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a b s t r a c t 

This paper presents a method that able to predict the paroxysmal atrial fibrillation (PAF). The method 

uses shorter heart rate variability (HRV) signals when compared to existing methods, and achieves good 

prediction accuracy. PAF is a common cardiac arrhythmia that increases the health risk of a patient, and 

the development of an accurate predictor of the onset of PAF is clinical important because it increases 

the possibility to electrically stabilize and prevent the onset of atrial arrhythmias with different pacing 

techniques. We propose a multi-objective optimization algorithm based on the non-dominated sorting 

genetic algorithm III for optimizing the baseline PAF prediction system, that consists of the stages of 

pre-processing, HRV feature extraction, and support vector machine (SVM) model. The pre-processing 

stage comprises of heart rate correction, interpolation, and signal detrending. After that, time-domain, 

frequency-domain, non-linear HRV features are extracted from the pre-processed data in feature extrac- 

tion stage. Then, these features are used as input to the SVM for predicting the PAF event. The proposed 

optimization algorithm is used to optimize the parameters and settings of various HRV feature extraction 

algorithms, select the best feature subsets, and tune the SVM parameters simultaneously for maximum 

prediction performance. The proposed method achieves an accuracy rate of 87.7%, which significantly 

outperforms most of the previous works. This accuracy rate is achieved even with the HRV signal length 

being reduced from the typical 30 min to just 5 min (a reduction of 83%). Furthermore, another signifi- 

cant result is the sensitivity rate, which is considered more important that other performance metrics in 

this paper, can be improved with the trade-off of lower specificity. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Atrial Fibrillation (AF) is the common non-life-threatening car-

iac arrhythmia that can lead to stroke, heart failure, and other

eart related disease [1,2] . Patients often start with episodes of

aroxysmal atrial fibrillation (PAF), which last from seconds to

ays but it is self-terminating. It also can be treated by medica-

ion or electrical shock issued by the Implantable Defibrillator De-

ice (ICD) [3] . However, the PAF can slowly evolve to the chronic

F that cannot return to normal sinus rhythm even with external

reatment. Therefore, the development of an accurate predictor of

he onset of PAF is clinically important because it increases the

ossibility to electrically stabilize and prevent the onset of atrial

rrhythmias with different pacing techniques [4] . This can lead to

ecrease in symptoms, and possibly a decrease in atrial remodel-

ng that causes increased susceptibility to future episodes of PAF

3] . 
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Much research have been done for developing a method that

an predict the onset of PAF based on electrocardiogram (ECG)

ignal. The works can be divided into premature atrial complexes

PAC) detection [5–7] and heart rate variability (HRV) analysis [8–

3] . Tables 5 and 6 summarizes their methodology and predic-

ion performance. Almost all existing methods, which achieved ac-

eptable prediction accuracies (around 80% and above), employed

0 min signal for feature extraction [8] . Some of them [5,9,10] even

ould achieve same or above the level of 90%. 

Previous works also attempted to use the HRV signal shorter

han 15 min for prediction. However, their accuracy rates were

ower when compared to the methods that used 30 min signal.

or example, Boon et al. [8] proposed a HRV analysis prediction

ethod based on HRV analysis, and they achieved accuracy rate of

9.3% and 68.9% for 15 min and 10 min respectively. Yang and Yin

12] achieved lowest accuracy rate with 57% when they extracted 

eatures from 10 min HRV signal based on footprint analysis. With

pectral features, Hickey and Heneghan [6] achieved prediction ac-

uracies of 68%, 70%, and 66% for 5, 10 and 30 min of HRV signal

espectively. 
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Fig. 1. Block diagram of typical feature selection based on simple GA. 
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Fig. 2. Overview of the proposed method. 
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Therefore, this main objective of this paper is to propose a PAF

onset prediction method that requires shorter time duration of the

HRV signal during the feature extraction, while improving the pre-

diction accuracy level. 

2. Optimization method 

Multiple features are usually extracted during the HRV analysis.

However, using all features does not always give the best classifi-

cation performance due to the curse of dimensionality [14] . There-

fore, feature selection algorithm is usually used to improve the per-

formance. The feature selection is an optimization problem that

involves selecting the best combination of features from the orig-

inal extracted features without transforming them. It can enhance

the performance, reduce the number of features, and help the re-

searchers to understand which features are important to the clas-

sification model. 

Genetic algorithm (GA) is one of the popular methods for fea-

ture selection. Fig. 1 shows the block diagram of the typical fea-

ture selection model based on simple GA for the existing research

based on HRV analysis [8,15–19] . After the features are extracted

from the pre-processed data, the simple GA is used to select the

feature subset with high classification performance. Based on crit-

ical review, there are a few shortcomings for the feature selection

model in Fig. 1 . 

One of the shortcomings is the parameter values and settings in

both HRV pre-processing and feature extraction stages are not opti-

mized (tuned) for maximum classification performance. As shown

in Fig. 1 , before the feature selector is applied, the HRV features

must be extracted based on certain pre-defined values and fixed

setting of HRV feature extraction algorithms. According to Rashedi

et al. [20] , to maximize the performance of extracted features,

these parameters should be tuned simultaneously with the feature

selection process for different application and database. They pro-

posed a heuristic search method called gravitational search algo-

rithm (GSA) to optimize the image recognition system. It simul-

taneously optimized both the parameters of feature extraction al-

gorithms (wavelet transform and color histogram) and the feature

subset, and this improved detection rate of their system. Inspired

by their work, this paper intends to propose an optimization al-

gorithm that can simultaneously optimizes the parameters in pre-

processing and feature extraction stages, feature subset in feature

selection process, and parameters of classification model. Such op-

timization model is shown in Fig. 2 . 

Another shortcoming is that the trade-off between the classifi-

cation sensitivity and specificity rate is not considered. Improving

certain amount of sensitivity may need to sacrifice certain degree

of specificity, or vice versa [21] . Some medical applications require

high sensitivity while other need high specificity [21] . For example,

Xie and Minn [22] and Koley and Dey [23] developed the algorithm

for detecting the sleep apnea based on ECG signal. They were in-

terested in high sensitivity rate because it reduced the risk of over-

looking the apnea events that could pose threats to the patients. In

this paper, we are more interested in improving the sensitivity at

the expense of acceptable reduction in specificity rate when pre-
icting the PAF onset. Therefore, the trade-off between different

rediction performance metrics is considered when developing the

ptimization algorithm. 

In this paper, optimizing the PAF onset prediction model is

 multiple-objective problem. When GA is used for this class of

roblems, there are two common approaches: weighted sum, and

areto dominance concept [24] . The former case is used in sim-

le GA, in which multiple objective fitness functions are linearly

ombined with different weight coefficients into a single composite

unction. It was employed in previous works [8,18,19] to combine

ifferent performance metrics (i.e., sensitivity, specificity, accuracy

ate and feature count). There are several drawbacks with this ap-

roach [24] . One of them is that the trial and error is required for

uning the weights values in order to obtain a solution with de-

ired performance. Moreover, the simple GA only can return sin-

le solution per optimization run. As a result, the GA needs to be

un multiple times for obtaining multiple solutions before trade-

ff among the solutions can be analyzed, which is not convenience

or designer. It should be noted that, although the fitness functions

n previous works [8,18,19] had multiple metrics, they did not per-

orm the trade-off analysis because their interest was obtaining a

ingle solution with highest accuracy. The drawbacks in the simple

A can be tackled by using the Pareto dominance concept based

A. In this paper, the state-of-the-art Pareto dominance based GA,

hich is called non-dominated sorting genetic algorithm III (NSGA-

II) [25, 26] , is adopted for optimization. 

Finally, the GA based feature selectors in HRV based previous

orks [8,15–19] are belong to the type of wrapper method [27] be-

ause only the machine learning classifier is used to evaluate the

tness of the chromosome. Wrapper method has a well-known

hortcoming: the risk of selecting a subset that is overfitting to

he trained supervised classifier [8,27] . In the non-HRV research,

he hybrid feature selection based on simple GA [28–30] has been

roposed to mitigate this issue to certain degree. The hybrid GA

ses the filter method (i.e., statistical test or correlation measure)

o evaluate the feature, and only selects the feature that can pass

ertain evaluation criterion during the formation of feature subset.

n the research based on HRV analysis, Boon et al. [8] cascaded
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f  
he filter method called Mann-Whitney U test with the simple GA

ased feature selector. Before the GA was applied, they filtered out

he HRV features that could not pass the U test at 20% significance

evel. Therefore, in this paper, the filter method is used as part

f the proposed optimization algorithm for evaluating the features

efore they are selected to form feature subset. 

In this paper, a multi-objective optimization algorithm based on

SGA-III is proposed to optimize the PAF onset prediction system

hile considering the above-mentioned shortcomings. The layout

f the paper is as follows. Section 3 presents the database and pro-

osed method. Results and discussion are presented in Section 4 .

inally, conclusion and future works are given in the Section 5 . 

. Proposed method 

Fig. 2 shows overview of the proposed prediction method. It

omprises of the stages of pre-processing, HRV feature extraction,

nd support vector machine (SVM) model, which are simultane-

usly optimized by the proposed optimization algorithm based on

SGA-III. Initially, 5 min HRV data that immediately precedes the

AF event is fed to the pre-processing stage for heart rate correc-

ion, interpolation and signal detrending. They are two types of

re-processed output: corrected HRV and detrended HRV. It should

e noted that the detrended HRV is also corrected and interpo-

ated. Then, 6 time-domain and 4 non-linear features are extracted

ased on the corrected HRV, while 43 frequency-domain features

re extracted based on the detrended HRV. Finally, these features

re used as input to the SVM model for predicting the PAF event.

he SVM is implemented by using the C ++ library called LIBSVM

31] . 

.1. Experimental data 

Based on the previous works [6–13] , 106 data from 53 pairs of

CG recordings (each pair is recorded from different PAF patients)

re obtained from the standard database called Atrial Fibrillation

rediction Database (AFPDB) [32] . Each pair of data contains one

0 min ECG segment that ends just prior to the onset of PAF event

nd another 30 min ECG segment at least 45 min distant from any

nset of PAF. Each ECG segment contains two-channel traces from

olter recording with sampling rate of 128 Hz and 12-bit resolu-

ion. 

In this paper, the 5 min HRV segment that at least 45 min dis-

ant from the PAF event is assigned a class label of “NORMAL”,

hile the HRV segment that immediately precedes the PAF event

s given a class label of “ABNORMAL”. 

.2. Preprocessing 

In the preprocessing stage, the RR intervals (intervals between

uccessive R peaks) are derived from the ECG signal by using the

amilton and Tompkins algorithm [33] . Then, the HRV data is com-

uted as the reciprocal of RR intervals. After that, the HRV data

egment sequentially goes through the heart rate correction, in-

erpolation and signal detrending. The heart rate correction and

ignal detrending are performed based on the McNames algorithm

34] and the high pass filter proposed by Tarvainen et al. [35] re-

pectively. As for the interpolation process, either linear or cubic

pline method is used to resample the HRV data to certain fre-

uency (4 Hz or 7 Hz) [36] . The methodology and reason for op-

imizing these 3 pre-processing steps with the proposed algorithm

re discussed in Section 3.5.2 . 

.3. HRV feature extraction 

Fifty-three well-established HRV features are extracted using

ime-domain, frequency domain and non-linear analysis [37] . Their
bbreviations are listed in Table A.1 and explained in the follow-

ng sub-sections. It should be noted that, they are one or more in-

ut parameters for the feature extraction algorithms that belong

o frequency domain and non-linear analysis. In this paper, these

arameters are optimized by the proposed optimization algorithm,

hat is discussed in Section 3.5.2 . However, the recommended val-

es for the parameters are also presented because they are used

uring the result analysis in Section 4 . 

.3.1. Time domain features 

Six time-domain HRV features are computed by using statisti-

al analysis. They are the mean of HRV (Mean), standard deviation

f HRV (SDRR), root mean square of successive difference intervals

RMSSD), number of adjacent RR intervals differing by more than

0 ms (NN50), and sum of NN50 divided by the total number of

ll RR intervals (pNN50). RR triangular index (RRTri) [37] is also

xtracted as a geometric feature. It is defined as total number NN

ntervals divided by number of RR intervals that fall to modal bin. 

.3.2. Spectral features 

The total spectral power in low frequency (LF) band (0.04–0.15)

nd high frequency (HF) band (0.15–0.4 Hz) of the power spectral

ensity (PSD) can be related to the sympathetic and parasympa-

hetic activities of the autonomic nervous system respectively [14] .

n this paper , both auto-regressive (AR) model [10] and fast Fourier

ransforms (FFT) [11] are used to estimate the PSD. Three features

re computed from each estimation method. They are total spectral

ower in LF band, HF band, and ratio of LF to HF. 

The coefficients of AR model are estimated with burg method,

nd it has one input parameter: order of the model. The order is

et to 16 based on the recommendation in [38] . As for the FFT,

he HRV data segment is multiplied with the temporal smoothing

indow function before the PSD is estimated. The default window

unction is rectangular window. Furthermore, each estimated PSD

s normalized before the HRV features are extracted. 

.3.3. Bispectrum features 

Higher order spectral (HOS) analysis has been used to estimate

he bispectrum in the recent HRV analysis based research [8,10,19] .

n this paper, HOS up to third-order cumulant is employed to es-

imate the bispectrum from HRV data. The estimation is based on

he direct method described in [39] . The HRV data is divided into

everal segments with each segment contains 512 data points with

0% overlapping. After that, each segment is smoothed by rectan-

ular window, and zeroes are padded at the end the segment if

he segment data length is not power of 2. Then, FFT is applied to

ach segment for computation of the bispectrum. 

Bispectrum of HRV signal can be divided into 3 subband re-

ions inside region of interest (ROI) according to Yu and Lee [19] .

hey are LF–LF (LL), LF–HF (LH), and HF–HF (HH) regions which

over different ranges of frequencies. Formulas in [19,40] are em-

loyed to compute bispectrum features from each subband region

nd ROI. These features include mean magnitude ( M ave ), mean of

um of squared magnitude ( P ave ), normalized bispectral entropy

P1), normalized bispectral squared entropy (P2), sum of logarith-

ic amplitudes of the bispectrum (H1), sum of logarithmic ampli-

udes of diagonal elements in bispectrum (H2), first-order spectral

oment of the amplitudes of diagonal elements in the bipsectrum

H3), Second-order spectral moment of the amplitudes of diagonal

lements in the bispectrum (H4), weighted center of the bipsec-

rum, WCOB ( f 1 m 

, f 2 m 

). For LH region, H2, H3 and H4 are not com-

uted because the diagonal elements are not existed. 

.3.4. Nonlinear dynamics features 

Poincare plot and sample entropy are used to extract non-linear

eatures from HRV data. Poincare plot is drawn by plotting each
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Algorithm 1 Proposed optimization algorithm. 

1: Input: p c , p m , N , M , d 1 , d 2 , GEN MAX 

2: Output: F 1 when t = GEN MAX 

3: t = 0 

4: Z r = Initialize-reference − point ( M , d 1 , d 2 ) 

5: P t = Initialize-population() 

6: repeat 

7: S t = ∅ , i = 1 

8: Q t = Generatic-operation ( P t ,p c ,p m ) 

9: if t = 0 then 

10: V t = P t ∪ Q t 
11: else 

12: V t = Q t 
13: end if 

14: //———————————————————————————————

15: //Proposed Fitness Evaluation Stage 

16: HRV-feature-extraction ( V t ) 

17: Statistical-performance-evaluation ( V t ) 

18: Local-search-operation ( V t ) 

19: Duplication-handling ( V t ) 

20: Prediction-performance-evaluation ( V t ) 

21: Feature-count-evaluation( V t ) 

22: //———————————————————————————————- 

23: if t = 0 then 

24: R t = V t 
25: else 

26: R t = V t ∪ P t 
27: end if 

28: Fronts: ( F 1 , F 2 , . . .) = NDS( R t ) / 
∗Non-dominated sorting ∗/ 

29: repeat 

30: S t = S t ∪ F i and i = i = 1 

31: until | S t | ≥ N 

32: Last front to be included: F l = F i 
33: If | S t | = N then 

34: P t + 1 = S t , break 

35: else 

36: P t+1 = ∪ l−1 
j=1 

F j 

37: Number of individuals to be chosen from F l : K = N − | P t + 1 | 
38: Normalize ( S t , f 

n ) 

39: [ π ( s ), d ( s )] = Associate ( S t ,Z 
r ) / ∗Associate each s ∈ S t with a reference point ∗/ 

/ ∗ π ( s ): closest reference point ∗/ 

/ ∗ d ( s ): distance between s and π ( s ) ∗/ 

40: ρ j = 

∑ 

s ∈ S t / F l ( π( s ) = j?1 : 0 ) / ∗Compute niche count of reference point j ∈ Z r ∗/ 

41: Niching ( K , ρ j , π ( s ), d ( s ), Z r ,F l ,P ( t + 1) ) / ∗Choose K members one at a time from F l to construct P t + 1 ) ∗/ 

42: end if 

43: t = t + 1 

44: until t = GEN MAX 

45: Fronts: ( F 1 , F 2 , . . .) = NDS-without − statistic − fitness( P t ) 
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RR interval against next RR interval. Three features are computed

from the Poincare plot. They are denoted by SD 1, SD 2 and the ratio

SD 1/ SD 2 [37] . Sample entropy (SampEn) is a statistic measure that

quantifies the regularity of times series data. The method proposed

in [31] is used to compute the SampEn of the HRV signal. Based on

the recommendation in [41] , the input parameters are set as fol-

lows: embedding dimension, m = 2 and tolerance distance, r = 0.2. 

3.4. Classification: support vector machine (SVM) 

The support vector machine (SVM) algorithm based on the

statistical learning theory was proposed by Chang and Lin [31] .

SVM maps the training samples from the input space to higher-

dimensional features space via a kernel function. Product between

vectors of training sample is used to generate a hyper-plane that

can separate two classes. Optimization process of SVM classifier is

aimed to find the optimal hyper-plane that maximizes the distance

between training samples of two classes. The largest distance to

the support vectors (training samples that is closest to the hyper-

plane) is so-called functional margin. Larger functional margin in-

dicates the generalization error of the classifier is lower. 

In this paper, SVM is used as supervised classifier to classify the

HRV segments to either “NORMAL” (segment that at least 45 min
istant from the PAF event) or “ABNORMAL” (segment that imme-

iately precede the PAF event). Input of the SVM is the HRV fea-

ures that are extracted during the feature extraction stage. The ra-

ial basis function (RBF) is used as the kernel function for SVM. Pa-

ameters of kernel function–kernel width γ and penalty constant

 –are optimized by NSGA-III to achieve the best result. 

.5. Proposed optimization algorithm 

Algorithm 1 shows the proposed optimization method that is

eveloped based on the non-dominated sorting genetic algorithm

II (NSGA-III) [25] . The optimization procedure is similar to the

riginal NSGA-III except the chromosome design, fitness evaluation

tage, genetic operators and other some minor modifications. 

There are 7 input parameters for the proposed optimization al-

orithm: (1) M that specifies number of fitness functions, (2) d 1 

nd d 2 that specify number of divisions for boundary layer and in-

ide layer respectively during the two-layer reference point gener-

tion process, (3) population size N that specifies the size of the

opulations denoted by P t and Q t , (4) crossover rate p c and muta-

ion rate p m 

that control the probability of genetic operation, and

5) maximum generation GEN MAX that limits the maximum num-

er of iterations for the optimization process. The output of the
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Algorithm 2 Normalization ( S t ,f 
n ). 

1: Input: s ∈ S t / ∗chromosome s ∗/ 

2: Output: f n / ∗Normalized vector ∗/ 

3: for j = 1 to M do 

4: Compute ideal point: z min 
j 

= mi n s ∈ S t f j (s ) 

5: Compute the maximum point: z max 
j 

= ma x s ∈ S t f j (s ) 

6: Translate objectives: f n 
j 
(s ) = 

f j (s ) −z min 
j 

z max 
j 

− z min 
j 

∀ s ∈ S t / ∗ f n 
j 

is a normalized j th objective value of a chromosome s ∗/ 

end for 

Fig. 3. Chromosome design. 
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roposed optimization algorithm is the chromosomes (Pareto opti-

al solutions) that are belong to the front F 1 of population P t at

he end of the optimization. 

Like in the original NSGA-III, two-layer reference points denoted

y the Z r are generated according to the Das and Dennis approach

42] . The initialization function takes the input parameters M , d 1 

nd d 2 . The parent population P t = 0 with population size N are also

andomly initialized. Then, two-point crossover and bit-flip muta-

ion operators [29] are applied to P t for producing the offspring

opulation Q t with same population size N . The crossover and mu-

ation rates are determined by p c and p m 

respectively. 

After that, both population P t and Q t are combined to formed

he population set V t if generation t = 0. Otherwise, V t only con-

ists of offspring population Q t . The population V t sequentially goes

hrough the different stages of fitness evaluation: HRV feature ex-

raction, statistical performance evaluation, local search operation

LSO), duplication handling, prediction performance evaluation and

eature count evaluation. After the fitness evaluation stage, R t is

ssigned V t if generation t = 0. Otherwise, it consists of both V t 

nd P t . Then, all chromosomes in the population R t are sorted into

ifferent non-domination levels called fronts ( F 1 , F 2 ,…) using the

ominance principle [25] . A new population S t is constructed by

electing individuals from different fronts ( F 1 , F 2 ,…) until the size

f S t is equal to N or greater than N for the first time. The last

ront ( F i ), which is assigned to S t , is denoted by front F l . 

After that, P t + 1 is assigned S t if the number of individuals in

 t is exactly equal to N . Otherwise, P t + 1 is formed by the chro-

osomes from front F 1 up to F l − 1 . In this case, they are still K

hromosomes need to be chosen from front F l to fill the P t + 1 un-

il | P t + 1 | = N . The K chromosomes are chosen based on a series of

perations, which are adaptive normalization, association and nich-

ng. Except the normalization process in line 38, the procedures of

lgorithm 1 from line 36 to 41 are same as the original NSGA-III

25] . The mix-max normalization proposed by Yuan et al. [43] is

dopted to normalize the fitness vector of every chromosome that

elong to set S t . This process is summarized in Algorithm 2 . The

rocedure above is repeated until GEN MAX . After that, the function

DS-without-statistic-fitness is applied to P t in order to obtain the

olutions that belong to front F 1 . 

.5.2. Chromosome design 

The structure of the proposed chromosome design is shown in

ig. 3 . The parameters and settings of the HRV based arrhythmia

rediction system are encoded into binary digits in the chromo-

ome for optimization. The chromosome contains 135 bits that can

e divided into 10 different segments. 

The feature set segment is a 53-bit binary string that represents

he selected HRV feature subset for a chromosome. Each bit in the
egment represents the feature selection status of one HRV feature.

he bit “1” indicates selection while “0” represents the deletion of

he specific feature from the feature set. 

The last 2 segments are two 20-bit binary strings that represent

he encoded value of the parameters C and γ respectively for the

VM model. The remaining seven segments, which are in the mid-

le of a chromosome, represent various parameters and settings

or 7 different HRV feature extraction algorithms. Each of them is

xplained in Table 1 . 

Firstly, some of the binary digits in the Table 1 are used to con-

rol the behavior of the heart rate correction, interpolation and sig-

al detrending in the pre-processing stage of the baseline predic-

ion system (refer to Fig. 2 ). Two separate bits are used to decide

hether the heart rate correction and detrending are performed

n the HRV data respectively. As for the interpolation process, 2

ifferent bits are used to control its behavior. One of them is used

o determine either linear or cubic spline method is chosen to re-

ample (interpolate) the HRV data. Another one is used to select

he resampling frequency (either 4 Hz or 7 Hz). 

The heart rate correction enabling status is important because

he abnormal heart rate may contain the required information to

redict the arrhythmia event. In previous works [5–7] , authors

ounted the number of the occurrence of premature atrial contrac-

ions (PACs) (a type of arrhythmia) in the ECG signal. The counted

umber was used to predict the PAF onset. The occurrences of the

rrhythmia cause the abnormal heart rates in the time series HRV

ata. Therefore, the abnormal heart rate prior to the PAF onset may

e useful for the PAF onset prediction. These abnormal heart rates

re eliminated when the heart rate correction algorithm is applied.

s for the interpolation and detrending, they can influence the en-

rgy value of the power spectrum estimated by frequency domain

lgorithms. 

For sample entropy analysis, the parameter values of the em-

edding dimension and tolerance distance are tuned by the pro-

osed algorithm. Their values are set to integer range of 1–4 and

oating point range of 0.1–0.5 respectively according to Lake et al.

44] . Furthermore, the order of the auto-regressive (AR) model is

lso set to integer range of 6–32 based on the investigation in

nita et al. [38] . In both fast Fourier transform (FFT) and higher or-

er spectral (HOS) analysis, one type of temporal smoothing win-

ow function is selected among 8 different types of window func-

ion when the spectral analysis is performed. They are Rectangu-

ar, Parzen, Hanning, Hamming, Blackman, Blackman Harris, Welch,

nd Barlette window. Furthermore, one bit denoted by “FFT seg-

entation” in the Table 1 is used to decide whether regular FFT or

elch based FFT is chosen for performing the Fourier transform.

esides that, there is one extra bit that controls whether the PSD

stimated by the AR and FFT are normalized to between 0 and 1

efore the related HRV features are computed. Finally, the segmen-
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Table 1 

Definition of the chromosome representation. 

Feature extraction 

algorithm 

Algorithm parameters Bit 

length 

Representation 

1 Time domain • Heart rate correction enabling 1 bit • ‘0’ represents disabling while ‘1’ represents enabling of the ectopic beat 

correction. 

2 RR Triangular Index • Heart rate correction enabling 1 bit • ‘0’ represents disabling while ‘1’ represents enabling of the ectopic beat 

correction. 

3 Poincare plot • Heart rate correction enabling 1 bit • ‘0’ represents disabling while ‘1’ represents enabling of the ectopic beat 

correction. 

4 Sample entropy • Heart rate correction enabling 1 bit • ‘0’ represents disabling while ‘1’ represents enabling of the ectopic beat 

correction. 

• Embedding dimension 2 bit • Represent an integer value within the range of 1–4. 

• Tolerance Distance 7 bit • Represent a floating value within the range of 0.1–0.5. 

5 Auto Regressive (AR) 

analysis 

• Heart rate correction enabling 1 bit • ‘0’ represents disabling while ‘1’ represents enabling of the ectopic beat 

correction. 

• Heart rate detrending 

enabling 

1 bit • ‘0’ represents disabling while ‘1’ represents enabling of the detrending. 

• Interpolation method 1 bit • ‘0’ represents linear interpolation while ‘1’ represents cubic spline 

interpolation. 

• Resampling frequency 1 bit • ‘0’ represents 4 Hz while ‘1’ represents 7 Hz. 

• Order of model 5 bits • Represent an integer value within the range of 6–32. 

• Normalization of AR spectrum 1 bit • ‘0’ represents no normalization while ‘1’ represents the spectrum is 

normalized by the maximum value of AR spectrum. 

6 Fast Fourier Transform 

(FFT) 

• Heart rate correction enabling 1 bit • ‘0’ represents disabling while ‘1’ represents enabling of the ectopic beat 

correction. 

• Heart rate detrending 

enabling 

1 bit • ‘0’ represents disabling while ‘1’ represents enabling of the detrending. 

• Interpolation method 1 bit • ‘0’ represents linear interpolation while ‘1’ represents cubic spline 

interpolation. 

• Resampling frequency 1 bit • ‘0’ represents 4 Hz while ‘1’ represents 7 Hz. 

• Temporal smoothing window 

function 

3 Bit • Represents 8 types of symmetric smoothing window function. 

• They are Rectangular, Parzen, Hanning, Hamming, Blackman, Blackman 

Harris, Welch and Barlette. 

• FFT segmentation 1 Bit • ‘0’ represents normal FFT while ‘1’ represents welch based FFT with 50% data 

segment overlap. 

• Normalization of FFT 

spectrum 

1 bit • ‘0’ represents no normalization while ‘1’ represents the spectrum is 

normalized by the maximum value of FFT spectrum. 

7 Higher Order Spectral 

(HOS) analysis 

• Heart rate correction enabling 1 bit • ‘0’ represents disabling while ‘1’ represents enabling of the ectopic beat 

correction. 

• Heart rate detrending 

enabling 

1 bit • ‘0’ represents disabling while ‘1’ represents enabling of the detrending. 

• Interpolation method 1 bit • ‘0’ represents linear interpolation while ‘1’ represents cubic spline 

interpolation. 

• Resampling frequency 1 bit • ‘0’ represents 4 Hz while ‘1’ represents 7 Hz 

• Temporal smoothing window 

function 

3 bit • Represents 8 types of symmetric smoothing window function. 

• They are Rectangular, Parzen, Hanning, Hamming, Blackman, Blackman 

Harris, Welch and Barlette. 

• Segmentation size 1 bit • ‘0’ represents 256 samples per segment while ‘1’ represents 512 samples per 

segment. 

• Zero-padding size for the 

segmented data. 

1 bit • ‘0’ represents the padding size is equal to segmentation size while ‘1’ 

represents twice of the segmentation size. 

• Overlapping of the segmented 

data 

1 bit • ‘0’ represents no overlapping in the segmented data while ‘1’ represents 50% 

overlap of the segmented data. 
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tation size, zero-padding size and overlapping of the segmented

data are also determined for the HOS analysis. 

In the proposed chromosome design, the real number R of a

parameter that is encoded into binary string p (that has more than

1 bit) can be computed as: 

R = mi n p + 

ma x p − mi n p 

2 

l − 1 

× d (1)

where d is decimal value of binary string p , max p is maximum

value of parameter, min p is minimum value of parameter, l is

length of binary string p . The max p and min p for each real num-

ber parameter shown in Table 1 are different. They are set accord-

ing to their minimum and maximum value of the specified integer

or floating point range. As for the SVM parameters C and γ , their

minimum and maximum value are set to 0.1 and 10 0 0 respectively.
.5.3. Fitness evaluation stage 

The proposed fitness evaluation stage consists of HRV feature

xtraction, statistical performance evaluation, local search opera-

ion, duplication handling, prediction performance evaluation and

eature count evaluation. Before entering the fitness evaluation

tage, the duplicate chromosomes from population Q t are identi-

ed by comparing them to all chromosomes from P t and Q t . The

tness evaluation of these duplicate chromosomes are skipped and

eserved until they are modified by duplicate handling process

line 19 of Algorithm 1 ). The detail of the duplicate chromosome

s explained in Section 3.5.3.4 of this section. 

.5.3.1. HRV feature extraction. During the HRV feature extraction

tage, for every chromosome that belong to the set V t (referring to

lgorithm 1 ), 53 HRV features in Table A.1 are extracted based on

he decoded parameter values and settings. These parameter values

re presented in Table 1 , and decoded based on the Eq. (1 ). After
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he feature extraction process, all HRV features are fed to statistical

erformance evaluation stage. 

.5.3.2. Statistical performance evaluation. The Mann–Whitney U

est is a non-parametric method used to test whether two in-

ependent samples of observations are drawn from the same or

dentical distributions. Perez et al. [45] proposed a feature selec-

ion method called uFilter method, which is based on the Mann-

hitney U test, for single-objective optimization: feature selection.

t is a standalone algorithm that evaluates the quality of a feature.

n their work, the statistic value denoted by w i was computed for

ach feature. Then, top 20 features (with highest statistic values

 i in descending order) were selected to form a feature set. This

eature set was fed to the classification models for training and

esting. 

In this paper, the uFilter method is used to evaluate the HRV

eatures of each chromosome for two optimization objectives: (1)

o optimize the parameters and settings that belong to HRV fea-

ure extraction algorithms, and (2) to be used as an evaluation cri-

erion in the local search operation (LSO). In the former objective,

he optimization is achieved by minimizing the sum of the statistic

alues of all HRV features. It is computed as: 

um of statistic value = −
53 ∑ 

i =1 

w i (2) 

here w i is the absolute value of numerical difference between

 NORMAL and Z ABNORMAL for i th feature (one of the 53 HRV features).

he algorithm that computes the w i , Z NORMAL and Z ABNORMAL can be

ound in [45] . The Z NORMAL is the Z-indicator of feature values that

re extracted from HRV segments with the class label of “NOR-

AL”, while the Z ABNORMAL is the Z-indicator of feature values ex-

racted from HRV segments with the class label of “ABNORMAL”.

hese two class labels are explained in Section 3.1 . 

.5.3.3. Local search operation (LSO). In this paper, the local search

peration (LSO) is developed based on the hybrid feature selection

rocess of the simple GA proposed by Huang and Rong [30] . The

bjectives of proposed LSO are: (1) to remove the non-significant

eatures from the feature subset in the chromosome so that only

he good features are retained. (2) to maintain the minimum num-

er of selected significant features in the chromosome after the

emoval process. The “significant feature” is the feature that can

ass the evaluation criterion: two tailed Mann-Whitney U test at

0% significance level. Otherwise, it is referred as “non-significant

eature”. 

Fig. 4 shows the flow chart of the proposed LSO. Initially, the

RV features, which are selected within the feature subset seg-

ent of the chromosome, are examined. The non-significant fea-

ures are removed from the feature subset. This approach was used

n [8] for manually removing the features that could not pass the

 test before the simple GA was applied for feature selection. 

After the above removal process, the chromosome is updated to

eflect the changes. Then, the minimum number of selected signif-

cant features is evaluated. If the number equal or more than the

nteger number of 3 (denoted by “min_num” in the Fig. 4 ), the LSO

s ended. Otherwise, the handling process is started to increase the

eature count to 3. In the handling process, the first step is to ex-

mine whether there is enough number of significant features for

he selection. If it is enough, then one additional unselected signif-

cant feature is randomly selected and added to the feature sub-

et. Otherwise, the chromosome goes through the mutation oper-

tion (genetic operation), HRV feature extraction stage and statis-

ical evaluation stage again. Finally, the LSO is applied to this new

hromosome. The handling process is repeated until the chromo-

ome has same or more than the minimum number of significant

eatures. 
.5.3.4. Duplication handling. Duplicate chromosome is the cre-

tion of the same chromosome that has been evaluated before the

urrent generation during the GA optimization process. It causes

he computation wastage due to the redundant evaluation of du-

licate chromosomes [46] . 

In this paper, the duplicate handling process is proposed to

andle (remove and replace) the duplicate chromosome. It is de-

eloped based on the method proposed by Saroj and Devraj [46] .

hey modified the duplicate chromosomes when there was a same

hromosome exists in the one previous and the most current gen-

rations of the simple GA. Their results showed that the optimiza-

ion performance of the simple GA was improved. Therefore, the

ame concept is applied to the proposed optimization algorithm

n this paper because by default, the NSGA-III stores the previous

opulation (population P) and current population (population Q) in

ne generation. 

Fig. A.1 shows the flow chart of the proposed duplicate han-

ling process. The algorithm can be divided into 3 main parts:

dentifying stage, modification stage, and genetic operation stage.

n the identifying stage, the binary digit pattern of a chromosome

s compared against all the chromosomes in population P t and Q t .

f its binary digit pattern is unique, the duplication handling pro-

ess is ended. Otherwise, the chromosome is fed to the modifica-

ion stage. 

In the modification stage, the content of the duplicate chromo-

ome is modified so that it become unique among the population.

hen a chromosome enters this stage for the first time, its status

epresented by Duplication_Code is set to “0". Then, if the num-

er of selected significant features in the feature subset is equal to

otal number of significant features (sum of both selected and un-

elected features in a chromosome), the duplicate chromosome is

ed to reset route (by setting Duplication_Code to (1). If the num-

er of selected significant features is equal to minimum number

f features denoted by “min_num”, it will go to set route (by set-

ing Duplication_Code to (2). If neither of the conditions is met,

hen it is randomly fed to either set route or reset route. In the

eset route, if the number of selected significant features greater

han min_num, then one of the significant features in the feature

ubset of the chromosome is removed. Otherwise, the chromosome

s fed to genetic operation stage. In the set route, if the number

f selected significant features is less than total number of signifi-

ant features, then one of the unselected significant features is ran-

omly selected and added to the feature subset. 

In the genetic operation stage, the first step is to find whether

here is another new but different duplicate chromosome exists.

f it exists, both crossover and mutation operators are applied to

he modify both duplicate chromosomes. Otherwise, only mutation

perator is applied to the current duplicate chromosome. The pro-

ess in the genetic operation stage is repeated until the chromo-

ome(s) becomes unique. Then, they are fed to HRV feature extrac-

ion stage, statistical performance evaluation, and local search op-

ration. Finally, the duplicate handling process is repeated if nec-

ssary. 

Several considerations are taken into account when developing

he duplicate handling process. Firstly, the duplicate handling pro-

ess is placed after the LSO because the duplicate chromosomes

an be formed not only due to the genetic operation, but also due

o the LSO. Secondly, HRV feature extraction process is avoided as

uch as possible during the handling process because it is the

ost computation intensive part of the algorithm. Therefore, the

odification stage only alters the feature subset segment of the

uplicate chromosome. The parameters and settings of HRV fea-

ure extraction algorithms are only modified in genetic operation

tage. 
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Remove non-significant features from
chromosome

Number of selected significant
feature < min_num?

Total number of unselected and selected
significant features >= min_num?

Yes

Repairing: Randomly select a significant feature in the
chromosome

Number of selected significant features
= min_num?

No

Yes

Genetic mutation
operation

HRV feature extractionStatistical performance evaluation

No

No

Local search operation (LSO) starts

Local search operation (LSO) ends

Yes

Fig. 4. Flow chart of the local search operation (LSO). 
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3.5.3.5. Prediction performance evaluation. The prediction perfor-

mance of each chromosome is evaluated. Initially, the chromosome

is decoded in order to determine the selected feature subset, and

the values of SVM parameters (penalty constant C and gamma γ ).

After that, the selected HRV features are taken from the training

dataset to train SVM model by using the decoded SVM parame-

ter values. The trained classifier is then evaluated with the testing

dataset. Sensitivity (SEN), specificity (SPE), and accuracy (ACC) are

used to measure the prediction performance. They are defined as

follows: 

SEN = 

T P 

T P + F N 

(3)

SP E = 

T N 

T N + F P 
(4)

ACC = 

T P + T N 

T P + T N + F P + F N 

(5)

where TP is number of abnormal event (arrhythmia is occurred)

that is correctly predicted, TN is number of normal event (No ar-

rhythmia is occurred) that is correctly predicted, FN is number of

arrhythmia event that is incorrectly predicted as normal event, FP

is number of normal event that is incorrectly predicted as arrhyth-

mia event. 

10-fold cross validation is applied to evaluate the proposed

method. 10 ECG recordings (5 distant and 5 prior to onset of PAF

event) are selected as testing set to measure the performance of

classifier while remaining recordings (96 recordings) are used to

train the classifier. This procedure is repeated over 10 times in or-

der to cover entire database. In the 10th evaluation of 10-fold cross

validation, training set contains 90 ECG recordings and testing set

contains 16 ECG recordings. Then, average SEN, SPE and ACC are

calculated as the measures for classification performance. Training

set and testing set are subject independent (belong to different pa-

tient). Since it is well known that GA suffers from local optima is-

sue, the optimization is repeated 5 times and the best results are

selected for performance analysis. 
.5.3.6. Feature count. In the proposed optimization algorithm, the

eature count is defined as the number of HRV features that are se-

ected in a feature subset. The feature count is optimized by mini-

izing the fitness value given by: 

eature count = 

N ∑ 

i =1 

F i (6)

here F i is ‘1’ if i th feature is selected and ‘0’ if not selected, and

 is the total number of features (regardless the feature is selected

r not) in the feature set segment of the chromosome. The N is set

o 53 for this paper. 

.5.3.7. Non-dominated sorting (NDS). During the non-dominated

orting (NDS) (line 28 of the Algorithm 1 ), the chromosomes

re divided and assigned to different sets (represented F 1 , F 2 ,…)

25] starting from F 1 . Each set F i contains a group of solutions that

re not dominated to each other. The dominance operator denoted

y “≺” is the standard symbol for representing the dominance rela-

ionship between two chromosomes. Assume that there is a min-

mization problem, the p ≺q represents that the chromosome p is

aid to strictly dominate another chromosome q , if and only if the

 i ( p ) ≤ z i ( q ) for i = 1, ..., M and z i ( p ) < z i ( q ) for at least one fitness

unction indexed by i , where M is total number of fitness functions,

nd z i ( p ) represents i th fitness value of the chromosome p . 

In this paper, five fitness functions are proposed for the opti-

ization process. They are sum of statistic value ( Eq. (2 )), predic-

ion sensitivity ( Eq. (3 )), prediction specificity ( Eq. (4 )), prediction

ccuracy ( Eq. (5 )), and feature count ( Eq. (6 )). To fit into the above-

escribed dominance operator ≺, some maximization fitness func-

ions are turned into minimization fitness function by multiplying

ach of them with a −1.0. These functions are sensitivity, speci-

city, and accuracy rate. The remaining fitness functions are mini-

ization functions by default. 

The procedure of the NDS-without-statistic-fitness (line 45 of

he Algorithm 1 ) is same as the process in NDS. However, there is

ne minor difference between them: the operation in dominance
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Table 2 

Performance comparison between typical feature 

selection method and the proposed optimization 

method for PAF onset prediction. 

Method Performance 

SEN SPE ACC NF 

Typical Method 88.7 66.0 77.4 4 

Proposed Method 86.8 88.7 87.7 7 
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perator “≺”. The solutions in fronts F i , which are produced by the

DS-without-statistic-fitness(), are non-dominated to each other

ith respect to all proposed fitness functions except the Eq. (2 ). In

ontrast, the solutions produced by the NDS() are non-dominated

o each other with respect to all fitness functions. It is because this

aper is interested in analyzing the prediction performance of the

olutions. 

. Results and discussion 

.1. Performance comparison between the typical method and the 

roposed optimization algorithm 

In this section, the performance difference between the PAF on-

et prediction systems (solutions), which are optimized by the pro-

osed algorithm and the typical GA based feature selection method

espectively, is investigated. 

The detail of the proposed optimization algorithm is described

y the Algorithm 1 . The input parameters of the algorithm are

et as follows: N = 212, p c = 0.7, p m 

= 0.1, M = 5, d 1 = 6, d 2 = 0,

EN MAX = 10 0 0. As for the typical GA based feature selection

shown in Fig. 1 ), the optimization methodology from [8] is em-

loyed for selecting the optimal feature subset and tuning the SVM

arameters. The procedure of this method can be summarized as

ollows: Firstly, the same 53 HRV features are extracted based on

he pre-defined HRV parameter values and settings (which are ex-

lained in the Section 3.2 and 3.3 ). After that, each HRV feature is

valuated with two tailed Mann-Whitney U test. Only the features

hat can pass the U test at 20% significance level are selected and

sed to form a significant feature set. Finally, the simple GA fea-

ure selector is applied to this significant feature set for selecting

est feature subset. It should be noted that, unlike the proposed al-

orithm in this paper, the HRV parameters and settings in typical

ethod are not tuned. Therefore, the HRV feature extraction pro-

ess is performed one time only since the parameter values and

ettings are same for every chromosome. 

Each method is repeated 5 times with different initial popula-

ions. After that, the best solution represented by a chromosome

s selected from each method for performance analysis. Table 2

ompares the prediction performance between the prediction sys-

ems that are optimized by typical feature selection method and

he proposed optimization algorithm respectively. With typical

ethod, the PAF onset prediction system achieves accuracy rate of

7.4%. The accuracy rate of the prediction system is improved by

0.3% when it is optimized by proposed algorithm. The prediction

erformance improvement is achieved because the proposed algo-

ithm simultaneously optimizes all stages of the arrhythmia pre-

iction system, while the typical method only optimizes the fea-

ure subset and SVM classifier parameters. 

The higher prediction performance can also be attributed to

ore number of HRV features can pass the Mann–Whitney U test.

able 3 shows the HRV features that able to pass the two tailed

 test at 5%, 10% and 20% significance levels for typical method

nd proposed method. In typical method, only 10 HRV features can

ass the U test up to 20% significance level. In contrast, the num-

er is improved to 32 when the proposed optimization algorithm
s used, and majority of them pass the 5% significance level. The

mprovement is achieved because the proposed optimization algo-

ithm explicitly tunes the HRV parameter values and settings for

mproving the statistic value of each HRV feature by minimizing

he fitness value of Eq. (2 ). Furthermore, in Table 3 , it is observed

hat all significant features from the typical method also re-appear

s the significant features from the proposed method, except the

H-WCOB( f 2 m 

). Finally, Table A.2 shows the difference between the

re-defined and optimized values for the parameters and settings

f HRV feature extraction algorithms. 

When the number of features that pass the U test increases,

he NSGA-III has opportunity to explore and evaluate more combi-

ation of HRV features [8] . This leads to higher possibility in ob-

aining the optimal feature set with higher accuracy. However, only

0 HRV features are available for typical method while 32 HRV fea-

ures are available for the proposed optimization algorithm. 

In addition to the prediction performance, Table 2 shows that

lthough the optimal subset selected by typical method has lower

better) feature count than proposed method, but at the expense of

ignificant lower accuracy rate. The typical method selects 4 fea-

ures (out of 10 HRV features) to form the feature subset, which

educes the feature count by 60%. The selected features are AR-LF,

L-H2, LL-H3, ROI-H2. In contrast, the proposed method selects 7

eatures (out of 32 HRV features), which reduces the feature count

y 78%. The selected features are NN50, pNN50, SampEn, SD2, AR-

F, LL-H1, ROI-WCOB ( f 2 m 

), and all of them can pass the U test at

% significance level. 

.2. Trade-off between performance metrics 

In the typical feature selection method based on the simple GA

with weighted sum approach), each GA run returns a single so-

ution. Therefore, the typical method in Section 4.1 only gives a

olution that has highest accuracy rate. In contrast, with the pro-

osed NSGA-III based optimization algorithm, multiple solutions

hat have different degree of trade-off between the performance

etrics can be obtained in a single optimization run. 

Table 4 shows the prediction sensitivity, specificity, accuracy

ate and feature count of the Pareto optimal solutions. These solu-

ions are obtained from the same optimization run that gives the

est solution in Table 2 . It should be noted that these solutions are

nly a portion of the Pareto optimal solutions given by the output

f Algorithm 1 . These solutions are selected for analysis because

hey have highest prediction sensitivity at certain specificity rate,

r vice versa. 

Table 4 shows that the sensitivity of the solutions can be im-

roved, but at the expense of lower specificity rate. For example,

rom solution 1 to 10, the sensitivity rate increases from 43.4 to

00%, while the specificity rate decreases from 96.2% to 26.4%. On

he other hand, the accuracy rate increases from solution 1, peaks

t 5, and then decreases until solution 10. Unlike sensitivity and

pecificity, the changes in accuracy rate does not show either in-

reasing or decreasing trend. It is because the increment (or decre-

ent) in sensitivity rate may outpace the decrement (or incre-

ent) in specificity rate. 

The solution 5, which has the highest accuracy rate among the

areto optimal solutions, is used for comparison in Table 2 and

enchmarking in Table 5 . Furthermore, the accuracy rate of solu-

ion 1, 2 and 10, which have the best sensitivity or specificity rate,

re significant lower than 80% (that is achieved by other solutions

n Table 4 ). It shows that even the sensitivity can be improved over

ertain threshold value, a significant trade-off is needed in speci-

city, or vice versa. 
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Table 3 

HRV features that able to pass the two tailed U test up to 20% significance level for PAF onset. 

Significance Level HRV feature 

typical method Proposed method 

5% AR-LF, FFT-LF, LL-H2, LL-H3, LL-H4, HH-WCOB( f 1 m ), 

HH-WCOB( f 2 m ) 

SDRR, RMSSD, NN50, pNN50, SampEn, SD1, SD2, AR-LF, AR-HF, FFT-LF, FFT-HF, LL- M ave , 

LL- P ave , LL-H1, LL-H2, LL-H3, LL-H4, LH-P1, LH- M ave , LH- P ave , LL-H1, ROI-P1, ROI-P2, 

ROI- M ave , ROI- P ave , ROI-WCOB( f 2 m ), ROI-H1 

10% – LL-P1, LH-P2 

20% FFT-HF, LL- M ave , ROI-H2 HH-H1, ROI-WCOB( f 1 m ), ROI-H2 

Table 4 

Trade-off between sensitivity, specificity, accuracy rate and fea- 

ture count. 

Solution SEN (%) SPE (%) ACC (%) Feature count 

1 43.4 96.2 69.8 4 

2 45.3 94.3 69.8 4 

3 75.5 92.5 84.0 7 

4 83.0 90.6 86.8 6 

5 86.8 88.7 87.7 7 

6 90.6 81.1 85.9 5 

7 92.5 79.3 85.9 5 

8 94.3 71.7 83.0 3 

9 98.1 60.4 79.3 5 

10 100.0 26.4 63.2 5 

Fig. 5. Average number of the duplicate chromosomes for 5 optimization runs 

without handling at generation t . 
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4.3. Duplicate chromosomes 

The results in this section show that high number of dupli-

cates chromosomes are formed when NSGA-III is adapted for opti-

mization in this paper. It wastes the computation resource and in-

creases the optimization time when these duplicate chromosomes

are re-evaluated. Fig. 5 shows the average number of duplicates

for successive NSGA-III generations when they are not handled by
Table 5 

Benchmarking of proposed method against previous works using less than 15 min o

Previous Work Signal length (Min) Feature extraction meth

Boon et al. 2016 [8] 15 HRV Features 

10 HRV Features 

Yang and Yin, 2001 [12] 10 HRV based Footprint An

Hickey and Heneghan, 2002 [6] 10 Spectral based HRV feat

5 Spectral based HRV feat

Proposed Method 5 HRV Features 

Note: CV: Cross validation 
he duplicate chromosome handling process. The average number

s computed by summing and averaging the number of duplicates

n each generation of 5 different optimization runs. 

First of all, the line denoted by “Duplicate 1" is the number of

uplicate chromosomes found by comparing each chromosome to

ther chromosomes within the population P t only. For example, if

hey are 4 chromosomes that have same binary pattern within the

opulation P t , the count is increased by 3 (4 − 1). Fig. 5 shows that

he average number increases from 0 to around 60 within 50 gen-

rations, and then remains around that number (within range of

10) in the following generations. It represents approximately 28%

f the chromosomes in population P t that has total size of 212.

nother line denoted by “Duplicate 2" is the number of duplicate

hromosomes found by comparing each chromosome in population

 t to all the chromosomes in population P t after the LSO in fitness

valuation stage. The count is increased by 1 if there are two same

hromosomes between two populations in a generation. Fig. 5 also

hows that this number also increases rapidly within 100 genera-

ions. 

With the proposed duplicate handling process, the number de-

oted by “Duplicate 1" becomes zero for all generations (zero

uplicate), which means all the chromosomes in population P t 
nd P t + 1 are unique. Although the number denoted by “Dupli-

ate 2" remains same, the related duplicates are not re-evaluated.

t is because they are formed during the normal genetic opera-

ion (line 8 of Algorithm 1 ), and they are identified before en-

ering the fitness evaluation stage. Their fitness re-evaluations are

kipped until modified by the duplicate handling process (line 19

f Algorithm 1 ). 

.4. Benchmarking 

Table 5 shows the benchmarking results of our proposed

ethod against the previous works that use less than 15 min of

RV signal for prediction. Our proposed method achieves predic-

ion accuracy rate of 87.7% by using the shortest HRV signal length

mong all previous works: 5 min only. Furthermore, this accu-

acy rate outperforms all previous works that in Table 5 . Boon

t al. [8] achieved accuracy rate of 79.3% but used longest sig-

al length with 15 min. Their accuracy rate was reduced to 68.9%

hen 10 min signal is used. Yang and Yin [12] employed 10 min

ignal and it achieved the lowest accuracy rate among previous

orks with 57%. Finally, Hickey and Heneghan [6] only achieved

ccuracy rate of 68% and 70% for 5 min and 10 min respectively. 
f signal length. 

od Performance evaluation method SEN (%) SPE (%) ACC (%) 

10-fold CV 77.4 81.1 79.3 

10-fold CV 58.5 81.1 68.9 

alysis Single Hold – – 57.0 

ures 5-fold CV 53.0 80.0 70.0 

ures 5-fold CV 51.0 79.0 68.0 

10-fold CV 86.8 88.7 87.7 
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Table 6 

Prediction performance of previous works that used 30 min signal for prediction. 

Previous Work Feature extraction method Performance evaluation 

method 

SEN (%) SPE (%) ACC (%) 

Zong et al. [7] Number and timing of PACs Single Hold – – 80.0 

Hickey and Heneghan [6] PACs detection and Spectral based HRV features 5-fold CV 79.0 72.0 75.0 

Thong et al., [5] PACs Analysis Single Hold 89.00 91.00 90.0 

Costin et al. [9] HRV features and Morphological Variability of QRS complexes 

of ECG 

Single Hold 89.3 89.4 89.4 

Mohebbi and Ghassemian [10] HRV features Single Hold 96.2 93.1 94.5 

Cheskonov [11] HRV based spectral features Single Hold 72.7 88.2 80.0 

Lynn and Chiang [13] HRV based Return Map and Poincare Plot features Single Hold – – 64.0 
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In Table 6 , the prediction performances of the previous works

sing 30 min data (either ECG or HRV signal depending on feature

xtraction method) are summarized. When compared to these pre-

ious works, our proposed method outperforms all of them except

5,9,10] . Our method is 1.7% lower than Costin et al. [9] , 2.3% lower

han Trans et al. [5] , 6.8% lower than the highest accuracy achieved

y Mohebbi and Ghassemian [10] . Finally, the feature count of the

roposed method is improved. The proposed method only uses

 HRV features, which is significantly lower than 12 HRV features

n best previous work [10] . 

Although our proposed method does not outperform them

5,9,10] , they are several factors that need to be taken into con-

ideration during the comparison. Firstly, their methods required

onger duration of HRV signal for prediction. In contrast, the sig-

al length is reduced by 83.33% (from 30 minto 5 min) in our

ethod. Furthermore, they only employed single hold out valida-

ion method – it is well known that separating samples to single

raining and testing set can bias the performance of classifier. In

his paper, 10-fold cross validation method, which is better method

han single hold-out, is employed to estimate prediction accuracy

f proposed work. The K-fold method is considered better than

old-out method because K-fold method can reduce the overfit-

ing problem of trained classifier model [31] , and more suitable to

valuate algorithm with small sample size of dataset [47] . Further-

ore, Tran et al. [5] did not use HRV analysis for prediction, and

hey also needed to specify both recordings belong to same sub-

ects before classifying the data. The proposed method does not

equire this extra step of specifying both recordings. Costin et al.

9] also used non-HRV analysis based features called morpholog-

cal variability features that are extracted from QRS complexes in

CG signal. In contrast, the proposed method employs HRV analy-

is based features only. 

. Conclusion 

In this paper, a paroxysmal atrial fibrillation (PAF) prediction

ethod based on HRV analysis and NSGA-III is proposed. The pro-

osed PAF onset prediction method achieves accuracy with 87.7%

hat outperforms all previous works that use less than 30 min sig-

al for prediction. It is achieved even with HRV signal length being

educed from typical 30 min to 5 min (a reduction of 83%). 

The improvements are achieved by proposing the NSGA-

II based multi-objective optimization algorithm that can
imultaneously optimizes all stages of the PAF onset prediction

ystem. Furthermore, the trade-off between prediction sensitivity 

nd specificity is analyzed, in which the results show that the

ensitivity can be improved at the expense of lower specificity.

ann–Whitney U test is also used as the filter method to examine

he statistical significance of the features before they can be

elected to form the feature subset. Finally, a duplicate handling

rocess is proposed to reduce the computation wastage due to the

uplicate chromosomes. 

As for limitation of this work, the proposed method still needs

mprovement in order to achieve same or higher accuracy rate than

est work [10] . The proposed prediction method is also limited by

 small sample size of real data from patients. Therefore, our re-

ult may not represent the true characteristic of the general PAF

opulation. Furthermore, due to small sample size, the proposed

lgorithm is not evaluated with the testing data not included in

he cross-validation process. As a result, evaluation with such test-

ng set will be performed after we acquire larger sample size in

uture. Finally, the optimization process takes hours on single per-

onal computer because multiple fitness evaluation processes are

erformed on each NSGA-III solution. However, it is not an issue

n practice since the proposed optimization process is run single

ime only to find the best prediction model before real-world de-

loyment. 

Hence, the following future works are planned to improve our

ethod. Firstly, more types of HRV feature extraction algorithm

hat are reviewed in [37] can be used for prediction. Furthermore,

ifferent filter methods such as analysis of variance, t -test and mu-

ual information can be used to evaluate the features. The impact

f different methods on the optimization performance can be an-

lyzed and compared to U test in this paper. Finally, the duplica-

ion handling process can be improved so that it records all the

hromosomes that have been evaluated in all previous generations.

hen, the history record is used to determine the duplication status

f a chromosome in the most recent generation. Such approach is

mployed in the simple GA [48] to completely eliminate the dupli-

ate chromosome, but at the expense of higher memory and com-

utation resource. Another future work is extending and applying

he proposed optimization algorithm to other HRV research prob-

ems such as prediction of ventricular tachyarrhythmia onset and

etection sleep apnea. It is applicable as long as the classification

odel is similar to baseline model in Fig. 2 , with some changes in

re-processing stage. 
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Appendix A 
Table A.1 

List of abbreviation for HRV features. 

HRV Feature Abbreviation 

Mean Mean of HRV 

SDRR Standard deviation of HRV (SDRR) 

RMSSD Root mean square of successive difference intervals

NN50 Number of adjacent RR intervals differing by more 

pNN50 Sum of NN50 divided by the total number of all RR

RRTri RR Triangular Index 

SampEn Sample Entropy Feature 

SD1 Standard deviation of the distances of RR intervals 

SD2 Standard deviation of the distances of RR intervals 

SD1/SD2 Ratio of SD1 to SD2 

AR-LF Low frequency component of AR spectrum 

AR-HF High frequency component of AR spectrum 

AR-LF/HF Ratio of LF to HF for AR 

FFT-LF Low frequency component of FFT spectrum 

FFT-HF High frequency component of FFT spectrum 

FFT-LF/HF Ratio of LF to HF for FFT 

M ave Mean of sum of magnitude of LL, LH and HH region

P ave Mean of sum of squared magnitude of LL, LH and H

P1 Normalized bispectral entropy of LL, LH and HH reg

P2 Normalized bispectral squared entropy of LL, LH, H

H1 Sum of logarithmic amplitudes in bispectrum of LL

H2 Sum of logarithmic amplitudes of diagonal element

H3 First-order spectral moment of the amplitudes of d

LLH4 Second-order spectral moment of the amplitudes o

WCOB ( f 1 m , f 2 m ) Weighted center in bispectrum of LL, LH, HH and R

Table A.2 

Pre-defined and optimized parameters and settings. 

Feature extraction algorithm Algorithm parameters Pre-

1 Time domain • Heart rate correction enabling • En

2 RR Triangular Index • Heart rate correction enabling • En

3 Poincare plot • Heart rate correction enabling • En

4 Sample entropy • Heart rate correction enabling • En

• Embedding dimension • 2 
• Tolerance Distance • 0.

5 Auto Regressive (AR) analysis • Heart rate correction enabling • En

• Heart rate detrending enabling • En

• Interpolation method • Cu

• Resampling frequency • 4 
• Order of model • 16

• Normalization of AR spectrum • No

6 Fast fourier transform (FFT) • Heart rate correction enabling • En

• Heart rate detrending enabling • En

• Interpolation method • Cu

• Resampling frequency • 4 
• Temporal smoothing window function • Re

• FFT segmentation • No

• Normalization of FFT spectrum • No

7 Higher order spectral (HOS) analysis • Heart rate correction enabling • En

• Heart rate detrending enabling • En

• Interpolation method • Cu

• Resampling frequency • 4 
• Temporal smoothing window function • Re

• Segmentation size • 51

• Zero-padding size for the segmented data. • 51

• Overlapping of the segmented data • 50
 

than 50 ms 

 intervals (pNN50). 

from line-of-identity( y = x ) 

from y = −x + 2 RR m 

 

H region 

ion 

H and ROI region 

, LH, HH and ROI region. 

s in bispectrum of LL, HH and ROI region. 

iagonal elements in the bipsectrum of LL, HH and ROI region. 

f diagonal elements in the bispectrum of LL, HH and ROI region. 

OI region. 

defined value Optimized value 

abled • Disabled 

abled • Disabled 

abled • Disabled 

abled • Disabled 

• 2 
2 of standard deviation of RR interval • 0.38 of standard deviation of RR interval 

abled • Disabled 

abled • Enabled 

bic • Linear 

Hz • 7 Hz 

 • 16 

rmalized • Not normalized. 

abled • Disabled 

abled • Enabled 

bic • Linear 

Hz • 4 Hz 

ctangular Window • Rectangular window 

rmal FFT • Normal FFT 

rmalized • Not normalized 

abled • Enabled 

abled • Enabled 

bic • Cubic spline 

Hz • 7 Hz 

ctangular • Blackman 
2 • 256 

2 • 512 

% • 0% 
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Fig. A.1. Flow chart of the proposed duplicate handling process. 
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