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 ABSTRACT 

Distributed generation (DG) has become more important in recent years for 

supplementing traditional fossil energy resources for power generation. The DGs 

include microturbine (MT), fuel cell, photovoltaic (PV) arrays, wind turbine and 

storage devices. The DG units can operate in parallel to the main grid or in a microgrid 

(MG) mode. The MG is a discrete energy system consisting of DG and loads that are 

capable of operating in parallel with, or independently from the main grid. 

Meanwhile, Grid-Connected Inverters (GCIs) are typically used as the interfaces to 

connect each DG to the common bus in an MG mode. In the ongoing effort to improve 

the performance of MG, control strategy of three-phase GCI under nonlinear load 

conditions has become a mature and well-developed research topic, and some control 

strategies have been implemented in several countries. A new approach is proposed 

to control the GCI of DG in an MG under nonlinear and unbalanced load conditions. 

The proposed control strategy features the synchronous reference frame method. The 

primary advantage of this method is its ability to effectively compensate for the 

harmonic current content of the system currents and MG without using any 

compensation devices, such as an Active Power Filter (APF) or passive filter. In this 

system, the control strategy is designed to eliminate the main harmonics as well as to 

cancel the remaining harmonics. Furthermore, correction of the system unbalance is 

another key feature of the proposed strategy. Fast dynamic response, simple design, 

stability, and fast transient response are other key features of the presented strategy. 

The current total harmonic distortions were reduced from above 37.8% to less than 

1% with the proposed control strategy under nonlinear load conditions. The proposed 

control method can be used on the GCI of MT and PV; and has the ability to reduce 

the complexity, size and cost of the control method in comparison with APFs. 
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 ABSTRAK 

 Penjanaan Teragih (DG) semakin penting sejak beberapa tahun kebelakangan 

ini sebagai sokongan kepada sumber tenaga fosil tradisional untuk penjanaan kuasa. 

Jenis-jenis DG ini meliputi Mikroturbin (MT), sel bahan api, tatasusunan fotovolta 

(PV) dan turbin angin, serta peranti storan. Setiap unit DG mampu beroperasi selari 

dengan grid utama atau dalam mod Mikrogrid (MG). MG merupakan sistem tenaga 

diskrit yang terdiri daripada beberapa DG dan beban yang mampu beroperasi secara 

selari dengan, atau secara berasingan dari grid utama. Sementara itu, Penyongsang 

Tersambung Grid (GCIs) sering digunakan sebagai antara muka untuk menyambung 

setiap DG kepada bas sepunya dalam mod MG. Dalam usaha yang berterusan untuk 

menambah baik prestasi MG, strategi kawalan GCI tiga fasa dalam keadaan beban tak 

linear kini merupakan topik kajian yang matang dan maju, malah beberapa strategi 

kawalan kini dilaksanakan di beberapa buah negara. Suatu pendekatan baru 

dicadangkan untuk mengawal GCI suatu DG di dalam MG dalam keadaan beban tak 

linear dan tak seimbang. Kaedah kawalan yang dicadangkan ini mempamerkan 

kaedah rangka rujukan segerak. Kelebihan utama kaedah ini adalah ia mampu 

memampas kandungan arus harmonik dalam arus sistem dan MG dengan berkesan 

tanpa menggunakan sebarang peranti pemampas, seperti Penapis Kuasa Aktif (APF) 

dan penapis kuasa pasif. Dalam sistem ini, kaedah kawalan ini direkabentuk untuk 

menyisihkan arus harmonik utama serta membatalkan arus harmonik yang masih 

berbaki. Tambahan pula, keupayaan untuk membetulkan ketidakseimbangan sistem 

merupakan satu lagi ciri penting dalam strategi yang dicadangkan. Tindakbalas 

dinamik yang pantas, reka bentuk yang mudah,  kestabilan, dan tindakbalas fana yang 

pantas merupakan ciri-ciri utama lain bagi strategi yang dicadangkan. Bacaan Jumlah 

Herotan Harmonic arus berjaya dikurangkan dari setinggi 37.8% hingga lebih rendah 

1% dengan strategi kawalan yang dicadangkan dalam keadaan beban tak linear. 

Kaedah kawalan yang dicadangkan ini boleh diaplikasikan bersama GCI bagi MT dan 

PV, serta berkebolehan mengurangkan kerumitan, saiz, dan kos sistem kawalan jika 

dibandingkan dengan APF.   
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CHAPTER 1

1 INTRODUCTION

1.1 Overview

Due to climate changes, such as global warming and increased CO2 emissions,

there is an urgent need for power production based on renewable energy sources. One

such concept is to generate electricity closer to the customer, known as distributed

energy generation. Generating energy closer to the load reduces the need for long

distance power lines. Making a reliable connection between renewable energy sources

and the utility grid, however, may be a challenge.

New Renewable Energy Sources (RESs), such as Photovoltaic cell (PV),

Microturbine (MT), Fuel Cell (FC), and Wind Turbine (WT) are often intermittent.

These energy systems can be combined or connected to a local energy storage system

to maintain a continuous power flow between the mains grid and the local network.

Even though RES usage adds complexity to the aforementioned optimality

condition, they offer various technical, economical [1] and environmental [2]

advantages as well. Such benefits might be in the form of reducing line losses,

improving voltage profiles, enhancing power quality, shaving demand peaks,

increasing system reliability, and rising grid security [3].

A Microgrid (MG) is a discrete energy system that consists of distributed

energy sources (e.g., renewables, conventional, storage) and loads, which are capable
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of operating in parallel with, or independently from the main grid. The MG’s primary

purpose is to ensure reliable and affordable energy for commercial, industrial, and

residential consumers. The benefits that extend to utilities and the community at large

may include lower Greenhouse Gas (GHG) emissions, and lower stress on the

transmission and distribution systems.

The RESs are connected to the utility network or an MG by an interface

converter. An MG is a local grid composed of Distributed Generators (DGs), energy

storage systems, and loads that can operate in both grid-connected [4], and islanded

modes [5]. Power quality problems are a specific concern with MGs because distortion

within the harmonic sources represent a high proportion of the total loads or Nonlinear

Loads (NLLs) in small-scale systems [6]. The main limitation associated with MGs

occurs when exchanging the current from the grid to the MG; this exchange is

considered a source of harmonic distortion in a Grid-Connected Inverter (GCI) [7].

Several approaches have been proposed to improve the power quality in MGs.

Installing Passive Filters (PFs) in appropriate locations, preferably closer to the

harmonic generator, can lead to the trapping of the harmonic currents near the source,

which can reduce their distribution throughout other parts of the system [8]. Active

Power Filters (APFs) are flexible solutions for compensating the harmonic distortion

caused by various NLLs in power distribution systems. Hybrid Compensation (HC)

has the advantages of both passive and active power filters for the improvement of

power quality problems [9]. Traditionally, the GCIs used in MGs that are connected

to the main grid behave as current sources [10].

The GCI controller should be able to correct an unbalanced system, and cancel

the main harmonics to meet the waveform quality requirements of the local loads and

MGs [7]. The primary goal of a power-electronic interface inverter is to control the

power injection [11]. However, compensation for power quality problems, such as

current harmonics, can be achieved through appropriate control strategies.

Consequently, the control of DGs must be improved to meet the requirements when

connected to the grid [12].
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Due to these issues, this study was focused on a new inverter control method

for harmonic compensation. The proposed control strategy consist of a Synchronous

Reference Frame (SRF) method, which was proposed to control the power injection

to the grid, to provide harmonic current compensation, and to correct the unbalanced

system. The focus of the present study was to reduce the Total Harmonic Distortion

(THD) in the current flowing between the Point of Common Coupling (PCC) and the

MG.

1.2 Background of the Study

Electricity plays an important role in our modern, industrialized society. With

the increase in size and capacity, power systems have become more complex, thus

leading to reduced Electricity Power Quality (EPQ).

Distributed generation is a new approach in the electricity industry, which

involves power sources that range between 1 kW and 50 MW [13]. Such power source

can be connected to a distribution network or installed close to consumption centers.

Although there is no agreement on the exact definition of distributed generation,

several attempts made in the literature to define this concept [14–16]. Any type of

small-sized power convertor, which is directly connected to the distribution network

or to the consumer’s side of the electric network, is referred to as a DG. In response

to global warming, and the zeal to diverse their energy resources, most countries have

aimed to incorporate a considerable amount of DGs into their power systems [17].

DGs can generate power locally using RESs, which include wind energy [18], solar

energy [19], small hydro power [20], and biomass [21]. There are also other

nonrenewable sources, such as small size gas and micro-turbines [22], and fuel cells

[23]. The renewable or non-conventional electricity generators used in DG systems

are known as Distributed Energy Resources (DERs) [24].

When smaller producers are connected to grids via distributed electricity

generation methods and can produce their own share of electricity, planning for this

increase in Distributed Energy Resources (DERs) is one of the unavoidable future
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problems. Nonetheless, integrating DERs has become a priority in these stand-alone

distribution networks. The diffusion of DERs with the MG concept has evolved into

clusters of loads and paralleled DERs that can operate as a single power system to

provide power to its local area [25].

1.2.1 Structure of Microgrid

The past decade has seen the rapid development of MG in many countries due

to the considerable attention they have been receiving. These low-power distribution

systems offer various advantages, such as enhanced reliability, scalability, and flexible

control of power compared to larger, centralized power systems [26]. The structure of

a typical MG is depicted in Figure 1.1, which may include DERs and controllable

loads. The DERs typically consist of a variety of MTs, WTs, FCs, PVs, and Energy

Storage (ES) units, such as batteries [27].

Figure 1.1 Structure of a typical microgrid

As in the archetypal MG architecture, MT, WT, FC, PV, and ES hybrid

systems also make use of the complementary features of DERs to reduce storage

capacity, and deliver a reliable and consistent service. These features allow the MG to

be operated in the grid-connected mode to exchange power with the main power
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[28,29]. MG can also be operated in the islanded mode [30–33], where power can be

exchanged between the MG and the grid. Therefore, whenever a power disruption or

an external attack occurs within the grid, the MG could still operated autonomously

by being disconnected from the rest of the distribution system at the PCC. In another

mode, the frequency of the MG and the voltage at the PCC are determined by the grid

[34]. In the grid-connected mode, the MG control’s main responsibility is to regulate

the active and reactive powers, which are generated by the DERs. The grid cannot

allow voltage regulation by the DER to avoid any interaction with the same

functionality provided by the grid [35]. Hence, the GCI is the component that connects

the DERs to the MG or to the grid because they are effective interfaces for DERs [36].

1.2.2 Grid- Connected Inverter

The increasing demand for electrical energy is exhausting fossil energy

reserves. In addition, the increase in energy prices have necessitated the use of current

energy resources in a more efficient way. Power  electronic  converters  are  finding

increased  use  as  the essential  equipment  to  convert  and  control  electrical  power

in  the  wide  power  range from milliwatts to gigawatts with the help of power

semiconductor devices. Nowadays, more than 70% of all electricity is  processed

through power electronics [37]. Therefore, highly efficient, sustainable, reliable and

cost-effective power electronics systems are needed to reduce energy waste, to

improve power quality, and to reduce costs in power generation, power

transmission/distribution and end user application. With increasing power densities,

challenges related to the quality of the power electronic systems have been more

significant. The power electronic converters are often used in microgrids to control

the flow of power, and to convert it into suitable DC or AC form [38].

1.2.3 Control Methods of Grid Connected Inverter

Load flow calculations are vital for power flows, voltage profile, and losses

determination. These calculations are also used to assess voltage regulation issues,
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and the basic capacity that is incorporated into the distributed generator

interconnection. These calculations can also support other analyses, such as reliability,

contingency, as well as power quality or transients. By finalizing these calculations,

the model of the power system can be tuned according to its operational limits.

Adjustments may consist of selecting different transformer taps, generator working

set points, reactive power compensators, and spinning reserve.

The addition of significant levels of renewable generators, such as PVs or

WTs, may increase the complexity of these analyses due to the uncertain nature of the

energy sources. For example, the time and location dependency of wind generators

require extra care when combined with feeder location and load variability. Thus,

further studies are required to determine the operating conditions that the new power

systems will experience. This situation gets even worse when energy storage devices

are employed. In such conditions, the calculations may be done over a longer period.

DG creates several challenges in load flow calculations such as modeling of

the transmission or sub-transmission system, simulating the equipment’s for voltage-

control, embedding single and two-phase lines, single-phase loads, which in the

general view cause unbalanced systems in calculations. Therefore a proper load flow

tool for a system containing distributed renewable generation, beside the conventional

power system components, must contain a vast number of various generation and

energy storage models combined with analysis capabilities.

1.3 Problem Statement

Based on an extensive literature review related to the field of MG, extensive

studies are required to develop better control strategies for GCI, while preserving the

accuracy within distributed generators. These aspects will be discussed in the

following paragraphs in this section.

Control of three-phase grid-connected inverters is now a mature and well-

developed research topic. Nevertheless, applications of microgrids with grid-
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connected inverters, in the presence of nonlinear load and practical DGs are not well-

established. Most had only been studied using simple models, and for a limited

number of DGs.

Hybrid compensation has the advantages of both passive filter and active

power filter for the improvement of power quality problems. Moreover, hybrid filters

have several drawbacks, including higher cost, larger size, higher power switch count,

and complex control algorithms and interface circuits to compensate for unbalanced

and nonlinear loads.

Most of the current references only reported the implementation of DGs for

the injection of active and reactive power into the grid. No strategy has been devised

to deal with the application of these devices to completely remove the harmonics at

the grid.

1.4 Objectives of Research

Aforementioned gaps in researches lead us to choose the following objectives

for this study:

i- To develop a microgrid system based on practical DG model.

ii- To develop a control strategy for the harmonic current compensation

and the correction of the system and MG without the use of any

compensation devices.

iii- To improve current control strategy for a three-phase GCI of

distributed generation sources such as PV and MT.
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1.5 Scope of Research

The motivation for this study is to improve the current control strategy for a

three-phase PV and MT grid-connected inverter under unbalanced and nonlinear load

conditions. The proposed control method would enable the grid-connected inverter to

inject balanced and clean currents to the grid, even when the local loads are

unbalanced and/or nonlinear. It can also compensate for the harmonic currents. The

main scopes of this study are listed as follows:

i- The proposed method can be used for photovoltaic and MT grid-

connected inverter at the MG. Moreover, the distributed generators,

energy storage systems, and nonlinear loads which have been operated

in grid-connected modes, were taken into consideration in this study.

ii- The grid and MG voltage were not considered for the network model,

while the grid current and MG were taken into account. Therefore, the

voltage was assumed to be sinusoidal.

iii- Network regulation and responsibility for RESs integration, operation,

maintenance, and other financial and economic aspects were not

considered in this study.

iv- It was fact that the various types of RESs in this study were not the

same, and they can produce active and reactive power, then they can

be integrated in the MG as a practical model.

v- This study was focused on current control strategy for a separate three-

phase PV and MT grid-connected inverters at the MG. However, the

fuel cell and the wind turbine were connected to the grid by an ordinary

interface converter without the control strategy.

vi- All DG models were extracted from the MATLAB/Simulink power

system toolbox.
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1.6 Organization of Thesis

This thesis is organized into five chapters. The research motivations, brief and

conclusive description of the study background, the problem statement, and the

research objectives are explained in the current chapter, chapter 1.

An elaborative literature review is illustrated in chapter 2 with the focus on

DGs in macrogrid for distributed generations, which would consist of renewable

energy sources. In addition, a review is presented on current control methods for grid-

connected inverters.

Chapter 3 presents the design of the proposed control strategy. This chapter is

categorized into several subsections: modeling and decoupling of a three-phase

Voltage Source Inverter (VSI), control strategy for a three-phase grid-following unit

under unbalanced load conditions, harmonic compensation control strategy for a

three-phase grid-following unit, distributed SRF control scheme, descriptions of test

systems, and the software used for simulations.

Chapter 4, illustrates the performance of the proposed control strategy. It also

includes the simulation results, and discussions on the outcomes of the improved

control strategy for GCI. Furthermore, three case studies were taken into consideration

as: a) Case study I: without any compensation device, b) Case study II: with an APF

and distributed PFs, and c) Case study III: without any compensation devices, such as

APF and PFs, and with only the proposed control method on the PV and microturbine.

The results were compared with benchmark results from previous literatures that can

prove their validity. Finally, last chapter, chapter 5, concludes the addressed issues,

and the results of the proposed solutions. Recommendations for future works are also

presented.
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