
International Journal of Heat and Mass Transfer 116 (2018) 715–724
Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt
Numerical predictions of laminar and turbulent forced convection:
Lattice Boltzmann simulations using parallel libraries
https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.072
0017-9310/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Department of Thermo-fluid, Faculty of Mechanical
Engineering, Universiti Teknologi Malaysia, Johor, Malaysia.

E-mail address: azwadi@mail.fkm.utm.my (N.A.C. Sidik).
Mehaboob Basha a, Nor Azwadi Che Sidik a,b,⇑
aDepartment of Thermo-fluid, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
bMalaysia – Japan International Institute of Technology (MJIIT), University Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

a r t i c l e i n f o a b s t r a c t
Article history:
Received 6 March 2017
Received in revised form 15 September
2017
Accepted 18 September 2017
Available online 22 September 2017

Keywords:
Parallel lattice Boltzmann method
Domain-decomposition
Matlabpool
MPI
OpenMP
OpenMPI
This paper presents the performance comparison of various parallel lattice Boltzmann codes for simula-
tion of incompressible laminar convection in 2D and 3D channels. Five different parallel libraries namely;
matlabpool, pMatlab, GPU-Matlab, OpenMP and OpenMP+OpenMPI were used to parallelize the serial
lattice Boltzmann method code. Domain decomposition method was adopted for parallelism for 2D
and 3D uniform lattice grids. Bhatnagar-Gross-Krook approximation with lattice types D2Q9, D2Q19
and D2Q5, D2Q6 were considered to solve 2D and 3D fluid flow and heat transfer respectively. Parallel
computations were conducted on a workstation and an IBM HPC cluster with 32 nodes. Laminar forced
convection in a 2D and turbulent forced convection in a 3D channels was considered as a test case. The
performance of parallel LBM codes was compared with serial LBM code. Results show that for a given
problem, parallel simulations using matlabpool and pMatlab library perform almost equal. Parallel sim-
ulations using C language with OpenMP libraries were 10 times faster than simulations involving Matlab
parallel libraries. Parallel simulations with OpenMP+OpenMPI were 0.35 times faster than the reported
parallel lattice Boltzmann method code in the literature.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

From past two decades, lattice Boltzmann method in conjunc-
tion with single relaxation collision operator [1–5] is widely used
to simulate dynamics of mesoscopic fluid flow and heat transfer
system through fictitious particles collision and redistribution on
a lattice grid with pre-defined lattice velocities. Under a low Mach
number assumption, Chapman-Enskog analysis [6] of LB equation
associates moments of equilibrium particles to physical (macro-
scopic) fluid flow variables, such as density, velocity, temperature,
etc., in Navier-Stokes equations. Easy handling of complex bound-
ary, simplicity, accuracy [7–9], etc., has led to application of LBM
for solving wide variety of fluid flow and heat transfer problems
[10–14].

However, the main disadvantage of LBM is that it is computa-
tionally intensive. For instance, LBM simulation of two and three-
dimensional fluid flow problems requires 9 and 19 lattice velocities
(D2Q9 and D3Q19) at every grid point, respectively. Moreover, for
stable and accurate LBM simulation, lattice nodes should be scaled
with Reynolds number and domain size, such that Mach number
(in lattice units) is less than 0.3. Hence, for simulation of high Rey-
nolds number fluid flow or fluid flow in large domain or both,
results in large lattice grid size (large data arrays). A serial LBM
code could take months or weeks, if not days to get converged
solution for large data arrays. Since, the moments of particles dis-
tributions functions are local in nature for calculation of fluid flow
variables, such as density, velocity, temperature, etc., paralleliza-
tion of LBM is relatively easy [7].

To improve the performance of the LBM code and to reduce the
simulation time, several techniques are proposed and imple-
mented in the literature. One of the techniques is data parallelism
[15], where large data arrays of the problem are decomposed into
several small subsets that are computed in parallel on multi-core
processor of a computer. Another technique is a grid refinement
[16], where fine grid is adopted in the critical regions, such as near
wall, high gradient regions, etc. and coarse grid is adopted in non-
critical regions of the flow domain. Use of local grid refinement or
non-uniform grid not only reduces memory size but also reduces
computational time. However, numerical error is inevitable during
interpolation of particle distribution functions in grid refinement
techniques [16].

Following is the literature review on parallel simulations using
LBM. Satofuka and Nishioka [15] used parallel technique to solve
3D incompressible turbulent flow using LBM. Derksen and Van

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2017.09.072&domain=pdf
https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.072
mailto:azwadi@mail.fkm.utm.my
https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.072
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt

Nomenclature

BC boundary condition
BGK Batnaghar, Gross, Krook
c lattice velocities
CPU central processing unit
Cs speed of sound
Cp specific heat
Dh hydraulic diameter
2D two dimensional
3D three dimensional
fi, gi particle distribution function
GPU graphics processing unit
HPC high performance computing
L length of the channel
LBM lattice Boltzmann method
Ma mach number
MPI message passing interface
NS Naiver-Stokes
Np number of process
p pressure
P process
x, y, z co-ordinates
u, v, w velocities in x, y, z direction, respectively
wi lattice weights

Subscript
d dimensionless

i ith direction
id ID of processor
eq equilibrium
neq non-equilibrium
o reference condition
p process
tb turbulence

List of symbols
dx lattice size, m
dt lattice time, s
qo mean/reference density, kg/m3

x inverse of relaxation time, 1/s
l dynamic viscosity, kg m/s2

lt turbulent dynamic viscosity, kg m/s2

t kinematic viscosity, m/s2

tt turbulent kinematic viscosity, m/s2

s relaxation time, s
s� total relaxation time, s
st turbulent relaxation time, s
S strain rate tensor
P stress tensor
Pneq non-equilibrium stress tensor

716 M. Basha, N.A.C. Sidik / International Journal of Heat and Mass Transfer 116 (2018) 715–724
den Akker [17] performed SGS Large eddy simulations of turbulent
fluid flow in a baffled stirred tank driven by a Rushton turbine by
applying LBM. Equivalent body force was applied for representing
the action of the impeller on the fluid. The parallel simulations
were conducted on a shared-memory architecture computer.
Cherba et al. [18] presented performance analysis of a parallel 2D
LBM on various configurations of cluster computers. Results indi-
cated that increase in data precision does not affect execution time
significantly on Pentium class processors. Study also showed that
improved communication and calculation strategies can yield bet-
ter speedup and scalability. A massively parallel code for particle
suspension problems using the LBM was presented by Stratfrord
et al. [19]. This paper compares performance of the code in terms
of the computational overhead required for the particle laden flow
problem with the fluid-only problem, and for the scaling of the
code to large processor numbers. Various parallel techniques to
increase the single-CPU performance, and the impact on the paral-
lelization techniques on performance were presented by Carolin
et al. [20]. The parallel techniques were applied to solve fluid flow
involving free surfaces and also the paper discusses about the
required extensions to handle complex flow scenario. Data block-
ing parallel implementation of 2D and 3D Lattice Boltzmann
Method was presented by Claudio et al. [21]. Their results showed
that blocked parallel implementation can enhance performance up
to 31% than non-blocked versions of the LBM code. Dustin et al.
[22] performed DNS simulation of turbulent 3D periodic channel
using LBM with multiple relaxation time in collision process.
The parallel computations were conducted on 256 processors
shared memory machine using OpenMP. Computational time per
iteration was found to be less than 0.5 s for a grid size of
(91 � 181 � 1080 � 19 lattice velocities = 337984920 data-size).
Florian et al. [23] presented algorithms for non-uniform grid,
large-scale, massively parallel LB-based simulations on distributed
data structures for waLBerla software. Their algorithm on an IBM
Blue Gene/Q system, gave perfect scalability with absolute
performance of close to a trillion node updates per second, while
on an Intel-based system, an absolute performance of 8.5 million
node updates per second was obtained.

Computer languages such as C, C++ and FORTRAN are used
worldwide for coding serial and parallel LBM codes [17–22].
Recently, GPU computing with CUDA has received lot of attention
from researchers for parallel LBM simulations [24]. However, cod-
ing and debugging in the above mentioned languages is quite
tedious and time consuming task, especially, when dealing with
CUDA codes. From couples of years MATLAB is being used for tech-
nical computing due to availability of several ready-to-use built-in
libraries [25]. It can also be used for rapid prototyping of pilot codes
and then translate to C or FORTRAN code. Moreover, parallel
libraries such as Parallel toolbox inMATLAB and pMatlab by Lincoln
laboratories, MIT [26], can be used to build Parallel LBM code easily.

Therefore, the objectives of this study are to build parallel LBM
codes using Matlab parallel library and subsequently rewrite the
parallel Matlab code in C language with OpenMP and OpenMPI
libraries, and also to compare the performance of the parallel codes
with performance of serial code. As a test case, incompressible con-
vection in 2D and 3D channels is considered, in conjunction with
stable fluid flow [27] and thermal boundary conditions [10].

2. Methodology

2.2. Numerical method

Incompressible LBGK model proposed by He and Lou [7] is
adopted here. In LBM, space is discretized into uniform lattice size

of dx and velocity is discretized into finite number of velocities c
!

i to

form particle distribution functions fiðr
!
; tÞ. The LBGK evolution

equation is as follows.

fið r
!þdx c

!
i; tþ dtÞ � f ið r

!
; tÞ ¼ �Xi; Xi ¼ �xðf i � feqi Þ þ FTi ð1Þ

Fig. 1. Serial LBM simulation on a single computer node.

M. Basha, N.A.C. Sidik / International Journal of Heat and Mass Transfer 116 (2018) 715–724 717
In Eq. (1) Xi is the BGK collision operator which defines particle
interaction on lattice sites. FTi is represents body force. Flow
dynamics evolve through series of collision and streaming of parti-
cle distribution functions. During each time step before collision,
particle distribution functions are regularized following the
method in Ref. [27]. Macroscopic variables of the flow are recov-
ered by the moments of particle distribution functions as
q ¼ P

i¼1 f
eq
i , qo ua ¼ P

iciaf
eq
i þ 1

2 dtFi and Pab¼
P

ieiaeibf i and equi-
librium distribution function is obtained by expansion of
Maxwell-Boltzmann equation to second order and it reads as

f eq ¼ qwi 1þ 1
c2s
ci � uþ 1

2c2s
Q i : uu

� �
. Non-equilibrium stress tensors

are needed during evolution and are calculated as
Pneq

ab ¼ Pab �Peq
ab, D2Q9 lattice vectors and weights wi can be

found in [11]. Relation between moments of particle distribution
functions and macroscopic fluid flow variables can be established
through multi-scale Chapman-Enskog analysis of Eq. (1), in which
zeroth order term of particle distribution function is equal to equi-

librium distribution function ðf ð0Þ ¼ feqÞ and first order term of par-
ticle distribution function through regularization

fneq � f1 ¼ wi
2c2s

QiabP
neq
ab þ wi

2c2s
QiabðFu� uFÞ

h i
is related to momen-

tum flux tensor at low Mach number [11]. Velocity, Mach number,
pressure and Kinematic viscosity of the fluid are related to lattice
variable as in Eq. (2).

u ¼ dt
dx

; M ¼ u
c2s

; P ¼ q c2s and m ¼ c2s
1
x
� 1
2

� �
ð2Þ

For incompressible fluid, viscous heat dissipation and compres-
sion work by pressure are negligible and hence temperature can be
treated as a passive scalar that is advected by the flow field. LB
equation for scalar transport is given by Eq. (3).

giðr
!þdtc

!
i; t þ dtÞ � giðr

!
; tÞ ¼ �xtðgi � geq

i Þ; xt ¼ 1
st

ð3Þ

where i is lattice direction, and xt is inverse relaxation time of
energy density distribution function. The Champan-Enskog expan-
sion establishes link between thermal diffusivity and inverse relax-
ation time of energy density distribution function and is as follows.

ad ¼ c2s
1
xt

� 1
2

� �
ð4Þ

Equilibrium distribution function is obtained by expansion of
Maxwell-Boltzmann equation to first order accuracy and it reads
as in Eq. (5).

geq ¼ qwi 1þ 1
c2s

ci � u
� �

ð5Þ

Temperature is obtained by moments of energy distribution
functions.

T ¼
X
i

f eqi ð6Þ

To solve the temperature field using LBGK equation, lattice type
D2Q5 and D2Q6 models are used for 2D and 3D computational
domain, respectively.

2.3. SGS LES turbulence model

Large eddy simulation computes fluid flow motion by resolving
large eddies that can affect the fluid flow appreciably. Conventional
numerical methods uses filter form of governing NS equations for
LES of turbulent fluid flows. Similarly, LES of turbulent fluid flow
can be simulated applying filtered form of LBM. The filter form of
the LBE for LES is given below [28].
�f iðxþ cidt ; t þ dtÞ ¼ �f iðx; tÞ � 1
s�

ð�f i � �f eqi Þ þ FTi ð7Þ

where �f i and �f eqi are instantaneous particle distribution functions of
resolved fluid flow with large scale eddies. The effect of unresolved
small scales fluid flow eddies is accounted through an eddy viscos-
ity model via relaxation time, st . Thus the total relaxation time for
LES simulation should s� ¼ so þ st , so and st are the relaxation
times corresponding to the molecular to and turbulent viscosity
tt , respectively. Accordingly t� is given by 3.8.

t� ¼ to þ tt ¼ 1
3

s� � 1
2

� �
c2dt ¼ 1

3
so þ st � 1

2

� �
c2dt ; tt :

¼ 1
3
stc2dt ð8Þ

where tt depends on the sub grid model used in the simulation. We
use the Smagorinsky model for subgrid closure. In the Smagorinsky
model, the eddy viscosity is calculated from the filtered strain rate
tensor Sab ¼ 1

2 ð@aub þ @buaÞ with filter size Dx equal to dx

tt ¼ ðCsmDxÞ2�S ð9Þ

�S ¼
�P

2qoC
2
s s�

ð10Þ

�P ¼
ffi
2
X

PabPab

q
ð11Þ

where �S and �P are the characteristic filtered rate of strain and fil-
tered mean momentum flux, respectively, and Csm is the Smagorin-
sky constant. Since s� ¼ so þ st and so ¼ 3to þ 1

2 and st ¼ 3tt in
lattice units. Eq. (9) leads to a quadratic equation for st with Csm

and Dx as in Eq. (12).

st ¼ 1
2

ffi
s2o þ 2

ffiffiffi
2

p
ðCsmdxÞ2ðqoc4s dtÞ�1 �P

q
� so

� �
ð12Þ
2.4. Parallel methods

Fig. 1 shows the algorithm for serial code. The algorithm starts
with allocation of data arrays and then cycles of processes, such as
calculation of flow variables, setting boundary conditions, collision
and streaming. Modern computers have share memory architec-
ture. Data created/stored in shared memory can be accessed by

718 M. Basha, N.A.C. Sidik / International Journal of Heat and Mass Transfer 116 (2018) 715–724
all cores of the computer. In serial code, after submission of the job,
iteration can occur on any core of the computer and user does not
have explicit control over it.

Typically, for stable and accurate LB-BGK simulation, lattice
nodes should scale with Reynolds number and hence large number
of lattice nodes are required for simulation of high Reynolds num-
ber flows. Mach number is function of lattice size dx and lattice
time dt which should be less then 0.3. Actually, LBM simulates
pseudo incompressible or weakly compressible fluid flow. To
reduce the inherent compressibility effect, lattice size dx should
be proportional to square the order of lattice time dt. A multi-
core workstation or single node of HPC cluster can handle a mod-
erate number of lattice nodes (data array size) and also take more
time for simulation. To reduce the time of simulation, it is neces-
sary to use parallel techniques to gain high performance from
available multi-core workstation or multi-node HPC cluster. In
LBM, evolution of field takes place in two consequent steps namely
collision and streaming. Due to this, task parallelization is not pos-
sible. However, most of the LBM simulation are data intensive
(large data array size) and can be parallelized. It is also possible
to combine collision and streaming steps to reduce processing time
there by increasing performance [29]. However, the present study
uses data or domain decomposition method to achieve parallelism
[24].

Schematic of the domain decomposition method is presented in
Fig.2a. For simplicity and demonstration purpose, flow in a 2D
channel is considered. The 2D channel is divided into three blocks
and each block is discretized into 5 � 5 lattices nodes. Fig.2b shows
multi-core parallel simulation algorithm on a single computer
node using Matlab’s Matlabpool library. The parallel algorithm dis-
Fig. 2. Parallel LBM simulation on a single computer node using Matl
tributes a block to each core in the multi-core workstation, and all
cores will work synchronously on respective blocks. This type of
parallelism is called as single-program multiple data (SPMD). As
mentioned earlier, in LBM simulation the flow field evolves
through collision and streaming of particle distribution function
on the lattice nodes. During streaming process each particle distri-
bution function migrates from its node to nearest corresponding
node in the same direction. After every time step, some of the par-
ticle distribution function (red1 colored distribution functions) at
the boundaries are missing and these particle distribution functions
should stream-in from corresponding neighboring blocks. This
exchange of information is handled by message passing interface
(MPI calls). During message passing process, each message carries
required particle distribution function, a address as to where the
message has to be sent, and a tag which acts as identifier. Once
the simulation is converged all data is gathered to regular full sized
data array. Due to domain decomposition and message passing calls,
streaming process requires additional mapping of particle distribu-
tion at the internal boundaries (red colored distribution function in
Fig.2a).

In Matlab, matlabpool is a parallel library that can create a pool
of multiple processes on a local computer node. In the algorithm,
syntax SPMD, create and runs a copy of the code on all processes.
Computational data (PDF’s fi, fineq, etc.,) can be distributed either by
creating a shared public full sized arrays and accessing a portion of
it from each core/process or by creating a own copy of private data
(PDF’s fi, fineq, etc.,) array on every core of the computer node. Obvi-
ously, for a given simulation, full size shared arrays occupy large
memory space and private data arrays occupy small memory
space. Hence, computation using private data arrays are faster
ab. (a) schematic of 2D lattice grid decomposition, (b) Algorithm.

M. Basha, N.A.C. Sidik / International Journal of Heat and Mass Transfer 116 (2018) 715–724 719
[11] due to higher bandwidth. Present study uses private data
arrays for all parallel simulations including Matlabpool, pMatlab,
OpenMP, OpenMPI/Intel-MPI libraries.

A generalized message passing code segment for domain
decomposition method is shown Fig. 3. It can be seen in Fig. 3 that
first and last block has one receive and one send message passing
call. This is because each block has one neighboring boundary that
sends are receives particle distribution function mutually. Rest of
the intermediate blocks have two send and receive message pass-
ing calls each, which is due to the fact that each block has two
boundaries which require particle distribution functions from
neighboring blocks.

Fig. 4 shows multi-core parallel simulation algorithm on a sin-
gle computer node using OpenMP library in C language. OpenMP is
a parallel library (compiler directives) when used, can create a pool
of multiple processes on a local computer node with shared mem-
ory architecture. In the algorithm, syntax # pragma omp parallel,
creates and runs a copy of the code on all processes. Computational
data can be distributed either by creating a shared public full sized
arrays or by creating a own copy of private data array on every core
of the computer node. Private data arrays are used for simulations.
Each core/process will work on its own data arrays synchronously.
Once the iterations are complete, data from private arrays from all
cores/process is gathered to a full size arrays on master thread.
Unlike in SPMD matlab simulations, after every time step or itera-
tion, right after collision, halo data is stored to a shared buffer array
and copied to the adjacent core/process. Number of shared buffer
arrays and its size will depend on lattice type and number of pro-
cesses used in the simulation. For D2Q9 lattice, three particle dis-
tribution functions migrate from either sides of the block. Hence
three buffer arrays are required at each boundary of the block,
% �irst block

if (Pid = 0 & Np>1) % Pid is processor Id

 send_order=Pid+1; % sending mess

 rec_order=Pid+1; % receiving m

 varout=fOutloc(:,out,:); % distributi

 SendMsg(send_order,tag,varout); %

 varin=RecvMsg(rec_order,tag); % m

 fEqloc(:,out,:)=varin; % distribution

% intermediate blocks

elseif (Pid > 0 && Pid <= Np-2)

 send_order=[Pid-1,Pid+1]; rec_

 varout=fOutloc(:,1,:);

 varout1=fOutloc(:,out,:);

 SendMsg(send_order(1),tag,varout)

 SendMsg(send_order(2),tag,varout1

 varin=RecvMsg(rec_order(1),tag);

 varin1=RecvMsg(rec_order(2),tag);

 fEqloc(:,1,:)=varin; fEqloc(:,out,:)

% last block

elseif (Pid == Np-1 && Np >1)

 send_order=Pid-1; rec_order=P

 varout=fOutloc(:,1,:);

 SendMsg(send_order,tag,varout);

 varin=RecvMsg(rec_order,tag);

 fEqloc(:,1,:)=varin;

end

tag = mod(tag+1,32)+1; % tag increment

Fig. 3. Code segment for message passing
i.e., three buffer-in [No. of cores] and buffer-out[No. of cores] arrays
each are required for 2D fluid flow simulations. Like wise, for
D3Q19, i.e., six buffer-in [No. of cores] and buffer-out[No. of cores]
arrays each are required for 3D fluid flow simulations. Fig. 4 shows
two buffer arrays namely, buffer-in and buffer-out in the shared
memory region with each process/core writing to it. The buffer-in
array is for storing particle distribution functions from inlet bound-
ary points of the data block, while buffer-out array is for storing
particle distribution functions from outlet boundary points of the
data block. After streaming, particle distribution functions from
the buffers are copied to respective adjacent block or core. At the
end of simulation, required data such as velocities, temperature,
etc., are written to a file.

Fig. 5 shows multi-core multi-node parallel simulation algo-
rithm for a HPC cluster using OpenMP and Intel-MPI/OpenMPI
library in C language. Intel-MPI/OpenMPI is a parallel library when
used with C language can create a pool of multiple processes on a
local computer node or HPC cluster with distributed memory
architecture. In the algorithm, syntax # pragma omp parallel, cre-
ates and runs a copy of the code for a given number of processes
on local node with shared memory architecture, while syntax
MPI-INIT() creates and runs a copy of the code for a given number
of distributed nodes with distributed memory architecture.
OpenMP library will work on private data arrays of local node dur-
ing simulations, while OpenMPI/Intel-MPI library will just dis-
tribute the work and communicate messages between nodes
during simulations. Again here, each core/process will work on
its own data arrays synchronously. Once the iterations are com-
plete, data from private arrays from local cores/process is gathered
to a full size distributed arrays on OpenMP master thread of
respective local nodes and then these distributed arrays are
 corresponds to block number.

age to which block.

essage from which block.

on functions to send.

 message passing

essage passing

 functions to receive

order=[Pid-1,Pid+1];

;

);

=varin1;

id-1;

between multiple block/multiple core.

Fig. 4. Multi-core parallel LBM simulation on a single computer node using OpenMP.

720 M. Basha, N.A.C. Sidik / International Journal of Heat and Mass Transfer 116 (2018) 715–724
gathered to a global array on OpenMPI Master thread by Message
passing calls. Since it involves combination of shared and dis-
tributed memory computing, copying of particle distribution func-
tion to a buffer arrays and message passing call are required. After
every time step or iteration, within the local node, right after col-
lision, halo data is stored to a shared buffer array and copied to
the adjacent core/process. Whereas adjoining blocks on non-local
nodes exchange halo data information by MPI calls. Since each
node has one or two OpenMPI thread, all OpenMPI threads will
send and receive messages during simulation. At the end of simu-
lation, required data such as velocities, temperature, etc., are writ-
ten to a file from a master node.
3. Results and discussion

Previous section presented parallel technique for improving the
performance of Matlab and C LBM codes. This section presents
evaluation of above mentioned techniques. Fig. 6 show the
schematics of 2D and 3D computational domain used for parallel
simulations. At the outlet zero gauge pressure is assigned by set-
ting mean density to be equal to 1. No-slip velocity condition is
assigned at walls. These macroscopic fluid flow boundary condi-
tions are casted into regularized particle distribution functions fol-
lowing the procedure of Latt et al. [27] and thermal boundary
conditions are casted into particle distribution functions following
Nor Azwadi and Tanahashi [11] method.

Before implementing the parallel technique, serial LBM code is
vectorized to further reduce the simulation time. Code vectoriza-
tion is achieved by simply assigning a individual array to each of
the lattice vectors. In addition, several in-line calculation of the
code is restructured as array functions. Serial LBM code and vector-
ized serial LBM code are used to simulate two identical 2D channel
flow with grid size of 100 � 600. Elapsed time for serial code with
and without vectorization for a given fluid flow problem for 1000
iterations is found to be 220 and 105 s, respectively. This implies
that vector serial code is twice faster than non-vector serial code.

Initially, Matlab is used to develop parallel LBM code. Vector
serial code is parallelized using three libraries namely, parallel
computation toolbox, Matlabpool in MATLAB, parallel library,
pMatlab developed by MIT and GPU library in MATLAB. Parallel
algorithm for the Matlabpool and pMatlab is almost identical,
while parallel algorithm in MATLAB GPU is in-built and user does
not have access to the algorithm. The parallel RLBM algorithms
are used to simulate laminar fluid flow in a 2D channel. Reynolds
number based on hydraulic diameter was kept constant at 100.
Aspect ratio (ratio of length to height) of the channel is 8. The com-
putational domain was decomposed into 6 blocks and simulated
using 6 cores of a computer.

Fig. 7 shows comparison of computational time for various par-
allel LBM codes for simulation of laminar forced convection in a 2D
channel for grid sizes 201 � 1600 and 420 � 3200 for 1000 itera-
tions with serial LBM code. The serial RLBM code takes 267 s for
1000 iterations. Among parallel codes, Matlabpool RLBM code
takes 131 s respectively, i.e., roughly half the time required by
serial RLBM code. While pMatlab and GPU RLBM code take 150
and 220 s respectively. Performance of parallel LBM codes are fur-
ther tested by simulating fluid flow and heat transfer on another
denser 2D grid, 421 � 3200. The Serial RLBM code takes 1500 s
for 1000 iterations. Among parallel codes, Matlabpool RLBM code
takes 870 s respectively, i.e., roughly half the time required by
serial RLBM code. While pMatlab and GPU RLBM code take 880
and 1480 s respectively. This clearly reflects, that in any case Mat-
labpool parallel code takes less processing time for a given problem
and a mesh size.

In parallel LBM (matlabpool and pMatlab) simulations, after
every iteration, message containing particle distribution functions
of the boundaries is passed to neighboring core or block. Message
passing can be achieved in many ways. For instance, MPI-SEND
(Send-data, to-address, tag) will send Send-data to to-address with
a tag, MPI-REVCIEVE(Rec-data, from-address, tag) will receive Rec-
data from from-address with a specified tag. This type of message
passing in some cases will end up in dead-lock situations. Dead-
lock is a situation in message passing where a core or process will
wait to receive a data from other process or cores indefinitely. It
should be noted that when pMatlab is used for parallel simulation
with 7 or more cores, message passing calls end in deadlock situa-
tion. The dead-lock situation can be avoided by using MPI-

Fig. 5. Multi-core multi-node parallel LBM simulation algorithm on a HPC cluster using OpenMP and Intel-MPI/OpenMPI.

M. Basha, N.A.C. Sidik / International Journal of Heat and Mass Transfer 116 (2018) 715–724 721
SENDRECIEVE() message passing calls, which make sure that mes-
sage is sent and received from the same specified address or pro-
cess simultaneously. This type of MPI call is available in Matlab
library but not in pMatlab library. However, later on serial and
parallel Matlab codes are rewritten in C language and compiled
and simulated using GCC compiler for further enhancement in

Inlet

Outlet

L : length
W : Width
H : Height

Plane at which flow field is
presented

X

Y
Z

L

H
WInlet

Outlet

H

L

(a)
(b)

Fig. 6. Schematics of 2D and 3D channel.

Fig. 7. Computational time (for 1000 iterations) for various types of LBM codes.
Grid sizes 201 � 1600 and 420 � 3200.

Fig. 8. Comparison of computational time (for 40000 iterations) for Matlab and C/
GCC codes. Grid size 41 � 120, Re = 15.

Fig. 9. Elapsed time, Speedup and MLUPS for parallel simulation using OpenMP on
single node. (a) Speedup, (b) MLUPS.

722 M. Basha, N.A.C. Sidik / International Journal of Heat and Mass Transfer 116 (2018) 715–724
the performance of the LBM codes. For a given 2D channel fluid
flow problem, comparison of simulation time for Matlab and C
code is presented in Fig. 8. The simulations are conducted on a
desktop computer with dual core, core i5, 4 GB RAM. It can be seen
that there is an appreciable gain (speedup 5X appx.) in perfor-
mance by migrating from Matlab to C coding.

OpenMP compiler directive were used in the C LBM code to
achieve parallelism. To test the performance of the parallel LBM
code, simulations are conducted on a workstation equipped with
8 cores Zeon dual processor with 48 GB RAM and 3.2 GHz speed.
As a test case, turbulent fluid flow and heat transfer is considered
in a periodically fully developed 3D channel with D3Q19 and D3Q6
lattice topologies. Reynolds number based on friction velocity is
180 and constant temperature boundary condition is assumed.
Fig. 9 shows elasped time, Speedup and MLUPS obtained for simu-
lation of turbulent fluid flow and heat transfer by parallel LBM
codes using OpenMP libraries. Time shown in the Figure is the
elasped time per iteration, which is averaged over 1000 iterations.
It can be seen that Speedup and MLUPS increases linearly with
increase in OpenMP threads, up to 8 threads. There after there is
no appreciable increase in performance with increase in parallel
threads. It is worth to mention here that computations were also
conducted for different grid sizes such as 50 � 71 � 71,
25 � 71 � 71, 6 � 71 � 71 and 100 � 71 � 71, but similar behavior
in performance was noticed. Based on this observations, to get lin-
early scaled performance on a HPC cluster, OpenMP threads in each
MPI thread of a node is restricted to 7–10 in all parallel
simulations.

For a typical turbulent fluid flow and heat transfer in a 3D chan-
nel, parallel computations using OpenMP on a workstation will
take a week time for 106 iterations for a moderate lattice grid size.
It is inevitable to run the LBM code on a multinode cluster com-
puter such as HPC for further enhancing the performance of the
parallel code. Fig. 10a shows computational time per iteration for
simulation of turbulent fluid flow and heat transfer by parallel
LBM codes using OpenMP and OpenMPI libraries. To be in line with
the literature [15] and for sake of comparison, Reynolds number is
kept constant at 5328 and computational domain was discretised
into 91 � 181 � 1080 uniform lattice nodes. Simulations are
conducted for 1000 iteration and average time per iteration is

Fig. 10. Performance of parallel simulations on a HPC cluster. Grid size
91 � 181 � 1080, D3Q19 and D3Q6. (a) Computation time, (b) Speedup.

M. Basha, N.A.C. Sidik / International Journal of Heat and Mass Transfer 116 (2018) 715–724 723
calculated. Simulations are conducted on HPC cluster with 32
nodes, 3.2 GHz dual processors, 40 GB RAM on each node. The
HPC cluster nodes are inter-connected with High speed Infi-band
network with LINUX operating system. It takes 2678 s for 1000
iterations using 2 nodes with 4 OpenMPI threads, with block size
of 12 � 91 � 181, 23 OpenMP threads with two process on each
node. Computational time decreases to 1345 s when 4 nodes with
Fig. 11. Averaged velocity contours at mid-pla
8 OpenMPI threads, with block size of 6 � 91 � 181, 23 OpenMP
threads with two process on each node are used. Computational
time further decreases to 450 s when 13 nodes with 26 OpenMPI
threads, with block size of 3 � 91 � 181, 14 OpenMP threads with
two process on each node are used. It can be noticed that the per-
formance increases linearly with increase in computational nodes
up to 7 nodes, and there after performance gain is relatively lower.
It is likely that further increase in computational nodes for parallel
simulation will not help much in increasing the performance
appreciably. It is worth to mention here that the parallel codes
not only simulates fluid flow but also heat transfer in the 3D chan-
nel (91 � 181 � 1080 Grid � 19 + 6 lattice velocities = 444717000
data-size). The computational time per iteration using 13 nodes
is less than 0.5 s which is more or less equal to the computational
time for simulation of turbulent fluid flow only (91 � 181 � 1080
Grid � 19 lattice velocities = 337984920 data-size) reported by
Dustin et al. [15]. In other words, the present turbulent LBM code
is faster than the turbulent LBM code developed in Ref. [15]. More-
over, it is should be noted that the present code is hybrid code, that
uses features of OpenMP and OpenMPI libraries for parallel simu-
lation on shared and distributed memory architecture, while the
code developed in Ref. [15] used features of OpenMP for parallel
simulation on shared memory architecture with 256 processors
on a single computer system. As explained earlier in the algorithm
(Fig. 3), parallel simulations with OpenMP on shared memory com-
puter system do not need message passing between parallel
blocks. In other words, if the present code runs on a single com-
puter with 256 processors on a shared memory architecture, the
computation speed would be further higher. Fig. 10b shows gain
in computational speed with increase in number of nodes on the
HPC cluster. It can be seen that the computationl speed of the code
(OpenMP & OpenMPI threads) scales almost linearly with number
of nodes up to 7 node and thereafter performance degrades.
whereas the computationl speed of the code (OpenMP threads)
scales almost linearly with number of nodes up to 4 threads and
thereafter performance degrades.

Fig. 11 shows averaged velocity field of turbulent fluid flow by
parallel LBM code using OpenMP and OpenMPI libraries. The com-
putation were conducted using 12 nodes with 24 OpenMPI
threads. Seven OpenMP threads on each OpenMPI thread with
ne of a 3D channel. Re = 5328 ðRes ¼ 180Þ.

724 M. Basha, N.A.C. Sidik / International Journal of Heat and Mass Transfer 116 (2018) 715–724
block size of 4 � 71 � 71 is used. The flow field is continuous along
the channel and it represents a typical developing turbulent flow.

4. Summary

Incompressible laminar convection in 2D and 3D channels were
simulated using LBGK method applying five different parallel
libraries namely, Matlabpool, pMatlab, GPU Matlab (Naive),
Openmp and OpenMP+OpenMPI. Lattice types D2Q9 and D2Q19
were considered for solving fluid flow in 2D and 3D channels,
respectively and lattice types D2Q5 and D2Q6 were considered
for solving heat transfer in 2D and 3D channels, respectively.
Domain decomposition method was adopted for parallelizing uni-
form lattice grids. The performance of parallel LBM codes was com-
pared with serial LBM code. Results showed that, for a given LBM
simulation, pMatlab and Parallel toolbox perform almost equally
well for small to moderate data array size, while for bigger data
array size GPU performs well. For a given problem, simulation
using C language with Openmp libraries were found to be faster
than simulation with Matlab libraries. Further improvement in
performance was found using C language and OpenMP+OpenMPI
library on a HPC cluster with 32 nodes. The computational time
for simulation of turbulent fluid flow and heat transfer
(91 � 181 � 1080 Grid � 19 + 6 lattice velocities = 444717000
data-size) per iteration using 13 nodes was found to be less than
0.5 s. The present turbulent LBM code is faster (35 %) than the tur-
bulent LBM code developed in Ref. [15]. Turbulent fluid flow and
heat transfer in 3D channels can be economically (in terms of com-
putational time) simulated using LBM when used with hybrid par-
allel techniques such as OpenMP + Intel-MPI.

Conflict of interest

None.

References

[1] U. Frisch, B. Hasslacher, Y. Pomeau, Lattice-gas automata for the Navier-Stokes
equation, Phys. Rev. Lett. 56 (1986) 1505.

[2] P.L. Bhatnagar, E.P. Gross, M. Krook, A model for collision processes in gases. I.
Small amplitude processes in charged and neutral one-component systems.,
Phys. Rev. 94 (1954) 511.

[3] Y. Huang, Q. Chen, A numerical model for transient simulation of porous
wicked heat pipes by lattice Boltzmann method, Int. J. Heat Mass Transf. 105
(2017) 270–278.

[4] L. Jahanshaloo, N.A.C. Sidik, A. Fazeli, HA MP. An overview of boundary
implementation in lattice Boltzmann method for computational heat and mass
transfer, Int. Commun. Heat Mass Transf. 78 (2016) 1–12.

[5] L. Jahanshaloo, N.C. Sidik, S. Salimi, Numerical simulation of high Reynolds
number flow in lid-driven cavity using multi-relaxation time Lattice
Boltzmann Method, J. Adv. Res. Fluid Mech. Therm. Sci. 24 (2016) 12–21.
[6] S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases: An
Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion
in Gases, Cambridge University Press, 1970.

[7] X. He, L.-S. Luo, Theory of the lattice Boltzmann method: from the Boltzmann
equation to the lattice Boltzmann equation, Phys. Rev. E 56 (1997) 6811.

[8] N. Latifiyan, M. Farhadzadeh, P. Hanafizadeh, M.H. Rahimian, Numerical study
of droplet evaporation in contact with hot porous surface using lattice
Boltzmann method, Int. Commun. Heat Mass Transf. 71 (2016) 56–74.

[9] M. Basha, C.N. Azwadi, Numerical study on the effect of inclination angles on
natural convection in entrance region using regularised lattice Boltzmann BGK,
J. Adv. Res. Fluid Mech. Therm. Sci. 10 (2015) 11–26.

[10] Z. Guo, B. Shi, C. Zheng, A coupled lattice BGK model for the Boussinesq
equations, Int. J. Numer. Meth. Fluids 39 (2002) 325–342.

[11] C. Nor Azwadi, T. Tanahashi, Three-dimensional thermal lattice Boltzmann
simulation of natural convection in a cubic cavity, Int. J. Mod. Phys. B 21 (2007)
87–96.

[12] M. Basha, C.S. Nor Azwadi, Regularized lattice Boltzmann simulation of
laminar mixed convection in the entrance region of 2-D channels, Numer. Heat
Transf. Part A: Appl. 63 (2013) 867–878.

[13] H. Amirshaghaghi, M. Rahimian, H. Safari, Application of a two phase lattice
Boltzmann model in simulation of free surface jet impingement heat transfer,
Int. Commun. Heat Mass Transf. 75 (2016) 282–294.

[14] N.A.C. Sidik, S.A. Razali, Various speed ratios of two-sided lid-driven cavity
flow using lattice Boltzmann method, J. Adv. Res. Fluid Mech. Therm. Sci. 1
(2014) 11–18.

[15] N. Satofuka, T. Nishioka, Parallelization of lattice Boltzmann method for
incompressible flow computations, Comput. Mech. 23 (1999) 164–171.

[16] O. Filippova, D. Hänel, Grid refinement for lattice-BGK models, J. Comput. Phys.
147 (1998) 219–228.

[17] J. Derksen, H.E. Van den Akker, Large eddy simulations on the flow driven by a
Rushton turbine, AIChE J. 45 (1999) 209–221.

[18] D.M. Cherba, Performance analysis of a parallel implementation of the lattice
Boltzmann method for computational, Fluid Dyn. (2002).

[19] K. Stratford, I. Pagonabarraga, Parallel simulation of particle suspensions with
the lattice Boltzmann method, Comput. Math. Appl. 55 (2008) 1585–1593.

[20] C. Körner, T. Pohl, U. Rüde, N. Thürey, T. Zeiser, Parallel lattice Boltzmann
methods for CFD applications, in: Numerical Solution of Partial Differential
Equations on Parallel Computers, Springer, 2006, pp. 439–466.

[21] C. Schepke, N. Maillard, P.O. Navaux, Parallel lattice Boltzmann method with
blocked partitioning, Int. J. Parall. Program. 37 (2009) 593–611.

[22] D. Bespalko, A. Pollard, M. Uddin, Direct numerical simulation of fully-
developed turbulent channel flow using the lattice Boltzmann method and
analysis of OpenMP scalability, in: High Performance Computing Systems and
Applications, Springer, 2010, pp. 1–19.

[23] F. Schornbaum, U. Rüde, Massively parallel algorithms for the lattice
boltzmann method on nonuniform grids, SIAM J. Sci. Comput. 38 (2016)
C96–C126.

[24] X. Wang, Y. Shangguan, N. Onodera, H. Kobayashi, T. Aoki, Direct numerical
simulation and large eddy simulation on a turbulent wall-bounded flow using
lattice Boltzmann method and multiple GPUs, Math. Probl. Eng. 2014 (2014).

[25] V. Kumar, L. Hendren, MiX10: Compiling MATLAB to X10 for high
performance. ACM SIGPLAN Notices, ACM, 2014, pp. 617–636.

[26] J. Kepner, Parallel MATLAB for Multicore and Multinode Computers, SIAM,
2009.

[27] J. Latt, B. Chopard, O. Malaspinas, M. Deville, A. Michler, Straight velocity
boundaries in the lattice Boltzmann method, Phys. Rev. E 77 (2008) 056703.

[28] H. Yu, S.S. Girimaji, L.-S. Luo, DNS and LES of decaying isotropic turbulence
with and without frame rotation using lattice Boltzmann method, J. Comput.
Phys. 209 (2005) 599–616.

[29] M. Wittmann, T. Zeiser, G. Hager, G. Wellein, Comparison of different
propagation steps for lattice Boltzmann methods, Comput. Math. Appl. 65
(2013) 924–935.

http://refhub.elsevier.com/S0017-9310(17)30919-5/h0005
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0005
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0010
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0010
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0010
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0015
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0015
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0015
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0020
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0020
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0020
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0025
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0025
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0025
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0030
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0030
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0030
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0030
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0035
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0035
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0040
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0040
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0040
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0045
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0045
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0045
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0050
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0050
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0055
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0055
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0055
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0060
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0060
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0060
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0065
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0065
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0065
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0070
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0070
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0070
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0075
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0075
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0080
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0080
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0085
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0085
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0090
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0090
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0095
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0095
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0105
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0105
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0115
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0115
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0115
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0120
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0120
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0120
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0135
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0135
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0140
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0140
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0140
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0145
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0145
http://refhub.elsevier.com/S0017-9310(17)30919-5/h0145

	Numerical predictions of laminar and turbulent forced convection: Lattice Boltzmann simulations using parallel libraries
	1 Introduction
	2 Methodology
	2.2 Numerical method
	2.3 SGS LES turbulence model
	2.4 Parallel methods

	3 Results and discussion
	4 Summary
	ack9
	Conflict of interest
	References

