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Abstract 

The paper presents an experimental study aimed at investigating the mechanism responsible for 

Bisphenol A adsorption on natural cork, and the role played on process kinetics by the organic 

matter released from the cork. Obtained data show that natural cork has a good affinity toward 

Bisphenol A, with removal efficiency being as high as 75% in less than 24 h. The adsorption 

process is characterized by a fast-initial rate which tends to reduce progressively, and follows 

a pseudo second order model equation. Statistical physical analysis allows for obtaining a 

molecular description of the adsorption, which is shown to take place through a single 

anchorage point, perpendicularly to the adsorbent surface. Nuclear magnetic resonance 

spectroscopy and florescence analysis reveal that the colloidal organic matter released from the 

cork interacts with Bisphenol A; it also plays a relevant role in the slowing down of the 

adsorption rate, as it competes with cork adsorption sites for Bisphenol A. Organic matter is 

found to be highly heterogenous, presenting at the same time carbohydrates, aromatic and 

aliphatic domains. Such moieties interact stably with the contaminant in the solution probably 

due the establishment of dispersive forces (e.g. π-stacking) which sequestrate Bisphenol A into 

the inner hydrophobic core of the organic matter three-dimensional structure. 

Keywords: adsorption; Bisphenol A; cork; emerging contaminant; organic matter 
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1. Introduction 

The occurrence of emerging or newly identified contaminants in wastewater is one of the 

greatest concerns for the health and safety of exposed humans (Bolong et al., 2009). The 

majority of these contaminants are generally not regulated by threshold limits and in many cases 

their potential toxic and/or carcinogenic effects, as well as their fate in aquatic systems, are yet 

to be completely understood (Richardson and Kimura, 2016). Bisphenol A (BPA) is a very 

representative example of this issue, as for many years BPA has been considered as an 

innocuous compound, and has been largely used in numerous industrial applications including 

the manufacturing of every-day use objects, such as some food and drink containers. 

Nowadays its potential adverse effect on human health and wildlife conservation has been 

well assessed, and BPA has been included in the class of endocrine-disrupting compounds, i.e. 

those molecules which have the unique ability (due to their specific structure) to mimic or block 

natural hormones. Although many doubts still persist concerning the level of safety of BPA 

(Kovacic, 2010; Michałowicz, 2014), the EU Commission recently has adopted a new and more 

restrictive regulation (2018/13) on its use for food and beverage containers, clearly indicating 

the concern existing toward the diffusion of BPA-containing materials. 

At the same time many efforts, even at plant scale (Ávila et al., 2015; Schaar et al., 2010), 

are continuously dedicated to investigate the treatment processes able to remove BPA from 

wastewater e.g. using ultrasonic waves and hydrogen peroxide (Nikfar et al., 2016), and waste 

ash (Qasemi et al. 2018), reducing the risk of its uncontrolled discharge in natural 

environmental compartments . Among others, adsorption seems to be one of the most promising 

alternatives because of its good efficiency, coupled with its higher simplicity and adaptability 

compared to the other proposed systems (Hartono et al., 2015). While numerous adsorbents 

have been tested to remove BPA from aqueous solutions (Bhatnagar and Anastopoulos, 2017), 

no attempt has been made so far to use natural cork, which has been proven to be extremely 
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efficient towards organic emerging contaminants, such as pyrethroids fenpropathrin, 

permethrin, deltamethrin, fenvalerate, l-cyhalothrin, bifenthrin and a-cypermethrin, volatile 

phenols, paracetamol, chloroanisoles and polycyclic aromatics (Pintor et al., 2012). 

Cork is the outer bark of the oak tree (Quercus suber L.), a slow growing, evergreen oak 

that flourishes only in specific climate regions in the Western Mediterranean (e.g., Spain, 

Portugal, Southern France, Italy, and Northern Africa), China and Brazil. The chemical 

composition of cork consists primarily of suberin (Graça, 2015) and lignin (Nikafshar et al., 

2017), with the other organic constituents being polysaccharides (cellulose and hemicellulose) 

and extractives (waxes and tannins) (Silva et al., 2005). Lignin and suberin are natural organic 

polymers of heterogeneous structure characterized by the presence of aromatic alcohols 

(monolignols) and acids (i.e. cinnamic and ferulic acid). Suberin is richer in aliphatic substances 

bound to the aromatic domain as triacyl glycerol esters, and hence, is more hydrophobic (Graça, 

2015). The interaction of cork with organic compounds, which are essentially hydrophobic, is 

determined by its structure, especially by the aromatic domain of suberin and lignin (Pintor et 

al., 2012). Being hydrophobic itself, cork has an advantage of affinity over other natural 

materials for the removal of organic pollutants (Domingues et al., 2005). Moreover, the 

hydrophobic regions in suberin and lignin are expected to increase the ability of hydrophobic 

compounds to diffuse into cork (Fomina and Gadd, 2014). 

Starting from these premises, the current work intends to evaluate the possible use of cork 

for the removal of BPA from aqueous solution, investigating the mechanism of sorption at both 

macro- and micro-level, and considering the possible interference of dissolved organic matter 

(DOM) released by the biosorbent. Recent investigations (Chen et al., 2015; Pontoni et al., 

2019; Pontoni et al., 2016b) have demonstrated that DOM may have a fundamental role in the 

fate of contaminants existing in the aqueous solution at trace level (i.e. emerging contaminants), 

as they strongly interact with them, subjecting the contaminant to the actions of other 
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components present at higher concentrations in the same solution. The study is conducted at 

laboratory scale, using deionized water, to exclude the possible effect of compounds other than 

BPA, cork, and cork released components. 

2. Materials and Methods 

2.1 Materials 

Virgin natural cork was provided in 8 cm strips from a cork tree located in Goiás State 

(Brazil). Before use, the strips were cut into small pieces and mechanically grinded (Olivella et 

al., 2011); the obtained grains were sieved at 2 mm and washed with deionized (DI) water in a 

rotary shaker for 97 h, to remove impurities released from the material. The cleaned natural 

cork (CNC) was then dried at 60°C for 24 h. The micromorphologies and compositions of the 

CNC were investigated using scanning electron microscopy (SEM) at different magnifications 

on a JEOL JSM-6480LV high-performance, variable pressure analytical scanning electron 

microscope with secondary electron imaging (SEI), and energy dispersive x-ray spectroscopy 

(EDS) with an accelerating voltage of 15 kV. Individual particles were mounted rigidly on a 

specimen stub and coated with an ultrathin layer of gold. 

BPA stock solution (50 mg∙L-1) was obtained dissolving 25 mg of high purity product (> 

97%), purchased from Alfa Aesar (Germany), in 500 mL of DI water. The solution was 

continuously stirred at room temperature for about 72 h to ensure the complete dissolution of 

the compound. Chemicals used for all analytical determination were ACS grade or better. 

Before use, glassware was soaked overnight in a diluted nitric acid (2%) bath and rinsed several 

times with DI water. Only ultrapure water was used as reagent water, as well as for all required 

dilutions. 

2.2 Adsorption experiments 

5 



Adsorption experiments were carried out in batch, at laboratory scale and room 

temperature, using 80 mL volume reactors, placed in a rotary shaker at 30 rpm. In order to 

ensure a uniform and complete contact between the adsorbent and the contaminant, cork 

granules were placed in a metal tea infuser strainer, which was able to hold the adsorbent in the 

center of the reactor. 

Kinetic tests were conducted on a 50 ppm BPA solution with the amount of adsorbent 

varied from 0.05 to 0.6 g, and each test lasted 30 h. At selected times small aliquots of solution 

were sampled and analyzed for the residual BPA concentration. Further tests were carried out 

using 0.05 g of CNC varying the BPA concentration from 10 to 50 ppm, these samples were 

collected and analyzed only 24 h after the end of the tests. 

The tests were duplicated in order to reduce experimental errors. Blank tests, either with 

no adsorbent or with no BPA, were run, to take into account the eventual adsorption operated 

by the reactor or by the strainer, and the release of substances from the adsorbent, that could 

cause interference within BPA determination. 

BPA concentration was detected measuring the absorbance at 276 nm of withdrawn 

samples with a M550 Double Beam Scanning UV-Visible Spectrophotometer (Spectronic-

Camspec, UK). The UV spectrum of BPA in solution is shown in Figure S.1 (Supplementary 

Information). 

2.3 Characterization of DOM from natural cork 

Water used for cork washing was filtered through 1.5 µm (washing water 1, WW1), and 

carefully analyzed to characterize the DOM from the natural cork. For this small aliquots of the 

washing water were filtered through 0.45 µm (WW2), and 0.2 µm (WW3), and subject to COD 

determination (APHA, 1998) and three dimensional excitation emission matrix (3DEEM) 

spectrofluorometer. Additional 3DEEM spectra were acquired for: (i) a washing water sample 
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filtered only through 0.45 µm; (ii) a washing water sample filtered only through 0.45 µm, 

containing 10 ppm of BPA; and (iii) a solution of 10 ppm BPA in DI water. 3DEEM was 

acquired by means of a FP750 (Jasco, Japan) spectrofluorometer. The excitation wavelength 

was varied between 200 and 500 nm, and emission between 280 and 570 nm. Data were 

processed by the software SPEKWIN 32. 

The remaining washing water was freeze-dried (FD) with the help of an alpha 2-4 plus machine 

(Martin-Christ, Germany), and divided into two aliquots: FD1 and FD2. FD1 was dissolved in 

D2O and subjected to NMR spectroscopy, acquiring 1H-NMR and 13C-NMR mono-dimensional 

spectra using Ascend 400 MHz NMR spectrometer (Bruker, Germany) equipped with BBO 

broad band smart probe. The probe was set to a temperature of 310K to minimize the 

carbohydrate signals overlapping with the water and to favor the molecular disassembly of 

polymers (Duus et al., 2000). Edited HSQC bidimensional spectra were also acquired, using a 

matrix (t1 × t2) of 1024 × 128 points and transformed into a matrix of 4096 × 2048 points by 

means of pure cosine squared sine window function. Data processing was performed using the 

software Topspin .3.5 from Bruker (Germany). All acquired spectra were calibrated adding 

trimethylsilyl propanoic acid d4 (Acros organics, Belgium) as internal standard. 

Additional 1H-NMR spectra were acquired for a 20 ppm BPA solution, increasing DOM 

concentration. Spectra were acquired again at 310K by the combination of 256 scans. In this 

case, water suppression was achieved by using standard pre-saturation pulse sequence. 

FD2 was subjected to chemical derivatization prior to gas chromatography-mass spectrometry 

(GC-MS) analysis. The adopted reaction was the acetylation of methyl glycosides (AMG) 

(Ruiz-Matute et al., 2011), widely applied in carbohydrate analysis. The reaction, consisting in 

the acid catalyzed cleavage of glycoside bonds of polysaccharides by means of methanol (Dell, 

1990), resulted in the production of methyl glycosides of the monosaccharides composing the 
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carbohydrate polymers, which were fully acetylated (AMG) to become less polar and more 

volatile. The overall procedure included a methanolysis and an acetylation step. 

In detail, 1.55 mg of freeze-dried cork water extract was left in a Pyrex tube for 0.5 h 

under vacuum, in a desiccator to remove adsorbed water and grant anhydrous conditions for the 

methanolysis reaction. 0.55 mg of pure myo-inositol (Sigma - Aldrich, Germany) was added as 

internal standard. Thereafter, the sample was treated with 2 mL of MeOH / 1M HCl at 85 °C in 

a thermostatic block overnight. The methanolized sample, brought to dryness under compressed 

nitrogen flow, was washed with 1 mL MeOH (Romil, UK) and dried again a number of times 

until reaching a neutral pH. The sample was left again for 30 min in the desiccator, and then 

acetylated with 50 µL of pyridine (Sigma-Aldrich, USA) and 50 µL of acetic anhydride (Sigma-

Aldrich, USA) for 45 min at 85°C under magnetic stirring. When evaporated to dryness, it was 

extracted in CHCl3 (Carlo Erba Reagenti, Italy) and H2O, by washing with water three times. 

The organic phase was dried under flow of compressed nitrogen and finally the sample was 

dissolved in 40 µL acetone (Romil, UK) and injected to the GC-MS. GC-MS used was a 6850­

gas chromatograph (Agilent, USA) coupled with a GCT oa-TOF high resolution mass detector 

(Micromass, UK). The GC was equipped with a ZB-Semi-Volatile Guardian capillary column 

(Phenomenex, USA). The injector was set in split mode with a split ratio of 10 and the 

temperature of the liner was set at 230°C. A thermal program of the column oven was set as 

follows: 150°C, hold 3 min, 300°C at 3°C/min, hold 20 min. Obtained peaks were identified 

comparing the mass spectra with the NIST 98 library, and the retention times with those of 

reference compounds. 

3. Results and discussion 

3.1.Cork characterization 
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SEM image of natural cork granules (Figure 1) showed an alveolar structure, analogous 

to that of a honeycomb, with no empty spaces between contiguous cells, which appeared to be 

as closed units. The prismatic hollows cells presented a diameter of about 30-40 µm, therefore, 

constituting of macropores (> 50 nm according to IUPAC). Additionally, no internal porosity 

was apparent. Elemental analysis revealed, as expected, that carbon was the main constituent 

of cork granules, representing the base of structural components (suberin, lignin, 

polysaccharides and extractives). Hydrogen was the counterpart of carbon in the aliphatic 

chains of suberin and aromatic rings of lignin. Finally, nitrogen content was associated to minor 

extractives and peptic polysaccharides in the cell wall. Impurities of Si, S, Cl, and K were also 

found. 

Figure 1: SEM images at different magnifications of natural cork granules 

3.2 Adsorption batch tests 

The results of the adsorption experiments are summarized in Figures 2 and 3. Although 

the removal capacity was lower than the one obtained using commercial activated carbon, it 

was higher compared to many other bio-sorbents (Table S1) The kinetic tests (Figure 2) 

revealed that cork was able to remove from 10% to 54% of BPA in 5 h, and reached a total 

removal efficiency ranging between 17% and 75% in about 24 h (Figure 2a). The efficiency 

was greatly improved through increasing the amount of used cork, although the amount of BPA 

adsorbed per gram of CNC decreased at higher dosages of the adsorbent, indicating that the 

total capacity of available adsorption sites was not fully saturated. At the same time a slow 
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release of organic matter was observed in terms of absorbance from CNC over time, despite the 

described washing procedure (Figure 2b). 
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Figure 2: a) Results of kinetic tests varying adsorbent dose, b) Release of organic matter from CNC over time 

(80 mL DI water + 0.05 g CNC) measured as absorbance at 274 nm 
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As often in case of biosorption processes (Fabbricino and Gallo, 2010; Fabbricino and 

Pontoni, 2016; Wang and Chen, 2009) the adsorption capacity was characterized by an initial 

fast removal rate, which tended progressively to an important reduction. Experimental data 

could be best fitted by a pseudo second order model equation (R2 > 0.98), represented by 

Equation (1): 

t 

q t 

 
1 


2k q 1 e 

t 

q e 

(1) 

where: 

t = time (h) 

qt = BPA removed at time t (mg·g-1)
 

qe = BPA removed at equilibrium conditions (mg·g-1)
 

k1 = kinetic constant (mg·g-1·h-1)
 

It was therefore supposed that the process was governed by chemical reactions, which 

included electron sharing and/or exchange between the adsorbent and the adsorbate (Abdel-

Ghani et al., 2016; Fabbricino et al., 2013; Ho, 2006). 
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Figure 3: a) Webber-Morris plot; b) Isotherm curve: qeq = adsorbed BPA per unit mass of CNC; Ce = 

concentration of BPA in the solution at equilibrium 

For a more detailed analysis of the phenomenon, a mechanistic description of the results 

was attempted, analyzing the role of diffusion processes. For this, the Weber-Morris 

representation of data (Figure 3a) was adopted, based on Equation (2): 

6 
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q t  k d q e 
2  k b (2) 

where:
 

kd = diffusion rate constant (mg·g-1·h-0.5)
 

kb = boundary layer effect constant (mg·g-1)
 

Obtained plots indicated that the data could be fitted by straight lines, having positive 

intercepts. The result corresponded to an adsorption process governed by diffusion, taking place 

in two successive steps, corresponding to an initial diffusion towards CNC surface and 

successive intraparticle diffusion into the CNC pores. The mechanistic description was in 

agreement with the observed structure of the adsorbent (Figure 1). Further information on the 

adsorption mechanism at molecular level was obtained by adopting a statistical physical 

approach (Fabbricino and Pontoni, 2016; Franco et al., 2015; Khalfaoui et al., 2002b). As it 

could be easily seen in the analysis of the isotherm (Figure 3b) that the experimental points 

were perfectly aligned on a concave curve; this presented a single downward concavity with no 

inflection points. Such a trend, characteristic of Type I isotherms according to the classification 

of Brauner, Ermett and Teller (Khalfaoui et al., 2003), indicated a monolayer adsorption 

process. It could then be assumed (Khalfaoui et al., 2003) that each adsorption site was either 

occupied by a single molecule of BPA or empty (Khalfaoui et al., 2002a). The grand canonical 

function used for the statistical physical approach (Dotto and Pinto, 2011; Dotto et al., 2015; 

Fabbricino and Pontoni, 2016; Khalfaoui et al., 2002b; Khalfaoui et al., 2012) was therefore 

written in the simplified Hill form: 
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n  m NBPA BPA Mm BPA N a  (3) 
  C 

nBPA 

1   
0.5 

 
 
  Ce  
  

where:
 

mBPA = molecular weight of BPA
 

Na = number of adsorbed BPA molecules
 

nBPA = number of adsorbed BPA molecules per available adsorbent site
 

NM = receptor site density (mg∙g-1)
 

C0.5 = half saturation BPA concentration (mg∙L-1)
 

Numerical values for the model parameters were obtained by fitting the experimental data 

of Figure 3, resulting in nBPA = 1,1 and NM = 19. The efficiency of the model (Ferraro et al., 

2016) and the regression coefficient were both > 0.99 indicating a very good fit. 

The steric interpretation of Hill’s parameters provided the required overview of the 

phenomenon at molecular level. The anchorage number, equaling the reciprocal of the number 

of adsorbed molecules per site, resulted as 0.90. At the same time the steric hindrance, directly 

related to the receptor site density, was positive and >10. It could be concluded that BPA 

molecules presented a single anchorage point, and therefore the adsorbed molecules were 

perpendicular to the adsorbent surface. Because of the elevated hindrance, such a configuration 

precluded the possibility of using the adsorption sites close to the anchorage points, reducing 

the total obtained efficiency. The chemical structure of BPA only partially explained the 

hindrance effect. Such evidence together with the observation that the CNC was still releasing 

something into the water phase (Figure 2b) suggested the possibility of an aggregation of the 

molecule with the organic substances released by the CNC. 
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3.3 Characterization of DOM released from cork 

In order to better clarify the adsorption mechanisms of BPA onto the CNC, and to better 

understand the encountered steric hindrance, the role of the organic matter released by the cork 

was investigated, through a detailed analysis of the washing water. 

COD of WW1, WW2 and WW3 was found as 57.4, 51.9 and 41.9 mg∙L-1, respectively. 

The slight decrease of COD with the pore size of filters used to obtain the samples indicated 

that the main contribution to the released organic compounds was due to the smallest solid 

fractions contained in both dissolved and colloidal form. 

Figure 4: Fluorescence 3DEEM of: a) WW1; b) WW2; c) WW3 

In accordance with the COD values fluorescence intensity decreased with decreasing the 

pore size (Figure 4). Several differences were noted in the 3DEEM spectra of the samples. The 

peaks indicated as A (ex 280 - em 310 nm) and B (ex 280 - em 350 nm), related to Tyrosine 

and Tryptophan-like fluorophores (Yamashita and Tanoue, 2003) usually constituting the 

primary structure of proteins, were observable only for WW1 and with much lower intensity 

for WW2. The identified protein residues were reasonably attributable to the release of vegetal 

cells fragments from cork (fraction between 1.5 and 0.45 µm). However, it is suggested to 

confirm these by spiking standard Tyrosine and Tryptophan into the WW1. Peaks indicated as 

C (ex 320 em – 410 - nm), D (ex 270 em - 410 nm), E (ex 340 - em 470) and F (ex 260 - em 

470 nm) were common to all samples, and were therefore, due to molecules smaller than 0.2 

µm. In detail, as suggested by Chen et al. (2003), peaks E and F were attributed to the presence 
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of humic substances (Yamashita and Jaffé, 2008). However, peaks C and D were attributed to 

colloidal carbohydrates, in agreement with the observation of Kalita et al. (2015a and b) who 

reported that cellulose nanofibers with high crystallinity expresses very high fluorescence at 

various excitation wavelengths with a maximum of emission at 404 nm. 

Results of GC-MS chromatography performed on FD2 samples (Figure 5) allowed 

identifying several components (S.I., Table S2). A variety of pentoses, mainly xylose, was 

observed at low retention times (between 8 and 10 min), together with a 6 deoxy hexose 

(Rhamnose). Glucose, mannose and galactose (hexoses) were also identified between 16 and 

17 min. The overall carbohydrate composition together with the relative concentrations (Table 

S2) were compatible (high amount of xylose – i.e. 105 mg∙g-1) with the composition of 

hemicellulose commonly found to be extractable from cork (Pereira, 2015; Silva et al., 2005). 

The presence of fatty acids at retention time 10:25 and 15:82 min was observed too. 
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Figure 5: Chromatograph of the AMG of the organic matter released from cork 
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Figure 6: 1H NMR spectrum of DOM (red line); 1H – 13C HSQC edited (CH, CH3 blue, CH2 green contours 

NMR spectroscopy performed on FD1 sample (Figure 6) confirmed the results of GC­

MS analysis. The NMR spectrum was characterized by a wide distribution of peaks through the 

entire range of chemical shifts comprised between 1 and 8 ppm. The released organic matter 

was highly heterogenous and an exhaustive characterization of each of its components was 

behind the scope of the present work. Nevertheless, useful information was obtainable from the 

HSQC experiment. 

In detail it was possible to observe several cross peaks attributable to anomeric C-H 

correlations and hence attributable to both α (5.5>1H-δ>5.0; 96>13C-δ>94) and β (5.0>1H δ>4.2; 

104>13C-δ->100). The cross peaks observed at low fields are related to the presence of aromatic 

C-H correlations (7.2>1H-δ>6.7; 130>13C-δ>120) (Yuan et al., 2011) and of styrene like 

conjugated system (i.e. cinnamic acid-like) CH correlations (5.5>1H-δ>5; 116>13C-δ>110). The 

latter HSQC correlation in cork extracts was attributed by Marques António et al. (2016) to the 
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presence of ferulic acid which is known to compose suberin from cork (Gil et al., 1997). The 

central region of Figure 6 includes all the carbohydrates ring protons (4.5>1H-δ>2.8) and many 

CH2 (green contour) signals ascribable to the presence of alcoholic methylene (CH2OH). The 

high singlet (δ=3.299) is correlated to CH3 HSQC resonance at 59.7 ppm and was probably 

related to O-methyl function compatible with ferulic acid (Marques António et al., 2016; Yuan 

et al., 2011). The aliphatic region showed both CH/CH3 and CH2 correlations compatible with 

the presence of the organic acids also identified by GC-MS and of acetylated hydroxyl and 

methyl of 6 deoxy sugar (i.e Rhamnose δ=1.26) (Roslund et al., 2011). The signal within the 

aromatic region in the 1H resonance spectrum was broadened and poorly resolved. Such 

behavior was related to the presence of three-dimensional structure of the DOM, associated to 

the sequestration of aromatic substances into the inner hydrophobic core (Pan et al., 2012). It 

was supposed, in fact, that this structure made the aromatic protons to have different relaxation 

times (Gil et al., 1997; Lopes et al., 2000), resulting in the observed broad unresolved peaks 

(Lam and Simpson, 2008; Pontoni et al., 2016a). 

3.4 Evaluation of the interaction of BPA with organic matter in the water phase 

Figure 7 (a,b, and c) shows the comparison between the 3DEEM matrixes in order to 

evaluate the interaction of BPA with the fluorophores of the colloidal organic matter released 

by the cork. It was possible to observe that BPA had two intense fluorescence areas (ex 230 ­

em 310; ex 280 - em 310) (Figure 7a). The fluorescence of the organic matter shown in Figure 

7b, was due to humic substances emitted at higher wavelength, and to colloidal carbohydrates 

with emission maximum around 410 nm. 
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Figure 7: Interaction BPA-DOM: a) Fluorescence of 10 ppm BPA solution; b) Fluorescence of organic matter 
released form CNC, 0.45 µm filtered; c) Fluorescence of organic matter released form CNC, 0.45 µm filtered + 

10 ppm of BPA; d) 1H-NMR spectra of BPA at increasing concentration of DOM 

It was possible to observe that both carbohydrates and humic substances fluorescence 

areas were quenched by the presence of 10 ppm BPA (Fig. 7c). In addition, BPA signals were 

also quenched by themselves. The decrease shown by the intensity of all organic matter signals 

confirmed that in the water phase BPA interacted with the DOM. The aggregation of organic 

matter by means of hydrophobic interactions reduced the fluorescence intensity due to the de­

energizing of the excited molecules, occurring through a charge transfer mechanism to the 

19 



             

             

        

neighbour organic molecules (Hernandez-Ruiz et al., 2012; Mousset et al., 2013; Wang et al., 

2015). 

The red shift of fluorescence shown in Figure 7c was linked to the formation of excimers 

(temporary dimers), having lower energy compared to the excited monomer, which became 

favored when the fluorophores were close to each other (Kumacheva et al., 1997). The 

interaction observed by the discussed fluorescence quenching was confirmed by the complete 

disappearance of the BPA signals when increasing the DOM concentration into the 1H NMR 

spectra (Figure 7d). As previously discussed, the aggregation of substances into hydrophobic 

cores or micelles created a different chemical surrounding for the resonating protons. This 

reflects into different relaxation times which finally implies a severe loss of resolution of the 

spectra. The only explanation for the observed disappearance of BPA signals is that they were 

sequestrated from the water phase and aggregated within the inner of the DOM hydrophobic 

core. 

Such interaction is enforced by the establishment of T shape π stacking interactions 

between the aromatic planes of phenol-like and hydroxybenzoic acid-like DOM moieties (Zhu 

et al., 2012). In the actual case it is easy to hypothesize the same kind of interaction with ferulic 

acid like residues. It follows the gradual loss of signal when increasing the DOM/BPA 

concentration ratio into the solution which is related to the different relaxation time of BPA 

signals once complexed to DOM (Lam and Simpson, 2008). Moreover, the establishment of π-

stacking interaction contributes to change the relaxation time (Parenti et al., 2017), and 

chemical shifts also broaden due to anisotropic shielding (Platts and Gkionis, 2009). Such 

phenomenon was observed at a very high rate compared to the absorption kinetics, since all the 

spectra were acquired just few minutes after the composition of the solutions. The spectra 

acquired with a DOM concentration of 115 mg COD∙L-1 were identical in presence or absence 

20 



of BPA, (Figure 7d, purple and yellow lines) as if the contaminant had never been added to the 

solution. 

3.5 CNC-BPA adsorption mechanism hypothesis 

Considering the interaction between the organic matter released from the CNC and BPA, 

the adsorption mechanism for the removal of BPA by the CNC could be further elucidated. The 

released organic matter interacting with the BPA competed with cork active sites, slowing the 

adsorption rate. As the release of organic matter increased with the time (Figure 2b), BPA 

uptake was not influenced by the release phenomenon during the first stage but only during the 

second one, when the release became significant. 

During the first stage of the process, BPA was rapidly adsorbed onto the CNC surface by 

chemical forces. When the concentration of dissolved organic matter became significant, the 

DOM sequestrated the BPA present in the solution, establishing fast (within minutes) 

hydrophobic interaction between BPA and DOM. The adsorption process then resulted in being 

controlled kinetically by the release of organic matter. In this case the BPA decrease in water 

was related to the adsorption/desorption slow equilibrium existing between the solid phase and 

the DOM. Here we hypothesise that the BPA+DOM complex adsorption might be related to 

the concentration of DOM, and this is in good agreement with the second order kinetics. This 

would also explain either the intra particle diffusion or the steric hindrance encountered, since 

the BPA+DOM complexes could have dimensions comparable to the cork pores ones. 

Nevertheless, further investigation is needed for a deeper understanding of the mechanism. 

4. Conclusions and future perspectives 

Batch adsorption experiments for the removal of BPA from aqueous solutions were 

carried out using cleaned natural cork. The adsorption process resulted to be slow and a pseudo­
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equilibrium was reached within 24 h. Adsorption was characterized by a Type 1 isotherm, and 

the data were well fitted by a pseudo second-order kinetic equation. An intra-particle diffusion 

model also fitted the dataset and the number of anchorages per site was determined to be 0.90, 

confirming the monolayer adsorption. At the same time the steric hindrance, directly related to 

the receptor site density, was positive and > 10. During the adsorption experiments the release 

of DOM into the water phase was observed. A potential interaction between the BPA and the 

DOM was therefore investigated and confirmed. A very fast and stable interaction was 

demonstrated between BPA and the DOM released from cork into the water phase. A physical-

chemical characterization of the DOM was performed achieving its composition in terms of 

carbohydrates and highlighting the presence of aromatic and aliphatic compounds. 

The kinetics of the process was slowed by the release of the DOM into the water phase. 

The DOM resulted to compete with the active sites of the CNC, determining a slowdown of the 

adsorption kinetic. Therefore, it is suggested to develop tests, including pilot scale using natural 

wastewater to gain further insight on this. 

Further investigation is needed for a deeper understanding of the adsorption mechanism 

in these conditions. The interaction between DOM and BPA occurred when the concentration 

of DOM was comparable to the concentration of BPA. Reasonably, extrapolating the present 

work to a real environmental BPA concentration, the interaction with DOM would play a 

primary role in determining the overall process kinetic and yield. The evaluation of the 

desorption mechanisms of BPA from cork still needs to be investigated. The possibility of 

recycling/reusing the spent CNC adsorbent must be seriously considered in future studies to 

safeguard the sustainability of the process. 
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