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A B S T R A C T

An agro-based adsorbent from kenaf (Hibiscus cannabinus L.) for CO2 removal was prepared by functionalizing it
with amine. Amine functionalization improves the adsorbates–adsorbent interaction through the presence of
basic active sites on the adsorbent surfaces. Several amines (MEA, DEA, MDEA, AMP, PEI, DETA, TETA, TEPA,
DIPA, PEHA, TEA, and DGA) have been selected for the amine-screening process. The result revealed that ad-
sorption capacity of raw kenaf is only 0.624mmol/g, whereas TEPA attained the highest CO2 capture capacity
(0.914mmol/g). Further study on the effect of amine loadings was conducted using two types of amine (MEA
and TEPA) and it was found that the highest CO2 adsorption capacity for is 2.070mmol/g for MEA to kenaf ratio
of 1:1 and 2.086mmol/g for TEPA to kenaf ratio of 2:1. The regeneration study also showed that kenaf sorbent
can be used for repeated cycle operations. Due to the presence of amine on kenaf, the regeneration values of
MEA–kenaf (82.15%) and TEPA–kenaf (75.62%) were lower than the raw kenaf (99.07%).

1. Introduction

Carbon dioxide (CO2) capture has attracted global attention due to
increasing adverse effects of CO2 emissions. These emissions are gen-
erated from anthropogenic activities during the processing and utili-
zation of fossil fuels (natural gas, coal and crude oil) for transportation
and residential purposes. There are many research focused on limiting
the greenhouse gas emissions using techniques such as chemical and
physical absorption, membrane separations, pressure swing adsorption
(PSA), and cryogenic separation processes [1–8]. Consequently,
choosing effective method for CO2 removal is essential to reduce or
limit CO2 emission. Amongst those methods, absorption with amine
based solvents is a well developed technology and commonly used in
separating CO2 from flue gas and natural gas stream. However, the high
power consumption for regenerating the amine leads to poor overall
thermal efficiency [9]. In addition, amine also contributes to corrosion
problem that can potentially strike the steel [10,11].

Based on this problem, adsorption on solid materials merit con-
sideration by its simplicity, efficient, and affordable [12,13]. The
emergence of various sorbents for CO2 capture such as commercial
activated carbons, molecular sieves, zeolites, and metal–organic fra-
meworks (MOFs) have attracted more investigations into the viability,
stability, and design of full scale adsorption process. However, the main
challenge remains, finding a solid adsorbents and suitable conditions

that promote high capacity and selectivity. Though some of the re-
viewed commercial adsorbents performed well for the CO2 adsorption
capacity and selectivity, they also demonstrate some weaknesses that
remain as a challenging task for commercial application. The existing
commercial adsorbents such as activated carbon, zeolites, metal organic
frameworks, mesoporous nanoparticles (eg. MCM-41, SBA −15) are
costly, require multi–step fabrication procedures, high regeneration
temperature, some materials are sensitive to NOx, SOx, and H2O, low
adsorption capacity at mild operating conditions (0.1–1 bar and
0–100 °C), low selectivity in gas mixtures, and low the adsorption ca-
pacity after multiple cyclic operations [14–22]. These weaknesses
would limit the application of these adsorbents in future. For a solid
adsorbent, utilization of agro-based material is always attractive be-
cause it is less harmful and more benign to the environment than
ceramics, metals, metal oxides, and other notorious source of materials.
Therefore, attention on the agricultural material for the production of
low–cost adsorbent to replace the commercial adsorbent has grown
rapidly. Moreover, the encouragement towards low–cost adsorbent
began since the economic crisis of the 2000 s that led researchers to
turn their interest on the alternative sources over the commercial ad-
sorbents [23]. Table 1 summarized CO2 adsorption performance of
different types of agro-based adsorbents. The adsorbents have been
converted into char or activated carbon and treated with different types
of chemicals.
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Other researchers also have reported that adsorbent originated from
biomass is very effective to be used as it works well under wide range of
temperatures and humidity levels, inert and safe to handle, easily ac-
cessible and cost-effective [38–41]. In this study, kenaf (Hibiscus can-
nabinus L.) was chosen as adsorbent for CO2 separation study. Kenaf is
grown in Peninsular Malaysia, and is known to be renewable resources,
low plantation cost, short period of maturity, and biodegradable [42].
Inagaki et al. [43] revealed that kenaf core has high possibility to
produce surface area as high as 3000m2/g and very large micro–pores
volumes of about 1mL/g. Moreover, results obtained via scanning
electron microscopy (SEM) has identified that kenaf core is composed of
porous structure with the primary and minor pore structures forming
the interconnected pore structures [44]. The application of kenaf core
as adsorbent has been reported for water treatments [45–49], bior-
emediation treatments [50], oil treatments [46,51,52] animal bedding
materials [47] and CO2 adsorption using carbonaceous kenaf [41].

Several studies have been conducted on modified kenaf after che-
mical treatment process. It was reported that the adsorption of metal
cations (adsorbates) onto/into the lignocellulosic fibers depends on the
ionizable characteristics of the cellulosic functional groups such as
carboxylic and phenolic groups [53,54]. Mahmoud et al. [55] have
found that treatment of kenaf core fiber with HCl increased the BET
surface area and hence improved the adsorption of methylene blue dye.
Sajab et al. [49] also reported that the chemically modified kenaf core
in a presence of citric acid has higher the adsorption capacity towards
methylene blue than the raw kenaf. Moreover, ZnCl2 was used as a
carbonizing promoter for kenaf in the treatment of oil and heavy–metal
contamination [46]. Othman and Akil [41] also used ZnCl2 as a pro-
moter for carbonaceous kenaf in CO2 adsorption study.

In other CO2 separation studies, the impregnation of amine on ad-
sorbent surfaces was able to enhance the adsorption capacity for dif-
ferent types of adsorbents (MCM-41, mesoporous silica and silica)
[56,57,58]. Therefore, with the abundance of kenaf grown in Penisular
Malaysia, various studies are needed to explore the potential of kenaf as
agro-based adsorbent. With specific modification, the adsorption ca-
pacity may increase since there is a strong interaction between the

adsorbate and the adsorbent. Therefore this paper presents the perfor-
mance of kenaf as CO2 adsorbent after amine modification.

In principle, the adsorption of CO2 on amine–functionalized ad-
sorbent involves chemical interaction between basic active amine sites
(adsorbent) and CO2 adsorbates. The reaction would produce ammo-
nium carbamate (Eq. (1)) in anhydrous condition and ammonium bi-
carbonate (Eq. (2)) inhydrous condition [59,60]. Based on those reac-
tion, 1 mol of CO2 reacts with 2mol amine groups bound on surface to
produce 1mol of carbamate, in the absence of water. Otherwise, in the
presence of water, 1 mol CO2 reacts with 1mol surface–bound amine
group, resulting ammonium bicarbonate that would improves the CO2

adsorption capacity.

CO2 +2R–NH2↔ RNH3
++RNHCO2

− (1)

CO2 +R–NH2↔ R–NH3
+HCO3

− (2)

This paper presents the performance of modified kenaf core as CO2

adsorbent. In order to enhance the adsorption capacity, kenaf was
functionalized using different type of amines (primary, secondary, and
tertiary amines). Adsorption and regeneration study of selected amine-
modified kenaf was conducted in a pressure swing adsorption (PSA)
system.

2. Material and methods

In this study, kenaf inner core obtained from National Kenaf and
Tobacco Board (NKTB), Pasir Putih, Kelantan was selected as a main
precursor. The amines used for functionalization of kenaf are
Monoethanolamine (MEA), Diethanolamine (DEA), Methyldiethanolamine
(MDEA), 2–Amino–2–Methyl–1–Propanol (AMP), Polyethyleneimine
(PEI), Diethylenetriamine (DETA), Triethylenetetramine (TETA),
Tetraethylenepentamine (TEPA), Diisopropylamine (DIPA),
Pentaethylenehexamine (PEHA), Triethanolamine (TEA), and
Diglycolamine (DGA). Methanol was used as a solvent during the func-
tionalization process. The gases involved are carbon dioxide (CO2,
99.999% purity), nitrogen (N2, 99.999% purity), and helium (He, 99.999%

Table 1
CO2 adsorption capacity of different activated carbon adsorbents.

Agricultural adsorbents CO2 capture capacity (mmol CO2/g) Conditions References

Commercial activated carbon 2.10 100% CO2, 298 K, 1.0 bar [24]
Coffee grounds activated carbon 4.80 100% CO2, 273 K, 1.0 bar [25]

3.00 100% CO2, 298 K, 1.0 bar
Almond shell activated carbon 2.70 100% CO2, 298 K, 1.2 bar [26]
Olive stone activated carbon 3.10 100% CO2, 298 K, 1.2 bar [26]
Palm kernel char (PKC) 1.14 100% CO2, 303 K, 1.0 bar [27]

1.71 100% CO2, 303 K, 1.5 bar
2.13 100% CO2, 303 K, 2.0 bar
5.60 100% CO2, 303 K, 4.0 bar

Palm activated char (PAC) 1.66 100% CO2, 303 K, 1.0 bar [27]
2.88 100% CO2, 303 K, 1.5 bar
3.87 100% CO2, 303 K, 2.0 bar
7.32 100% CO2, 303 K, 4.0 bar

African palm shell 6.30 100% CO2, 273 K, 1.0 bar [28]
4.40 100% CO2, 298 K, 1.0 bar

MMEA–Palm shell activated carbon 1.00 Equimolar of amines [29]
AMP–Palm shell activated carbon 1.50 Equimolar of amines [29]
Coconut shell activated carbon 5.60 100% CO2, 273 K, 1.0 bar [28–30]

3.90 100% CO2, 298 K, 1.0 bar
3.70 100% CO2, 273 K, 1.0 bar

Activated coconut modified with Cu/Ce 0.24 100% CO2, 298 K, 1.0 bar [31]
Poplar anthers KOH–activated carbon 3.45 100% CO2, 298 K, 1.0 bar [32]
Bagasse impregnated with ZnCl2 and carbonized 1.82 100% CO2, 303 K, 1.0 bar [33]
Ammonia treated activated carbon 1.70 100% CO2, 298 K, 1.0 bar [34]
Bean dreg nitrogen enriched activated carbon 4.24 100% CO2, 298 K, 1.0 bar [35]
BPL–activated carbon 7.00 100% CO2, 298 K, 35 bar [36]
MAXSORB–activated carbon 25.00 100% CO2, 298 K, 35 bar [36]
Fly ash activated carbon 0.27 16% CO2, 298 K, 1.0 bar [37]
Fly ash–Na2SO3 2.25 16% CO2, 298 K, 1.0 bar [37]
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purity), and were supplied by Mega Mount Industrial Gases Sdn. Bhd.

2.1. Amine wetness impregnation method

The functionalization of amines on kenaf was carried out via a
conventional technique known as incipient wetness impregnation
method as reported by Chatti et al. [60]. The wetness impregnation
procedure was started by mixing a dried kenaf core in methanol solvent
in a solid to liquid ratio of 1:20 (by weight). This procedure was con-
ducted in two stages prior to separation and air–drying. In different
container, alcoholic amine solution was prepared by mixing amine with
methanol and stirred for 20min. After that, the kenaf was added into
the alcoholic amine solution and stirred for 15min. The initial amine
concentration used is 50 wt%. Then, the mixture was agitated for 5 h for
impregnation with agitation rates of 600 rpm. Finally, the amine–-
functionalized kenaf was filtered and dried, while the alcoholic amine
solution was collected for pH analysis.

2.2. Characterization

The kenaf samples were subjected to several characterization tech-
niques. The surfaces morphology of amine–functionalized kenaf sam-
ples were characterized under electron microscopic analysis using Field
Emission Scanning Electrons Microscope (FESEM). The sample spe-
cimen was sputter coated with the thin layer of gold metal in order to
provide appropriate surface condition, to avoid electrostatic surface
charging, and to protect samples from thermal damage by the electron
beam during the analysis. The elemental composition of amine-mod-
ified kenaf was determined by Electron Dispersive X-ray spectrocopy
(EDX).

Identification of chemical bond functional groups by their char-
acteristic absorption of infrared radiation was conducted out using
Fourier Transforms Infrared (FTIR) spectroscopy. Initially, the sample
was milled with potassium bromide (KBr) in a ratio of 1:100 for sample
to KBr. After that, the mixture was pressed using a hydraulic press
(Carver Hydraulic Unit Model 3912) under a pressure of 5 t. The IR
vibration spectrums were collected for 10 scans and recorded in a
mid–infrared region of 4000–370 cm−1 with 400 cm−1 resolution.

2.3. CO2 adsorption and regeneration study

The CO2 adsorption study was conducted in pressure swing ad-
sorption (PSA) unit (Fig. 1). The column has a diameter and height
dimension of 1 cm and 15 cm, respectively. The amine functionalised

adsorbent was placed at the centre of column with the bed height of
4 cm. A molecular sieve was placed at the top and bottom of adsorbent
bed to adsorb moisture in the feed stream. A glass wool was placed in
the column to fix the position of adsorbent in the column. The PSA
operation was conducted based on Skarstrom cyclical manner that in-
volves four sequential steps that are pressurization, adsorption, blown
down and purging [61]. In this adsorption-desorption study, the flow
rate of CO2 enter the adsorption column was set at 300 cm3/s until the
column reached a pressure of 1.5 bar. Then, CO2 was retained in the
column for 5min to allow for adsorption. After that, CO2 that not ad-
sorb were blown down to the adjacent column and was retained for
another 5min. After 5min, CO2 was blown down as “raffinate gas” and
the amount of gas leaving the column was determined using gas chro-
matography (GC). To regenerate the adsorbent, nitrogen gas (N2) was
passed through the highly–CO2–loaded adsorbent bed for desorption at
gauge pressure of 1.01325 bar. During this process, the “extract gases”
were removed in counter-current flow of direction for an hour. The gas
stream composition was analysed using GC analyser for complete CO2

removal. These steps is a one-cycle operation (adsorption-desorption).
The regeneration study was conducted for 10 consecutive cycles of
operations.

3. Results and discussions

3.1. Characterization

In this study, the morphologies of kenaf after the functionalization
with various types of amines were observed under Field Emission
Scanning Electron Microscope (FESEM) as presented in Fig. 2.

The FESEM morphology shows that the impregnation of amines
affected the kenaf structure. Some surfaces are full of cavities, others
showed fragmented and rupture of the pores. Serrated and uneven ridge
surfaces leads to partially blocked pores. Based on the FESEM micro-
graphs, the impregnation of amines on kenaf resulted in a significant
effect on the pore structure and surface of kenaf.

The IR spectra was analysed to determine the functional groups
exist in the sample. In this analysis, kenaf sample was impregnated with
different type of amines with the weight ratio of 50% and were sub-
jected to the FTIR analysis. The scanning IR spectra of each sample are
shown in Fig. 3.

Based on the IR spectra, the amine–functionalized kenaf samples do
not show any significant differences. This is probably due to low amine
loading used in the impregnation process. The IR spectra shows the
broad bands within a range of 3600–3200 cm−1 for all the amine-

Fig. 1. Schematic diagram of dual–column PSA experimental unit.
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functionalized kenaf samples represents hydrogen bond linkages (eOH)
of cellulose in raw kenaf. But, the absence of peaks at band position of
2861 cm−1 for the amine–functionalized kenaf samples indicates the

shifted of the stretching aliphatic alkyl groups (eCH2 and/or eCH3) in
the cellulose. The elimination of peaks at band position of 1725 cm−1

after the impregnation of MEA, DEA, MDEA, AMP, TETA, TEPA, PEHA,

Fig. 2. FESEM microscopy of amine–-
functionalized kenaf.
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DETA, and DGA on kenaf indicates that those amine functional groups
are proficient in removing the hemicellulose of kenaf. Gibson [62] also
concluded that the modification removes the amorphous hemicellulose
of kenaf. Then, the impregnation of MEA and AMP also eliminates the
peak at 1377 cm−1 due to the bending of CeH and CeO of aromatic
rings in polysaccharides. The existence of peaks around
1550–1450 cm−1 for PEI, DETA, TEPA, PEHA, DIPA, DGA and TEA
functionalized kenaf samples are attributed to the vibration of NeH
bending. Besides, the peaks are also exist in the range of
1350–1000 cm−1 for PEI, DETA, PEHA, TEPA, DIPA, and TEA func-
tionalized kenaf samples that denotes a CeN stretching in aliphatic
amine groups. The determination of IR spectra in the amine–functio-
nalized kenaf confirmed the presence of amine functional groups on
kenaf surfaces.

3.2. Nitrogen content

The nitrogen content of amine-functionalized kenaf samples were
determined using Energy Dispersive X–ray Spectroscopy (EDX). The
elemental content of nitrogen indicates the extend of basicity char-
acteristic of amine–functionalized kenaf samples. Raw kenaf sample
was also accounted in this analysis as a comparison. The analysis was
conducted for the kenaf samples with 50 wt% of amine loaded by wet
impregnation method. Based on the elemental composition data,
carbon (C), oxygen (O) and nitrogen (N) are the major elements present
the samples. Table 2 shows the ratio of C, O and N content in kenaf. The
nitrogen element in amine–functionalized kenaf sample indicates the
basicity characteristic of the prepared sample.

In principle, the impregnation of amine on kenaf provides a basic
active sites on the adsorbent surface that is essential for the adsorption
of CO2. However, the degree of basicity of amine–based adsorbent de-
pends on the type of amine used since different type of amine have
different percentages of nitrogen content. As indicated in Table 2, TEPA
and PEHA functionalized on kenaf are amongst the highest nitrogen
content as compared to other amine–functionalized kenaf adsorbents.
This is due to the high nitrogen element attached on the main ligands of
each amine group. TEPA and PEHA amines are composed of five and six
nitrogen elements respectively, attached on its main ligand that induces

high percentage of nitrogen content (as computed by EDX). Based on
this analysis, TEPA and PEHA amines may contribute to higher basicity
than other types of amines.

3.3. Nitrogen adsorption isotherm

The surface area and pore size of raw kenaf and amine–functiona-
lized kenaf samples were determined from nitrogen adsorption iso-
therm analysis at 77 K. The Brunauer Emmet Teller (BET) surface area
was determined at a relative pressure between 0.0247 to 1. In this
study, only MEA and TEPA functionalized kenaf were selected for the
nitrogen adsorption isotherm analysis. MEA was chosen because it is
extensively used in industry as absorbent. However, the selection of
TEPA was based on sample with high nitrogen content that may con-
tribute to high adsorption capacity. The nitrogen adsorption isotherms
of raw kenaf, MEA–functionalized kenaf and TEPA–functionalized
kenaf are presented in Figs. 4–6 respectively. The adsorption isotherm
of raw kenaf core obeyed Type II of IUPAC classification isotherm that
indicates the macroporous structure of kenaf core with the monolayer

Fig. 3. IR spectra of various types of amine–functionalized kenaf samples.

Table 2
Elemental ratio of carbon (C), oxygen (O) and nitrogen (N) in kenaf samples.

Sample Elemental ratio

Carbon (C) Oxygen (O) Nitrogen (N)

Raw kenaf 1.04 1 –
MEA–kenaf 1.45 1 0.05
DEA–kenaf 1.56 1 0.01
MDEA–kenaf 1.15 1 0.07
PEI–kenaf 1.41 1 0.02
AMP–kenaf 1.43 1 0.13
DETA–kenaf 1.71 1 0.14
TETA–kenaf 2.36 1 0.21
TEPA–kenaf 2.21 1 0.25
PEHA–kenaf 1.66 1 0.20
DIPA–kenaf 1.11 1 0.15
TEA–kenaf 1.23 1 0.03
DGA–kenaf 1.39 1 0.03
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and multilayer adsorptions. There are two increments exist; the first
increment occurred at very low relative pressure of P/Po < 0.10 that
ascribed for a freely penetration of N2 molecules into the macroporous
structures without steric factor. However, the abrupt increment of ni-
trogen adsorption isotherm at high relative pressure (P/Po > 0.90) is
attributed to the multilayer adsorption and capillary condensation of N2

onto kenaf pores.
Figs. 5 and 6 present the nitrogen (N2) adsorption–desorption iso-

therms of amine–functionalized kenaf adsorbents at temperature of
77 K. Based on the graphs, the nitrogen isotherm for MEA and TEPA
modified kenaf are also classified into Type II of the BDDT adsorption
isotherm classification. The adsorption isotherm showed that the pore
structure of amine–functionalized kenaf has macroporous formation
and has a tendency towards the monolayer and multilayer adsorption.
The two increments are identified at low and high relative pressure
range. The first increment at low relative pressure (P/Po < 0.1) is
attributed to the gas adsorption phenomenon of macroporous amine–-
functionalized kenaf adsorbent, a freely penetration without affected by
steric factor. However, a steep increment of nitrogen adsorption iso-
therm appears at relative pressure (P/Po) higher than 0.84 for MEA and

TEPA functionalized kenaf adsorbent represents a multilayer adsorption
and/or capillary condensation of nitrogen molecules penetrating into
the adsorbent surfaces. These results show that raw kenaf has relatively
higher nitrogen adsorption than amine–functionalized kenaf.

Based on the nitrogen adsorption isotherm, BET surface area, pore
volume, and average pore diameter of the samples are summarized in
Table 3. The result is in line with the study conducted by Sajab et al.
[48] who has reported a low BET surface area of kenaf core (as low as
0.810m2/g). Then, the functionalization of amine on kenaf surface has
reduced available surface for N2 adsorption; hence reduce the volume
of N2 adsorbed and resulted to a lower BET surface area and micropore
volume than the raw kenaf. It is because the dispersion of amine occurs
within the structure of kenaf after the impregnation process. However,
the BET surface area and average pore diameter of MEA-functionalized
kenaf is slightly higher than TEPA-functionalized kenaf. In general, the
functionalization (via impregnation technique) of amines has affected
the physical properties of kenaf structure.

3.4. CO2 adsorption

The CO2 adsorption on kenaf adsorbent was conducted in a pressure
swing adsorption system (PSA). In this study, the effect of different
types of amines and effect of amine loading were evaluated. The per-
formance of amine-functionalized kenaf was evaluated using single
column adsorption.

3.4.1. Effect of different types of amines
Modification of kenaf was conducted using different amine–-

functionalized groups (MEA, DEA, MDEA, AMP, PEI, DETA, TETA,
TEPA, DIPA, PEHA, TEA, and DGA). The CO2 capture capacity of each
amine–functionalized kenaf sample was carried out in a single–bed
column at a pressure of 1.5 bar with feed flowing rate of 300 cm3/min.
The amount of CO2 adsorbed are shown in Fig. 7.

The impregnation of TEPA on kenaf achieved the highest adsorption
capacity with the value of 0.914mmol/g. Other samples also show
higher adsorption capacity than raw kenaf. The results elucidate that
the presence of amine (nitrogen-rich) on kenaf surface adsorbent in-
duces higher CO2 adsorption. Table 4 shows a comparison on different
class of amines. Based on the results, TEPA that consist of primary and

Fig. 4. N2 adsorption–desorption isotherm of raw kenaf core.

Fig. 5. N2 adsorption–desorption isotherm of MEA–functionalized kenaf.

Fig. 6. N2 adsorption–desorption isotherm of TEPA–functionalized kenaf.

Table 3
Physical textural properties of raw kenaf and amine–functionalized kenaf.

Sample BET surface area (m2/
g)

Micropores volume
(cm3/g)

Average pore
diameter (Å)

Raw kenaf 0.769 ± 0.0285 0.000322 88.50
MEA–kenaf 0.438 ± 0.0236 0.000156 81.12
TEPA–kenaf 0.431 ± 0.0178 0.000156 81.50

Fig. 7. CO2 adsorption capacity of raw kenaf and amine–functionalized kenaf.
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secondary amines present the highest CO2 capture capacity. In contrast,
modification of kenaf using tertiary amines show a less amount of CO2

adsorption capacity.
The reaction of primary and secondary amines with CO2 are re-

presented by Eqs. (3) and (4), respectively. Eq. (5) is the overall reac-
tion for primary and secondary amine, and Eq. (6) represents reaction
for tertiary amine [17,63–66].

RR’NH +CO2↔ RR’NH+COO− (Zwitterion) (3)

′ + ′ ↔ ′ + ′+ − −RR NH COO RR NH RR NCOO RR NH
(Carbamate ion)

2 (4)

Eq. (5) is the overall reaction for primary and secondary amines
with CO2 molecule.

′ + ↔ ′ + ′− +2RR NH CO RR NCOO RR NH
(Amine)

2
(Carbamate ion)

2
(Ammonium ion) (5)

The reactions of primary and secondary amines with CO2 occur in
two stages. At the first stage, a reaction of one mole of amine with one
mole of CO2 yields of zwitterion (Eq. (3)), while second reaction occurs
between the intermediate zwitterion with other one mole of amine to
produce carbamate molecule (Eq. (4)). Eq. (5) is the overall reaction of
amine molecules with CO2 molecule in which two moles of amines are
required for each CO2 molecule. However, the absence of hydrogen ions
(H+) in the tertiary amine resulted to the formation of bicarbonate
compound as the reaction between amine with CO2 molecule as re-
presented by Eq. (6).

′ + ↔ ′ +− −RR NCOO H O RR NH HCO
(Carbamate ion)

2
(Free amine)

3
Biocarbonate ion (6)

where R=C2H4OH
Based on the reaction, the direct reaction of primary and secondary

amines with CO2 molecule will produce carbamate ion (RR’NCOO−).
The production of carbamate ion leads to the faster CO2 capture kinetics
[24]. The reaction follows the stoichiometric ratio of amine to CO2 of
2:1. Since the tertiary amine does not produce carbamate ion as im-
mediate as primary and secondary amines, the CO2 adsorption capacity
are relatively lower than the primary and secondary amines. The results
also shows that the binary amine group (consists of primary and sec-
ondary class) have higher CO2 adsorption capacity than a single class of
amine.

The combination of primary class (–NH2) and secondary class (–NH)
of amines give more advantages for the impregnation on kenaf than a
single class of amine, as shown by the adsorption capacity of TEPA.
TEPA that comprised of two groups of primary class and three groups of
secondary class shows the highest CO2 capture capacity with the value
of 0.914mmol/g. The presence of four methyl groups (–CH3) in DIPA
(CO2 capture capacity of 0.852mmol/g) also improved the basicity
characteristic that give advantages for the CO2 adsorption. It is because
the methyl group would stabilize the ammonium ion; hence improve
the CO2 capture capacity of DIPA. For the primary amine group, MEA
and DGA show higher CO2 adsorption capacity than AMP. It is expected
that steric character of AMP reduces the stability of the carbamates,
thus reduces the CO2 capture capacity. Similarly, sterically hindered in
MDEA and TEA induces low CO2 capture capacity.

The basicity of amine–functionalized kenaf adsorbent was examined
to determine its effect on gas adsorption. In principle, the impregnation
of amine on the surface of kenaf promotes the basic active sites that
would facilitate the interaction towards acidic CO2 molecules via the

Table 4
CO2 capture capacity for amine–functionalized kenaf sample.

Class of amine Amine CO2 capture
capacity (mmol/
g)

Primary amine (1°) Monoethanolamine (MEA) 0.781
Amino–Methyl–Propanol (AMP) 0.769
Diglycolamine (DGA) 0.820

Secondary amine (2°) Diethanolamine (DEA) 0.678
Polyethyleneimine (PEI) 0.680
Diisopropylamine (DIPA) 0.852

Tertiary amine (3°) Methyldiethanolamine (MDEA) 0.663
Triethanolamine (TEA) 0.649

Combination of Primary/
Secondary (1°/2°)

Diethylenetriamine (DETA) 0.772
Triethylenetetramine (TETA) 0.782
Tetraethylenepentamine (TEPA) 0.914
Pentaethylenehexamine (PEHA) 0.782

Table 5
pH value and CO2 adsorption capacity of amine–functionalized kenaf.

Sample pH of amine solution CO2 adsorption capacity (mmol/g)

TEPA–kenaf 10.82 0.914
PEHA–kenaf 10.81 0.782
DIPA–kenaf 10.76 0.852
DETA–kenaf 10.74 0.772
AMP–kenaf 10.62 0.769
MEA–kenaf 10.60 0.781
TETA–kenaf 10.43 0.782
DGA–kenaf 10.40 0.820
PEI–kenaf 10.31 0.680
DEA–kenaf 10.24 0.678
MDEA–kenaf 9.58 0.663
TEA–kenaf 9.37 0.649

Fig. 8. CO2 adsorption capacity of TEPA–functionalized kenaf at different
loadings.
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formation of the polarized covalent bond. As a result, the acidic-basic
interaction could improve the CO2 adsorption capacity. Chatti et al.
[31] also reported that the amine active sites available on the porous
adsorbent surface improved the CO2 adsorption capacity. Table 5 shows
the pH value and the amount of CO2 adsorbed on amine functionalised
kenaf.

As shown in Table 5, all kenaf samples have basic character since
the pH of amine used are more than 7. TEPA and PEHA functionalized
kenaf samples have almost the same pH value. More alkyl groups
(eCH2) exist in TEPA and PEHA able to stabilize the formation of
ammonium ions; hence increases the basicity of amine that leads to
high CO2 adsorption. The alkyl groups and the amines have contributed
to higher CO2 adsorption. In contrast, the pH values of MDEA and TEA
(tertiary amine) are amongst the lowest. Based on CO2 adsorption ca-
pacity, TEPA–functionalized kenaf sample was selected for further in-
vestigation together with MEA–functionalized kenaf sample. MEA–-
functionalized kenaf was also selected because it is commonly used in
CO2 removal process.

3.4.2. Effect of amine loadings
The amine loading is also a factor that affects the physical and

structural characteristic of kenaf which then affects the amount of CO2

adsorbed. Therefore, the effect of amine loading was investigated by
varying the weight ratio of amine to kenaf between 0.5 to 10. The CO2

adsorption capacity study was conducted in a single–column system at
pressure of 1.5 bar with feed flowing rate of 300 cm3/min. The CO2

adsorption capacity of TEPA and MEA functionalised kenaf at different
amine loading are shown in Figs. 8 and 9, respectively.

As shown in Figs. 8 and 9, the amount of amine loaded onto kenaf
influence the CO2 adsorption capacity. For TEPA, the highest CO2 ad-
sorption capacity (2.086mmol/g) is in the ratio of 2:1 (TEPA:kenaf).
The highest CO2 adsorption for MEA-kenaf is 2.070mmol CO2/g in the
ratio of 1:1 (MEA:kenaf). The balance between the nitrogen content and
available surface area were investigated by varying the ratio of amine
and kenaf. At higher amine content, the structure were ruptured, thus
affects the CO2 adsorption. Although high amine loading gives high
percentage of nitrogen content, but the destruction of kenaf structure
may also reduce the available surface area for CO2 adsorption. Thus,

Fig. 9. CO2 adsorption capacity of MEA–functionalized kenaf at different
loadings.

Fig. 10. Adsorption capacity of kenaf samples for 10 cyclic operation.

Table 6
Percentage of regeneration for kenaf samples.

Sample CO2 capacity at
1st cycle (mmol
CO2/g)

CO2 capacity at
10th cycle (mmol
CO2/g)

Regeneration (%)

Raw kenaf 1.401 1.388 99.07
MEA–modified

kenaf
2.090 1.717 82.15

TEPA–modified
kenaf

2.182 1.650 75.62
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this study has suggested that the suitable ratios for TEPA and MEA
impregnated on kenaf surface are 2:1 and 1:1, respectively.

3.5. Regeneration

In addition to high adsorption capacity, good adsorbents must have
a stable adsorption performance in cyclic operations. Regeneration is an
essential factor that should to be considered for the selection of good
adsorbent. This study shows the regeneration performance of kenaf and
amine–functionalized kenaf samples. It was conducted for ten (10)
consecutive cycles of operations and each cycle involves adsorption and
desorption requires 60min of operation. Fig. 10 shows the adsorption
capacity for each cycle and the percentage of regeneration is shown in
Table 6. The percentage of regeneration was calculated based on the
CO2 adsorption capacity at the tenth (10th) to the first (1st) cycle op-
eration as reported by Lee et al. [29]

As shown in Fig. 10, raw kenaf presents sustainable adsorption
performance for ten (10) consecutive cycles of operations. The inter-
action of CO2 with the surface of raw kenaf is a physical adsorption
involving of weak intermolecular forces (Van de Waals forces). Due to
the weak intermolecular forces, this physisorption interaction does not
need a significant change in the electronic orbital pattern for each
species. As a result, the CO2 (sorbate) has a high tendency to move
freely over the kenaf surfaces (sorbent). The adsorbed CO2 molecules do
not fix to any particular sites on the solid surface. Thus, the energy
required to break the weak interaction force is low. The adsorbed
molecule can be removed (desorbed) to almost the same amount, as
indicates by high regeneration value of raw kenaf (99.07%). Fig. 11
shows the proposed mechanism for the desorption process step of the
raw kenaf.

For MEA and TEPA functionalized kenaf samples, a rapid reduction
in the first three cycles of operations is due to chemisorption me-
chanism, a chemical reaction between amine on kenaf surface (ad-
sorbent) with CO2 molecule (adsorbate). Based on Eq. (4), the chemical
reaction would produce carbamate molecules. As the chemical reaction
occured, CO2 molecule would be chemically bonded to the surface of
amine–functionalized kenaf by forming carbamate molecules, attached
via a strong covalent bond and occupying the specific adsorption sites.
The energy required to desorb (in the form of carbamate molecule)
from the amine-functionalized kenaf surface is relatively higher than
the raw kenaf (only involves Van der Waals’ force). It is due to the

presence of orbital overlap and charge transfer in the chemical ad-
sorption that causes the carbamates not easily to be removed from the
adsorbent during desorption process [29,67]. This condition explained
low regeneration values obtained by MEA–functionalized kenaf
(82.15%) and TEPA–functionalized kenaf (75.62%). This study also
shows that the regeneration values decrease when the strength of ad-
sorbate-adsorbent is increased. The proposed desorption mechanism of
CO2 from the surface of amine–functionalized kenaf adsorbent is shown
in Fig. 12.

Based on the experimental results obtained, the amine functional
group serves as a basic active sites on the surface of kenaf and react
with the CO2 molecule. The basic active sites are depending on the
amount of nitrogen elements (N) in the amine group. Since TEPA has
the higher amount of nitrogen elements attached to the main ligand
than MEA, the pH value is relatively higher that leads to the higher CO2

adsorption capacity. Consequently, the energy needed to break the
chemical bond (covalent bond) of TEPA is also relatively higher than
MEA as indicated by the regeneration value of TEPA and MEA
(Table 6). This study is in line with the research conducted by Lee et al.
[29]. They have reported that the regeneration value decreased as the
energy needed for desorption process increases. Fig. 10 also showed
that the adsorption capacity from the fourth (4th) to the tenth (10th)
cycle are relatively constant. This phenomenon proved that the physi-
sorption are also take place on the adsorption sites. It is proposed that
the chemisorption and physisorption processes are occurred simulta-
neously on the amine–functionalized kenaf adsorbent surface. The re-
generation study showed that regeneration is more effective for raw
kenaf than amine–functionalized kenaf adsorbent.

4. Conclusions

This study proved that kenaf is another potential material for CO2

adsorbent. The impregnation of amine on the kenaf surface has im-
proved the adsorptive characteristic of kenaf adsorbent. At the weight
ratio of 0.5:1, TEPA showed the high CO2 adsorption capacity
(0.914mmol/g). However, the adsorption capacity was improved by
increasing the amount of amine loaded on the kenaf. Thus, it was found
that the highest amount of CO2 adsorbed is 2.07mmol/g of MEA-
modified kenaf at the ratio of 1:1 and 2.08mmol of CO2 adsorbed on
TEPA-modified kenaf at a ratio of 2:1. The regeneration study showed
that CO2 can easily being removed from the raw kenaf, regeneration

Fig. 12. Proposed desorption mechanism of ami-
ne–functionalized kenaf.

Fig. 11. Proposed desorption (regeneration) me-
chanism of raw kenaf.
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value (99.07%) higher than MEA–functionalized kenaf (82.15%) and
TEPA–functionalized kenaf (75.62%). This is due to different me-
chanism of adsorption (physisorption and chemisorption) of CO2 on
kenaf adsorbent.
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