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The time-integrated untagged Dalitz plot of the three-body hadronic charmless decay B̄0 → K0
Sπ

þπ− is
studied using a pp collision data sample recorded with the LHCb detector, corresponding to an integrated
luminosity of 3.0 fb−1. The decay amplitude is described with an isobar model. Relative contributions
of the isobar amplitudes to the B̄0 → K0

Sπ
þπ− decay branching fraction and CP asymmetries of the

flavor-specific amplitudes are measured. The CP asymmetry between the conjugate B̄0 → K�ð892Þ−πþ
and B0 → K�ð892Þþπ− decay rates is determined to be −0.308� 0.062.
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The breaking of the invariance of the weak interaction
under the combined action of the charge conjugation (C)
and parity (P) transformations is firmly established in the
K- and B-meson systems [1–3]. In particular, significant
CP asymmetries at the level of 10% or more have been
measured in the decays of B mesons into two light
pseudoscalars. The CP asymmetries in the decays of
B̄0 → K−πþ and B− → K−π0 (CP conjugation is implied
in the notation of the decays unless stated otherwise) are
observed to be different [4], while, in predictions based on
the QCD factorization approach, the two asymmetries are
expected to be similar [5]. This apparent discrepancy is
often referred to in the literature as the Kπ puzzle [6–9].
The study of the flavor-specific, quasi-two-body ampli-
tudes that contribute to the decay B̄0 → K0

Sπ
þπ− offers the

possibility to measure CP asymmetries. In particular, the
decays with a vector and a pseudoscalar in the final state,
such as B̄0 → K�ð892Þ−πþ, may help to shed light on the
Kπ puzzle.
The decay B̄0 → K0

Sπ
þπ− can also proceed via CP-

eigenstates, such as B̄0 → f0ð980ÞK0
S or B̄

0 → ρð770Þ0K0
S.

In the standard model (SM) [10,11], the mixing-induced
CP asymmetries in the quark-level transitions b → qq̄s
(q ¼ u, d, s), which govern the decay B̄0 → K0

Sπ
þπ−, are

predicted to be approximately equal to those in b → cc̄s
transitions, such as B0 → J=ψK0

S. The existence of new
particles in extensions of the SM could introduce additional
weak phases that contribute along with the SM mixing

phase [12–15]. In general, for each of the studied CP
eigenstates, the current experimental measurements of
b → qq̄s decays [4] show good agreement with the results
from b → cc̄s decays [4]. There is nonetheless room for
contributions from physics beyond the SM and, hence, the
need for precision measurements of these weak mixing
phases.
The mixing-induced CP-violating phase can be mea-

sured by means of a decay-time-dependent analysis of the
Dalitz plot (DP) [16] of the decay B̄0 → K0

Sπ
þπ− [17–20].

Such an analysis requires the initial flavor of the B̄0 meson
to be determined or “tagged.”A recent study of the yields of
the charmless three-body decays B̄0 → K0

Sπ
þπ− has been

reported in Ref. [21]. The B̄0 → K0
Sπ

þπ− yields are
comparable to those obtained at the BABAR and Belle
experiments, but the lower tagging efficiency at LHCb
does not yet allow a precise flavor-tagged analysis to be
performed. The decay-time-integrated untagged DP of this
mode is studied in this Letter. The DP of the decay
B̄0 → K0

Sπ
þπ− is modeled by a sum of quasi-two-body

amplitudes (the isobar parametrization), and the model is fit
to the LHCb data to measure the relative branching fractions
and the CP asymmetries of flavor-specific final states.
The analysis reported in this Letter is performed using

pp collision data recorded with the LHCb detector,
corresponding to integrated luminosities of 1.0 fb−1 at a
center-of-mass energy of 7 TeV in 2011 and to 2.0 fb−1 at a
center-of-mass energy of 8 TeV in 2012. The LHCb
detector [22,23] is a single-arm forward spectrometer
covering the pseudorapidity range 2 < η < 5, designed
for the study of particles containing b or c quarks.
Signal candidates are accepted if one of the final-state
particles from the signal decay deposits sufficient energy
transverse to the beam line in the hadronic calorimeter to
pass the hardware trigger. Events that are triggered at the
hardware level by another particle in the event are also
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retained. In a second step, a software trigger requires a
two-, three-, or four-track secondary vertex with a signifi-
cant displacement from any primary pp interaction vertex
(PV). At least one charged particle must have a large
transverse momentum and be inconsistent with originating
from a PV. A multivariate algorithm [24] is used for the
identification of secondary vertices consistent with the
decay of a b hadron.
The selection procedure is described in detail in

Ref. [21]. Decays of K0
S → πþπ− are reconstructed in

two different categories: the first involving K0
S mesons

that decay early enough for the resulting pions to be
reconstructed in the vertex detector; and the second con-
taining those K0

S mesons that decay later, such that track
segments of the pions cannot be formed in the vertex
detector. These categories are referred to as Long and
Downstream, respectively. DownstreamK0

S were not recon-
structed in the software trigger in 2011, but they were
reconstructed and used for triggering in 2012. Furthermore,
an improved software trigger with larger b-hadron effi-
ciency, in particular in the Downstream category, was used
for the second part of the 2012 data taking. To take into
account the different levels of trigger efficiency, the data
sample is divided into 2011, 2012a, and 2012b data-taking
periods, and each period is further divided according to the
K0

S reconstruction category, giving a total of six subsam-
ples. The 2012b sample is the largest, corresponding to
an integrated luminosity 1.4 fb−1, and it has the highest
trigger efficiency.
The events passing the trigger requirements are then

filtered in two stages. Initial requirements are applied to
further reduce the size of the data sample and increase the
signal purity, before a multivariate classifier, based mostly
on topological variables derived from the vertexing of the
candidates, is implemented [21]. The selection requirement
placed on the output of the multivariate classifier is defined
for each data subsample to yield a signal purity close to
90%. Particle identification (PID) requirements are applied
in order to reduce backgrounds from decays where either
a proton, kaon, or muon is misidentified as a pion. These
criteria are optimized to reduce the cross-feed background
coming from the decays B0

s → K0
SK

�π∓, where the kaon is
misidentified as a pion. The same invariant-mass vetoes on
charmed and charmonium resonances as in Ref. [21] are
used in this analysis. The invariant-mass distribution of
signal candidates from the six aforementioned subsamples
is displayed in Fig. 1, with the result of a simultaneous fit.
The candidates selected for the subsequent DP analysis are
those in the K0

Sπ
þπ− mass range ½5227; 5343� MeV=c2.

The DP analysis technique [16] is employed to study the
dynamics of the three-body decay B̄0 → K0

Sπ
þπ−. A decay-

time-integrated untagged probability density function
(PDF) is built to describe the phase space of the decay
as a function of the DP kinematical variables. Neglecting

the unobserved to date CP violation in B0 − B̄0 mixing, the
untagged PDF describing the signal does not exhibit
any dependence on the mixing parameters [4,25], and it
simply reduces to an incoherent sum of the Aðsþ; s−Þ and
Āðsþ; s−Þ Lorentz-invariant transition amplitudes of the
decays B0 → K0

Sπ
þπ− and B̄0 → K0

Sπ
þπ−, respectively.

Pðsþ; s−Þ ¼
jAðsþ; s−Þj2 þ jĀðsþ; s−Þj2RR

DP ðjAðsþ; s−Þj2 þ jĀðsþ; s−Þj2Þdsþds−
;

ð1Þ

where the kinematical variables s� denote the mass
squared, m2

K0
Sπ

� .

The total amplitude Āðsþ; s−Þ of the decay B̄0 →
K0

Sπ
þπ− is described as a coherent sum of the amplitudes

of possible intermediate resonances and nonresonant con-
tributions. The decay amplitudes for B0 and B̄0 are given by

A ¼
XN

j¼1

cjFjðsþ; s−Þ; Ā ¼
XN

j¼1

c̄jF̄jðsþ; s−Þ; ð2Þ

where Fj and F̄j are the DP spin-dependent dynamical
functions for the resonance, while j and cj are complex
coefficients that account for the relative magnitudes and
phases of the N intermediate (resonant and nonresonant)
components. The spin-dependent functions Fjðsþ; s−Þ,
embedding the resonance line shape and the angular
distributions, are constructed in the Zemach tensor formal-
ism [26]. The weak-phase dependence is included in the cj
coefficients. The results obtained for each isobar amplitude
are expressed in this paper as a magnitude and a phase. The
magnitude includes any potential B-meson production and
experimental asymmetries.

FIG. 1. Invariant mass distributions of K0
Sπ

þπ− candidates,
summing the two years of data taking and the two K0

S
reconstruction categories. The sum of the partially reconstructed
contributions from B to open charm decays, charmless hadronic
decays, B̄0 → η0K0

S, and charmless radiative decays are denoted
B̄0
ðsÞ → K0

Sπ
þπ−ðXÞ. Signal candidates for the Daltiz plot analysis

are those in the K0
Sπ

þπ− mass range ½5227; 5343� MeV=c2.
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The analysis method consists of a simultaneous DP fit
to the six data subsamples defined above, with the shared
isobar parameters determined using an unbinned maximum
likelihood fit. The DP model is built starting from the most
significant amplitudes as determined in previous studies
[17–20]. An algorithm to select the relevant additional
amplitudes is defined before examining the data. A
resonant amplitude is retained in the DP model if at least
one of the following requirements is met: (1) a goodness-
of-fit estimator based on the point-to-point dissimilarity test
[27] decreases when the component is removed from the fit,
(2) the likelihood ratio of the two hypotheses (component
in and out) decreases, or (3) the precision on the magnitude
of the component must be better than 33%, neglecting
systematic uncertainties. In particular, the components of
the isobar DP model, f0ð1500ÞK0

S and K�ð1680Þ−πþ,
which were not considered in previous studies, meet all
three criteria. By contrast, the amplitude f2ð1270ÞK0

S is not
retained.
The signal DPmodel PDF is built from the coherent sumof

the amplitudes listed in Table I, normalizing each isobar
coefficient to the K�ð892Þþπ− reference amplitude. The
choice of theK�ð892Þ�π∓ amplitudes as a reference provides
the most stable DP fit. The phases of the reference amplitude
and its conjugate are fixed to zero, and the magnitude of the
reference amplitude is arbitrarily fixed at 2.
Two dominant backgrounds contaminate the

B̄0 → K0
Sπ

þπ− candidate samples: a combinatorial back-
ground and a cross-feed background from the decay
B̄0
s → K0

SK
�π∓. The fractions of these backgrounds are

measured from the invariant-mass fits performed in
Ref. [21], and their DP distributions are determined from
the data. The combinatorial background DP model is built
from the DP histogram of the B̄0 → K0

Sπ
þπ− candidates

with an invariant mass in the range ½5450; 5800� MeV=c2.
The DP model of the cross-feed background is measured
from B̄0

s → K0
SK

�π∓ candidates, where the K� is recon-
structed under the π� hypothesis [21]. The signal fraction
depends on the reconstruction category; it is determined
from the fit to the invariant-mass distribution and ranges
from 85% (Downstream) to 95% (Long). The PDF in
Eq. (1) is modified to account for the background compo-
nents and the signal reconstruction efficiency across the DP,
as determined from simulated events.
Two additional observables are formed from the isobar

complex coefficients and are measured in the simultaneous
DP fit. The asymmetry observables Araw are derived from
the measured isobar parameters of an amplitude j, cj and c̄j

Araw ¼ jc̄jj2 − jcjj2
jc̄jj2 þ jcjj2

: ð3Þ

These observables are directly measured for flavor-
specific final states. By contrast, the asymmetry of the mode
B̄0 → f0ð980ÞK0

S is determined using the patterns of its

interference with flavor-specific amplitudes. The CP asym-
metry is related to the raw asymmetry byACP ¼ Araw −AΔ.
The correction asymmetry is defined at first order as
AΔ ¼ APðB0Þ þ ADðπÞ, where APðB0Þ is the production
asymmetry between the B0 and B̄0 mesons and ADðπÞ is
the detection asymmetry between πþ and π− mesons. The
production asymmetry APðB0Þ has been determined to be
APðB0Þ ¼ ð−0.35� 0.81Þ% [34]. Using Dþ

s decay modes
[35], the pion detection asymmetry is measured to be
consistent with zero, with a 0.25% uncertainty. The differ-
ence in the nuclear cross sections for K0 and K̄0 interactions
in material results in a negligible bias [36]. The uncertainty
due to the correction asymmetries and the experimental
systematic uncertainty are added in quadrature.
The rate of a single process is proportional to the square

of the relevant matrix element [see Eq. (1)]. This involves
the ensemble of its interferences with other components.

TABLE I. Components of the DP model used in the fit. The
individual amplitudes are referred to by the resonance they
contain. The parameter values are given in MeV=c2 for the
masses and MeV for the widths, except for f0ð980Þ resonance.
The parameter m0 is the pole mass of the resonance and Γ0 its
natural width. The mass-dependent line shapes employed to
model the resonances are indicated in the third column. Rela-
tivistic Breit-Wigner and Gounaris-Sakurai line shapes are
denoted RBW and GS, respectively. EFKLLM is a parametriza-
tion of the K0

Sπ
− S-wave line shape, ðKπÞ−0 .

Resonance Parameters Line shape
Value

references

K�ð892Þ− m0 ¼ 891.66� 0.26 RBW [28]
Γ0 ¼ 50.8� 0.9

ðKπÞ−0 Reðλ0Þ ¼ 0.204� 0.103 EFKLLM
[29]

[29]
Imðλ0Þ ¼ 0
Reðλ1Þ ¼ 1
Imðλ1Þ ¼ 0

K�
2ð1430Þ− m0 ¼ 1425.6� 1.5 RBW [28]

Γ0 ¼ 98.5� 2.7

K�ð1680Þ− m0 ¼ 1717� 27 Flatté [30] [28]
Γ0 ¼ 332� 110

f0ð500Þ m0 ¼ 513� 32 RBW [31]
Γ0 ¼ 335� 67

ρð770Þ0 m0 ¼ 775.26� 0.25 GS [32] [28]
Γ0 ¼ 149.8� 0.8

f0ð980Þ m0 ¼ 965� 10 Flatté [33]
gπ ¼ 0.165� 0.025 GeV
gK ¼ 0.695� 0.119 GeV

f0ð1500Þ m0 ¼ 1505� 6 RBW [28]
Γ0 ¼ 109� 7

χc0 m0 ¼ 3414.75� 0.31 RBW [28]
Γ0 ¼ 10.5� 0.6

Nonresonant
(NR)

Phase
space
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It is convenient to define the CP-averaged fit fraction of
the process i, F hCPiðiÞ, as

F hCPiðiÞ

¼
RR

DPðjciFiðsþ;s−Þj2þjc̄iF̄iðsþ;s−Þj2Þdsþds−RR
DPðj

P
jcjFjðsþ;s−Þj2þjPjc̄jF̄jðsþ;s−Þj2Þdsþds−

:

ð4Þ

Simulation is used to determine the selection efficiency
of the signal. The simulation does not perfectly reproduce
the detector response, and these imperfections are corrected
for in several respects. First, the particle identification and
misidentification efficiencies are determined from a cali-
bration sample using reconstructed D�þ → D0πþ decays,
where the D0 meson decays to the Cabibbo-favored K−πþ
final state. The variation of the PID performance with the
track kinematics is included in the procedure. The calibra-
tion is performed using samples from the same data-taking
period, accounting for the variation in the performance of
the hadron identification detectors over time. Second,
inaccuracies of the tracking simulation are mitigated by
a weighting of the simulated tracking efficiency to match
that which was measured in a calibration sample [37].
Analogous corrections are applied to the K0

S decay-

products tracking and vertexing efficiencies. Finally, a
control sample of D�þ → D0ð→ K−πþÞπþ decays is used
to quantify the differences of the hardware trigger response
in data and simulation for pions and kaons, separated by
positive and negative hadron charges, as a function of their
transverse momentum [21,38]. The uncertainties assigned
to these corrections are taken as a source of systematic
uncertainties.
Two categories of systematic uncertainties are consid-

ered: experimental and related to the DP model. The former
category comprises the uncertainties on the fraction of
signal, the fit biases, the variation of the signal efficiency
across the DP (including the choice of the efficiency
binning), and the background DP models. The DP model
uncertainties arise from the limited knowledge of the fixed
parameters of the resonance line shape models, the mar-
ginal components neglected in the amplitude fit model, and
the modeling of the K0

Sπ
− and πþπ− S-wave components.

All of the experimental uncertainties are estimated by
means of pseudoexperiments, in which samples for each
reconstruction category are simulated and fitted exactly as
for the data sample. For each pseudoexperiment, a single
parameter governing a systematic effect (e.g., the signal
fraction) is varied according to its uncertainty. The standard
deviation of the distribution of the fit results in an ensemble
of 500 pseudoexperiments is taken as the corresponding
systematic error estimate. The largest absolute bias of an
individual source of uncertainty is observed at the few
percent level. The final result is corrected for any observed
bias where it is significant. The dominant contribution to the
experimental uncertainty is the efficiency determination.
The mass and the width of each resonance given in

Table I are varied individually and symmetrically by one
standard deviation to evaluate the impact of the fixed
parameters of the isobar resonance line shapes. The Blatt-
Weisskopf radius parameter, fixed at 4 GeV−1, is varied
by �1 GeV−1 [18].
To evaluate the systematic uncertainties related to the

marginal components of the DP model, the effect of adding
the resonance f2ð1270Þ (which is not retained by the
previous criteria) and removing of the f0ð500Þ component
(the least significant contribution in the nominal model) is
considered by repeating the fit with and without these
components. Based upon this new model, a pseudoexperi-
ment with a signal yield much larger than that of the data
is then generated and fit back with the nominal model.
The related systematic uncertainty estimate is taken as the
difference between the generated and fitted values.
A critical part of the isobar model design is the

description of K0
Sπ

� S-wave components. Two parametri-
zations of these contributions have been studied: LASS
[39] and EFKLLM [29]. The latter provides the best fit to
the data. The log-likelihood difference between the two
model hypotheses is −2Δ lnL ¼ 85, which indicates that
the LASS parametrization cannot be used to assign a
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FIG. 2. Projections of the sum of all data categories (black
points) and the nominal fit function onto the DP variables (left)
m2

K0
Sπ

þ , (right) m2
K0

Sπ
− and (bottom) m2

πþπ− , restricted to the two-

body, low invariant-mass regions. The full fit is shown by the
solid blue line and the signal model by the dashed red line. The
observed difference is due to the (green) combinatorial and (light
red) cross-feed background contributions, barely visible in these
projections.
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meaningful systematic uncertainty related to the choice of
the model. In absence of a competitive alternative model (to
our knowledge), no systematic uncertainty is assigned to
the choice of the EFKLLM parametrization. All model
uncertainties are combined in quadrature to form the total
model of systematic uncertainty.
The Dalitz plot projections are shown in Fig. 2, with

the result of the fit superimposed [40]. The CP-averaged fit
fractions related to the quasi-two-body and nonresonant
amplitudes are determined to be

F hCPi(K�ð892Þ−πþ) ¼ 9.43� 0.40� 0.33� 0.34%;

F hCPi(ðKπÞ−0 πþ) ¼ 32.7� 1.4� 1.5� 1.1%;

F hCPi(K�
2ð1430Þ−πþ) ¼ 2.45� 0.10

0.08 � 0.14� 0.12%;

F hCPi(K�ð1680Þ−πþ) ¼ 7.34� 0.30� 0.31� 0.06%;

F hCPi(f0ð980ÞK0
S) ¼ 18.6� 0.8� 0.7� 1.2%;

F hCPi(ρð770Þ0K0
S) ¼ 3.8� 1.1

1.6 � 0.7� 0.4%;

F hCPi(f0ð500ÞK0
S) ¼ 0.32� 0.40

0.08 � 0.19� 0.23%;

F hCPi(f0ð1500ÞK0
S) ¼ 2.60� 0.54� 1.28� 0.60%;

F hCPiðχc0K0
SÞ ¼ 2.23� 0.40

0.32 � 0.22� 0.13%;

F hCPiðK0
Sπ

þπ−ÞNR ¼ 24.3� 1.3� 3.7� 4.5%;

where the statistical, experimental systematic and model
uncertainties are split accordingly in that order. The results
are in agreement with the measurements obtained by
the BABAR and Belle Collaborations with decay-time-
dependent flavor-tagged analyses [17,18], insofar as the
DP model components can be compared.
The measurements of the CP asymmetries are

ACP(K�ð892Þ−πþ) ¼ −0.308� 0.060� 0.011� 0.012;

ACP(ðKπÞ−0 πþ) ¼ −0.032� 0.047� 0.016� 0.027;

ACP(K�
2ð1430Þ−πþ) ¼ −0.29� 0.22� 0.09� 0.03;

ACP(K�ð1680Þ−πþ) ¼ −0.07� 0.13� 0.02� 0.03;

ACP(f0ð980ÞK0
S) ¼ 0.28� 0.27� 0.05� 0.14;

where the uncertainties are statistical, experimental sys-
tematic and from the model. The statistical significance
of having observed a nonvanishing CP asymmetry in the
decay B̄0 → K�ð892Þ−πþ, built from the likelihood ratio
for the null hypothesis, is 6.7 standard deviations and
reduces to about 6 standard deviations, taking into
account the systematic uncertainties. This measurement
constitutes the first observation of a CP-violating asym-
metry in the decay B̄0 → K�ð892Þ−πþ. The measured
value is in good agreement with the world average
ACP(K�ð892Þ−πþ) ¼ −0.23� 0.06 [4] with a similar
precision. It is also consistent with SM predictions using

different QCD-inspired approaches to handle the hadronic
matrix elements of the decays [41–43]. This measurement
can also be used with other experimental inputs and
theoretical assumptions to set nontrivial constraints on the
Cabibbo-Kobayashi-Maskawa parameters [44].
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5Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France

6Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
7LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
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jUniversità di Roma Tor Vergata, Roma, Italy.
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