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ABSTRACT

Mapping prospective geothermal (GT) resources and monitoring associated surface 
manifestations can be challenging and prohibitively expensive in subtle systems especially 
when using conventional survey methods. Remote sensing offers a synoptic and cost- 
effective capability for identification of GT systems. The objective of this research is to 
refine and develop methods of identifying unconventional GT systems by evaluating the 
applicability of the ASTER, Landsat 8 and Hyperion satellite data for mapping 
hydrothermal alteration indicator minerals as proxy for detecting subtle GT targets in 
unexplored aseismic settings. The study area is Yankari Park in North Eastern Nigeria, 
characterized by the thermal springs; Wikki, Mawulgo, Gwana and Dimmil. Spectral 
Angle Mapper (SAM), Linear spectral Unmixing (LSU) and Mixture Tuned Matched 
Filtering (MTMF) were comparatively evaluated by using image derived spectra and 
corresponding library spectra for mapping pixel abundance of GT indicator minerals in a 
novel and efficient manner. The results indicated that employing image derived spectra 
from field validated and laboratory verified regions of interest as reference, gives more 
accurate results than using library spectra around known alteration zones remotely 
detectable on the imagery. The MTMF provided high performance subpixel target 
detection with an accuracy of 50-100% and 70-100% subpixel abundance for argillic- 
phyllic-silicic and propylitic alteration mineral assemblages respectively, as compared to 
less than 10% for the same endmembers when using library spectra. The MTMF is thus 
best suited for mapping alterations associated with subtle GT systems than the less 
selective LSU. The per-pixel SAM was unsuitable for target detection of alteration 
indicators of interest with poor overall accuracy of 33.81% and 0.24 Kappa coefficient at
0.02 radian angle. Results of mapping thermally anomalous pixels do not conform to 
known locations of the thermal springs signifying the limitations of the current thermal 
sensors in mapping low temperature GT systems even at 60m spatial resolution. However, 
examining the spatial correlation of the anomaly areas with the major geologic structure 
systems from geological map of the study area indicates a close affinity between them and 
with previously reported thermal gradients within heat insulating sedimentary formations. 
This study establishes the integrative applicability of Multispectral and Hyperspectral data 
for mapping subtle GT targets in unexplored regions using in-situ validated alteration 
mineral mapping and thermal anomaly detection. This has significant implication for the 
GT green energy industry as the developed methods and GT prospect map could aid the 
prefeasibility stage narrowing of targets for in-depth geophysical, geochemical, 
geothermometric and related surveys.
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ABSTRAK

Memetakan sumber prospek geoterma (GT) dan pemantauan manifestasi permukaan 
berkaitan adalah sangat mencabar dan mahal terutamanya apabila melibatkan sistem 
geoterma kurang ketara menggunakan kaedah pemetaan konvensional. Penginderaan jauh 
menawarkan keupayaan sinoptik dan kos efektif untuk mengenal pasti sistem GT. Objektif 
kajian ini adalah untuk memperhalusi dan membangunkan kaedah mengenal pasti sistem 
GT yang tidak konvensional dengan menilai pemakaian data satelit ASTER, Landsat 8 
dan Hyperion untuk pemetaan mineral penunjuk hidroterma sebagai proksi untuk 
mengesan sasaran GT yang halus dalam tetapan tidak-seismik yang belum diterokai. 
Kawasan kajian ialah Taman Yankari di Nigeria Timur Utara, yang dicirikan oleh 
beberapa mata air panas Wikki, Mawulgo, Gwana dan Dimmil. Teknik pengelasan data 
digital Spectrum Angle Mapper (SAM), spectrum Linear Unmixing (LSU) dan Mixture 
Tuned Matched Filtering (MTMF) dinilai secara relatif dengan menggunakan spektrum 
yang diperoleh dari imej dan spektrum rujukan yang bersesuaian untuk pemetaan semua 
piksel mineral penunjuk GT. Hasil kajian menunjukkan bahawa menggunakan spektrum 
yang diperoleh dari imej yang telah disahkan oleh analisis spektrum makmal bagi kawasan 
yang diselidiki memberi hasil yang lebih tepat daripada spektrum rujukan di sekitar zon 
perubah. MTMF menyediakan pengesanan sasaran sub-piksel prestasi tinggi dengan 
ketepatan 50-100% dan 70-100% sub-piksel yang berlimpah untuk perhimpunan galian 
alahan argillic-phyllic-silicic dan propylitic masing-masing, berbanding kurang daripada 
10% untuk pengguna akhir yang sama apabila menggunakan spektrum rujukan. Oleh itu, 
MTMF adalah paling sesuai untuk pemetaan perubahan yang berkaitan dengan sistem GT- 
kurang ketara berbanding LSU yang kurang selektif. Sampel per piksel tidak sesuai untuk 
mengesan sasaran penunjuk perubahan dengan ketepatan keseluruhan 33.81% dan 0.24 
pekali Kappa pada 0.02 radian sudut. Keputusan pemetaan piksel anomali termal tidak 
sesuai dengan lokasi yang diketahui dari mata air termal yang menandakan keterbatasan 
sensor termal semasa dalam pemetaan sistem GT suhu rendah walaupun pada resolusi 
spatial 60 m. Walau bagaimanapun, mengkaji korelasi spatial bagi kawasan-kawasan 
anomali dengan sistem struktur geologi utama dari peta geologi di kawasan kajian 
menunjukkan persamaan rapat bagi keduanya dengan kecerunan haba yang dinyatakan 
sebelum ini dalam kajian pembentukan sedutan haba. Kajian ini menunjukkan penerapan 
integratif data multispektral dan hiperspektral untuk pemetaan sesaran GT kurang ketara 
di kawasan yang belum diterokai, boleh di tentu sah melalui sampel lapangan dan 
pengesanan anomali termal. Hasil kajian mempunyai implikasi yang ketara untuk 
sumbangan ke industri tenaga hijau GT kerana kaedah yang dibangunkan dan peta prospek 
GT dapat membantu penelitian terperinci tahap sesaran haba bagi geofizik, geologi, 
geokimia, geotermometri dan kaji selidik yang berkaitan.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Globally, there is a serious energy concern. This is partly as a result of the 

combustion of fossil based carbon fuels causing climate change, global warming and 

environmental pollution (Seinfeld and Pandis, 2012). According to the International 

Energy Agency (IEA), the total world energy comes from 80% fossil fuels, 10% 

biofuels, 5% nuclear and 5% renewable (hydro, wind, solar, geothermal), only 18% of 

the total world energy was in the form of electricity (Obama, 2017). In addition, 

fluctuating oil prices due to security concerns in mostly politically unstable oil 

producing regions and the exhaustibility of greenhouse gas emitting fuels such as oil, 

natural gas, coal etc. has prompted a search for alternative energy sources. 

Consequently, the need for renewable energy systems which are not only reliable but 

also environmentally sustainable has become imperative (Omer, 2008).

While most advanced countries like the United States, United Kingdom are 

drawn into the race for renewable energy and alternatives as a result of climate change 

and the need to move towards a low-carbon society, third world countries are yet to 

even satisfy the minimal of their energy needs (Newell and Bulkeley, 2017). There is 

a serious energy poverty in developing and especially poor countries in Africa (Salazar
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et al., 2017). This further worsens environmental degradation through fuel wood 

extraction, deforestation, consequently reducing carbon sink and increasing global 

warming (Chiesa et al., 2009).

A lot of progress has been made in research and innovation in renewable 

energy systems and technologies including solar, wind, hydropower, and bioenergy 

(Johansson et al., 2004; Noailly and Shestalova, 2017). However, the lack of an 

efficient storage systems, intermittent nature and the dependence of these Energy 

sources on climatic fluctuations and uncertainties have been the bane of most 

renewable energy systems (Denholm et al., 2010).

Geothermal (GT) energy (resource), which is the energy derived from the 

earth’s heat, offers a renewable and a reliable source of energy (Glassley, 2014). 

However, like most renewable energies it is inherently regional and site specific, 

mostly associated with areas of magmatic episodes and crustal plate movements. 

Depending on the amount of heat that can be harnessed, GT resources have been used 

in many areas around the world for power, home heating, industrial/commercial, 

aquaculture, greenhouses, recreational/spa, balneology/medicinal therapy, tourism and 

several others (Lund et al., 2011; Lund and Boyd, 2016). In many countries around 

the world such as Australia, USA, Iceland, and Japan, GT resources like hotsprings 

are a multi-billion dollar industry for spa/recreation, balneology among others, which 

attracts millions of tourists’ worldwide (Clark-Kennedy and Cohen, 2017).

Renewable energies are inherently regional and site specific. While solar and 

wind energy could be harnessed effectively in sunny and windy areas, geothermal 

potential areas have been associated with areas of crustal manifestations and magmatic 

episodes. Identifying new prospective areas of geothermal resources requires 

information on their location, depth, temperature and surface manifestations such as 

hot springs, fumaroles, Geysers and associated minerals (Prakash, 2012).
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Remote sensing offers a great deal of data that can be used for mapping 

prospective geothermal locations using both optical and thermal infrared remote 

sensing which map GT indicator alteration minerals and detect heat and subtle 

temperature anomalies that serve as clues at geothermal locations. While not directly 

involved in the generation of energy, application of this complementary technology is 

in the supply of information and spectral reflectance data which when interpreted and 

analyzed can aid in determining the optimal location of potential targets for geothermal 

resource exploration, exploitation, monitoring and development (Nishar et al., 2016a).

Remotely sensed satellite data such as; the thermal infrared multispectral 

scanner (TIMS), Advanced Space borne Thermal Emission and reflection Radiometer 

(ASTER), MODIS/ASTER or MASTER and Landsat TM, Landsat 7 ETM+ and 

Landsat 8, have thermal infrared (TIR) bands, and have been used in the prefeasibility 

stages of geothermal exploration and monitoring GT systems (Calvin et al., 2015; 

Heasler et al., 2009). The Thermal Infrared (TIR) portion of the electromagnetic 

spectrum (EMS) (10um to 12.5um) offers the possibility of sensing surface 

temperature anomalies and heat fluxes emitted from prospective GT locations which 

serves as targets for exploration and monitoring (Bromley et al., 2011; Coolbaugh et 

al., 2007; Dean et al., 1982; Eneva et al., 2006; Fitts, 2013; Haselwimmer et al., 2013; 

Heasler et al., 2009; Hochstein and Dickinson, 1970; Hodder, 1970; Mia et al., 2014; 

Nishar et al., 2016b; Prakash, 2012; Qin et al., 2011; Tian et al., 2015)

Surface manifestations of GT areas have been successfully detected and 

mapped using hyperspectral data including; spatially enhanced broadband array 

spectrograph-SEBASS, hyperspectral mapper-HYMAP, ProspecTIR, advanced 

visible & infrared imaging spectrometer-AVIRIS and multispectral data such as 

ASTER, Landsat and MASTER for remote sensing of hydrothermally altered mineral 

indicators as proxy for exploration of GT systems (Calvin et al., 2015; Hanson et al., 

2014; Hellman and Ramsey, 2004; Kratt et al., 2006a; Kratt et al., 2010; Kratt et al., 

2006b; Kruse, 2002; Reath and Ramsey, 2013; Van der Meer et al., 2012; Vaughan et 

al., 2003; Vaughan et al., 2005; Waswa, 2017; Adams et al., 2017)
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The techniques involved in GT exploration using remote sensing, despite being 

complementary to in-depth geological surveys, has nevertheless established itself as 

an invaluable step in the prefeasibility stages of GT mapping due to its synoptic 

capability of covering large and inaccessible areas cost effectively and by narrowing 

targets prior to a substantial survey. However, while thermal infrared imagery have 

been used for sensing temperature anomaly related to GT systems, its usefulness in 

exploration has been constrained by the requirement for an extended calibration for 

detecting subtle temperature anomalies (Calvin et al., 2015). Consequently, to date 

surface thermal anomalies have only been detected within proximate areas of known 

surface expressions like geysers, hotsprings and fumaroles (Coolbaugh et al., 2007).

Hydrothermal systems are GT systems characterised with hot water, steam and 

permeable faults which serve as conduits for fluid circulation. Geysers and hotsprings 

are typical examples of hydrothermal systems (Heasler et al., 2009). The nature of 

active hydrothermal processes in many GT systems is similar to the processes that 

generate alteration mineral deposits (Carranza et al., 2008). Thus mineral deposit 

exploration concepts are applicable and have been used for exploration of GT 

resources for example by identifying Hydrothermal Alteration (HA) zones and 

minerals (Bogie and Lawless, 2000).

Detailed mineralogical studies of GT fields have been done by previous studies 

which revealed an array of alteration minerals related to GT settings (Calvin et al., 

2015; Littlefield and Calvin, 2014; Vaughan et al., 2003). The use of portable field 

spectrometers and laboratory spectral libraries have also been employed in studies to 

validate results from remotely sensed data (Kratt et al., 2006b; Calvin and Pace, 

2016a). The class of common alteration minerals associated with GT systems which 

are detectable in remote sensing are limited. Many minerals have diagnostic spectral 

properties and features such as; band center, strength, shape and width which are used 

to identify mineral species with high confidence (Hunt, 1977). Laboratory and remote 

sensing spectral data are usually separated into wavelength ranges on the basis of their 

absorption features and the atmospheric windows through which the earth surface is 

measured (Calvin et al., 2015). In the visible near infrared (VNIR) and short-wave
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infrared (SWIR) wavelengths (0.4 to~2.5 um), moderate and low-temperature surfaces 

are sensed because of the sunlight they reflect (Clark et al., 2003). Absorption features 

occur as a result of electronic orbital configuration of transition metals (generally iron 

or copper) in various crystallographic sites and from the combination and overtones of 

molecular vibrations from species such as hydroxyl, water, carbonate, and sulfate 

(Clark et al., 2003). This region of the electromagnetic spectrum is most sensitive to 

iron oxides, oxy-hydroxides, and ligands resulting from high or low temperature 

alteration (Clark, 1999). The ability to readily discriminate minerals by their unique 

spectral characteristics has generally been used as the basis for the techniques applied 

in economic mineral exploration (Pour and Hashim, 2015b) and in particular, the basis 

for application in geothermal exploration and mapping using associated 

hydrothermally altered minerals as surrogates (Calvin et al., 2015).

This study evaluated the applicability and performance of satellite 

multispectral and hyperspectral remote sensing data for mapping subtle GT systems in 

an uncharted tropical savanna region. Subtle GT systems are characterized by low 

temperature thermal springs, and sometimes may not necessarily have clear 

materialization of GT manifestations but however, indicate signs, imprints and relics 

of past GT activity such as altered rock deposits that can be used to identify and or 

infer on their characteristics. The Yankari Park is an area in northeastern Nigeria 

characterized by several hotsprings and consequently hydrothermally altered rocks. 

These provides a suitable test area for investigation of subtle GT features which are 

challenging to detect using conventional methods. Advanced and innovative digital 

image processing techniques and spectral information extraction algorithms are 

assessed in sieving out relevant data to explore the peculiarities provided by this 

unique environmental setting.
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1.2 Problem Statement

The long term economic progress and development of a country is usually 

hinged on its ability to provide unhindered supply of not only accessible and affordable 

but also environmentally friendly energy sources (Brimmo et al., 2017). Despite 

having a population of over 170 million, Nigeria produces only 4000MW of electricity 

compared to Brazil, which produces 24 times as much for almost similar population 

(Garba, 2017). This challenge emphasized the need to explore alternative renewable 

energy sources. Consequently, the country is seriously hampered in terms of economic 

development and relies mostly on epileptic thermal to hydropower sources. This is 

notwithstanding efforts towards renewable alternatives which have largely remained 

at experimental stages (Adenikinju, 2008; Emodi and Yusuf, 2015). Geothermal 

energy could be an important long term vision for clean sources of energy (Abraham 

et al., 2015). Several GT manifestations have been identified circumstantially and are 

mostly exploited for direct use (Abdullahi et al., 2014). GT resources could provide 

sustainable alternatives if new potential sites can be identified. Surprisingly however, 

there has been limited studies to evaluate GT prospects using remote sensing and 

geospatial techniques in spite of their cost effectiveness and synoptic capabilities. The 

few previous GT assessment studies in the country have been focused on using 

conventional methods which are cumbersome, time consuming and expensive with 

small area coverage and undependable outcomes (Kurowska and Krzysztof, 2010; 

Nwankwo and Ekine, 2009; Nwankwo and Shehu, 2015). Consequently, an evaluation 

study of this nature is imperative, timely and worthwhile.

In general, mapping and identifying prospective GT resources can be 

challenging. This is especially the case in subtle systems not easily identifiable using 

conventional survey techniques. As observed from literature, different methods have 

been employed using remote sensing to identify GT targets, including; mapping 

thermal anomalies, minerals by proxy and structural faults (Coolbaugh et al., 2007; 

Eneva et al., 2006; Haselwimmer et al., 2013; Hellman and Ramsey, 2004; Hochstein 

and Dickinson, 1970; Hodder, 1970; Kratt et al., 2006a; Littlefield and Calvin, 2014; 

Mia et al., 2014; Mongillo, 1994; Calvin et al., 2015; Prakash, 2000; Qin et al., 2011; 

Vaughan et al., 2003; Vaughan et al., 2005; Macharia et al., 2017; Saepuloh et al.,
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2015; Saepuloh A. et al., 2012). These studies are mostly in volcanic and tectonically 

active locations. It is however, not fully understood how these techniques could be 

implemented in aseismic environments with characteristically subtle GT features 

(Littlefield and Calvin, 2014). This signifies the need for more studies in such regions 

and their identification using state of the art techniques of remote sensing and 

spectroscopy. This is imperative, particularly with the promising advances expected in 

the enhanced geothermal systems (EGS) which could make many regions of the world 

exploitable for GT renewable resources (Olasolo et al., 2016) and the recent 

appreciable global increase in areas of GT exploitation and direct use (Lund et al., 

2011; Lund and Boyd, 2016). This study is thus premised on the need to improve and 

refine methods of mapping unconventional GT targets in order to fully realize the 

potentials of GT resources as a competitive renewable alternative with diverse 

exploitive uses.

In the context of Hydrothermal alteration mapping as proxy for identification 

of indicator minerals for characterization of GT systems, there has been in the last few 

years a large increase in performance especially for narrowing targets in the 

prefeasibility stages of exploration (Calvin et al., 2015; Calvin and Pace, 2016; Van 

der meer et al., 2014). This is as a result of the successful application of both 

multispectral and hyperspectral airborne and spaceborne remotely sensed data coupled 

with innovative spectral information extraction algorithms for robust characterization 

of associated surface compositional features in proximate areas of GT systems 

(Hamilton et al., 2016). However, severe remaining limitations still exist in terms of 

the requirement for the use of library spectra as reference for analysis as observed from 

most previous studies (Kratt et al., 2010) (Kennedy-Bowdoin et al., 2004; Kratt et al., 

2006a; Kratt et al., 2010; Kratt et al., 2006b; Kruse, 2013; Littlefield and Calvin, 2014; 

Nash et al., 2004; Reath and Ramsey, 2013; Vaughan et al., 2003; Vaughan et al., 

2005). Hydrothermally altered minerals rarely occur purely to match its corresponding 

library spectra in all situations and in peculiar environmental settings because rock 

alteration vary from one region to another depending on prevailing conditions which 

results in unique hydrothermal alteration (Masoumi et al., 2017). Consequently 

variable mineral mixtures may result which could affect the diagnostic spectral 

reflectance or emittance characteristics of endmembers of interest (Hosseinjani and
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Tangestani, 2011). Thus, Surface components in unique settings may not be adequately 

represented in existing spectral libraries which in most cases contain modeled spectra 

that are acquired and generated under controled conditions different from those of 

satellite image data (Hosseinjani and Tangestani, 2011). Hydrothermal alteration 

mapping of GT systems as proxy requires endmember extraction for both linear and 

non-linear unmixing using image and or modeled spectra, this is however, still an 

ongoing effort and not a fully resolved problem (Boardman and Kruse, 2011). The use 

of verified image spectra in unmapped regions has also not been adequately explored 

which could improve the accuracy of spectral analysis for mapping and narrowing 

potential GT sites. Based on the above identified research issues, limitations and gaps, 

it is arguably imperative and worthwhile to explore new insights and refine methods. 

This research proposed an improved method of mapping subtle GT systems by 

exploring and evaluating the utility of image endmember spectra extracted from 

regions of interest (ROIs) which have been field validated and laboratory verified for 

spectral analysis, as compared to corresponding library spectra.

1.3 Research Objectives

The aim of this study is to evaluate the applicability of satellite multispectral 

and hyperspectral remote sensing data in mapping hydrothermal alteration indicators 

and anomalies as proxy for characterization of subtle GT systems in unexplored 

aseismic settings.

The specific objectives of the study are:

i. To identify hydrothermal alteration zones by applying image 

transformation methods to VNIR+SWIR+TIR bands of Landsat 8 and 

ASTER Multispectral data at regional scale.

ii. To discriminate/map hydrothermal alteration indicator mineral 

assemblages associated with geothermal systems using spectral per-pixel
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and sub-pixel mapping techniques to SWIR & TIR bands of ASTER data 

at district scale.

iii. To examine and identify specific alteration indicator minerals of 

geothermal activity using EO-1 Hyperion hyperspectral data at district 

scale.

iv. To detect and map temperature anomalies associated with thermal springs 

using the Single Channel Algorithm (SCA) for Land Surface Temperature 

retrieval on Landsat 7 ETM+ thermal band.

v. To verify image processing results through; field validations, laboratory 

analysis, accuracy assessments and integrate the results using GIS into a 

geothermal prospect map.

1.4 Scope of the study

1. This study investigated subtle GT systems by mapping associated 

hydrothermal alteration minerals as proxy and detecting thermal anomalies. 

The study is confined to the identification of specific alteration indicator 

mineral assemblages such as; clays, sulfates, carbonates which mostly manifest 

diagnostic spectral features in the shortwave infrared (SWIR) and silicates in 

the thermal infrared (TIR) region of the electromagnetic spectrum. The visible 

(VNIR) portions of the spectrum is however used in some initial stages for 

qualitative mapping to sieve out background spectral information such as 

vegetation and for identification of secondary diagnostic spectral features of 

indicator minerals. Analysis of thermal anomalies is confined to the use of the 

TIR for land surface temperature (LST) retrieval, however, related optical 

bands are also used for Normalized Difference Vegetation Index Analysis.

2. The study employed 14 bands of ASTER Level 1B, 13 bands of Landsat 8, 

Landsat 7 ETM+ thermal band 6 and 162 bands of EO-1 Hyperion satellite 

data. The multispectral data covers the Yankari Park and its environs including 

a whole Landsat 8 and a mosaicked ASTER scene. The hyperspectral Hyperion
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covers the southwestern part of the Yankari Park study area in Northeastern 

Nigeria. Details of acquired data characteristics is given in chapter 3.

3. Relevant softwares were employed for analysis. The ENVI (Environment for 

Visualizing Images) version 5.1 (Classic and Standard) was used for image 

rectification and detailed digital image processing, spectral information 

extraction using the Spectral Hour Glass approach, creation and comparison of 

spectral libraries and production of raster maps. The ArcGIS version 10.2 was 

used for thermal anomaly analysis, creation of shapefile and digitization, 

conversion of raster maps to vector formats, and final data integration and 

visualization.

4. Field survey was comprehensively done to validate remote sensing and image 

processing results. This involved the use of hand held GPS MONTERRA@ to 

identify locations where rock samples were obtained for laboratory analysis 

and identifying hydrothermal alteration and GT related minerals in the 

samples. Samples from hot spring sites such as altered rocks were analyzed 

using X-Ray Diffraction (XRD) and Analytical Spectral Device (ASD) 

spectroradiometer equipment. Photographs were taken of the 

geomorphological features, rocks and hydrothermal alteration at the hot spring 

sites.

1.5 Significance of Study

The study made significant contribution in terms of improving the techniques 

for GT exploration, monitoring and narrowing of targets at the prefeasibility level 

especially in unexplored regions characterized by subtle anomalous features which are 

very difficult to identify using conventional techniques. The use of available but 

improved spectral and spatial resolution satellite data in mapping GT features in 

regions where expensive airborne surveys are not affordable could encourage further 

interest in GT characterization and eventual inclusion of GT resource exploitation for
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either power or for other resource utilization such as; tourism, industrial, commercial, 

greenhouses, agricultural, balneology, medicinal therapy and recreational purposes. 

The Yankari Park serves as an important test ground for evaluating satellite 

multispectral and hyperspectral data to help introduce a geospatial component to 

earlier GT assessment efforts which have largely been conventional, thus showcasing 

and encouraging further investigations in similar environmental settings elsewhere. 

Mapping suitable targets synoptically and cost effectively as applied and demonstrated 

in this study using satellite remote sensing data, geographic information system tools 

and innovative digital image processing techniques could usher in a renewed interest 

and aid decision making in GT resource exploration and exploitation. This is especially 

so in less developed countries in dire need of alternative sources of energy and 

economic development such as Nigeria. Recently, it was established that there are no 

comprehensive data on renewable resources especially GT in Nigeria and the few 

available data are incomplete and outdated (Brimmo et al., 2017). This indeed is a 

challenge that foreshadow any practical investments in the country’s energy sector. 

Hence there is the urgent need for nationwide resource investigations and assessments 

as a policy to effect appropriate enabling factors to attract investments. This study is 

also premised in furtherance of such a call.

In general, this research has significantly contributed to new knowledge by 

improving our understanding as regards the applicability of satellite sensors in 

mapping hydrothermal features and the effectiveness of spectral characterization of 

subtle GT systems using spectral matching and sub-pixel abundance estimation of 

associated surface compositional features by employing in-situ verified image derived 

spectra especially in uncharted regions. The study discovered that surface alteration 

mapping and detection of temperature anomalies in relation to fault structures can 

serve as a significant prefeasibility step for identification of interest areas. 

Consequently, identified and verified zones were subsequently integrated into a 

geothermal prospect map which can aid in depth geochemical, geophysical and 

geothermometric surveys thereby cost-effectively narrowing targets. The study also 

made significant contribution by extracting and updating the Yankari Park Geological 

Map which was unavailable previously. This was carried out using the Bauchi state 

geological map as reference, and field surveys guided by technical staff from the
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Nigerian Geological Survey Agency and from the results of image transformations 

particularly BR, DCS, FPCS, ICA and MTMF analysis. The geological map serves as 

an important tool for identification of thermal anomalies in relation to identified major 

fault structure systems in the Park and can aid future related research particularly as 

regards; geological, lithological, geophysical, geothermometric and geothermal 

investigations.

1.6 Thesis outline

The thesis comprise of five chapters:

• Chapter 1 explains a general background of the study and gives the problem 

statement, research objectives, and scope of the study and finally the significance of 

the study.

• Chapter 2 gives a review of relevant literature in the field of applications of 

remote sensing in geothermal resource exploration, GT systems, hydrothermal systems 

and alteration, concepts and methods, remote sensing and spectroscopy, multispectral 

and hyperspectral sensors, spectral processing methods and models, GT mapping 

using alteration indicator minerals, thermal anomaly detection, spaceborne and 

airborne applications, Characteristic radiation spectra of Hydrothermal alteration 

minerals, previous studies and methods of mapping, inherent limitations of the 

techniques and observations on further research needs and future prospects in the field. 

Finally, Inferences made from the review

• Chapter 3 describes the characteristics of the acquired satellite multispectral 

and hyperspectral data, instruments and methods, spectral information extraction 

methods used for the study, image enhancements, preprocessing and processing 

methods, field validations and laboratory verifications used to achieve the objectives 

of the study.

• Chapter 4 describes the presentation and discussion of the results of image 

processing, spectral mapping, field and laboratory analysis.
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• Chapter 5 gives conclusions based on the results of the analysis and processing 

and recommendations for future work in the field of research.



251

REFERENCES

Abdelsalam, M. G., Stern, R. J. and Berhane, W. G. (2000). Mapping Gossans in Arid 
Regions with Landsat Tm and Sir-C Images: The Beddaho Alteration Zone in 
Northern Eritrea. Journal o f African Earth Sciences, 30(4), 903-916.

Abdullahi, B. U., Rai, J. K., Olaitan, O. and Musa, Y. (2014). A Review of the 
Correlation Betweeen Geology and Geothermal Energy in Northeastern 
Nigeria. Journal o f Applied Geology and Geophysics (IOSR-JAGG), 2(3), 74­
83.

Abraham, E. M., Obande, E. G., Chukwu, M., Chukwu, C. G. and Onwe, M. R. (2015). 
Estimating Depth to the Bottom of Magnetic Sources at Wikki Warm Spring 
Region, Northeastern Nigeria, Using Fractal Distribution of Sources Approach. 
Turkish Journal o f Earth Sciences, 24(5), 494-512.

Abrams, M. and Hook, S. J. (1995). Simulated Aster Data for Geologic Studies. 
Geoscience and Remote Sensing, IEEE Transactions on, 33(3), 692-699.

Abrams, M. J., Brown, D., Lepley, L. and Sadowski, R. (1983). Remote Sensing for 
Porphyry Copper Deposits in Southern Arizona. Economic Geology, 78(4), 
591-604.

Adams, P. M., Lynch, D. K., Buckland, K. N., Johnson, P. D. and Tratt, D. M. (2017). 
Fumarole Sulfate Mineralogy Related to Geothermal Fields at the Salton Sea, 
Imperial County, California. Journal o f Volcanology and Geothermal 
Research.

Adenikinju, A. (2008). West Africa Energy Security Report. University o f Ibadan 
Center for Energy Economics at the University o f Texas at Austin Kumasi 
Institute o f Energy, Technology and Environment.

Ajakaiye, D., Olatinwo, M. and Scheidegger, A. (1988). Another Possible Earthquake 
near Gombe in Nigeria on the 18-19 June 1985. Bulletin o f the Seismological 
Society o f America, 78(2), 1006-1010.

Allis, R., Nash, G. D. and Johnson, S. D. (1999). Conversion of Thermal Infrared 
Surveys to Heat Flow. Geothermal Resources Council, 1999.



252

Anderson, G. P., Felde, G. W., Hoke, M. L., Ratkowski, A. J., Cooley, T. W., 
Chetwynd Jr, J. H., Gardner, J., Adler-Golden, S. M., Matthew, M. W. and 
Berk, A. (2002). Modtran4-Based Atmospheric Correction Algorithm: Flaash 
(Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes). 
AeroSense 2002, 2002. International Society for Optics and Photonics, 65-71.

Aretouyap, Z., Nouck, P. N. and Nouayou, R. (2016). A Discussion of Major 
Geophysical Methods Used for Geothermal Exploration in Africa. Renewable 
and Sustainable Energy Reviews, 58, 775-781.

Asadzadeh, S. and De Souza Filho, C. R. (2016). A Review on Spectral Processing 
Methods for Geological Remote Sensing. International Journal o f Applied 
Earth Observation and Geoinformation, 47, 69-90.

Avbovbo, A. (1978). Geothermal Gradients in the Southern Nigeria Basin. Bulletin o f 
Canadian Petroleum Geology, 26(2), 268-274.

Babalola, O. O. (1984). High-Potential Geothermal Energy Resource Areas of Nigeria 
and Their Geologic and Geophysical Assessment. AAPG Bulletin, 68(4), 450­
450.

Baboo, S. S. and Devi, M. R. (2011). Geometric Correction in Recent High Resolution 
Satellite Imagery: A Case Study in Coimbatore, Tamil Nadu. International 
Journal o f Computer Applications, 14(1), 32-37.

Baldridge, A. M., S.J. Hook, C.I. Grove and G. Rivera, (2009). The Aster Spectral 
Library Version 2.0. Remote Sensing of Environment. 113, 711-715.

Bateson, C. A., Asner, G. P. and Wessman, C. A. (2000). Endmember Bundles: A New 
Approach to Incorporating Endmember Variability into Spectral Mixture 
Analysis. IEEE transactions on geoscience and remote sensing, 38(2), 1083­
1094.

Beck, R. A., Vincent, R. K., Watts, D. W., Seibert, M. A., Pleva, D. P., Cauley, M. A., 
Ramos, C. T., Scott, T. M., Harter, D. W. and Vickerman, M. (2005). A Space- 
Based End-to-End Prototype Geographic Information Network for Lunar and 
Planetary Exploration and Emergency Response (2002 and 2003 Field 
Experiments). Computer Networks, 47(5), 765-783.

Bedini, E. (2011). Mineral Mapping in the Kap Simpson Complex, Central East 
Greenland, Using Hymap and Aster Remote Sensing Data. Advances in Space 
Research, 47(1), 60-73.

Benkhelil, J., Dainelli, P., Ponsard, J., Popoff, M. and Saugy, L. (1988). The Benue 
Trough: Wrench-Fault Related Basin on the Border of the Equatorial Atlantic.
Triassic-Jurassic rifting. Continental breakup and the origin o f the Atlantic



253

Ocean and passive margins. Part A. Edited by W. Manspeizer. Elsevier, 
Amsterdam, 787-819.

Berman, M., Bischof, L. and Huntington, J. (1999). Algorithms and Software for the 
Automated Identification of Minerals Using Field Spectra or Hyperspectral 
Imagery.

Bertani, A. B., R. (2010). Geothermal Energy. In B. Warf (Ed.), . Encyclopedia of 
geography. Thousand Oaks, CA: Sage Publication.

Biggar, S. F., Thome, K. J., Mccorkel, J. T. and D'amico, J. M. (2005). Vicarious 
Calibration of the Aster Swir Sensor Including Crosstalk Correction. Optics & 
Photonics 2005, 2005. International Society for Optics and Photonics, 588217­
588217-8.

Boardman, J. W. (1993). Automating Spectral Unmixing of Aviris Data Using Convex 
Geometry Concepts.

Boardman, J. W. and Kruse, F. A. (1994). Automated Spectral Analysis: A Geological 
Example Using Aviris Data, North Grapevine Mountains, Nevada. 
Proceedings of the Thematic Conference on Geologic Remote Sensing, 1994. 
Environmental Research Institute of Michigan, I-407.

Boardman, J. W. and Kruse, F. A. (2011). Analysis of Imaging Spectrometer Data 
Using $ N $-Dimensional Geometry and a Mixture-Tuned Matched Filtering 
Approach. IEEE Transactions on Geoscience and Remote Sensing, 49(11), 
4138-4152.

Bogie, I. and Lawless, J. (2000). Application of Mineral Deposit Concepts to 
Geothermal Exploration. Proceedings of the World Geothermal Congress, 
2000. International Geothermal Association Beppu-Morioka, Japan, 1003­
1006.

Brimmo, A. T., Sodiq, A., Sofela, S. and Kolo, I. (2017). Sustainable Energy 
Development in Nigeria: Wind, Hydropower, Geothermal and Nuclear (Vol. 
1). Renewable and Sustainable Energy Reviews, 74, 474-490.

Bromley, C. J., Van Manen, S. M. and Mannington, W. (2011). Heat Flux from 
Steaming Ground: Reducing Uncertainties. Proceedings, 36th Workshop on 
Geothermal reservoir engineering, Stanford University, California, USA, SGP- 
TR-191, 2011.

Calvin, W. M., Littlefield, E. F. and Kratt, C. (2015). Remote Sensing of Geothermal- 
Related Minerals for Resource Exploration in Nevada. Geothermics, 53, 517­
526.



254

Calvin, W. M. and Pace, E. L. (2016a). Mapping Alteration in Geothermal Drill Core 
Using a Field Portable Spectroradiometer. Geothermics, 61, 12-23.

Calvin, W. M. and Pace, E. L. (2016b). Utilizing Hyspiri Prototype Data for 
Geological Exploration Applications: A Southern California Case Study. 
Geosciences, 6(1), 11.

Camps-Valls, G. and Bruzzone, L. (2009). Kernel Methods for Remote Sensing Data 
Analysis. John Wiley & Sons.

Carranza, E. and Hale, M. (2002). Mineral Imaging with Landsat Thematic Mapper 
Data for Hydrothermal Alteration Mapping in Heavily Vegetated Terrane. 
International journal o f remote sensing, 23(22), 4827-4852.

Carranza, E. J. M., Wibowo, H., Barritt, S. D. and Sumintadireja, P. (2008). Spatial 
Data Analysis and Integration for Regional-Scale Geothermal Potential 
Mapping, West Java, Indonesia. Geothermics, 37(3), 267-299.

Chan, H.-P., Chang, C.-P. and Dao, P. D. (2018). Geothermal Anomaly Mapping 
Using Landsat Etm+ Data in Ilan Plain, Northeastern Taiwan. Pure and 
Applied Geophysics, 175(1), 303-323.

Chander, G., Markham, B. L. and Helder, D. L. (2009). Summary of Current 
Radiometric Calibration Coefficients for Landsat Mss, Tm, Etm+, and Eo-1 
Ali Sensors. Remote sensing o f environment, 113(5), 893-903.

Chang, C.-I. (2005). Orthogonal Subspace Projection (Osp) Revisited: A 
Comprehensive Study and Analysis. IEEE transactions on geoscience and 
remote sensing, 43(3), 502-518.

Chang, C.-I. and Chiang, S.-S. (2002). Anomaly Detection and Classification for 
Hyperspectral Imagery. IEEE Transactions on Geoscience and Remote 
Sensing, 40(6), 1314-1325.

Chang, C.-I., Liu, J.-M., Chieu, B.-C., Ren, H., Wang, C.-M., Lo, C.-S., Chung, P.-C., 
Yang, C.-W. and Ma, D.-J. (2000). Generalized Constrained Energy 
Minimization Approach to Subpixel Target Detection for Multispectral 
Imagery. Optical Engineering, 39(5), 1275-1281.

Chavez, P., Sides, S. C. and Anderson, J. A. (1991). Comparison of Three Different 
Methods to Merge Multiresolution and Multispectral Data- Landsat Tm and 
Spot Panchromatic. Photogrammetric Engineering and remote sensing, 57(3), 
295-303.

Chiesa, F., Dere, M., Saltarelli, E. and Sandbank, H. (2009). Un-Redd in Tanzania. 
Project on Reducing Emissions from Deforestation and Forest Degradation in



255

Developing Countries. V1. 1 John Hopkins School of Advanced International 
Studies.

Chuvieco, E. (2016). Fundamentals o f Satellite Remote Sensing: An Environmental 
Approach. CRC press.

Clark-Kennedy, J. and Cohen, M. (2017). Indulgence or Therapy? Exploring the 
Characteristics, Motivations and Experiences of Hot Springs Bathers in 
Victoria, Australia. Asia Pacific Journal o f Tourism Research, 22(5), 501-511.

Clark, M. L. (2017). Comparison of Simulated Hyperspectral Hyspiri and 
Multispectral Landsat 8 and Sentinel-2 Imagery for Multi-Seasonal, Regional 
Land-Cover Mapping. Remote Sensing o f Environment, 200, 311-325.

Clark, R. N. (1999). Spectroscopy of Rocks and Minerals, and Principles of 
Spectroscopy. Manual o f remote sensing, 3, 3-58.

Clark, R. N., King, T. V., Klejwa, M., Swayze, G. A. and Vergo, N. (1990). High 
Spectral Resolution Reflectance Spectroscopy of Minerals. Journal o f 
Geophysical Research: Solid Earth, 95(B8), 12653-12680.

Clark, R. N., Swayze, G. A., Livo, K. E., Kokaly, R. F., Sutley, S. J., Dalton, J. B., 
Mcdougal, R. R. and Gent, C. A. (2003). Imaging Spectroscopy: Earth and 
Planetary Remote Sensing with the Usgs Tetracorder and Expert Systems. 
Journal o f Geophysical Research: Planets, 108(E12).

Combe, J.-P., Launeau, P., Carrere, V., Despan, D., Meleder, V., Barille, L. and Sotin, 
C. (2005). Mapping Microphytobenthos Biomass by Non-Linear Inversion of 
Visible-Infrared Hyperspectral Images. Remote Sensing o f Environment, 98(4), 
371-387.

Cone, S. R., Kruse, F. A. and Mcdowell, M. L. (2015). Exploration of Integrated 
Visible to near-, Shortwave-, and Longwave-Infrared (Full Range) 
Hyperspectral Data Analysis. SPIE Defense+ Security, 2015. International 
Society for Optics and Photonics, 94721D-94721D-12.

Congalton, R. G. and Green, K. (2008). Assessing the Accuracy o f Remotely Sensed 
Data: Principles and Practices. CRC press.

Coolbaugh, M., Sladek, C. and Kratt, C. (2004). Digital Mapping of Structurally 
Controlled Geothermal Features with Gps Units and Pocket Computers: 
Proceedings. Annual Meeting, Palm Springs, CA, Aug, 2004. 321-325.

Coolbaugh, M., Taranik, J. and Kruse, F. (2000). Mapping of Surface Geothermal 
Anomalies at Steamboat Springs, Nv. Using Nasa Thermal Infrared 
Multispectral Scanner (Tims) and Advanced Visible and Infrared Imaging



256

Spectrometer (Aviris) Data. Proceedings of 14th Thematic Conference, 
Applied Geologic Remote Sensing, 2000. 623-630.

Coolbaugh, M. F., Kratt, C., Fallacaro, A., Calvin, W. M. and Taranik, J. V. (2007). 
Detection of Geothermal Anomalies Using Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (Aster) Thermal Infrared Images at 
Bradys Hot Springs, Nevada, USA. Remote Sensing o f Environment, 106(3), 
350-359.

Cracknell, M. J. and Reading, A. M. (2014). Geological Mapping Using Remote 
Sensing Data: A Comparison of Five Machine Learning Algorithms, Their 
Response to Variations in the Spatial Distribution of Training Data and the Use 
of Explicit Spatial Information. Computers & Geosciences, 63, 22-33.

Crosta, A., De Souza Filho, C., Azevedo, F. and Brodie, C. (2003). Targeting Key 
Alteration Minerals in Epithermal Deposits in Patagonia, Argentina, Using 
Aster Imagery and Principal Component Analysis. International journal o f 
Remote sensing, 24(21), 4233-4240.

Crosta, A. P. and Moore, J. M. (1989). Geological Mapping Using Landsat Thematic 
Mapper Imagery in Almeria Province, South-East Spain. International Journal 
o f Remote Sensing, 10(3), 505-514.

Crowley, J. K., Brickey, D. W. and Rowan, L. C. (1989). Airborne Imaging 
Spectrometer Data of the Ruby Mountains, Montana: Mineral Discrimination 
Using Relative Absorption Band-Depth Images. Remote Sensing of 
Environment, 29(2), 121-134.

Cudahy, T., Jones, M., Thomas, M., Laukamp, C., Caccetta, M., Hewson, R., Rodger, 
A. and Verrall, M. (2008). Next Generation Mineral Mapping: Queensland 
Airborne Hymap and Satellite Aster Surveys 2006-2008. Commonwealth 
Scientific and Industrial Research Organization Report.

Datt, B., Mcvicar, T. R., Van Niel, T. G., Jupp, D. L. and Pearlman, J. S. (2003). 
Preprocessing Eo-1 Hyperion Hyperspectral Data to Support the Application 
of Agricultural Indexes. IEEE Transactions on Geoscience and Remote 
Sensing, 41(6), 1246-1259.

De Carvalho, O. A. and Meneses, P. R. (2000). Spectral Correlation Mapper (Scm): 
An Improvement on the Spectral Angle Mapper (Sam). Summaries of the 9th 
JPL Airborne Earth Science Workshop, JPL Publication 00-18, 2000. JPL 
Publication Pasadena, CA.

Dean, K. G., Forbes, R. B., Turner, D. L., Eaton, F. D. and Sullivan, K. D. (1982). 
Radar and Infrared Remote Sensing of Geothermal Features at Pilgrim Springs, 
Alaska. Remote Sensing o f Environment, 12(5), 391-405.



257

Deb, M. and Sarkar, S. C. (2017). How Do Mineral Deposits Form and Transform? A 
Systematic Approach. Minerals and Allied Natural Resources and Their 
Sustainable Development. (pp. 29-139). Springer.

Debba, P., Carranza, E. J., Van Der Meer, F. D. and Stein, A. (2006). Abundance 
Estimation of Spectrally Similar Minerals by Using Derivative Spectra in 
Simulated Annealing. IEEE transactions on geoscience and remote sensing, 
44(12), 3649-3658.

Denholm, P., Ela, E., Kirby, B. and Milligan, M. (2010). The Role of Energy Storage 
with Renewable Electricity Generation.

Di Tommaso, I. and Rubinstein, N. (2007). Hydrothermal Alteration Mapping Using 
Aster Data in the Infiernillo Porphyry Deposit, Argentina. Ore Geology 
Reviews, 32(1), 275-290.

Dobigeon, N., Tourneret, J.-Y. and Chang, C.-I. (2008). Semi-Supervised Linear 
Spectral Unmixing Using a Hierarchical Bayesian Model for Hyperspectral 
Imagery. IEEE Transactions on Signal Processing, 56(7), 2684-2695.

Du, Y., Chang, C.-I., Ren, H., Chang, C.-C., Jensen, J. O. and D'amico, F. M. (2004). 
New Hyperspectral Discrimination Measure for Spectral Characterization. 
Optical Engineering, 43(8), 1777-1787.

Dwyer, M. J. L. (2006). Remotely Sensed Data Available from the Us Geological 
Survey Eros Data Center. Earth Science Satellite Remote Sensing. (pp. 18-51). 
Springer.

Emodi, N. V. and Yusuf, S. D. (2015). Improving Electricity Access in Nigeria: 
Obstacles and the Way Forward. International Journal o f Energy Economics 
and Policy, 5(1), 335.

Eneva, M., Coolbaugh, M. and Combs, J. (2006). Application of Satellite Thermal 
Infrared Imagery to Geothermal Exploration in East Central California. 
Geothermal Resources Council Transactions, 30, 407-411.

Ercan, H. U., Ece, O. I., Schroeder, P. A. and Karacik, Z. (2016). Differentiating Styles 
of Alteration within Kaolin-Alunite Hydrothermal Deposits of £anakkale, Nw 
Turkey. Clays and clay minerals, 64(3), 245-274.

Esa (2016). Earth Online 2000-2016 User Guides, Sentinel 2 Msi, S2-Msi, Document 
Library.

Esbensen, K. H., Guyot, D., Westad, F. and Houmoller, L. P. (2002). Multivariate 
Data Analysis: In Practice: An Introduction to Multivariate Data Analysis and 
Experimental Design. Multivariate Data Analysis.



258

Fatoye, F. and Gideon, Y. (2013). Geology and Mineral Resources of the Lower Benue 
Trough, Nigeria. Advances in Applied Science Research, 4(6), 21-28.

Felde, G., Anderson, G., Cooley, T., Matthew, M., Berk, A. and Lee, J. (2003) 
Published. Analysis of Hyperion Data with the Flaash Atmospheric Correction 
Algorithm. Geoscience and Remote Sensing Symposium, 2003. IGARSS'03. 
Proceedings. 2003 IEEE International, 2003. IEEE, 90-92.

Ferrier, G., White, K., Griffiths, G., Bryant, R. and Stefouli, M. (2002). The Mapping 
of Hydrothermal Alteration Zones on the Island of Lesvos, Greece Using an 
Integrated Remote Sensing Dataset. International Journal o f Remote Sensing, 
23(2), 341-356.

Fitts, C. R. (2013). 12 - Subsurface Heat Flow and Geothermal Energy. In: Fitts, C. R. 
(ed.) Groundwater Science (Second Edition). (pp. 587-620). Boston: Academic 
Press.

Fyfe, W. S. (2012). Fluids in the Earth's Crust: Their Significance in Metamorphic, 
Tectonic and Chemical Transport Process. Elsevier.

Garba, A. (2017). Renewable Energy Technologies Assessment in Providing 
Sustainable Electricity to Nigerian Rural Areas.

Gargaud, M., Martin, H., Lopez-Garcia, P., Montmerle, T. and Pascal, R. (2013). 
Young Sun, Early Earth and the Origins o f Life: Lessons for Astrobiology. 
Springer Science & Business Media.

Gersman, R., Ben-Dor, E., Beyth, M., Avigad, D., Abraha, M. and Kibreab, A. (2008). 
Mapping of Hydrothermally Altered Rocks by the Eo-1 Hyperion Sensor, 
Northern Danakil Depression, Eritrea. International Journal o f Remote 
Sensing, 29(13), 3911-3936.

Gillespie, A. R., Kahle, A. B. and Walker, R. E. (1986). Color Enhancement of Highly 
Correlated Images. I. Decorrelation and Hsi Contrast Stretches. Remote 
Sensing o f Environment, 20(3), 209-235.

Glassley, W. E. (2014). Geothermal Energy: Renewable Energy and the Environment. 
CRC Press.

Goel, P., Prasher, S., Landry, J., Patel, R., Bonnell, R., Viau, A. and Miller, J. (2003). 
Potential of Airborne Hyperspectral Remote Sensing to Detect Nitrogen 
Deficiency and Weed Infestation in Corn. Computers and electronics in 
agriculture, 38(2), 99-124.

Goodenough, D. G., Dyk, A., Niemann, K. O., Pearlman, J. S., Chen, H., Han, T., 
Murdoch, M. and West, C. (2003). Processing Hyperion and Ali for Forest



259

Classification. IEEE transactions on geoscience and remote sensing, 41(6), 
1321-1331.

Green, A. A., Berman, M., Switzer, P. and Craig, M. D. (1988). A Transformation for 
Ordering Multispectral Data in Terms of Image Quality with Implications for 
Noise Removal. IEEE Transactions on geoscience and remote sensing, 26(1), 
65-74.

Green, R. O., Pavri, B. E. and Chrien, T. G. (2003). On-Orbit Radiometric and Spectral 
Calibration Characteristics of Eo-1 Hyperion Derived with an Underflight of 
Aviris and in Situ Measurements at Salar De Arizaro, Argentina. IEEE 
Transactions on Geoscience and Remote Sensing, 41(6), 1194-1203.

Guang, Z. and Maclean, A. L. (2000). A Comparison of Canonical Discriminant 
Analysis and Principal Component Analysis for Spectral Transformation. 
PE&RS, Photogrammetric Engineering & Remote Sensing, 66(7), 841-847.

Gupta, R. P., Tiwari, R. K., Saini, V. and Srivastava, N. (2013). A Simplified 
Approach for Interpreting Principal Component Images.

Hamilton, P. J., Harris, C. and Hillier, S. (2016). Characterisation of Geothermal 
Systems through Ftir Mineral Analysis of Drill Cuttings for Exploration, 
Appraisal and Development. Proceedings The 4th Indonesia International 
Geothermal Convention & Exhibition. Petroleum Field. Proc. 5th Geol. Conf. 
& Exhibition, Geol. Soc. Trinidad & Tobago, 2016.

Hanson, M. C., Oze, C. and Horton, T. W. (2014). Identifying Blind Geothermal 
Systems with Soil Co2 Surveys. Applied Geochemistry, 50, 106-114.

Harsanyi, J. C. and Chang, C.-I. (1994). Hyperspectral Image Classification and 
Dimensionality Reduction: An Orthogonal Subspace Projection Approach. 
IEEE Transactions on geoscience and remote sensing, 32(4), 779-785.

Haselwimmer, C., Prakash, A. and Holdmann, G. (2013). Quantifying the Heat Flux 
and Outflow Rate of Hot Springs Using Airborne Thermal Imagery: Case 
Study from Pilgrim Hot Springs, Alaska. Remote Sensing o f Environment, 136, 
37-46.

He, H., Ji, S., Tao, Q., Zhu, J., Chen, T., Liang, X., Li, Z. and Dong, H. (2017). 
Transformation of Halloysite and Kaolinite into Beidellite under Hydrothermal 
Condition. American Mineralogist, 102(5), 997-1005.

Heasler, H. P., Jaworowski, C. and Foley, D. (2009). Geothermal Systems and 
Monitoring Hydrothermal Features. Geological Monitoring, 105-140.

Hecker, C., Hook, S., Meijde, M. V. D., Bakker, W., Werff, H. V. D., Wilbrink, H., 
Ruitenbeek, F. V., Smeth, B. D. and Meer, F. V. D. (2011). Thermal Infrared



260

Spectrometer for Earth Science Remote Sensing Applications—Instrument 
Modifications and Measurement Procedures. Sensors, 11(11), 10981-10999.

Hecker, C., Van Der Meijde, M. and Van Der Meer, F. D. (2010). Thermal Infrared 
Spectroscopy on Feldspars—Successes, Limitations and Their Implications for 
Remote Sensing. Earth-Science Reviews, 103(1), 60-70.

Hellman, M. J. and Ramsey, M. S. (2004). Analysis of Hot Springs and Associated 
Deposits in Yellowstone National Park Using Aster and Aviris Remote 
Sensing. Journal o f Volcanology and Geothermal Research, 135(1-2), 195­
219.

Hiroi, T. and Pieters, C. M. (1992). Effects of Grain Size and Shape in Modeling 
Reflectance Spectra of Mineral Mixtures. Lunar and Planetary Science 
Conference Proceedings, 1992. 313-325.

Hochstein, M. P. and Dickinson, D. J. (1970). Infra-Red Remote Sensing of Thermal 
Ground in the Taupo Region, New Zealand. Geothermics, 2, Part 1, 420-423.

Hodder, D. T. (1970). Application of Remote Sensing to Geothermal Prospecting. 
Geothermics, 2, Part 1, 368-380.

Holden, H. and Ledrew, E. (1998). Spectral Discrimination of Healthy and Non- 
Healthy Corals Based on Cluster Analysis, Principal Components Analysis, 
and Derivative Spectroscopy. Remote sensing o f environment, 65(2), 217-224.

Hosseinjani, M. and Tangestani, M. H. (2011). Mapping Alteration Minerals Using 
Sub-Pixel Unmixing of Aster Data in the Sarduiyeh Area, Se Kerman, Iran. 
International Journal o f Digital Earth, 4(6), 487-504.

Hubbard, B. E. and Crowley, J. K. (2005). Mineral Mapping on the Chilean-Bolivian 
Altiplano Using Co-Orbital Ali, Aster and Hyperion Imagery: Data 
Dimensionality Issues and Solutions. Remote Sensing o f Environment, 99(1), 
173-186.

Hubbard, B. E., Crowley, J. K. and Zimbelman, D. R. (2003). Comparative Alteration 
Mineral Mapping Using Visible to Shortwave Infrared (0.4-2.4/Spl Mu/M) 
Hyperion, Ali, and Aster Imagery. IEEE Transactions on geoscience and 
remote sensing, 41(6), 1401-1410.

Huenges, E. and Ledru, P. (2011). Geothermal Energy Systems: Exploration, 
Development, and Utilization. John Wiley & Sons.

Huguenin, R. and Jones, J. (1986). Intelligent Information Extraction from Reflectance 
Spectra: Absorption Band Positions. Journal o f Geophysical Research: Solid 
Earth, 91(B9), 9585-9598.



261

Hunt, G. R. (1977). Spectral Signatures of Particulate Minerals in the Visible and near 
Infrared. Geophysics, 42(3), 501-513.

Hunt, G. R. and Ashley, R. P. (1979). Spectra of Altered Rocks in the Visible and near 
Infrared. Economic Geology, 74(7), 1613-1629.

Huntington, J. F. (1996). The Role of Remote Sensing in Finding Hydrothermal 
Mineral Deposits on Earth. Ciba Foundation Symposium, 1996. John Wiley
& Sons Limited, 214-235.

Hyvarinen, A. and Oja, E. (2000). Independent Component Analysis: Algorithms and 
Applications. Neural networks, 13(4-5), 411-430.

Iwasaki, A. and Tonooka, H. (2005). Validation of a Crosstalk Correction Algorithm 
for Aster/Swir. IEEE transactions on Geoscience and Remote Sensing, 43(12), 
2747-2751.

Jensen, J. and Lulla, K. (1987a). In Prentice Hall. Introductory digital image 
processing: A remote sensing perspective.

Jensen, J. R. and Lulla, K. (1987b). Introductory Digital Image Processing: A Remote 
Sensing Perspective.

Johansson, T. B., Mccormick, K., Neij, L. and Turkenburg, W. (2004). The Potentials 
of Renewable Energy. March.

Kampe, T. U., Johnson, B. R., Kuester, M. and Mccorkel, J. (2010). The Neon Imaging 
Spectrometer: Airborne Measurements of Vegetation Cover and Biochemistry 
for the Continental-Scale Neon Observatory. IEEE-GRSS Proc. o f Art, Science 
and Applications o f Reflectance Spectroscopy Sypm.

Kaufmann, H. (1988). Concepts, Processing and Results. International Journal o f 
Remote Sensing, 9(10-11), 1639-1658.

Kennedy-Bowdoin, T., Silver, E., Martini, B. and Pickles, W. (2004). Geothermal 
Prospecting Using Hyperspectral Imaging and Field Observations, Dixie 
Meadows, Nv. Trans. Geotherm. Resour. Counc., 28, 19-22.

Kopackova, V. and Koucka, L. (2017). Integration of Absorption Feature Information 
from Visible to Longwave Infrared Spectral Ranges for Mineral Mapping. 
Remote Sensing, 9(10), 1006.

Kratt, C., Calvin, W. and Coolbaugh, M. (2006a). Geothermal Exploration with 
Hymap Hyperspectral Data at Brady-Desert Peak, Nevada. Remote Sensing of 
Environment, 104(3), 313-324.



262

Kratt, C., Calvin, W. M. and Coolbaugh, M. F. (2010). Mineral Mapping in the 
Pyramid Lake Basin: Hydrothermal Alteration, Chemical Precipitates and 
Geothermal Energy Potential. Remote Sensing o f Environment, 114(10), 2297­
2304.

Kratt, C., Coolbaugh, M. and Calvin, W. (2006b). Remote Detection of Quaternary 
Borate Deposits with Aster Satellite Imagery as a Geothermal Exploration 
Tool. Geothermal Resources Council Transactions, 30, 435-439.

Kratt, C., Coolbaugh, M., Peppin, B. and Sladek, C. (2009). Identification of a New 
Blind Geothermal System with Hyperspectral Remote Sensing and Shallow 
Temperature Measurements at Columbus Salt Marsh, Esmeralda County, 
Nevada. Geothermal Resources Council Transactions, 33, 481-485.

Kraut, S., Scharf, L. L. and Butler, R. W. (2005). The Adaptive Coherence Estimator: 
A Uniformly Most-Powerful-Invariant Adaptive Detection Statistic. IEEE 
Transactions on Signal Processing, 53(2), 427-438.

Kruse, F. (1997). Characterization of Active Hot-Springs Environments Using 
Multispectral and Hyperspectral Remote Sensing. APPLIED GEOLOGIC 
REMOTE SENSING-INTERNATIONAL CONFERENCE-, 1997. I-214.

Kruse, F. (2002). Combined Swir and Lwir Mineral Mapping Using Master/Aster. 
Geoscience and Remote Sensing Symposium, 2002. IGARSS'02. 2002 IEEE 
International, 2002. IEEE, 2267-2269.

Kruse, F. (2013). Characterization and Monitoring of Geothermal Resources Using 
Simulated Hyspiri Data. Dept of Geological Sciences and Engineering Arthur 
Brant Laboratory for Exploration Geophysics University of Nevada, Reno.

Kruse, F., Lefkoff, A., Boardman, J., Heidebrecht, K., Shapiro, A., Barloon, P. and 
Goetz, A. (1993). The Spectral Image Processing System (Sips)—Interactive 
Visualization and Analysis of Imaging Spectrometer Data. Remote sensing of 
environment, 44(2-3), 145-163.

Kruse, F. A. (2012). Mapping Surface Mineralogy Using Imaging Spectrometry. 
Geomorphology, 137(1), 41-56.

Kruse, F. A., Baugh, W. M. and Perry, S. L. (2015). Validation of Digitalglobe 
Worldview-3 Earth Imaging Satellite Shortwave Infrared Bands for Mineral 
Mapping. Journal o f Applied Remote Sensing, 9(1), 096044-096044.

Kruse, F. A., Boardman, J. W. and Huntington, J. F. (2003). Comparison of Airborne 
Hyperspectral Data and Eo-1 Hyperion for Mineral Mapping. IEEE 
Transactions on Geoscience and Remote Sensing, 41(6), 1388-1400.



263

Kurowska, E. and Krzysztof, S. (2010). Geothermal Exploration in Nigeria. 
Proceedings World Geothermal Congress, 2010.

Landgrebe, D. A. (2005). Signal Theory Methods in Multispectral Remote Sensing. 
John Wiley & Sons.

Lessel, J. and Ceccato, P. (2016). Creating a Basic Customizable Framework for Crop 
Detection Using Landsat Imagery. International Journal o f Remote Sensing, 
37(24), 6097-6107.

Li, Q., Zhang, B., Lu, L. and Lin, Q. (2014). Hydrothermal Alteration Mapping Using 
Aster Data in Baogutu Porphyry Deposit, China. IOP Conference Series: Earth 
and Environmental Science, 17(1), 012174.

Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I. F. and Sobrino, J. 
A. (2013a). Satellite-Derived Land Surface Temperature: Current Status and 
Perspectives. Remote Sensing o f Environment, 131, 14-37.

Li, Z.-L., Wu, H., Wang, N., Qiu, S., Sobrino, J. A., Wan, Z., Tang, B.-H. and Yan, G. 
(2013b). Land Surface Emissivity Retrieval from Satellite Data. International 
Journal o f Remote Sensing, 34(9-10), 3084-3127.

Lillesand, T., Kiefer, R. W. and Chipman, J. (2014). Remote Sensing and Image 
Interpretation. John Wiley & Sons.

Lin, G. (1996). Groundwater Flow with Heat and Solute Transport in Sedimentary 
Basins.

Littlefield, E. F. and Calvin, W. M. (2014). Geothermal Exploration Using Imaging 
Spectrometer Data over Fish Lake Valley, Nevada. Remote Sensing of 
Environment, 140, 509-518.

Loughlin, W. (1991). Principal Component Analysis for Alteration Mapping. 
Photogrammetric Engineering and Remote Sensing, 57(9), 1163-1169.

Lund, J. W. and Boyd, T. L. (2016). Direct Utilization of Geothermal Energy 2015 
Worldwide Review. Geothermics, 60, 66-93.

Lund, J. W., Freeston, D. H. and Boyd, T. L. (2011). Direct Utilization of Geothermal 
Energy 2010 Worldwide Review. Geothermics, 40(3), 159-180.

Macharia, M. W., Gachari, M. K., Kuria, D. N. and Mariita, N. O. (2017). Low Cost 
Geothermal Energy Indicators and Exploration Methods in Kenya. Journal o f 
Geography and Regional Planning, 10(9), 254-265.



264

Markham, B., Barsi, J., Kvaran, G., Ong, L., Kaita, E., Biggar, S., Czapla-Myers, J., 
Mishra, N. and Helder, D. (2014). Landsat-8 Operational Land Imager 
Radiometric Calibration and Stability. Remote Sensing, 6(12), 12275-12308.

Mars, J. C. and Rowan, L. C. (2006). Regional Mapping of Phyllic-and Argillic- 
Altered Rocks in the Zagros Magmatic Arc, Iran, Using Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (Aster) Data and Logical 
Operator Algorithms. Geosphere, 2(3), 161-186.

Mas, A., Patrier, P., Beaufort, D. and Genter, A. (2003). Clay-Mineral Signatures of 
Fossil and Active Hydrothermal Circulations in the Geothermal System of the 
Lamentin Plain, Martinique. Journal o f volcanology and geothermal research, 
124(3), 195-218.

Mas, J. F. and Flores, J. J. (2008). The Application of Artificial Neural Networks to 
the Analysis of Remotely Sensed Data. International Journal o f Remote 
Sensing, 29(3), 617-663.

Masoumi, F., Eslamkish, T., Honarmand, M. and Abkar, A. A. (2017). A Comparative 
Study of Landsat-7 and Landsat-8 Data Using Image Processing Methods for 
Hydrothermal Alteration Mapping. Resource Geology, 67(1), 72-88.

Mauriohooho, K., Barker, S. L. and Rae, A. (2016). Mapping Lithology and 
Hydrothermal Alteration in Geothermal Systems Using Portable X-Ray 
Fluorescence (Pxrf): A Case Study from the Tauhara Geothermal System, 
Taupo Volcanic Zone. Geothermics, 64, 125-134.

Mia, M. B. and Fujimitsu, Y. (2012). Mapping Hydrothermal Altered Mineral 
Deposits Using Landsat 7 Etm+ Image in and around Kuju Volcano, Kyushu, 
Japan. Journal o f earth system science, 121(4), 1049-1057.

Mia, M. B. and Fujimitsu, Y. (2013). Landsat Thermal Infrared Based Monitoring of 
Heat Losses from Kuju Fumaroles Area in Japan. Procedia Earth and 
Planetary Science, 6, 114-120.

Mia, M. B., Nishijima, J. and Fujimitsu, Y. (2014). Exploration and Monitoring 
Geothermal Activity Using Landsat Etm + Images: A Case Study at Aso 
Volcanic Area in Japan. Journal o f Volcanology and Geothermal Research, 
275, 14-21.

Minissale, A., Corti, G., Tassi, F., Darrah, T., Vaselli, O., Montanari, D., Montegrossi, 
G., Yirgu, G., Selmo, E. and Teclu, A. (2017). Geothermal Potential and Origin 
of Natural Thermal Fluids in the Northern Lake Abaya Area, Main Ethiopian 
Rift, East Africa. Journal o f Volcanology and Geothermal Research, 336, 1­
18.



265

Mongillo, M. (1994). Aerial Thermal Infrared Mapping of the Waimangu-Waiotapu 
Geothermal Region, New Zealand. Geothermics, 23(5), 511-526.

Moore, F., Rastmanesh, F., Asadi, H. and Modabberi, S. (2008). Mapping 
Mineralogical Alteration Using Principal-Component Analysis and Matched 
Filter Processing in the Takab Area, North-West Iran, from Aster Data. 
International Journal o f Remote Sensing, 29(10), 2851-2867.

Nascimento, J. M. and Dias, J. M. (2005). Does Independent Component Analysis 
Play a Role in Unmixing Hyperspectral Data? IEEE Transactions on 
Geoscience and Remote Sensing, 43(1), 175-187.

Nash, G. D., Johnson, G. W. and Johnson, S. (2004). Hyperspectral Detection of 
Geothermal System-Related Soil Mineralogy Anomalies in Dixie Valley, 
Nevada: A Tool for Exploration. Geothermics, 33(6), 695-711.

Neale, C., Jaworowski, C., Heasler, H., Sivarajan, S. and Masih, A. (2016). 
Hydrothermal Monitoring in Yellowstone National Park Using Airborne 
Thermal Infrared Remote Sensing. Remote Sensing o f Environment, 184, 628­
644.

Newell, P. and Bulkeley, H. (2017). Landscape for Change? International Climate 
Policy and Energy Transitions: Evidence from Sub-Saharan Africa. Climate 
Policy, 17(5), 650-663.

Nishar, A., Richards, S., Breen, D., Robertson, J. and Breen, B. (2016a). Thermal 
Infrared Imaging of Geothermal Environments and by an Unmanned Aerial 
Vehicle (Uav): A Case Study of the Wairakei-Tauhara Geothermal Field, 
Taupo, New Zealand. Renewable Energy, 86, 1256-1264.

Noailly, J. and Shestalova, V. (2017). Knowledge Spillovers from Renewable Energy 
Technologies: Lessons from Patent Citations. Environmental Innovation and 
Societal Transitions, 22, 1-14.

Norman, J., Price, N. and Muo, C.-I. (1977). Astrons-the Earth's Oldest Scars. New 
Scientist, 73, 689-692.

Nur, A., Ofoegbu, C. and Onuoha, K. (1999). Estimation of the Depth of the Curie 
Point Isotherm in the Upper Benue Trough, Nigeria. Journal o f Mining and 
Geology, 35(1), 53-60.

Nwankwo, C. N. and Ekine, A. S. (2009). Geothermal Gradients in the Chad Basin, 
Nigeria, from Bottom Hole Temperature Logs. International Journal o f 
Physical Sciences, 4(12), 777-783.

Nwankwo, L. I. and Shehu, A. T. (2015). Evaluation of Curie-Point Depths, 
Geothermal Gradients and near-Surface Heat Flow from High-Resolution



266

Aeromagnetic (Hram) Data of the Entire Sokoto Basin, Nigeria. Journal o f 
Volcanology and Geothermal Research, 305, 45-55.

Obama, B. (2017). The Irreversible Momentum of Clean Energy. Science, 355(6321), 
126-129.

Obande, G. E., Lawal, K. M. and Ahmed, L. A. (2014). Spectral Analysis of 
Aeromagnetic Data for Geothermal Investigation of Wikki Warm Spring, 
North-East Nigeria. Geothermics, 50, 85-90.

Okamoto, A., Yamada, R., Saishu, H. and Tsuchiya, N. (2017). Porosity and 
Permeability Evolution Induced by Precipitation of Silica under Hydrothermal 
Conditions. Procedia Earth and Planetary Science, 17, 249-252.

Olasolo, P., Juarez, M., Morales, M. and Liarte, I. (2016). Enhanced Geothermal 
Systems (Egs): A Review. Renewable and Sustainable Energy Reviews, 56, 
133-144.

Olokesusi, F. (1990). Assessment of the Yankari Game Reserve, Nigeria: Problems 
and Prospects. Tourism Management, 11(2), 153-163.

Omer, A. M. (2008). Energy, Environment and Sustainable Development. Renewable 
and sustainable energy reviews, 12(9), 2265-2300.

Onwuemesi, A. (1997). One-Dimensional Spectral Analysis of Aeromagnetic 
Anomalies and Curie Depth Isotherm in the Anambra Basin of Nigeria. Journal 
o f Geodynamics, 23(2), 95-107.

Osagie, E. O. (2008). Seismic Activity in Nigeria. The Pac Jour Sci and Tech, 9(2), 1­
6.

Panda, C., Kumar, V., Pandey, K. and Jyothi, G. (2016). Evaluation and Effect of 
Various Noise Reduction Techniques Performed before Atmospheric 
Correction of Hyperion Data. SPIE Asia-Pacific Remote Sensing, 2016. 
International Society for Optics and Photonics, 98800Z-98800Z-6.

Parashar, C. (2015). Mapping o f Alteration Mineral Zones by Combining Techniques 
o f Remote Sensing and Spectroscopy in the Parts o f Se-Rajasthan. ISRO.

Parry, W., Jasumback, M. and Wilson, P. N. (2002). Clay Mineralogy of Phyllic and 
Intermediate Argillic Alteration at Bingham, Utah. Economic Geology, 97(2), 
221-239.

Piech, M. A. and Piech, K. R. (1990). Fingerprints and Fractal Terrain. Mathematical 
geology, 22(4), 457-485.



267

Pirajno, F. (2012). Hydrothermal Mineral Deposits: Principles and Fundamental 
Concepts for the Exploration Geologist. Springer Science & Business Media.

Plaza, A., Plaza, J., Paz, A. and Sanchez, S. (2011). Parallel Hyperspectral Image and 
Signal Processing [Applications Corner]. IEEE Signal Processing Magazine, 
28(3), 119-126.

Pollack, H. N., Hurter,SJ.,Johnson,J.R., (1993). Heat Flow from the Earth’s Interior,

Analysis of the Global Data Set. Review o f Geophysics, 31, ,267-280.

Pour, A., Beiranv and Hashim, M. (2011a). Application of Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (Aster) Data in Geological 
Mapping. International Journal o f Physical Sciences, 6(33), 7657-7668.

Pour, A., Beiranv, and Hashim, M. (2011b). The Earth Observing-1 (Eo-1) Satellite 
Data for Geological Mapping, Southeastern Segment of the Central Iranian 
Volcanic Belt, Iran. International Journal o f Physical Sciences, 6(33), 7638­
7650.

Pour, A. B. and Hashim, M. (2011c). Identification of Hydrothermal Alteration 
Minerals for Exploring of Porphyry Copper Deposit Using Aster Data, Se Iran. 
Journal o f Asian Earth Sciences, 42(6), 1309-1323.

Pour, A. B. and Hashim, M. (2012). The Application of Aster Remote Sensing Data to 
Porphyry Copper and Epithermal Gold Deposits. Ore Geology Reviews, 44, 1­
9.

Pour, A. B. and Hashim, M. (2014). Aster, Ali and Hyperion Sensors Data for 
Lithological Mapping and Ore Minerals Exploration. SpringerPlus, 3(1), 1.

Pour, A. B. and Hashim, M. (2015a). Evaluation of Earth Observing-1 (Eo1) Data for 
Lithological and Hydrothermal Alteration Mapping: A Case Study from 
Urumieh-Dokhtar Volcanic Belt, Se Iran. Journal o f the Indian Society o f 
Remote Sensing, 43(3), 583-597.

Pour, A. B. and Hashim, M. (2015b). Hydrothermal Alteration Mapping from Landsat- 
8 Data, Sar Cheshmeh Copper Mining District, South-Eastern Islamic Republic 
of Iran. Journal o f Taibah University for Science, 9(2), 155-166.

Pour, A. B., Hashim, M., Hong, J. K. and Park, Y. (2017). Lithological and Alteration 
Mineral Mapping in Poorly Exposed Lithologies Using Landsat-8 and Aster 
Satellite Data: North-Eastern Graham Land, Antarctic Peninsula. Ore Geology 
Reviews.



268

Pour, A. B., Hashim, M. and Marghany, M. (2011). Using Spectral Mapping 
Techniques on Short Wave Infrared Bands of Aster Remote Sensing Data for 
Alteration Mineral Mapping in Se Iran. International Journal o f Physical 
Sciences, 6(4), 917-929.

Pour, A. B., Hashim, M. and Van Genderen, J. (2013). Detection of Hydrothermal 
Alteration Zones in a Tropical Region Using Satellite Remote Sensing Data: 
Bau Goldfield, Sarawak, Malaysia. Ore Geology Reviews, 54, 181-196.

Pour, A. B., Park, Y., Park, T.-Y., Hong, J. K., Hashim, M., Woo, J. and Ayoobi, I. 
(2018). Evaluation of Ica and Cem Algorithms with Landsat-8/Aster Data for 
Geological Mapping in Inaccessible Regions. Geocarto International, (just- 
accepted), 1-64.

Prakash, A. (2000). Thermal Remote Sensing: Concepts, Issues and Applications. 
International Archives o f Photogrammetry and Remote Sensing, 33(B1; PART 
1), 239-243.

Prakash, H. A. (2012). Thermal Infrared Remote Sensing of Geothermal Systems. 
Springer and Praxis, ~500 p.

Qin, Q., Zhang, N., Nan, P. and Chai, L. (2011). Geothermal Area Detection Using 
Landsat Etm+ Thermal Infrared Data and Its Mechanistic Analysis—a Case 
Study in Tengchong, China. International Journal o f Applied Earth 
Observation and Geoinformation, 13(4), 552-559.

Randall, S. (2012). Introduction to Hyperspectral Imaging. Randall B. Smith: 
MicroImages, Inc.

Reath, K. A. and Ramsey, M. S. (2013). Exploration of Geothermal Systems Using 
Hyperspectral Thermal Infrared Remote Sensing. Journal o f Volcanology and 
Geothermal Research, 265, 27-38.

Renaut, R. W., Owen, R. B. and Ego, J. K. (2017). Geothermal Activity and 
Hydrothermal Mineral Deposits at Southern Lake Bogoria, Kenya Rift Valley: 
Impact of Lake Level Changes. Journal o f African Earth Sciences.

Research Systems, I. (2008). Envi Tutorials. Research Systems, Inc., Boulder, Co.

Rivard, B., Feng, J., Gallie, A. and Sanchez-Azofeifa, A. (2008). Continuous Wavelets 
for the Improved Use of Spectral Libraries and Hyperspectral Data. Remote 
Sensing o f Environment, 112(6), 2850-2862.

Robert, A. S. (2007). Remote Sensing: Models and Methods for Image Processing. By 
Elsevier Inc. All rights reserved, p300-304.



269

Roberts, D. A., Gardner, M., Church, R., Ustin, S., Scheer, G. and Green, R. (1998). 
Mapping Chaparral in the Santa Monica Mountains Using Multiple 
Endmember Spectral Mixture Models. Remote Sensing o f Environment, 65(3), 
267-279.

Rogge, D. M., Rivard, B., Zhang, J. and Feng, J. (2006). Iterative Spectral Unmixing 
for Optimizing Per-Pixel Endmember Sets. IEEE Transactions on Geoscience 
and Remote Sensing, 44(12), 3725-3736.

Rowan, L. C., Hook, S. J., Abrams, M. J. and Mars, J. C. (2003). Mapping 
Hydrothermally Altered Rocks at Cuprite, Nevada, Using the Advanced 
Spaceborne Thermal Emission and Reflection Radiometer (Aster), a New 
Satellite-Imaging System. Economic Geology, 98(5), 1019-1027.

Rowan, L. C., Schmidt, R. G. and Mars, J. C. (2006). Distribution of Hydrothermally 
Altered Rocks in the Reko Diq, Pakistan Mineralized Area Based on Spectral 
Analysis of Aster Data. Remote Sensing o f Environment, 104(1), 74-87.

Sabins, F. F. (1999). Remote Sensing for Mineral Exploration. Ore Geology Reviews, 
14(3), 157-183.

Saepuloh, A., Susanto, A., Sumintadireja, P. and Suparka, E. (2015). Characterizing 
Surface Manifestation of Geothermal System under Torrid Zone Using 
Synthetic Aperture Radar (Sar) Data. Proceedings of the World Geothermal 
Congress, 2015.

Saepuloh A., Urai M., Sumintadireja P. and Suryantini. (2012). Spatial Priority 
Assessment of Geothermal Potentials Using Multi-Sensor Remote Sensing 
Data and Applications. Proceeding of the 1st ITB Geothermal Workshop, 2012 
Bandung, Indonesia.

Safari, M., Pour, A. B., Maghsoudi, A. and Hashim, M. (2017). Targeting 
Hydrothermal Alterations Utilizing Landsat-8 and Aster Data in Shahr-E- 
Babak, Iran. International Archives o f the Photogrammetry, Remote Sensing & 
Spatial Information Sciences, 42.

Salazar, D., Broto, V. C. and Adams, K. (2017). Urban Infrastructure and Energy 
Poverty in Maputo, Mozambique. Environmental Justice and Urban Resilience 
in the Global South. (pp. 259-276). Springer.

Sanchez-Alfaro, P., Reich, M., Arancibia, G., Perez-Flores, P., Cembrano, J., Driesner, 
T., Lizama, M., Rowland, J., Morata, D. and Heinrich, C. A. (2016). Physical, 
Chemical and Mineralogical Evolution of the Tolhuaca Geothermal System, 
Southern Andes, Chile: Insights into the Interplay between Hydrothermal 
Alteration and Brittle Deformation. Journal o f Volcanology and Geothermal 
Research, 324, 88-104.



270

Satterwhite, M., Rice, W. and Shipman, J. (1984). Using Landform and Vegetative 
Factors to Improve the Interpretation of Landsat Imagery. Photogrammetric 
engineering and remote sensing.

Seinfeld, J. H. and Pandis, S. N. (2012). Atmospheric Chemistry and Physics: From 
Air Pollution to Climate Change. John Wiley & Sons.

Shaaban, M. and Petinrin, J. (2014). Renewable Energy Potentials in Nigeria: Meeting 
Rural Energy Needs. Renewable and Sustainable Energy Reviews, 29, 72-84.

Shaw, G. A. and Burke, H.-H. K. (2003). Spectral Imaging for Remote Sensing. 
Lincoln Laboratory Journal, 14(1), 3-28.

Shippert, P. (2013). Digital Number, Radiance, and Reflectance. Harris geospatial 
solutions, 23.

Shkuratov, Y., Starukhina, L., Hoffmann, H. and Arnold, G. (1999). A Model of 
Spectral Albedo of Particulate Surfaces: Implications for Optical Properties of 
the Moon. Icarus, 137(2), 235-246.

Sladek, C., Coolbaugh, M. F. and Kratt, C. (2009). Improvements in Shallow (Two- 
Meter) Temperature Measurements and Data Interpretation. Geothermal 
Resources Council Transactions, 33, 535-541.

Sobrino, J. A., Jimenez-Munoz, J. C. and Paolini, L. (2004). Land Surface 
Temperature Retrieval from Landsat Tm 5. Remote Sensing o f Environment, 
90(4), 434-440.

Staenz, K. and Held, A. (2012). Summary of Current and Future Terrestrial Civilian 
Hyperspectral Spaceborne Systems. Geoscience and Remote Sensing 
Symposium (IGARSS), 2012 IEEE International, 2012. IEEE, 123-126.

Storey, J., Choate, M. and Lee, K. (2014a). Landsat 8 Operational Land Imager on- 
Orbit Geometric Calibration and Performance. Remote Sensing, 6(11), 11127­
11152.

Storey, J., Choate, M. and Moe, D. (2014b). Landsat 8 Thermal Infrared Sensor 
Geometric Characterization and Calibration. Remote Sensing, 6(11), 11153­
11181.

Sun, T., Huang, L., Long, H. and Liu, B.-C. (2016). Out-of-Band Correction 
Technologies for the Multispectral Image of Mapping Satellite-1 by Using Eo- 
1 Hyperion Data. Journal o f Optical Technology, 83(10), 632-637.



271

Sunshine, J. M., Pieters, C. M. and Pratt, S. F. (1990). Deconvolution of Mineral 
Absorption Bands: An Improved Approach. Journal o f Geophysical Research: 
Solid Earth, 95(B5), 6955-6966.

Syrris, V., Ferri, S., Ehrlich, D. and Pesaresi, M. (2015). Image Enhancement and 
Feature Extraction Based on Low-Resolution Satellite Data. Ieee Journal Of 
Selected Topics In Applied Earth Observations And Remote Sensing, 8(5), 
1986-1995.

Tan, S.-Y. (2016). Developments in Hyperspectral Sensing.

Tian, B., Wang, L., Kashiwaya, K. and Koike, K. (2015). Combination of Well- 
Logging Temperature and Thermal Remote Sensing for Characterization of 
Geothermal Resources in Hokkaido, Northern Japan. Remote Sensing, 7(3), 
2647-2667.

Todbileg, M., Gorte, B., Van Ruitenbeek, F. and Maathuis, B. (2003). Identification 
of Silicification Using Airborne Thermal Infrared Data in the Panorama, 
Pilbara, Australia.

Tso, B. and Mather, P. M. (2009). Classification Methods for Remotely Sensed Data. 
CRC press.

Tukur, A., Samaila, N., Grimes, S., Kariya, I. and Chaanda, M. (2015). Two Member 
Subdivision of the Bima Sandstone, Upper Benue Trough, Nigeria: Based on 
Sedimentological Data. Journal o f African Earth Sciences, 104, 140-158.

Unal Ercan, H., I§ik Ece, O., Schroeder, P. A. and Karacik, Z. (2016). Differentiating 
Styles of Alteration within Kaolin-Alunite Hydrothermal Deposits of 
£anakkale, Nw Turkey. Clays and Clay Minerals, 64(3), 245-274.

Underwood, E., Ustin, S. and Dipietro, D. (2003). Mapping Nonnative Plants Using 
Hyperspectral Imagery. Remote Sensing o f Environment, 86(2), 150-161.

Van Der Meer, F. (1996). Spectral Mixture Modelling and Spectral Stratigraphy in 
Carbonate Lithofacies Mapping. ISPRS journal o f photogrammetry and remote 
sensing, 51(3), 150-162.

Van Der Meer, F. (1999). Iterative Spectral Unmixing (Isu). International Journal o f 
Remote Sensing, 20(17), 3431-3436.

Van Der Meer, F. (2006). The Effectiveness of Spectral Similarity Measures for the 
Analysis of Hyperspectral Imagery. International journal o f applied earth 
observation and geoinformation, 8(1), 3-17.



272

Van Der Meer, F., Hecker, C., Van Ruitenbeek, F., Van Der Werff, H., De 
Wijkerslooth, C. and Wechsler, C. (2014). Geologic Remote Sensing for 
Geothermal Exploration: A Review. International Journal o f Applied Earth 
Observation and Geoinformation, 33, 255-269.

Van Der Meer, F. D. and De Jong, S. M. (2011). Imaging Spectrometry: Basic 
Principles and Prospective Applications. Springer Science & Business Media.

Van Der Meer, F. D. and Jia, X. (2012). Collinearity and Orthogonality of 
Endmembers in Linear Spectral Unmixing. International Journal o f Applied 
Earth Observation and Geoinformation, 18, 491-503.

Van Der Meer, F. D., Van Der Werff, H. M., Van Ruitenbeek, F. J., Hecker, C. A., 
Bakker, W. H., Noomen, M. F., Van Der Meijde, M., Carranza, E. J. M., De 
Smeth, J. B. and Woldai, T. (2012). Multi-and Hyperspectral Geologic Remote 
Sensing: A Review. International Journal o f Applied Earth Observation and 
Geoinformation, 14(1), 112-128.

Van Ruitenbeek, F. J., Cudahy, T., Hale, M. and Van Der Meer, F. D. (2005). Tracing 
Fluid Pathways in Fossil Hydrothermal Systems with near-Infrared 
Spectroscopy. Geology, 33(7), 597-600.

Vapnik, V. (1998). Statistical Learning Theory. 1998. Wiley, New York.

Vaughan, R. G., Calvin, W. M. and Taranik, J. V. (2003). Sebass Hyperspectral 
Thermal Infrared Data: Surface Emissivity Measurement and Mineral 
Mapping. Remote Sensing o f Environment, 85(1), 48-63.

Vaughan, R. G., Hook, S. J., Calvin, W. M. and Taranik, J. V. (2005). Surface Mineral 
Mapping at Steamboat Springs, Nevada, USA, with Multi-Wavelength 
Thermal Infrared Images. Remote Sensing o f Environment, 99(1-2), 140-158.

Vaughan, R. G., Keszthelyi, L. P., Davies, A. G., Schneider, D. J., Jaworowski, C. and 
Heasler, H. (2010). Exploring the Limits of Identifying Sub-Pixel Thermal 
Features Using Aster Tir Data. Journal o f Volcanology and Geothermal 
Research, 189(3-4), 225-237.

Vaughan, R. G., Keszthelyi, L. P., Lowenstern, J. B., Jaworowski, C. and Heasler, H. 
(2012). Use of Aster and Modis Thermal Infrared Data to Quantify Heat Flow 
and Hydrothermal Change at Yellowstone National Park. Journal o f 
Volcanology and Geothermal Research, 233-234, 72-89.

Vicente, L. E. and De Souza Filho, C. R. (2011). Identification of Mineral Components 
in Tropical Soils Using Reflectance Spectroscopy and Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (Aster) Data. Remote Sensing o f 
Environment, 115(8), 1824-1836.



273

Waswa, A. K. (2017). Mapping of Hydrothermal Minerals Related to Geothermal 
Activities Using Remote Sensing and Gis: Case Study of Paka Volcano in 
Kenyan Rift Valley. International Journal o f Geosciences, 8(05), 711.

Wu, W., Zou, L., Shen, X., Lu, S., Su, N., Kong, F. and Dong, Y. (2012). Thermal 
Infrared Remote-Sensing Detection of Thermal Information Associated with 
Faults: A Case Study in Western Sichuan Basin, China. Journal o f Asian Earth 
Sciences, 43(1), 110-117.

Yao, K., Pradhan, B. and Idrees, M. O. (2017). Identification of Rocks and Their 
Quartz Content in Gua Musang Goldfield Using Advanced Spaceborne 
Thermal Emission and Reflection Radiometer Imagery. Journal o f Sensors, 
2017.

Yousefi, S. J., Ranjbar, H., Alirezaei, S. and Dargahi, S. (2018). Discrimination of 
Sericite Phyllic and Quartz-Rich Phyllic Alterations by Using a Combination 
of Aster Tir and Swir Data to Explore Porphyry Cu Deposits Hosted by 
Granitoids, Kerman Copper Belt, Iran. Journal o f the Indian Society o f Remote 
Sensing, 1-11.

Yu, X., Guo, X. and Wu, Z. (2014). Land Surface Temperature Retrieval from Landsat 
8 Tirs—Comparison between Radiative Transfer Equation-Based Method, 
Split Window Algorithm and Single Channel Method. Remote Sensing, 6(10), 
9829-9852.

Yu, X. and Reed, I. S. (1995). Adaptive Detection of Signals with Linear Feature 
Mappings and Representations. IEEE Transactions on Signal Processing, 
43(12), 2953-2963.


