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Abstract. 

 

This article presents the analytical solution of an L-shaped cross-section asymmetric beam 

(concrete terrace unit) undergoing triple coupling that is, flexural vibration in two mutually 

perpendicular planes (vertical and horizontal) plus torsional vibration about an axis passing 

through its shear centre, using the classical approach. Essentially, the procedure involved the 

development of three governing, coupled, partial differential equations based on Euler-

Bernoulli theory for beams with isotropic material properties, from which the exact solution 

was extracted. The warping effect was considered in the torsional equation.  

A comparison between the analytical solution and corresponding numerical and experimental 

results obtained earlier was attempted and similarity and accuracy were discussed.  

It is reasonable to state that the analytical method in calculating the natural frequencies of a 

system is the most reliable, compared to experimental (needs skills and experience) and 

numerical (calibration, updating, validation, etc).  

However, even the analytical solution may not be as accurate as expected, as it depends on 

several factors/parameters beyond the full control of the investigator. Some useful comments 

and conclusions are drawn.  

 

mailto:john.karadelis@coventry.ac.uk


 

2 

 

 

1. Introduction & Significance: 

 

Beams and other structural components/elements with asymmetric cross section are relatively 

common in the construction industry today. Yet, their dynamic analysis is not straight 

forward. This is because their centroid and shear centre do not coincide and therefore they 

undergo coupled, flexural and torsional vibrations under dynamic actions, if the line of 

application of these actions is not the shear centre axis.  

 

The case of a beam with a single axis of symmetry through its cross-section, undergoing 

flexural vibrations in one plane coupled with torsional vibrations, the so called double 

coupling, has been studied by some researchers, mainly using Euler-Bernoulli theory although 

the warping stiffness has been neglected by most of them (Weaver et al., 1990; Documaci, 

1987; Banerjee & Williams, 1992; Bercin & Tanaka, 1997; Bishop et al., 1989; 

Klausbruckner & Pryputniewicz, 1977; Hallauer & Liu, 1982). The case of triple coupling 

(flexural-flexural-torsional), all coupled, has been dealt by very few.  

 

Yaman (1997) presented the complex problem of forced, coupled flexural-torsional vibrations 

of uniform, open section channels with one axis of symmetry using the wave propagation 

approach. Warping was also included in the analysis. The channel sections considered were 

assumed to be of the Euler-Bernoulli beam type, claiming that this method favours thin 

beams. One drawback of the analytical model presented was that it did not account for the 

effects of the cross-sectional distortion of the channels which can be substantial at high 

frequencies. 
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Tanaka & Bercin (1999) solved the governing equations of motion (EoM) for bending about 

two perpendicular axes coupled with torsional vibrations of a uniform thin-walled beam 

possessing no cross-sectional symmetry, and developed a code based on Mathematica (1991) 

to solve these equations 

 

Work by Arpaci & Bozdag (2002) is associated with the triple coupled, free vibration of thin 

walled beams of non-symmetrical section, like channels and Z-purlins. They derived the 

governing EoM and even included terms like the product of inertia, hence amending previous 

studies by Tanaka and Bercin who conveniently left the term out. They stressed the 

importance of coupling stiffness and the risk of substantial errors if the latter is not included 

in the system of equations. However, they too left out the fact that, these very thin sections 

will distort substantially, especially at high frequencies.  

 

Only recently, Wang (2013) studied the coupled free vibration of composite beams with 

asymmetric cross-sections based on Euler-Bernoulli beam theory. He included more coupling 

terms in the governing equations and developed his own algorithm to solve them because 

both, odd and even order spatial derivatives had to be considered. He concluded that coupled 

flexural-torsional vibrations occur due to the anisotropy of the composite material considered 

and that the asymmetric cross-section can cause substantial changes in the natural frequencies 

and modes of vibration of the beam. 

 

All researchers used thin-walled, open cross-sections to study and verify their findings 

Essentially, in the case of beams having no plane of symmetry, Timoshenko and his co-

workers stated that the problem becomes significantly more complex and involved (Weaver et 

al., 1990). They recommended coupled torsional and flexural vibrations in the two principal 
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planes and talked about the development of three simultaneous differential equations instead 

of two and significantly more complex analysis.  

 

Sparked by the above, Arpaci et al., (2003) produced an account of triply coupled vibrations 

with direct reference to thin-walled open cross-sections, with no axis of symmetry. This time 

they included both, warping effects and rotary inertia in an effort to come closer to the exact 

solution. They concluded that the effect of rotary inertia may alter the natural frequencies 

dramatically for certain boundary conditions and thicknesses and their solution could not be 

generalised. Surprisingly, they found that the relative error when not taking into consideration 

the rotary inertia reached 170% unless the warping effect was also excluded! They attributed 

this gross error to the fact that excluding warping, decreases the torsional rigidity of beams 

and consequently the natural frequencies and that some, originally bending modes, change to 

coupled, or even torsional modes. Hence, traces of uncertainty appeared in their approach.  

 

The author has carried out experimental and numerical modal analyses in the past using 

concrete beams (Karadelis, 2009a, 2009b; Karadelis, 2012). He concluded that results are 

sensitive to boundary conditions and that certain modes of vibration have a tendency to 

change from predominantly flexural, to flexural-torsional, or even torsional, when, for 

instance, boundaries are altered or, reinforcement is taken into consideration. Likewise, 

assigning different thicknesses, will affect the stiffness of the section, and therefore the 

natural frequencies are expected to change.  

 

As Timoshenko predicted, the exact solution has already become significantly complex and 

involved. Therefore, a simpler approach, as presented in the next few pages, may be of some 

value. 
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The object of this article is to include the effects of warping and rotational inertia in a 

distinctive triply coupled (free) vibration analysis over the natural frequencies of a solid, L-

shaped concrete terrace unit, the asymmetric beam shown in Figure 1. The literature cited is 

employed as a “starting point” for this investigation. The latter will be compared with data 

obtained from carefully crafted experimentation and numerical analysis solutions.  

The author was motivated by the fact that the number of studies allied to triple coupled, 

flexural-flexural-torsional vibrations are very limited, compared to those of double coupled, 

flexural-torsional vibrations. It is true that one can obtain these frequencies with the aid of the 

finite element method. However, the emphasis was placed on the development of a simple, 

efficient and accurate analytical technique, since it offers a hands-on, comprehensive 

perspective of the solution with all relevant parameters present and can even become a 

valuable teaching tool in advanced engineering courses, avoiding “black-box” style solutions. 

It is stressed that this study considers solid, asymmetric, as opposed to light, thin, open cross-

sections. As this has not been attempted before, it is hoped that it will become a valuable add-

on to the studies mentioned earlier.  

 

 

Figure 1. Typical asymmetric beam (concrete terrace unit). A dynamic shaker and several accelerometers are 

visible. Inset: lumped mass approximation model. 

 

In terms of shear consideration, two main mathematical models exist, namely the shear un-

deformable Euler-Bernoulli (E-B) model and the shear-deformable Timoshenko model. In 
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this case it is argued that the thick concrete beam with the horizontal (tread) member would 

not undergo significant shear deformation compared to bending deformations, hence the E-B 

model is adopted and the deformation at a section is the rotation due to (double) bending only.  

 

2. Methodology 

 

Figure 1 shows a typical reinforced concrete terrace unit with asymmetric cross-section in the 

laboratory. The unit has been studied previously, both experimentally and numerically and the 

results have been published elsewhere (Karadelis, 2009a, 2009b). It should be interesting to 

study the same unit in an analytical manner and compare the findings with the results 

mentioned earlier. Some useful conclusions should then be drawn.  

A Cartesian coordinate system x,y (lower case) is taken through the section’s centroid, CC, as 

shown in Figure 2. In contrast, X,Y (upper case) represents a second orthogonal system of 

axes passing through the unit’s shear centre, SC.  

The deferential equations of flexure in the statics domain, for bending in a vertical and 

horizontal plane respectively and the torsion equation about the shear centre axis (SC) 

(Karadelis, 2012) (assuming torsion takes place about SC) should first be developed. The 

equations of motion (EoM) can then be formed for the frequency equation to be extracted. As 

there is no plane of symmetry present, the product moment of inertia is a non-zero quantity, 

(Ixy≠ 0) and therefore terms such as [𝐸𝐼𝑥𝑦
𝑑4𝑢

𝑑𝑧4
], allowing for coupling, should be included in 

the system of these equations. 
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Figure 2. Annotated diagram of a cross-section of the terrace unit shown in Figure 1. All dimensions in mm. 

 

2.1 Equations from Statics: 

 

 𝐸𝐼𝑥
𝑑4𝑣

𝑑𝑧4
= 𝑤𝑦          (a) 

 𝐸𝐼𝑦
𝑑4𝑢

𝑑𝑧4
= 𝑤𝑥          (b) 

 𝑇(𝑆𝐶) = 𝐺𝐽
𝑑𝜑

𝑑𝑧
− 𝐸𝐼𝑤

𝑑3𝜑

𝑑𝑧3
        (c) 

 

Differentiating eqn. (c) w.r.t z: 

 𝑤𝑒𝑥 = 𝐺𝐽
𝑑2𝜑

𝑑𝑧2
− 𝐸𝐼𝑤

𝑑4𝜑

𝑑𝑧4
        (d) 

where: 

EIx, EIy= flexural rigidity in vertical and horizontal planes; v, u= displacements in 

vertical and horizontal directions; wy, wx = intensity of distributed load; z= 

longitudinal direction; GJ= torsional rigidity; EIw= warping rigidity; φ = angle of 

twist, anti-clockwise positive; wex= intensity of torque 

 

2.2 Equations of Motion 
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Using d’Alembert’s principle: 

 

 𝐸𝐼𝑦
𝜕4𝑢

𝜕𝑧4
+ 𝐸𝐼𝑥𝑦

𝜕4𝑣

𝜕𝑧4
+ 𝜌𝐴

𝜕2𝑢

𝜕𝑡2
− 𝜌𝐴𝑒𝑦

𝜕2𝜑

𝜕𝑡2
= 0 

 

 𝐸𝐼𝑥
𝜕4𝑣

𝜕𝑧4
+ 𝐸𝐼𝑥𝑦

𝜕4𝑢

𝜕𝑧4
+ 𝜌𝐴

𝜕2𝑣

𝜕𝑡2
+ 𝜌𝐴𝑒𝑥

𝜕2𝜑

𝜕𝑡2
= 0     (1) 

 

 𝐸𝐼𝑤
𝜕4𝜑

𝜕𝑧4
− 𝐺𝐽

𝜕2𝜑

𝜕𝑧2
+ 𝜌𝐴𝑒𝑥

𝜕2𝑣

𝜕𝑡2
− 𝜌𝐴𝑒𝑦

𝜕2𝑢

𝜕𝑡2
+ 𝜌𝐼𝑠𝑐

𝜕2𝜑

𝜕𝑡2
= 0 

 

where:  

u, v = displacements of the shear centre, SC, in X, Y directions;  = mass density; A = 

cross-sectional area; ey, ex = distances from the centroid, CC, to X and Y (shear 

centre) axes respectively; Isc = polar moment of inertia about the SC; EIxy = coupling 

stiffness (rigidity); t = time 

 

Note that terms such as: 

 [𝜌𝐴
𝜕2𝑢

𝜕𝑡2
] , [𝜌𝐴

𝜕2𝑣

𝜕𝑡2
] and [𝜌𝐴𝑒𝑦

𝜕2𝜑

𝜕𝑡2
] , [𝜌𝐴𝑒𝑥

𝜕2𝜑

𝜕𝑡2
] denote mass and inertia, associated with 

linear and angular acceleration respectively. Terms [𝐸𝐼𝑥𝑦
𝑑4𝑢

𝑑𝑧4
] and [𝐸𝐼𝑥𝑦

𝑑4𝑣

𝑑𝑧4
] indicate 

coupling effects. [𝐸𝐼𝑤
𝜕4𝜑

𝜕𝑧4
] , [𝐺𝐽

𝜕2𝜑

𝜕𝑧2
] are the warping and torsional terms respectively.  

Finally, terms [𝜌𝐴𝑒𝑥
𝜕2𝑣

𝜕𝑡2
] , [𝜌𝐴𝑒𝑦

𝜕2𝑢

𝜕𝑡2
] represent inertial forces. Whereas term [𝜌𝐼𝑠𝑐

𝜕2𝜑

𝜕𝑡2
] 

represents inertial torque.  
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Assuming the vibration is harmonic, the translational and rotational (due to torsion) 

displacements can be expressed as:  

 

 𝑢(𝑧, 𝑡) = 𝑈(𝑧)𝑠𝑖𝑛𝜔𝑡 

 𝑣(𝑧, 𝑡) = 𝑉(𝑧)𝑠𝑖𝑛𝜔𝑡        (2) 

 𝜑(𝑧, 𝑡) = 𝛷(𝑧)𝑠𝑖𝑛𝜔𝑡 

 

where: 

𝑈, 𝑉, 𝛷 = amplitudes, normal (modes) functions; angular frequency of vibration 

 

The following partial derivatives need to be formed from eqns (2):  

 
𝜕4𝑢

𝜕𝑧4
,  

𝜕4𝑣

𝜕𝑧4
,

𝜕4𝜑

𝜕𝑧4
,    

𝜕2𝜑

𝜕𝑧2
,       

𝜕2𝑢

 𝜕𝑡2
,      

𝜕2𝑣

𝜕𝑡2
,      

𝜕2𝜑

𝜕𝑡2
     

 

 
𝜕𝑢

𝜕𝑧
= 𝑈′(𝑧)𝑠𝑖𝑛𝜔𝑡 

 
𝜕2𝑢

𝜕𝑧2
= 𝑈′′(𝑧)𝑠𝑖𝑛𝜔𝑡 

 
𝜕3𝑢

𝜕𝑧3
= 𝑈′′′(𝑧)𝑠𝑖𝑛𝜔𝑡 

 
𝜕4𝑢

𝜕𝑧4
= 𝑈′′′′(𝑧)𝑠𝑖𝑛𝜔𝑡 

 ……………………. 

 
𝜕4𝑣

𝜕𝑧4
= 𝑉′′′′(𝑧)𝑠𝑖𝑛𝜔𝑡  

           (3) 

 
𝜕2𝜑

𝜕𝑧2
= 𝛷′′(𝑧)𝑠𝑖𝑛𝜔𝑡 

 

 
𝜕4𝜑

𝜕𝑧4
= 𝛷′′′′(𝑧)𝑠𝑖𝑛𝜔𝑡 
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Also, 

 

 
𝜕𝑢

𝜕𝑡
= 𝜔𝑈(𝑧)𝑐𝑜𝑠𝜔𝑡 

 
𝜕2𝑢

𝜕𝑡2
= −𝜔2𝑈(𝑧)𝑠𝑖𝑛𝜔𝑡 

 ………………………        (4) 

 
𝜕2𝑣

𝜕𝑡2
= −𝜔2𝑉(𝑧)𝑠𝑖𝑛𝜔𝑡  

 
𝜕2𝜑

𝜕𝑡2
= −𝜔2𝛷(𝑧)𝑠𝑖𝑛𝜔𝑡 

 

Substituting eqs. (3) and (4) into eqs. (1), and cancelling out 𝑠𝑖𝑛𝜔𝑡, (𝜔𝑡 ≠ 0): 

 

𝐸𝐼𝑦𝑈
′′′′(𝑧) + 𝐸𝐼𝑥𝑦𝑉

′′′′(𝑧) − 𝜔2𝜌𝐴𝑈(𝑧) + 𝜔2𝜌𝐴𝑒𝑦𝛷(𝑧) = 0    (5) 

𝐸𝐼𝑥𝑉
′′′′(𝑧) + 𝐸𝐼𝑥𝑦𝑈

′′′′(𝑧) − 𝜔2𝜌𝐴𝑉(𝑧) − 𝜔2𝜌𝐴𝑒𝑥𝛷(𝑧) = 0    (6) 

𝐸𝐼𝑤𝛷
′′′′(𝑧) − 𝐺𝐽𝛷′′(𝑧) − 𝜔2𝜌𝐴𝑒𝑥𝑉(𝑧) + 𝜔

2𝜌𝐴𝑒𝑦𝑈(𝑧) − 𝜔
2𝜌𝐼𝑠𝑐𝛷(𝑧) = 0  (7) 

 

Solutions must be found now for U(z), V(z) and (z) that satisfy eqs. (5), (6) and (7) as well 

as the particular end conditions of the unit.  

 

2.3 Boundary Conditions 

 

For a simply supported unit the following boundary conditions exist: 
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 ∀𝑧 ∈ ℝ+:  𝑧 = 0, 𝑜𝑟 𝑧 = ℓ (𝑖𝑒: 𝑠𝑝𝑎𝑛)

{
 
 

 
 𝑢 = 0,      

𝜕2𝑢

𝜕𝑧2
= 0 

𝑣 = 0,      
𝜕2𝑣

𝜕𝑧2
= 0

𝜑 = 0,      
𝜕2𝜑

𝜕𝑧2
= 0 

    (8) 

 

(rem: 𝜑= ‘torsional’ rotation about the Z-axis.) 

 

The above conditions are satisfied by the following relationships where Ck, Dk, Hk are 

constants: 

 

 𝑈𝑘 = 𝐶𝑘 𝑠𝑖𝑛
𝑘𝜋

ℓ
𝑧 

 𝑉𝑘 = 𝐷𝑘 𝑠𝑖𝑛
𝑘𝜋

ℓ
𝑧  ∀𝑘 ∈ ℕ:   𝑘 = 1, 2, 3, …     (9) 

 𝛷𝑘 = 𝐻𝑘 𝑠𝑖𝑛
𝑘𝜋

ℓ
𝑧 

 

Eqs. (9) must be substituted into eqs. (5), (6) and (7) after their second and fourth derivatives 

w.r.t. z are obtained: 

 

 𝑈′′𝑘 = −𝐶𝑘  (
𝑘𝜋

ℓ
)
2

𝑠𝑖𝑛
𝑘𝜋

ℓ
𝑧 

 𝑈′′′′𝑘 = 𝐶𝑘  (
𝑘𝜋

ℓ
)
4

𝑠𝑖𝑛
𝑘𝜋

ℓ
𝑧 

 

 𝑉′′𝑘 = −𝐷𝑘  (
𝑘𝜋

ℓ
)
2

𝑠𝑖𝑛
𝑘𝜋

ℓ
𝑧        (10) 

 𝑉′′′′𝑘 = 𝐷𝑘  (
𝑘𝜋

ℓ
)
4

𝑠𝑖𝑛
𝑘𝜋

ℓ
𝑧 

 

 𝛷′′𝑘 = −𝐻𝑘  (
𝑘𝜋

ℓ
)
2

𝑠𝑖𝑛
𝑘𝜋

ℓ
𝑧 

 𝛷′′′′𝑘 = 𝐻𝑘  (
𝑘𝜋

ℓ
)
4

𝑠𝑖𝑛
𝑘𝜋

ℓ
𝑧 
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Substituting the corresponding derivatives from Eqn. (10) into eqs. (5), (6) and (7) while 

cancelling out term 𝑠𝑖𝑛
𝑘𝜋

ℓ
𝑧, as before, and re-arranging common factors for Ck, Dk, Hk: 

 

 𝐸𝐼𝑦𝑈
′′′′(𝑧) + 𝐸𝐼𝑥𝑦𝑉

′′′′(𝑧) − 𝜔2𝜌𝐴𝑈(𝑧) + 𝜔2𝜌𝐴𝑒𝑦𝛷(𝑧) = 0 

 (𝐸𝐼𝑦 ∙
𝑘4𝜋4

ℓ4
− 𝜔2𝜌𝐴) 𝐶𝑘 + (𝐸𝐼𝑥𝑦 ∙

𝑘4𝜋4

ℓ4
)𝐷𝑘 + (𝜔

2𝜌𝐴𝑒𝑦)𝐻𝑘 = 0   (11) 

 

 𝐸𝐼𝑥𝑉
′′′′(𝑧) + 𝐸𝐼𝑥𝑦𝑈

′′′′(𝑧) − 𝜔2𝜌𝐴𝑉(𝑧) − 𝜔2𝜌𝐴𝑒𝑥𝛷(𝑧) = 0 

 (𝐸𝐼𝑥𝑦 ∙
𝑘4𝜋4

ℓ4
)𝐶𝑘 + (𝐸𝐼𝑥 ∙

𝑘4𝜋4

ℓ4
− 𝜔2𝜌𝐴)𝐷𝑘 − (𝜔

2𝜌𝐴𝑒𝑥)𝐻𝑘 = 0   (12) 

 

 𝐸𝐼𝑤𝛷
′′′′(𝑧) − 𝐺𝐽𝛷′′(𝑧) − 𝜔2𝜌𝐴𝑒𝑥𝑉(𝑧) + 𝜔

2𝜌𝐴𝑒𝑦𝑈(𝑧) − 𝜔
2𝜌𝐼𝑠𝑐𝛷(𝑧) = 0 

 (𝜔2𝜌𝐴𝑒𝑦)𝐶𝑘 − (𝜔
2𝜌𝐴𝑒𝑥)𝐷𝑘 + (𝐸𝐼𝑤 ∙

𝑘4𝜋4

ℓ4
+ 𝐺𝐽

𝑘2𝜋2

ℓ2
− 𝜔2𝜌𝐼𝑠𝑐)𝐻𝑘 = 0  (13) 

 

2.4 The Frequency Equation and its Coefficients 

 

Equations (11), (12) and (13) can provide non-trivial (other than zero) solutions for Ck, Dk, 

and Hk if, and only if, the determinant of their coefficients vanishes (det= 0).  
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|

|
(𝐸𝐼𝑦 ∙

𝑘4𝜋4

ℓ4
− 𝜔2𝜌𝐴) (𝐸𝐼𝑥𝑦 ∙

𝑘4𝜋4

ℓ4
) (𝜔2𝜌𝐴𝑒𝑦)

(𝐸𝐼𝑥𝑦 ∙
𝑘4𝜋4

ℓ4
) (𝐸𝐼𝑥 ∙

𝑘4𝜋4

ℓ4
− 𝜔2𝜌𝐴) −(𝜔2𝜌𝐴𝑒𝑥)

(𝜔2𝜌𝐴𝑒𝑦) −(𝜔2𝜌𝐴𝑒𝑥) (𝐸𝐼𝑤 ∙
𝑘4𝜋4

ℓ4
+ 𝐺𝐽

𝑘2𝜋2

ℓ2
− 𝜔2𝜌𝐼𝑠𝑐)

|

|

= 0 

   (14) 

 

Or, in terms of its cofactors: 

 

(𝐸𝐼𝑦 ∙
𝑘4𝜋4

ℓ4
− 𝜔2𝜌𝐴) |

|
(𝐸𝐼𝑥 ∙

𝑘4𝜋4

ℓ4
− 𝜔2𝜌𝐴) −(𝜔2𝜌𝐴𝑒𝑥)

−(𝜔2𝜌𝐴𝑒𝑥) (𝐸𝐼𝑤 ∙
𝑘4𝜋4

ℓ4
+ 𝐺𝐽

𝑘2𝜋2

ℓ2
− 𝜔2𝜌𝐼𝑠𝑐)

|
| − 

 

−(𝐸𝐼𝑥𝑦 ∙
𝑘4𝜋4

ℓ4
) |
|
(𝐸𝐼𝑥𝑦 ∙

𝑘4𝜋4

ℓ4
) −(𝜔2𝜌𝐴𝑒𝑥)

(𝜔2𝜌𝐴𝑒𝑦) (𝐸𝐼𝑤 ∙
𝑘4𝜋4

ℓ4
+ 𝐺𝐽

𝑘2𝜋2

ℓ2
− 𝜔2𝜌𝐼𝑠𝑐)

|
| + 

 

+(𝜔2𝜌𝐴𝑒𝑦) |
(𝐸𝐼𝑥𝑦 ∙

𝑘4𝜋4

ℓ4
) (𝐸𝐼𝑥 ∙

𝑘4𝜋4

ℓ4
− 𝜔2𝜌𝐴)

(𝜔2𝜌𝐴𝑒𝑦) −(𝜔2𝜌𝐴𝑒𝑥)
| = 0     (15) 

 

Computations to evaluate eqn. (15) are lengthy but straight forward and will be omitted. They 

can be available on request. The final form of the frequency equation expressed in terms of 

descending powers of  is shown below. 
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𝜔6𝜌3𝐴2{𝐴(𝑒𝑥
2 + 𝑒𝑦

2) − 𝐼𝑠𝑐} + 

+𝜔4𝜌2 {𝐴𝐸𝐼𝑠𝑐
𝑘4𝜋4

ℓ4
(𝐼𝑦 + 𝐼𝑥) − 𝐴

2𝐸
𝑘4𝜋4

ℓ4
(𝐼𝑦𝑒𝑥

2 + 𝐼𝑥𝑒𝑦
2) + 𝐴2𝐸𝐼𝑤

𝑘4𝜋4

ℓ4
− 2𝐴2𝐸𝐼𝑥𝑦𝑒𝑥𝑒𝑦

𝑘4𝜋4

ℓ4
+

+𝐴2𝐺𝐽
𝑘2𝜋2

ℓ2
} −  

−𝜔2𝜌 {𝐸2𝐼𝑠𝑐
𝑘8𝜋8

ℓ8
(𝐼𝑥𝐼𝑦 − 𝐼𝑥𝑦

2 ) + 𝐴𝐸2𝐼𝑤
𝑘8𝜋8

ℓ8
(𝐼𝑦 + 𝐼𝑥) + 𝐴𝐸𝐺𝐽

𝑘6𝜋6

ℓ6
(𝐼𝑦 + 𝐼𝑥)} + 

+𝐸3𝐼𝑤
𝑘12𝜋12

ℓ12
(𝐼𝑥𝐼𝑦 − 𝐼𝑥𝑦

2 ) + 𝐸2𝐺𝐽
𝑘10𝜋10

ℓ10
(𝐼𝑥𝐼𝑦 − 𝐼𝑥𝑦

2 ) = 0     (20) 

 

Table 1 presents all quantities (constants) needed, to compute the roots of eqn. (20). 

 

Table 1. Quantities used for the evaluation of coefficients shown in equation 22. 

Quantity Definition SI units 

Econ 

Gcon 

Iy-y 

Ix-x 

Ixy 

Isc 

 

J 

Iw 

A 



ex 

ey 

ℓ 

Modulus of elasticity of concrete 

Modulus of rigidity of concrete 

Second moment of area about y-y axis 

Second moment of area about x-x axis 

Product moment of inertia 

Polar moment of inertia about the shear 

centre, SC. 𝐼𝑆𝐶 = 𝐼𝑌 + 𝐼𝑋. 

St Venant’s torsional constant. 

Warping torsional constant 

Cross sectional area of unit. 

Mass per unit volume of specimen 

𝑒𝑥 = 𝐴𝑥̃ 𝐴⁄  

𝑒𝑦 = 𝐴𝑦̃ 𝐴⁄  

Span 

29×109 Pa 

13.6 ×109 Pa 

16244.44×10-6 m4 

3088.44×10-6 m4 

3935.89x10-6 m4 

 

30148.5x10-6 m4 

2579.685x10-6 m4 

16445.61x10-18 m6 

0.18 m2 

2230 kgm-3 

0.244 m 

0.08945 m 

7 m 

 

Hence, eqn. (20) was re-written with coefficients C1, C2, C3, … C11, as follows:  
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𝝎𝟔𝜌3𝐴2{𝐶1} + 𝝎
𝟒𝜌2{𝐶2 − 𝐶3 + 𝐶4 − 𝐶5 + 𝐶6} − 𝝎

𝟐𝜌{𝐶7 + 𝐶8 + 𝐶9} + {𝐶10 + 𝐶11} = 0 

(21) 

with: 

𝐶1 = {(𝐴𝑒𝑥
2 + 𝐴𝑒𝑦

2) − 𝐼𝑠𝑐} = 0.18 × 0.244
2 + 0.18 × 0.089452 − 30148.5 × 10−6 =

 −0.018 𝑚4  

𝐶2 = 𝐸𝐼𝑠𝑐𝐴
𝑘4𝜋4

ℓ4
(𝐼𝑦 + 𝐼𝑥) = (29 × 109) × (30148.5 × 10−6) × (0.18) × (

14𝜋4

74
) ×

       (16244.44 × 10−6 +  3088.44 × 10−6) = 103.20 × 103 Nm4  

 

and so on…  

 

Table 2 presents all these coefficients and their values in SI units for k= 1. Each k-value 

provides a different version of the frequency equation. It is tedious to report on all six 

versions of the latter due to the vast amount of computations needed. The final form of the 

frequency equation for k= 1, is:  

 

𝝎𝟔 − 0.2 × 106 𝝎𝟒 + 7.1187 × 109 𝝎𝟐 − 31.27 × 1012 = 0   (22) 

 

Table 2. Coefficients for angular frequency, , and their values in SI units for k= 1 

Coefficient Relationship Value   (SI units) 

C1 {(𝐴𝑒𝑥
2 + 𝐴𝑒𝑦

2) − 𝐼𝑠𝑐} -0.018 m4 

C2 
𝐸𝐼𝑠𝑐𝐴

𝑘4𝜋4

ℓ
4 (𝐼𝑦 + 𝐼𝑥) 

103.20x103 Nm4 

C3 
𝐸𝐴2

𝑘4𝜋4

ℓ4
(𝐼𝑦𝑒𝑥

2 + 𝐼𝑥𝑒𝑦
2) 

31639.70 Nm2 

C4 
𝐴2𝐸𝐼𝑤

𝑘4𝜋4

ℓ
4  

5.25x10-7 N 

C5 
2𝐴2𝐸𝐼𝑥𝑦𝑒𝑥𝑒𝑦

𝑘4𝜋4

ℓ
4  

5.46x103 Nm4 

C6 
𝐴2𝐺𝐽

𝑘2𝜋2

ℓ2
 

195.05x103 Nm4 
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C7 
𝐸2𝐼𝑠𝑐

𝑘8𝜋8

ℓ8
(𝐼𝑥𝐼𝑦 − 𝐼𝑥𝑦

2 ) 
35.55x109 N2 

C8 
𝐴𝐸2𝐼𝑤

𝑘8𝜋8

ℓ8
(𝐼𝑦 + 𝐼𝑥) 

1.946 N2 

C9 
𝐴𝐸𝐺𝐽

𝑘6𝜋6

ℓ6
(𝐼𝑦 + 𝐼𝑥) 

20.61x1012 N2 

C10 
𝐸3𝐼𝑤

𝑘12𝜋12

ℓ12
(𝐼𝑥𝐼𝑦 − 𝐼𝑥𝑦

2 ) 
543.30x106 N3m-4 

C11 
𝐸2𝐺𝐽

𝑘10𝜋10

ℓ10
(𝐼𝑥𝐼𝑦 − 𝐼𝑥𝑦

2 ) 
202.25x1018 N3m-4 

 

The roots of eqn. 22 (frequency equation) were evaluated by employing MatLab (2000) and 

are listed in Table 3, below. MatLab computes the roots using Newton's Method. Briefly, if 

the first root converges to a complex number, it prints out its conjugate as a second root; if it 

converges to a real number, it divides throughout that root to form a quintic equation and then 

obtains the second root by running Newton's Method on the latter. After the two roots are 

found, it divides out again to obtain a quartic and so on. The results obtained for k= 1 

produced six real roots of which only three were positive. The lowest can be regarded as the 

fundamental (natural) frequency. For more roots to be extracted the procedure has to be 

repeated for k= 2, 3, … and so on, hence it can be extremely laborious.  

 

Table 3. Roots,  (rads-1) of the sextic frequency equation as obtained by MatLab. 

 x 103 (rads-1) f (Hz) 

-394.36  

394.36 62.80 

-198.43  

198.43 31.60 

-71.46  

71.46 11.38 

 

3. Earlier Experimental and Numerical Studies. 
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It is of interest to look at the results obtained from an earlier finite element modal analysis and 

those retrieved from a parallel experimental investigation (Karadelis, 2016). Any conclusions 

drawn, and uncertainties brought to surface, may be used as a guide for future researchers and 

practitioners.  

 

The objective of the experimental study was to quantify the response of a structure to a known 

(measured) excitation force. The terrace unit shown in Figure 1 was dividing into a suitable 

test grid (lumped masses) shown in the same figure as an inset. Masses were used as data 

collection (reference) points (RPs) shown as numbers in the inset. The properties of the 

structure were determined by measuring the FRF (Frequency Response Function) at each of 

the RPs (Ewins, 2000; Maia et al., 1997). A summary of the main data acquisition parameters 

is given in Table 4. Typical excitation and response time histories are shown in Figure 3, 

whereas a typical FRF, is presented in Figure 4, after a FFT is passed over the time history 

results. Modal parameter estimation was attained by using ICATS (1997) software. Table 5 

displays all experimental, numerical and analytical results.  

 

Table 4. Main data acquisition parameters and their values. 

Parameter  Setting/Value  

Acquisition Bandwidth (Sampling Rate):  80 Hz (325.5 Hz)  

Acquisition Duration:  25.166 seconds  

Frequency Resolution:  0.0397 Hz  

No. of Frequency Domain Averages:  4  

Exponential Window Time Constant:  0  

Excitation Type:  Chirp  

Excitation Duration:  18.87 seconds  

Excitation Frequency ‘Span’:  1 – 79 Hz  
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Figure 3. Typical (a) excitation and (b) response signals on a grandstand terrace unit. 

 

     

Figure 4. Typical FRF peaks. (a): Natural frequencies corresponding to specific modes of vibration; (b): their 

characteristic phase angles.  

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

(a) (b) 
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Table 5. Measured (experimental), predicted (computational) and calculated (analytical) natural frequencies and 

mode shapes. (Note: Symmetry has been used in the FE model).  

M
o

d
e
 

N
o

. 

Measured  

Natural Frequencies, 

Mode Shapes 

%-age Damping 

Predicted 

(FE Modal Analysis). 

Nat. Frequencies & Mode Shapes 

Calculated 

Natural 

Frequencies 

Comments 

 

1 

 
 

11.38 Hz 

Fundamental, 

bending 

mode of 

vibration. 

2 

 
 

 

Predominantly 

torsional mode. 

 

Also showing 

small amounts 

of bending. 

3 

 
 

31.60 Hz 

Similar to 

Mode 2. 

4 

 
 

 

Second flexural 

mode of 

vibration. 

5 

 
 

62.80 Hz 

Third flexural 

mode 

 

Also inhibiting a 

small amount of 

torsion. 

6 

? 

 

 

Predominantly 

flexural mode 

 

Z 

Y 

X 

f= 12.0 Hz 

= 1.4% 

f= 14.7 Hz 

= 2.0% 

f= 30.0 Hz 

= 1.2% 

f= 40.0 Hz 

= 1.0% 

f= 67.3 Hz 

= 1.6% 

f= 12.12 Hz 

f= 14.54 Hz 

f= 30.40 Hz 

f= 41.45 Hz 

f= 69.80 Hz 

f= 95.70 Hz 
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4. A comparison between Experimental, Numerical and Analytical results 

 

Table 6 presents all the results in a synoptic way. The standard deviation (STDEV) per mode 

shape (how far the values of a set of data are dispersed from their mean value) of the 

measured (lab), predicted (FEA) and calculated (hand) natural frequencies is given in the last 

column. It is noticed that the value of STDEV is very small (0.324) for the first mode, and 

increases with mode shape (Mode 5, STDEV= 2.89).  

 

Table 6. Measured Predicted and Calculated Natural Frequencies. 

Mode 

No. 

Measured 

f ( Hz) 

FEA  

f (Hz) 

Calculated 

f (Hz) STDEV 

1 12.00 12.12 11.38 0.324 

2 14.70 14.54 

 

0.080 

3 30.00 30.40 31.60 0.680 

4 40.00 41.45 

 

0.725 

5 67.30 69.80 62.80 2.896 

6 

 

95.70 

 

0 

 

Figure 5 shows natural frequencies per mode shape for measured, predicted and calculated 

values. General exponential trends (trendlines) have been added to assist with comparison and 

forecast frequencies beyond mode shape 6. It is apparent that calculated, measured and 

predicted trendlines are quite close, signifying good agreement. A tendency for better 

agreement between experimental and numerical trendlines is also noticed. 
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Figure 5. Frequencies per mode shape and their exponential trendlines. 

 

It can be concluded with some confidence that it is possible to perform triply coupled modal 

analysis of an asymmetric thick beam by three different ways and expect reasonably good 

correlation. 

 

Problems with more precise correlation between theoretical and experimental results have 

been reported by Arpaci & Bozdag, (2002) and a recommendation to allow for other than 

isotropic conditions as well as more accurate boundary conditions has been suggested by 

Wang (2013). 

 

Inevitably, the equations developed depend on a series of constants such as: Econ, Gcon, Iy-y, 

Ix-x, Ixy, Isc, J, Iw,  ex and ey, as well as their products and sums (EIsc, EIw, EIxy, GJ, Ix.Iy.Isc, 

(Ix + Iy), (IxIy - I2xy)). No doubt, some of them can be very specific. Some can be “borrowed” 

from the corresponding experimental investigation. The rest can only be estimated in an 

approximated manner. These terms appear in the final frequency equation and are raised to a 

high power. Hence, the initial error is exaggerated, and the accuracy compromised. 
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Continuously rounding up the decimal points appears to be another way of deviating from the 

“exact” solution.  

 

It has been demonstrated (Wang, 2013; Karadelis, 2012) that accurate representation of 

supports (boundary conditions) is important for more successful numerical modal analyses, 

pointing towards a methodology involving micro-scale level simulations, at least for the latter. 

However, it is clear in this article that the level of agreement between the three different 

approaches is satisfactory and underpins the theory that the small discrepancies reported, are 

due to support conditions.  

 

5. Concluding Remarks 

 

This article makes a contribution to related literature by considering the effects of warping 

and rotational inertia in a unique, triply coupled vibration analysis of a thick, L-shaped 

concrete terrace unit (asymmetric beam). The analytical procedure presented, involved the 

development of three partial differential equations from which the exact solution was 

extracted. The analysis itself fitted into the continuous, classical theory without the 

employment of unfamiliar, or highly convoluted techniques. The results were compared with 

similar experimental and numerical studies carried out earlier by the same author. The 

following are reported: 

 

It is pointed out that modes (amplitudes) U, V,  are sinusoidal functions, of the form: 

sin 
𝑘𝜋

𝑙
z, in which k stands for the kth order natural frequency. When a solution is obtained, for 

k=1, some roots may not be real. In this case, all roots were real but only three were positive. 

One of these roots provided the first order frequency, corresponding to experimental and 
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numerical results. The remaining two should be near other frequencies obtained from the 

tests, or the numerical analysis. The procedure must be repeated for k =2, to extract a new set 

of roots containing the second order frequency; and so on, for k= 3, 4, 5, 6. This way, the first 

six natural frequencies can be obtained. This, of course, is a very lengthy and painstaking 

procedure. 

 

It has been demonstrated that by including warping effects, torsional rigidity (stiffness) EIw 

and coupling stiffness EIxy, in the analysis, one can reduce errors reported by others (see 

Introduction) while computing the natural frequencies of beams. 

In contrast, inadequate support conditions (simply supported) intensifies the errors, perhaps 

stressing the importance of a more rigorous representation of the supports. 

Nevertheless, the analytical method in calculating the natural frequencies of a system is the 

most reliable, compared to experimental (needs skills and experience) and numerical 

(calibration, updating, validation, etc).  

Finally, the idea of a strictly exact solution is probably academic. However, depending on the 

particular engineering circumstances, one may adopt one of the three as the “best” and use it 

as a benchmark to assess the remaining two.  

 

Dedicated:  

To my mother, Kyriaki, who passed away recently, during the revision of this article. 
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