (14.4±2.6min, p<0.005). Both image acquisition time (2.7±0.6min vs 

4.4±1.2min, p<0.001) and offline analysis time (6.5±0.6min vs 10.4±2.1min, p<0.005) were 

significantly faster for 3DSTE compared with 2DSTE. Analysis time included calculation of LV 

volumes, LVEF, and all three (2D) or four (3D) strains from a single vendor-specific algorithm. 

Stress-echo data. All HIV patients had negative stress-echo test for coronary artery disease. 

Patients with regional strain impairment at rest had no significant rest and exercise wall motion 

abnormalities or additional exercise strain abnormalities. 
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Comparison of HIV strain data with DCM values. Table 4 shows the differences in 

segmental 3D left ventricular strain in controls, HIV-positive patients and patients with idiopathic 

non-ischemic dilated cardiomyopathy (DCM). DCM patients had more marked and widespread 

reduction in LV GLS compared to controls (p<0.001), whereas in HIV patients LV LS impairment 

(p<0.05) was more localized in basal and apical regions. 

 The peak systolic strain in various planes had some regularities in normal controls, as radial 

strain was the largest in the mid region and smallest in the apical region, whereas longitudinal and 

circumferential strains were the largest in the apical region and smallest in the basal region (p<0.05). 

This regularity was not evident in the DCM group, since there were severe diffuse strain impairment 

and no significant differences between different planes (p=NS). An intermediate pattern was shown 

in HIV patients, with moderate strain impairment, mainly in the basal and apical segments. 

Reproducibility. The intra-inter-observer variability was slightly higher for 2D GLS, GCS 

and GRS compared to the corresponding 3D strain values (Table 5). Intra-observer and inter-observer 

coefficients of variation for LV measures ranged from 3% up to 7%, and from 4% up to 9%, 

respectively, and for RV measures ranged from 4% up to 9%, and from 5% up to 12%, respectively. 

Intra-observer and inter-observer intraclass coefficients were for LV measures from 0.84 to 0.96, and 

from 0.82 to 0.91, respectively, and for RV measures from 0.83 to 0.92, and from 0.78 to 0.87, 

respectively. 

 

Discussion 

The major findings of the present study were: 1) 3DSTE parameters show global biventricular 

dysfunction in HIV-infected patients in the presence of normal ejection fraction; 2) LV strain 

impairment is less prominent and widespread compared to patients with idiopathic non-ischemic 

dilated cardiomyopathy; 3) RV dysfunction is detectable in the absence of pulmonary hypertension; 

4) overall, 3DSTE allows to identify early myocardial changes in HIV patients better than 2DSTE. 
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Cardiac abnormalities in HIV-positive patients could be attributed to a direct HIV effect on 

the heart, to opportunistic infections afflicting the heart directly or indirectly, or to the effects of 

HAART either directly on myocardial cells and endothelial function or indirectly through 

derangement of the lipid profile causing premature atherosclerosis. Risk factors such as smoking, 

hypertension, dyslipidemia or diabetes mellitus can also be commonly found in HIV patients. Because 

it is possible that more than one of these factors is present in a given patient, a multifactorial 

pathogenesis should be considered (4). 

Biventricular strain in HIV-infected group. In our cohort of young HIV patients with low 

prevalence of traditional cardiovascular risk factors, the prevalence of 3D ventricular strain 

impairment was significantly higher than in uninfected controls. HIV may trigger mechanisms leading 

to cardiac dysfunction. Several studies suggest that cardiac dysfunction in persons living with human 

immunodeficiency virus is associated with HAART (1,9,26). Whereas impairment of conventional 

echocardiographic measures of LV ejection fraction and fractional shortening is usually a late index 

of cardiac dysfunction, 3D speckle-tracking-derived strain and twist are new sensitive parameters of 

ventricular function that can give us insight into whether these patients are at higher risk for 

cardiovascular disease despite having been treated with antiretroviral drugs and despite being 

asymptomatic. 

In vitro and in vivo studies validated 3DSTE against reference techniques such as 

sonomicrometry and magnetic resonance imaging tagging (27). Age-related studies have been 

reported (28). Both 2DSTE and 3DSTE showed to be more sensitive to identify subtle myocardial 

damage compared to standard indices of LV function (29-31). Advantages and disadvantages of 3D 

over 2D speckle tracking have been previously discussed (16,17). The 3D mode avoids foreshortening 

of apical views, consumes less time in data acquisition and offline-analysis, helps to solve the 2D 

problem of out-of-plane motion by tracking motion of speckles in all three dimensions, allows to 

analyze a greater percentage of segments than 2DSTE, and is superior to 2D analysis in terms of intra-

observer and inter-observer variability. However, this advantage is realized at the price of lower 
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frame/volume rate and temporal resolution, higher dependence on image quality and possible 

dropouts in the endocardial border in patients with poor acoustic windows and inappropriate tracking. 

The lower GLS values on 3DSTE than 2DSTE may be explained by the twisting of the heart and out-

of-plane rotation of myocardial segments on 2DE imaging. 

As in previous studies (16), we obtained a satisfactory correlation between 2DSTE and 

3DSTE for GLS and GCS, but the correlation was poor for GRS. This may be due to the fact that the 

spatial motion gradient is calculated over a small region in the presence of limited wall thickness and 

limited spatial image resolution and, additionally, it is estimated not only by endocardial STE data as 

it occurs for GLS and GCS but by both endocardial and epicardial tracking. 

In the present study we defined LV dysfunction as 3D-LV-GLS>-18% on the basis of SDs 

below the reference limit derived from a group of healthy people. However, different approaches may 

be used for determining cutoff values of echocardiographic parameters for the different degrees of 

abnormality, all of which have significant limitations(19). The recognition of clinically significant 

abnormal values of ventricular strain is not easy because the index is influenced by age, sex, and 

loading conditions. Current guidelines on chemotherapy-related cardiotoxicity suggest a cardiac 

assessment based on GLS cutoffs at baseline because a GLS decrease compared to the patient’s 

baseline value is better justified than the use of an absolute cutoff(30,31). 

In addition to difference in strain, HAART-treated patients had increased LV mass compared 

with the control group, as reported in prior studies(5,9,12). They may have had early myocardial 

damage resulting in subtle scarring and subsequent diastolic dysfunction and impaired deformation 

parameters. Moreover, they tended to have higher systemic blood pressures, even though not 

statistically significant, presumably related to the side effects of certain antiretroviral drugs, including 

endothelial damage, that are associated with early pathologic change in the development of 

hypertension(32). Increased LV mass in HIV-infected children has been associated with increased 

mortality(5,12). 
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Little has been written about LV twist in antiretroviral-treated subjects. In patients with non-

ischemic dilated cardiomyopathies and spherically enlarged ventricles it has been reported that LV 

twist and torsion were significantly impaired inducing LV dyssynchrony(33,34), especially in those 

with wide QRS complexes(33). Other authors(35) reported no significant difference in twist and 

torsion between normals and DCM patients, and no correlation with LV ejection fraction. Since the 

rotational component of the ventricular mechanics involves the endocardium, myocardium, and 

epicardium, it is presumable that rotational mechanics is preserved in patients with low impact of 

disease and impaired in more severe cardiomyopathies. In HIV-infected patients LV twist and torsion 

changes are less well defined. In patients who acquired HIV disease from their mothers antenatally it 

has been reported significant decrease of LV rotational velocity compared to normal controls(13). 

We observed in our HIV patients a moderate decrease of apical rotation compared to the control 

group. Given that early changes in rotational mechanics may occur in the patterns of regional torsion 

rather than overall magnitude, segmental assessment of twist and torsion could be helpful in 

identifying deteriorating ventricular function. However, the moderate intra-observer and inter-

observer reproducibility of LV twist that we found suggests caution in using this index in clinical 

practice. 

Right ventricle is more complex to quantitate by traditional echocardiography than left 

ventricle and there has been very little focus on RV toxic HIV effects. HIV-infected patients are at 

increased risk for pulmonary arterial hypertension and RV cardiomyopathy, warning a poor 

prognosis(36). The prevalence of PH in HIV-infected patients(36,37) was reported to be 0.5% if 

documented at right heart catheterization and 5-15% if estimated by echocardiography 

(PASP>35mmHg). It has been shown that the prevalence of global RV dysfunction in HIV-infected 

patients was 11% when defined echocardiographically by RV fractional area change <35% and that 

regional RV dysfunction in HIV may be a distinct entity from high pulmonary pressures or LV 

cardiomyopathy(37). There are several possible mechanisms of isolated RV dysfunction in HIV, 
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which include a direct viral toxic effect, genetic variability, opportunistic infections, adverse drug 

myocardial effects, and autoimmune response.  

Three-dimensional STE may improve the difficult assessment of RV dysfunction because of 

complex spatial ventricular structure. The findings of the present study suggest that 3DSTE identifies 

mild RV myocardial injury in early stages of the disease as there was no significant relation between 

the duration of HIV infection and the echocardiographic abnormalities and confirm that RV 

dysfunction in HIV could be a separate entity as reported in previous 2DSTE studies(37). We found 

a prevalence of RV dysfunction of 14% (with RVFWLS>-22%). None of our HIV patients had 

pulmonary hypertension as expressed by PASP>35mmHg albeit we don’t have invasive 

hemodynamic data to confirm the diagnosis of PH. Therefore our findings indicate that HIV 

cardiomyopathy may only affect one ventricle but may also be biventricular. RV dysfunction was not 

explained by LV dysfunction and/or LV-RV interaction, because no patient with LV GLS >-18% had 

RVFWLS >-22% or significant difference in any other measure of RV function. As for LV, even for 

the right ventricle a clinical advantage of 3DSTE over 2DSTE is a more rapid acquisition and offline-

analysis time and a lower intra-observer and inter-observer variability. We have previously shown 

that the new 3DSTE measurements have strong associations with hemodynamic parameters indicative 

of RV failure(17). However, none of our HIV-infected patients was symptomatic (NYHA>II), thus 

values suggesting RV dysfunction in the absence of clinical symptoms are of doubtful significance 

and should be corroborated by further studies. 

Comparison with DCM. All myocardial deformational indices were significantly lower in 

patients with DCM than in controls, in keeping with previous reports(33-35). Whereas in normal 

controls the peak systolic strain in different views had a regular pattern, longitudinal and 

circumferential strain being smallest in the basal region and largest in the apical region, in agreement 

with previous studies(28,38,39), DCM patients had a disordered strain impairment, with no 

significant differences between basal and apical regions, and diffuse LV systolic dysfunction. HIV 
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patients showed an intermediate pattern of impairment of deformation parameters, with moderate 

strain reduction, predominantly in basal and apical regions. 

In normal subjects, the direction of myocardial contractility and shortening reflects the 

influence of wall stress, i.e. preload, and is consequent to apex-to-base direction of electrical 

activation. Because the apical myocardial shortening anticipates the shortening of mid-basal regions, 

the apical region is more heavily affected by the wall stress than the other regions, and longitudinal 

and circumferential apical shortening is more dynamic in comparison with the basal and mid 

regions(38). In the dilated cardiomyopathies, as a consequence of the process of ventricular 

enlargement and remodeling, reduction of cardiac output worsens subendocardial and subepicardial 

ischemia, and this leads to the replacement of myocardial cells with fibrous tissue and consequent 

systolic and diastolic cardiac dysfunction. Longitudinal cardiac fibres located in the subendocardium 

are the first to be affected by myocardial injury, followed by diffuse and disordered strains 

impairment and intraventricular dyssynchrony. In HIV patients, as in the initial forms of non-ischemic 

DCM, myocardial segments with preserved systolic function alternate with hypocontractile segments, 

but these regional abnormalities should not lead to the assumption of coronary artery disease. 

Segmental LV dysfunction is likely to correspond to the regions where cell myocardial damage is 

present. 

Clinical implications. Our study shows that the integration of the new 3DSTE 

echocardiographic techniques provide useful information for the assessment of biventricular function 

in HIV-infected patients in the presence of normal LV ejection fraction and pulmonary artery 

pressure. Using advanced echocardiographic parameters to assess contractile reserve can help to 

identify higher-risk individuals, even if the exact significance of strain abnormalities in these patients 

remains unknown. We don’t know whether this helps to alter clinical decision making or whether 

drug therapy or device-based treatment that were shown to benefit in heart failure patients without 

HIV infection would bring benefits to HIV-infected patients as well. Moreover, cumulative toxicities 

of antiretroviral agents on the heart are poorly studied, and frequent changes in antiretroviral drug 
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regimens as well as the limited sample size don’t allow to correlate the observed cardiac abnormalities 

to different antiretroviral agents. Additional research is needed to establish long-term prognosis and 

possibly prevent the development of these abnormalities. However, recommendations on the timing 

and frequency of cardiac assessment for these patients would be advisable, as well as a collaboration 

between infectious disease specialists and cardiologists to identify and manage those at high risk of 

HIV-associated cardiomyopathy. 

Limitations. Technical limitations of 3DSTE are the dependence on image quality(40) and its 

capability to define the endocardial border, the relatively low temporal and spatial resolution, and the 

fact that the frame rates are not sufficiently high to accurately capture all phases of the cardiac cycle. 

Further research leading to improvements in both hardware and software is required to assess the 

feasibility of 3DSTE and the relative importance of current limitations such as the low frame rates. 

Secondly, RV strain analysis was done with use of the software aimed for the LV analysis. 

This methodology has been shown to work in a clinical scenario(17,23), but a dedicated RV 3DSTE 

software package that takes specific factors into account may be desirable to further improve the 

feasibility and reproducibility of RV measurements.  

Furthermore, although we excluded patients with a history of coronary artery disease, 

coronary angiography was not performed for all our adult patients. However, stress testing was 

negative for ischemic heart disease and, additionally, pre-test probability of coronary artery disease 

is very low in asymptomatic young patients with negative past medical history. 

Last, the present study covered only a small number of patients in a single center protocol, 

thus the results are preliminary and a larger study is required to confirm our findings. 

Conclusions. Three-dimensional speckle tracking echocardiography reveals subclinical 

biventricular dysfunction in young individuals with HIV infection that may be helpful for the early 

detection of HIV-associated cardiomyopathy in the era of effective ART and long-term survival with 

chronic HIV. The clinical significance of these findings should be further evaluated. 
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Figure legends 

Figure 1. Representative LV and RV 2D-3D strain images in normal controls and patients 

with HIV. A. 2D LV speckle tracking 4-chamber view in a normal subject. LV global longitudinal 

strain (LV GLS) is -23.6%. B. 3D LV speckle tracking multiplane view in a normal subject. 3D LV 

GLS is -20.3%. C. 3D RV speckle tracking multiplane view in a normal subject. 3D RV global 

longitudinal strain (RV GLS) is -27.2%. 3D longitudinal strain of RV free-wall (RV FWLS) was then 

calculated as -28.7% excluding septal segments. D. 3D LV speckle tracking multiplane view in a 

patient with HIV. 3D LV GLS is -16.4%.  
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Table 1. Clinical and laboratory characteristics of the study population 

 

 Controls 

(n=21) 

HIV patients 

(n=21) 

P value 

Age (years) 24.1±3.4 23.5±3.8 NS 

Gender (M/F) 11/10 11/10 NS 

Body surface area (cm2) 1.76±0.24 1.67±0.19 NS 

Body mass index (kg/m2) 22.6±2.2 22.4±2.6 NS 

HR (bpm) 68.6±9.1 66.5±7.8 NS 

SBP (mmHg) 120.8±7.1 123.9±6.5 NS 

DBP (mmHg) 70.5±5.9 71.8±5.7 NS 

Total cholesterol (mg/dL) 155.9±10.9 156.4±11.4 NS 

HDL-C (mg/dL) 48.7±8.6 48.1±8.7 NS 

LDL-C (mg/dL) 96.9±10.5 97.9±10.3 NS 

Triglycerides (mg/dL) 78.8±9.1 79.5±8.4 NS 

Age at diagnosis (months) - 34.5±3.9 - 

Duration of disease (years) - 20.6±2.1 - 

Duration of HAART therapy (years) - 17.5±2.6 - 

CD4 nadir (cell/µL) - 311.8±37.9 - 

Actual CD4 count (cell/µL) - 826.8±79.1 - 

DAD risk score - 2.97±1.35 - 

DAD= Data collection on Adverse Effects of Anti-HIV Drugs (ref.18); DBP= diastolic blood 

pressure; HAART= highly active antiretroviral therapy; HDL= high-density lipoprotein; HR= 

heart rate; LDL= low-density lipoprotein; NS= not significant; SBP= systolic blood pressure.  
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Table 2. Conventional echocardiographic findings in HIV-positive patients and 

controls 

 
Parameters Controls  

(n=21) 

Mean  SD 

HIV patients 

(n=21) 

Mean  SD 

P value 

    LV    

LVED (mm) 48.74.2 49.24.8 NS 

LVES (mm) 29.32.5 30.23.4 NS 

IVST (mm) 9.51.8 11.31.9  <0.05 

LVPWT (mm) 8.71.7 10.11.8 <0.05 

LVMI (g/m2) 8119 12723 <0.05 

LVEF (%) 655 627 NS 

DT (msec) 224±49 241±56 NS 

MV Ea (cm/s) 11.72.3 6.43.9 <0.05 

MV E/Ea 5.41.4 9.32.1  0.04 

    RV    

RVED (mm) 22.62.3 24.72.6 NS 

RVWT (mm) 4.10.7 4.20.9 NS 

RVSP (mmHg) 22±6 24±7 NS 

RVEDA (mm2) 16.35.4 20.24.1 NS 

RVESA (mm2) 8.23.1 9.62.3 NS 

RVFAC (%) 428 406 NS 

TAPSE (mm) 235 19±5  NS 

TV Sa (cm/s) 12.42.4 11.71.8 NS 

TV Ea (cm/s) 11.42.3 9.72.6 0.05 

TV E/Ea 4.71.1 7.11.8 <0.05 

DT= deceleration time of early filling; E= inflow early diastolic velocity; Ea= annular 

early diastolic velocity; LVED= left ventricular end-diastolic diameter (Mmode); 

LVEDV= left ventricular end-diastolic volume (2D); LVEF= left ventricular ejection 

fraction (2D); LVES= left ventricular end-systolic diameter (Mmode); LVMI= left 

ventricular mass index (Mmode); LVPWT= left ventricular posterior wall thickness 

(Mmode); IVST= interventricular septal thickness (Mmode); MV= mitral valve; 

NS= not significant; RVED= right ventricular end-diastolic diameter (Mmode); 

RVEDA= right ventricular end-diastolic area (2D); RVESA= right ventricular end-

systolic area (2D); RVFAC= right ventricular fractional area change (2D); RVSP= 

right ventricular systolic pressure; RVWT= right ventricular wall thickness 

(Mmode); Sa= annular systolic velocity; TAPSE= tricuspid annular plane systolic 

excursion; TV= tricuspid valve. 
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Table 3. Two-dimensional and three-dimensional speckle tracking values in 

HIV-positive patients and controls 

Parameters Controls  

(n=21) 

Mean  SD 

HIV patients 

(n=21) 

Mean  SD 

P value 

LV 2DSTE    

LV Global LS (%) -21.4±2.6 -17.22.3 <0.05 

LV Global CS (%) -27.7±5.4 -24.93.8 <0.05 

LV Global RS (%) 48.9±8.3 46.77.3 NS 

LV peak TW (°) 13.44.5 11.63.8 <0.05 

LV 3DSTE    

3D LVEF 647 626 NS 

LVMI (g/m2) 7218 14127 <0.01 

LV Global LS (%) -20.91.5 -14.71.9  0.002 

LV Basal LS (%) -19.52.1 -14.12.3 0.003 

LV Mid LS (%) -20.31.9 -15.92.5 0.05 

LV Apical LS (%) -23.72.5 -18.22.7 0.01 

LV Global CS (%) -25.73.4 -22.93.3 <0.05 

LV Global RS (%) 48.69.3 35.27.9 NS 

LV Global AS (%) -39.8±4.9 -30.3±2.8  0.01 

LV peak TW (°) 13.14.1 9.23.2 0.03 

LV peak apical ROT (°) 10.13.4 8.23.9 0.04 

LV peak basal ROT (°) -5.72.5 -4.92.4  NS 

LV PUV (°/sec) -99.316 -83.721 <0.05 

LV time to PUV (msec) 39542 46244 <0.05 

RV 2DSTE    

RV Global LS (%) -28.4±3.5 -26.5±2.6 NS 

RV FW LS (%) -29.5±3.3 -21.4±3.2 <0.05 

RV 3DSTE    

3D RVEF 567 544 NS 

RV Global LS (%) -26.1±3.9 -19.1±2.8  <0.05 

RV FW LS (%) -28.2±3.1 -18.7±2.9  0.03 

RV FW AS (%) -33.1±5.4 -25.1±5.2 0.04 

RV Basal FW LS (%) -25.8±2.7 -21.5±2.3  NS 

RV Mid FW LS (%) -26.1±4.1 -22.3±3.9 NS 

RV Apical FW LS (%) -26.8±3.9 -19.7±2.2 0.03 

 

AS= area strain; CS= circumferential strain; EF= ejection fraction; FW= free wall; 

LS= longitudinal strain; LV= left ventricular; LVEF= left ventricular ejection 

fraction; LVMI= left ventricular mass index; NS= not significant; PUV= peak 

untwisting diastolic velocity; ROT= rotation; RS= radial strain; RV= right 

ventricular; RVEF= right ventricular ejection fraction; TW= twist. 
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Table 4. Differences in segmental 3D left ventricular strain in controls (C), HIV-positive patients 

(HIV) and patients with idiopathic non-ischemic dilated cardiomyopathy (DCM) 

 

 C (n=21) HIV (n=21) DCM (n=21) p-ANOVA  

Longitudinal strain (%)     

Base -16.39 ± 3.29 -12.41 ± 2.87 ‡ § -8.61 ± 2.84 # 0.001 

Mid -17.81 ± 3.16 * -14.27 ± 3.06 § -6.92 ± 3.09 # 0.005 

Apex -22.85 ± 5.81 † -11.15 ± 3.27 ‡ § -8.73 ± 3.18 || # 0.001 

Circumferential strain (%)     

Base -24.85 ± 5.29 -17.95 ± 4.36 ‡ § -11.35 ± 3.62 # 0.001 

Mid -28.72 ± 5.62 * -25.88 ± 4.94 § -10.08 ± 4.39 # 0.005 

Apex -32.47 ± 10.73 † -18.19 ± 4.71 ‡ § -9.87 ± 5.47 || # 0.001 

Radial strain (%)     

Base 33.34 ± 7.65 25.41 ± 6.59 § 11.63 ± 4.86 # 0.005 

Mid 38.57 ± 8.59 *  26.28 ± 7.03 9.82 ± 4.75 # 0.001 

Apex 31.54 ± 9.71 24.63 ± 6.59 || 8.62 ± 4.49 || # 0.005 

Area strain (%)     

Base -42.45 ± 7.82 -30.52 ± 7.76 ‡ § -12.51 ± 4.74 # 0.001 

Mid -43.23 ± 6.94 * -34.64 ± 6.83 § -16.46 ± 5.28 # 0.005 

Apex -45.61 ± 7.18 † -31.76 ± 6.35 § -16.93 ± 5.45 || # 0.001 

NS= not significant 

C: * p<0.05 vs basal region, † p<0.05 vs mid region (normal base-apical strain gradient) 

HIV: ‡ p<0.05 vs mid region, § p<0.05 vs controls (moderate localized strain impairment) 

DCM: || p= NS vs basal and mid region, # p<0.001 vs controls (severe diffuse strain impairment) 
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Table 5. Reproducibility of 2DSTE and 3DSTE parameters  

 Intraobserver results Interobserver results 

Variable Mean difference ± 

SD 

ICC CV (%) P value Mean difference ± 

SD 

ICC CV (%) P value 

2D-LVGLS, %  7.5±3.4 0.89 2.61 0.002 8.7±3.7 0.87 2.11 0.01 

2D-LVGCS, %  8.8±3.2 0.83 1.27 0.03 9.8±3.5 0.81 1.23 0.04 

2D-LVGRS, %  11.7±4.4 0.79 1.53 0.05 12.9±4.3 0.78 1.16 0.05 

2D-LVTW, ° 13.1±4.1 0.82 1.65 0.05 14.2±4.4 0.77 1.73 0.05 

2D-RVGLS, %  7.3±3.3 0.81 1.94 0.02 8.4±4.3 0.80 2.37 <0.05 

2D-RVFWLS, % 6.9±3.1 0.86 2.03 0.004 7.5±3.6 0.85 1.82 0.03 

3D-LVGLS, %  6.7±2.2 0.95 2.92 <0.001 7.4±2.6 0.91 2.43 0.002 

3D-LVGCS, %  7.7±2.8 0.87 1.44 0.02 8.5±2.7 0.83 1.85 0.03 

3D-LVGRS, %  9.8±4.2 0.81 2.13 0.04 10.3±3.7 0.79 3.57 0.05 

3D-LVGAS, %  5.8±2.4 0.95 3.16 <0.001 6.2±2.7 0.92 2.88 0.001 

3D-LVTW, ° 12.4±3.8 0.86 2.41 0.03 13.2±3.9 0.79 3.57 0.04 

3D-RVGLS, %  7.1±2.5 0.82 2.54 0.01 7.8±3.5 0.81 2.77 0.02 

3D-RVFWLS, % 6.8±2.3 0.89 2.12 0.003 7.2±3.3 0.85 1.89 0.03 

 

3D= three-dimensional; 2D= two-dimensional; CV= coefficient of variation (calculated as the difference of repeated 

measurements expressed as a percentage of the mean); ICC= intraclass correlation coefficient for absolute agreement; 

LVGAS= left ventricular global area strain; LVGCS= LV global circumferential strain; LVGLS= LV global longitudinal 

strain; LVGRS= LV global radial strain; LVTW= left ventricular twist; ns= not significative; RVFWLS= right ventricular 

free-wall longitudinal strain; RVGLS= right ventricular global longitudinal strain. 
 

 

 

 

 


