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ABSTRACT 

Electrostatic sensors are broadly applied to measure velocity of solid particles 

in many industries because controlling the velocity particles improves product 

quality and process efficiency.  These sensors are selected due to their robust design 

and being economically viable.  Optimization of different electrode sizes and shapes 

of these sensors is required to find the ideal electrodes associated with maximum 

spatial sensitivity and minimum statistical error.  Uniform spatial sensitivity is a 

crucial factor because it would lead to increase similarity between the measured 

correlation velocity and true mean particle velocity.  This thesis proposes a new 

method to optimize different parameters of electrodes for electrostatic sensors.  This 

technique identified characteristics of the electrostatic sensor in a MATLAB code 

called Particle Swarm Optimization (PSO). A mathematical model of various 

electrodes to compute spatial sensitivity and statistical error was applied to extract 

geometric size information of electrodes to detect suitable equations.  To validate the 

proposed method, different values of electrode designs were applied in experimental 

tests conducted in a laboratory to measure the velocity of solid particles. The 

experimental results were optimized through Response Surface Methodology (RSM), 

an optimization technique for experimentation. The optimized results showed that 

spatial sensitivity of circular-ring electrode is more uniform in comparison to the 

other electrodes.  The optimal length of circular-ring electrode was between 0.577 

cm and 0.600 cm.  In addition, the best thickness for the electrodes was between 

0.475 cm and 0.500 cm. A close agreement between optimization and 

experimentation verifies that the proposed method is feasible to optimize physical 

sizes of electrostatic sensor electrodes. These results provide a significant basis of the 

effect of geometric dimensions on the sensing characteristics of electrostatic sensors. 
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ABSTRAK 

Penderia elektrostatik digunakan secara meluas bagi mengukur halaju zarah 

pepejal dalam pelbagai industri kerana dengan mengawal halaju zarah dapat 

meningkatkan kualiti produk dan kecekapan proses.  Penderia ini dipilih disebabkan 

oleh reka bentuknya yang kukuh dan lebih ekonomi. Pengoptimuman saiz dan 

bentuk elektrod yang berbeza daripada penderia ini diperlukan untuk mendapatkan 

elektrod yang sesuai berkaitan dengan kepekaan ruang yang maksimum dan ralat 

statistik yang minimum.  Kepekaan ruang yang seragam merupakan faktor penting 

kerana dapat meningkatkan persamaan antara halaju sekaitan terukur dengan min 

sebenar halaju zarah. Tesis ini mencadangkan kaedah baharu untuk 

mengoptimumkan parameter elektrod yang berbeza bagi penderia elektrostatik.  

Teknik ini mengenal pasti ciri-ciri penderia elektrostatik pada kod MATLAB yang 

disebut sebagai Pengoptimuman Kumpulan Zarah (PSO). Model matematik pelbagai 

elektrod bagi mengira kepekaan ruang dan ralat statistik digunakan untuk 

mendapatkan maklumat saiz elektrod geometri untuk mengesan persamaan yang 

sesuai.  Bagi mengesahkan kaedah yang dicadangkan, nilai-nilai berbeza reka bentuk 

elektrod digunakan dalam ujian eksperimen yang dijalankan di makmal untuk 

mengukur halaju zarah pepejal. Kerumunan eksperimen dioptimumkan melalui 

Metodologi Permukaan Gerak Balas (RSM), iaitu sebuah teknik pengoptimuman 

bagi ujikaji.  Keputusan optimum tersebut menunjukkan bahawa kepekaan ruang 

elektrod gelang bulat lebih seragam berbanding dengan elektrod-elektrod lain.  

Panjang optimum elektrod gelang bulat adalah antara 0.577 cm dengan 0.600 cm.  Di 

samping itu, ketebalan paling sesuai elektrod adalah antara 0.475 cm dengan 0.500 

cm. Perjanjian rapat antara pengoptimuman dan eksperimen mengesahkan bahawa 

kaedah yang dicadangkan boleh dilaksanakan untuk mengoptimumkan saiz fizikal 

elektrod penderia elektrostatik. Keputusan ini menyediakan asas yang besar daripada 

kesan dimensi geometri kepada ciri-ciri penderiaan penderia elektrostatik. 
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CHAPTER 1 

1 INTRODUCTION 

 Introduction  1.1

Electrostatic sensors are normally robust and inexpensive since they do not 

require an external source. This sensing approach has attracted significant attention 

from the flow measurement community. In this approach, movement of particles in a 

pneumatic conveyor will generate an electrostatic charge on the particles because of 

their interaction with each other, the pipeline and conveying air. The amount of 

charge depends on the physical and chemical properties of the particles and 

surrounding environment in the pipeline (Shao et al., 2010; Shao et al., 2009; Tajdari 

and Rahmat, 2014; Taylor, 2001).  

A major advantage of using an electrostatic sensor is its high sensitivity for 

concentration metering. If an electrostatic sensor is combined with cross correlation 

method to measure the velocity, the most economical and inexpensive method to 

measure moving particles velocity in pipelines would be provided due to the fact that 

electrostatic sensor only responds to moving solids in a pipeline and the measured 

data have a large number of immunity from the effect of solids accretion which 

adversely affects other technologies (Zhang and Yan, 2003). 

There are two methods to install electrostatic sensor to a pipeline which are 

non- intrusive arrangement and intrusive arrangement (Mustafa, 2011). In addition, 

electrostatic sensors consist of different types of electrodes including circular- ring, 

quarter- ring, pin and rectangular. The circular or ring sensor are normally embedded 
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in the pipe via insulator which is a non-intrusive arrangement.  The reason this type 

of sensor is widely studied in research is that circular electrodes are able to average 

the flow of particles and have relatively uniform sensitivity (Shao et al., 2009). 

However, in the pipeline industry, this arrangement can be expensive since the 

diameter of a pipe for use in power plants is large. On the other hand, the rode 

electrode or pin sensor which is an intrusive arrangement can easily be mounted 

around the pipeline at various locations. Based on Shao et al. (2009) research, a rod 

sensor has stronger signal and higher correlation coefficient than circular sensor. It is 

also sensitive to localized information of flow based where the electrode is located.  

In addition, a circular electrode can detect complex signal produced by particles in 

the pipe line. The researchers also stated that circular and rod electrodes have 

excellent dynamic response, and are essential for rapid change in velocity of 

particles.  

There are many methods used to measure particles velocity such as particle 

images velocimetry (PIV), Doppler methods, spatial filtering and cross correlation 

method. Cross correlation technique is extensively used in laboratory and pipelines 

industry for velocity measurement. In addition, this method is applied two sensors to 

measure the velocity. The sensor used in this project was electrostatic sensor.  The 

selection is based on the particle charging of solid flows (Rahmat and Kamaruddin, 

2009).  Moreover, this sensor has the advantages of having a simple structure, non- 

contact or non- invasive measurement, highly sensitive, low cost and is a safe sensor 

for the harsh industrial environment. The sensing technique used in velocity 

measurement consists of four basic subsystems that include sensing, signal 

conditioning, data acquisition and display system. The sensor or sensing system is 

used to detect particles flow and located at the upstream and downstream positions 

while signal conditioning circuit is used to convert electrical charge from an 

electrode to a voltage signal of certain amplitude. Data acquisition system, DEWE-T-

DSA-141 is applied to save and analyze the output signals of electrostatic sensors. 

For the display system, a PC is used to monitor voltage signals produced through 

DAQ. This basic system of the measurement system is shown in Figure 1.1. 
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Figure 1.1  Measurement system 

This research coped with optimization of electrodes of electrostatic sensors 

by measuring solids velocity. To achieve this target, a mathematical model of several 

electrodes was examined and uniform spatial sensitivity was surveyed. A novel 

method was proposed to optimize probes size and to consider in detail how to obtain 

the probes volume information for electrostatic sensor. 

 Optimization of Electrostatic Sensor 1.2

Electrostatic sensors have recently been used in many industries and 

laboratories since they are vigorous, simple, and easy to install. Although there are 

numerous applications of these sensors, they have problems with optimization. 

Electrostatic sensors need to be optimized to achieve the desired optimal electrodes. 

Furthermore, optimization of electrostatic sensor is important to maximize spatial 

sensitivity and minimize statistical error. 

Some researchers have optimized electrostatic sensors by using various 

methods such as finite element modeling (FEM) (Tajdari et al., 2012), Genetic 

Algorithm (GA), and ANSYS. However, this optimization needs further research to 

achieve the best volume for the different parameters of electrostatic sensor. GA is an 

evolutionary computation technique. PSO shares many similarities with GA. The 

system is initialized with a population for random solutions and searches for optima 

by updating generations. However, unlike GA, PSO does not have evolution 

operators such as crossover and mutation (Eberhart and Shi, 1998). In PSO, the 

potential solutions, called particles, fly through the problem space by following the 

current optimum particles. Compared to GA, the PSO technique is more dependable 

used to optimize electrostatic sensors as it does not consist of evolution operators. 

Moreover, the PSO approach has fewer parameters to adjust besides being easy to 
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implement. Therefore, PSO due to its advantages is more feasible for use in the 

optimization of electrostatic sensors. 

PSO is a simple, effective, and computational technique that optimizes a 

problem by iteratively trying to improve a candidate solution with regard to a given 

measure of quality. This technique can be used for multi- parameter optimization 

which also uses population- based approach. At first, PSO was put forward by 

Kennedy and Russel based on bird‘s flocking and fish schooling (Kennedy and 

Eberhart, 1997). Generally, the PSO approach has been used in many applications. 

Multi- objective particle swarm optimization (MOPSO) is a type of PSO method 

applied for multi- objective functions. It is more feasible to be used in this study 

since spatial sensitivity and statistical error of electrostatic sensors should be 

simultaneously optimized.  

 Velocity Measurement 1.3

Velocity measurement has the most significant role in managing and 

monitoring particles manner (Li et al., 2006; Yutao et al., 2011). Electrostatic 

sensors are used due to their proficiency in providing dependable velocity in 

pneumatic conveying solid particles with exceptional repeatability and reckless 

dynamic reaction under industrial situation. 

There are two types of velocity, namely linear and rotational (angular) 

(Zhang et al., 2010a). Linear and rotational velocities relate the speed of an object or 

particle, dependent on the perspective taken. Linear velocity utilizes to any object or 

particle that moves, while rotational velocity applies to those that turn such as a 

wheel or a spinning top. Velocity is a physical vector quantity; both magnitude and 

direction are needed to define it. The speed is the scalar absolute value (magnitude) 

of velocity. Linear velocity is generally realized as velocity.  

The following method is used to measure linear velocity. Differentiation of 

displacement or integration of acceleration frequently gets the velocity. The essential 

https://en.wikipedia.org/wiki/Vector_(geometry)
https://en.wikipedia.org/wiki/Physical_quantity
https://en.wikipedia.org/wiki/Scalar_(physics)
https://en.wikipedia.org/wiki/Absolute_value
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equations to measure the mean velocity is as follows: 
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where vavg denotes mean particle velocity, t1 to t2 is time interval and y denotes  

position. 

The method for velocity measurement is divided into two categories which 

are referenced- based methods and seismic or inertial referenced transducers. In 

addition, there are two variations for referenced-based measurement. Firstly, the 

average speed for classification of positions can be determined by means of a series 

of similarly spaced pickups. Secondly, some kind of position transducer is used to 

record the position. However, velocity measurement has a direct effect on uniformity 

of spatial sensitivity and this requires further examination.   

 Research Background 1.4

 In this study, the measurement of velocity using intrusive electrostatic 

sensors was used to examine particle flow in pneumatic conveying pipeline. The 

electrodes in these sensor have different cross-sectional characteristics, including 

circular-ring, quarter ring, and rectangular. Sensor signals resulting from the 

applications of different shaped electrodes were compared. Cross correlation method, 

which measures similarity between signals, was applied for velocity measurement 

include. Besides that, electrode size and sensor design do affect sensor signals and 

measurements. Therefore both methods were applied during the investigation of 

pipeline velocity.   

As mentioned earlier, electrostatic sensors are used in various industries 

because they offer measurement solutions that are efficient and cost-effective. The 

most frequently investigated electrode type is the non-intrusive directing ring, a 
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circular reed sensor that follows the contours of a pipeline wall, but is separated from 

the wall by a non-conductive barrier. The ring electrodes are subject to various 

problems, as a coil is fitted into a pipeline in place of a similar sized piece of the 

pipe. Besides that, implementing ring electrodes is a difficult and expensive 

procedure, especially in long pipelines or when there are access problems. On the 

other hand, the pin electrode is significantly easier to mount through a hole drilled 

into a pipe at a prerequisite site.  But they are easily damaged by strong particle flow 

and need to be protected to increase their robustness. Both ring and pin electrodes are 

most sensitive in the area immediately adjacent to the electrode.   

Although there has been extensive research published on ring electrodes, 

there is a sparse offering of research available on intrusive electrodes. In these 

electrodes, the cross sectional measurement of particle flow can have several 

electrodes placed at the circumference of a pipeline. Their presence causes some 

disruption to the pipeline flow patterns. However, as they register the flow over a 

cross sectional area, the overall disruptive impact on the flow is not significant. The 

dimensions of an intrusive electrode for measuring particle velocity can be random. 

On the contrary, the optimum electrode design in terms of shape, size, and sensor 

design related to a specific pipeline dimension has yet to be determined. 

 Problem Statement 1.5

 Use of electrostatic sensors in velocity and mass flow rate measurement has 

been the subject of extensive academic research (Carter et al., 2009; Ibrahim and 

Green, 2002; Krabicka and Yan, 2007, 2009a; Rahmat and Yaw, 2012; Shao et al., 

2010; Shao et al., 2009; Zhang et al., 2012). The velocity measurement concerns the 

need to detect erosion or assess the maximum effective flow of solid particles and 

their mass flow rate in a number of industries (Gajewski, 2008; Green et al., 1997; 

Matsusaka and Masuda, 2006; Zheng and Liu, 2011). Knowing these criteria can 

lead to improvement in product quality and process efficiency. When searching for 

the most suitable type of sensor, choosing electrostatic sensors has benefits because it 

has a positive impact as they are robust, inexpensive, and produce a high level of 
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accuracy. This research examined the most suitable intrusive electrostatic sensor and 

the best format to obtain accurate particle flow measurements.         

The problem statement of this study is expressed as follows: 

―An optimized electrostatic sensor is required to achieve maximum spatial 

sensitivity and minimum statistical error.‖        

The reason why the optimization for electrode designs is need is that a 

uniform spatial sensitivity of an electrostatic sensor is essential in order to achieve a 

reliable and accurate measurement of the solids concentration area and to ensure that 

the instrument is able to cope with different flow regimes. Additionally, non-uniform 

spatial sensitivity of electrostatic sensor leads to a discrepancy between correlation 

velocity and mean particle velocity. This meter factor could be quantified by using 

optimization of electrostatic size. Optimal sensing characteristics are required to 

increase the performance of electrostatic sensors. The dimensions and designs of 

electrodes are two major parameters to obtaining better sensing characteristics of 

these sensors. To study the potential for improving performance of electrostatic 

sensors, this research used PSO method. Previous works on optimization of 

electrostatic sensors applied FEM and GA methods. Optimization design in that 

ways were complex and the finally results changed every time. So the optimal results 

could not be determined. The results of those methods need to be improved; hence, 

PSO is proposed as a new method for optimizing different types of electrodes in 

electrostatic sensors in current research work.  

 Research Objectives 1.6

The purpose of this project is to study how electrostatic sensors used to 

measure velocity in the pipeline can be optimized. This was done by investigating 

the effect of different dimensions of electrodes. To carry out this study, the research 

objectives are as follows:   
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I. To investigate the performance of different types of electrodes such as 

circular-ring, quarter-ring and rectangular in electrostatic sensors, and 

examine their capability to measure the velocity of particle flow in a 

vertical pneumatic pipeline. 

II. To derive the mathematical model of different types of electrodes. 

III. To optimize an electrode sensor design for velocity measurement 

using PSO technique. 

In this research, a cross correlation method was used to measure the velocity 

of particles. A new approach was applied to optimize several electrodes of 

electrostatic sensor. This method called PSO gives the best size of electrodes to 

achieve uniform spatial sensitivity. Some electrodes of electrostatic sensor are 

mathematically modeled. To solve graph mathematical equations, Mathcad software 

was employed. MATLAB code was utilized for PSO and MOPSO techniques and 

optimizing electrodes. PSO is a computational method of solving a problem by 

optimizing it to arrive at an ideal candidate solution. The motion of a complete set of 

candidate solutions known as particles within a search space is based on a simple 

mathematical formula with reference to its position and velocity. Moreover, the PSO 

approach has fewer parameters to adjust and it could be easily implemented. 

Therefore, due to its advantages, PSO is more feasible for use in the optimization of 

electrostatic sensors. DEWETRON data transfer card and DEWESOFT software 

were employed for data collecting purpose in experimental tests. Finally, the 

experimental results were optimized through response surface methodology (RSM) 

method. 

 Research Scopes and Limitations 1.7

The scope of this research included a range of different kinds of electrostatic 

sensor electrodes for examining the efficiency in velocity measurement, and their 

potential to improve product quality processes. Hence, different shape of electrodes; 
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circular- ring, quarter- ring, and rectangular, with different geometric size were 

considered to measure the velocity in different separations including 5 cm, 10 cm, 15 

cm, and 20 cm. Laboratory methods were applied and software was used to compare 

practical and theoretical results. MATLAB software was used to evaluate velocity 

profile. In addition, to measure velocity, cross correlation method was used to 

examine the relationship between two signals by taking into account transfer time 

and distance between upstream and downstream sensors. This method served as an 

entry point to interface with computational modeling using a data acquisition system 

to gather data from two sensors to compute the time interval of particles transitioning 

between the upstream and downstream sensors. Moreover, different types of 

electrodes were also modeled by mathematical equations from which output signals 

were analyzed and plotted using Mathcad software.  

Physical characteristics of particles including size, conductivity, shape, and 

humidity have some influence on the magnitude of the charge. In addition, solid 

velocity and concentration are the two main parameters contributing to magnitude of 

the charge. All of these parameters were ignored in this study since cross correlation 

method is not relevant to the signal magnitude. 

Basic subsystem to measure the velocity in experiment includes sensing 

system, signal conditioning system, data acquisition system, and display system. 

Signal conditioning system did not have any effect on optimized design of 

electrostatic sensor because optimization was done on geometry of electrodes and 

signal conditioning circuits only converted the output signals from electrode to 

voltage signal. 

The major purpose of this research is the optimization of electrodes of 

electrostatic sensors. PSO is a simple but powerful optimization technique applied to 

achieve this target. Different parameters of electrostatic sensor influenced its 

optimization such as geometry of electrode and electrode sensing. Since PSO acts as 

a multi-parameter optimization method, geometry of electrodes including length and 

thickness were defined as PSO‘s parameters in MATLAB code. After that, electrode 

sensing including spatial sensitivity and statistical error was maximized or 
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minimized by PSO MATLAB code. 

The limitations of the proposed and designed measurement system are listed 

as follows: 

(i) The electrostatic probe is a major part of measurement system that detects 

the electric charge of particles. Therefore, the measurement system is limited 

to measuring the velocity of particles without any electric charge on their 

body. It means that, the velocity of wooden or wet particles cannot be 

measured by electrostatic sensor electrodes. Hence, the minimum measurable 

electric charge is required on body of particle. 

(ii) Separation between electrodes limits the measurement accuracy. When 

electrodes are located very close to each other, electric field erosion takes 

place and correlation coefficient is decreased whereas the statistical error is 

increased. The inverse phenomenon is happened in far from separation. 

Since high correlation coefficient and low electric field are desired, 

separation between electrodes should be arranged correctly. 

(iii) The probe of electrostatic sensor is a pin electrode. The diameter and length 

of pin electrode have important effects on uniformity of spatial sensitivity as 

they reduce the statistical error. However, these parameters of a pin electrode 

cannot be changed in experimental tests. 

With the exception to (i), the other limitations can be improved by developing 

a test rig and hardware set up. 

 Research Contributions 1.8

The major investigation contributions for this study are as follows: 

1- Various shapes of electrostatic electrodes were designed and 

mathematical equations of the induced charge, spatial sensitivity, as well 

as statistical error of the sensor were calculated. 
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2- The relation between spatial sensitivity and physical size of electrodes 

from the analytical process of electrostatic probe were found. 

3- Several parameters of electrostatic probes using PSO technique were 

optimized. 

In this research, several forms of electrostatic sensor were mathematically 

modeled. In addition, they were optimized using PSO method. The spatial sensitivity 

of different electrodes was recorded mathematically using Mathcad software, and 

theoretically using MATLAB software. Uniform spatial sensitivity is significant to 

achieve optimal size of electrodes. The obtained optimal value of electrodes was 

used to measure solids velocity using gravitational test rig in laboratory to verify the 

proposed optimization method. Besides that, experimental and modeling results  

were  compared with each other.  

 Thesis Outline 1.9

A brief introduction of the whole research is provided in chapter 1. The 

reasons and incentives with reference to why the research was done are discussed. A 

brief background of electrostatic sensor, velocity measurement, and optimization of 

electrode are presented. The problem statement highlighted the current problem in 

the optimization of electrostatic sensors. The research objective and project 

contribution in relation to previous studies are provided.   

Chapter 2 illustrates a literature review, which includes three major parts. 

Electrostatic sensors in various shapes are described in the first part. Additionally, 

signal processing system is represented. The second part examined several 

approaches to measure velocity. In the third part, optimization of electrostatic sensor 

and a new proposed method for optimization in this study are presented. 

Chapter 3 provides explanation about the mathematical model of different 

electrodes in detail and spatial sensitivity which was plotted for each electrode. 

Moreover, a new signal processing circuit is proposed to improve the output signal of 
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