A MILLIMETER WAVE REFLECTARRAY ANTENNA WITH TILTED SIDE PATCH ELEMENTS FOR FIFTH GENERATION COMMUNICATION SYSTEMS

MUHAMMAD HASHIM DAHRI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy

School of Electrical Engineering
Faculty of Engineering
Universiti Teknologi Malaysia

DEDICATION

Sincerely dedicated to my beloved mother and late father

ACKNOWLEDGEMENT

First and foremost, a deep and sincerest gratitude to Allah Almighty for providing me the opportunity and giving me the strength to finish this research work. I would like to express my special appreciation and thanks to my Ph.D supervisors Associate Professor Dr. Mohd Haizal Jamaluddin and Dr. Muhammad Ramlee Kamarudin. I would like to thank them for encouraging my research and for advising me to grow as a prolific researcher. Their advice on both research as well as on my career have been priceless for me. A special thank to my Master's supervisor Associate Professor Dr. Yusof Ismail as well, who taught me to love my research field by thinking out of the box. I would like to show my gratitude to my parents, siblings, uncles and all those friends who supported me unconditionally during my Ph.D. A special thank to my maternal uncle Dr. Manzoor Ali Dahri, who always encouraged me with a positive attitude for my research journey. I am also grateful to my friend Dr. Muhammad Inam Abbasi, without his assistance and guidance in every step of my Ph.D, this work would have never been accomplished. Finally, I would also like to thank the technical staff and my fellow researchers of Wireless Communication Centre (WCC) of Universiti Teknologi Malaysia (UTM) for their technical and moral support throughout my research journey.

ABSTRACT

A flat surface reflectarray antenna is becoming an impending competitor for fifth generation (5G) communications among the generally known conventional antenna systems. Its narrow bandwidth and high loss performance lead to restrict its gain and efficiency at millimeter wave frequencies. Additionally, high design sensitivity is also an issue at millimeter waves that can trigger the problem of imperfect fabrications. Therefore, a simple design of reflectarray patch element is required with wide reflection phase range to achieve wideband and high gain performance. Efficiency of reflectarray antenna is also needed to be formulated properly to acquire polarization diversity. In this work, a new reflectarray patch element with a tilted side is recommended for a wideband dual resonance operation within 24 GHz to 28 GHz frequency range. Dual resonance of the tilted side patch element offers a reflection phase range of more than 600° and a reflection loss of 1.6 dB with a novel design. Simulated results of the patch element have been verified by the scattering parameter measurements using a waveguide simulator. Additionally, a mathematical relationship has been formulated to predict the efficiency of the reflectarray antenna based on its aperture shape and feed distance. It has been found that, a circular aperture reflectarray attains 21.46% higher efficiency than its equivalent square aperture reflectarray of the same feed distance. Consequently, a circular aperture reflectarray consisting of 332 variable size tilted side patch elements has been designed and tested at 26 GHz with various possible configurations. The high cross polarization issue due to the asymmetric design of the tilted side patch element has been tackled by mirroring the orientations of the elements on the surface of reflectarray. Moreover, circular ring slots with variable radius have been embedded in reflectarray ground plane for gain improvement. Experimental results show that, the slotted ground reflectarray antenna offers a 3.5 dB higher gain with 22.9% higher efficiency and 3% wider bandwidth than a full grounded reflectarray antenna. A maximum of 26.1 dB gain with 41.3% efficiency and 11.5% (3 GHz) bandwidth has been acquired with the slotted ground reflectarray antenna. The tilted side patch reflectarray has offered dual linear polarization when its elements are mirrored to each other and dual circular polarization when its elements are not mirrored to each other. Its main beam has been numerically steered up to $\pm 20^{\circ}$ by a progressive phase shift of 80° . The acquired parameters of the tilted side patch reflectarray antenna fit within the requirements of the 5G communication systems.

ABSTRAK

Antena reflectarray yang mempunyai permukaan yang rata menjadi pesaing untuk komunikasi generasi kelima (5G) di antara sistem antena konvensional yang Lebar jalurnya yang sempit dan prestasi kehilangannya yang diketahui umum. tinggi menjurus kepada kekangan gandaan dan kecekapan pada frekuensi gelombang milimeter. Di samping itu, kepekaan reka bentuk yang tinggi merupakan masalah pada gelombang millimeter yang akan mencetuskan masalah pada ketidak sempurnaan fabrikasi. Oleh itu, reka bentuk yang ringkas pada elemen tampalan reflectarray diperlukan dengan pelbagai julat fasa pantulan yang luas dan prestasi gandaan yang tinggi. Kecekapan untuk antena reflectarray juga diperlukan untuk dirumus dengan baik untuk memperolehi kepelbagaian polarisasi. Di dalam kerja ini, elemen tampalan reflectarray baru dengan sisi condong disyorkan untuk dual operasi jalur lebar dari julat frekuensi 24 GHz sehingga 28 GHz. Dual resonans bagi elemen tampalan sisi condong memberikan pelbagai fasa pantulan lebih daripada 600° dan 1.6 dB kehilangan pantulan dengan reka bentuk yang novel. Hasil simulasi bagi elemen tampalan telah disahkan oleh pengukuran parameter berselerak menggunakan simulator pandu gelombang. Di samping itu, hubungan matematik telah dirumuskan untuk menjangkakan kecekapan antena reflectarray berdasarkan bentuk bukaan dan Telah diperolehi bahawa bukaan bulatan reflectarray mencapai kecekapan yang tinggi iaitu 21.46% berbanding dengan bukaan empat segi reflectarray pada jarak masukan yang sama. Oleh itu, bukaan bulatan reflectarray terdiri daripada 332 kepelbagaian saiz tampalan elemen condong direka bentu dan diuji pada 26 GHz dengan pelbagai konfigurasi. Isu polarisasi menyilang yang tinggi disebabkan oleh reka bentuk asimetri elemen tampalan sisi yang condong telah ditangani dengan pencerminan orientasi elemen pada permukaan reflectarray. Selain itu, slot cincin bulatan dengan pelbagai radius sudah dibenamkan pada satah bumi reflectarray untuk meningkatkan gandaan. Keputusan eksperimen menunjukkan bahawa, antena reflectarray yang mempunyai satah bumi memberikan gandaan 3.5 dB dengan 22.9% kecekapan dan 3% lebar jalur yang lebih tingi berbanding antena reflectarray yang tiada slot. Gandaan maksimum 26.1 dB dengan 41.3% kecekapan dan 11.5% (3 GHz) lebar jalur telah diperolehi dengan antena reflectarray yang mempunyai berslot. Pada sisi reflectarray tampalan condong menawarkan polarisasi dua linear apabila unsur-unsurnya dicerminkan antara satu sama lain, manakala dua bulatan diperolehi apabila unsur-unsurnya tidak dicerminkan pada satu sama lain. Alur utamanya telah dikemukakan secara berperingkat sehingga ±20° oleh pergerakan fasa progresif sebanyak 80°. Parameter-parameter yang diperolehi daripada antena reflectarray sisi condong adalah sangat bersesuaian dengan apa yang diperlukan untuk sistem komunikasi 5G.

TABLE OF CONTENTS

CHAPTER			TITLE		PAGE	
	DECLARATION					
	DEDICATION					
	ACKN	NOWLED	GEMENT		iv	
	ABST	RACT			v	
	ABST	RAK			vi	
	TABLE OF CONTENTS					
	LIST	OF TABL	ES		xiv	
	LIST	OF FIGU	RES		xvi	
	LIST	OF ABBR	EVIATIONS	S	xxiv	
	LIST	OF SYME	BOLS		XXV	
	LIST	OF APPE	NDICES		xxvi	
CHAPTER 1	INTRODUCTION				1	
	1.1	Probler	n Statement		4	
	1.2	Researc	ch Objectives		5	
	1.3	Researc	ch Scope		6	
	1.4	Thesis	Organization		7	
CHAPTER 2	THEO	ORETICA	L OVERVIE	W	9	
	2.1	2.1 Design Architecture of Reflectarray Antenna			9	
		2.1.1	Reflectarra	y versus Parabolic Reflector	11	
		2.1.2	Types of R	eflectarrays	12	
			2.1.2.1 І	Dielectric Reflectarray	13	
			2.1.2.2 N	Metallic Reflectarray	13	
			2.1.2.3 V	Vaveguide Reflectarray	14	
			2.1.2.4 N	Microstrip Reflectarray	14	
		2.1.3	5G Requir	ements for Reflectarray An-		
			tenna		14	

2.2	Reflect	array Bandwidth Enhancement	15
	2.2.1	Multi-Resonance Elements	16
	2.2.2	Dual Band Designs	18
	2.2.3	Critical Analysis	20
2.3	High G	ain Reflectarray Design Techniques	22
	2.3.1	Different Elements with High Gain	
		Reflectarray Operation	22
	2.3.2	Full Reflectarray based Techniques	23
		2.3.2.1 Reflectarray with a Sub-	
		Reflector	24
		2.3.2.2 Feeding Mechanism	25
		2.3.2.3 Type of Reflectarray	26
	2.3.3	Critical Analysis	26
2.4	Technic	ques for High Efficiency Reflectarrays	28
	2.4.1	Different Elements with High Effi-	
		ciency Reflectarray Operation	30
	2.4.2	Full Reflectarray based Techniques	31
	2.4.3	Critical Analysis	33
2.5	Polariz	ation Diversity in Reflectarrays	33
	2.5.1	Dual Linear Polarized Designs	34
	2.5.2	Dual Circular Polarized Designs	35
	2.5.3	Critical Analysis	36
2.6	Adaptiv	ve Beamsteering in Reflectarrays	37
	2.6.1	Beamsteering using Electronically	
		Tunable Materials	38
		2.6.1.1 Liquid Crystals	38
		2.6.1.2 Ferroelectrics	39
		2.6.1.3 Graphene	40
	2.6.2	Beamsteering using Lumped Compo-	
		nents	41
		2.6.2.1 PIN Diodes	41
		2.6.2.2 Varactor Diodes	42
		2.6.2.3 RF-MEMS	43
	2.6.3	Critical Analysis	44

	2.7	Chapter	Summary	45
CHAPTER 3	RESEA	ARCH MI	ETHODOLOGY	47
	3.1	Compre	chensive Literature Review	48
	3.2	Design	Specifications	50
		3.2.1	Unit Cell Design	50
		3.2.2	Full Reflectarray Design	52
	3.3	Simulat	ions based on CST MWS and Ansys	
		HFSS		53
		3.3.1	Unit Cell Element Simulations	54
		3.3.2	Full Reflectarray Simulations	56
	3.4	Mathem	natical Modeling of Reflectarray Effi-	
		ciency		56
	3.5	Fabricat	tion Process	57
		3.5.1	Printing	58
		3.5.2	Ultraviolet Exposure	58
		3.5.3	Developing and Etching	59
	3.6	Measure	ements	60
		3.6.1	Design of a Waveguide Simulator	60
		3.6.2	Scattering Parameter Measurements of	
			Unit Cell Elements	62
		3.6.3	Far-field Measurements of Full Reflec-	
			tarray Antenna	63
			3.6.3.1 Gain Measurements	65
			3.6.3.2 Azimuth plane and Elevation	
			plane Measurements	65
	3.7	Chapter	Summary	66
CHAPTER 4	REFL	ECTARR	AY FEEDING MECHANISM AND	
EFFICIENCY	ANALY	YSIS		67
	4.1	Design	and Characterization of Square Patch	
		Reflecta	array Unit Cell Element	67

4.2	Variabl	Variable Feed Distance Analysis of Square Patch				
	Reflect	array Ante	nna	69		
	4.2.1	Gain and	d SLL Performance	71		
	4.2.2	Bandwi	dth Performance	72		
	4.2.3	Efficience	cy Performance	74		
	4.2.4	Compar	ative Analysis	76		
4.3	Mather	natical Mo	deling for Reflectarray Antenna			
	Efficier	ncy		77		
	4.3.1	Loss Qu	antification of the Reflectarray			
		Antenna	ı	78		
	4.3.2	Factors	Affecting the Aperture Effi-			
		ciency o	of the Circular Aperture Reflec-			
		tarray A	ntenna	80		
		4.3.2.1	Effect of Different Feeds on			
			the Aperture Efficiency	81		
		4.3.2.2	Effect of Different Feed Dis-			
			tances on the Aperture Effi-			
			ciency	83		
		4.3.2.3	Effect of the Feed Footprint			
			on the Aperture Efficiency	84		
	4.3.3	Aperture	e Efficiency of the Square			
		Aperture	e Reflectarray Antenna	86		
		4.3.3.1	Aperture Efficiency of the			
			Conventional Square Aper-			
			ture	86		
		4.3.3.2	Aperture Efficiency of the			
			Rotated Square Aperture	88		
		4.3.3.3	Aperture Efficiency Compar-			
			ison between Circular and			
			Square Aperture Reflectar-			
			rays	89		
	4.3.4	Design	and Analysis of the Pyramidal			
		Horn Fe	ed	91		

		4.3.5	Validati	on of the Concept with Results	
			and Disc	cussions	92
			4.3.5.1	Design and Validation of the	
				Circular and Square Aperture	
				Reflectarrays	93
			4.3.5.2	Efficiency Prediction by	
				Gain-Directivity Relation	95
			4.3.5.3	Efficiency Prediction by Loss	
				Quantification	96
	4.4	Summa	ry		97
CHAPTER 5	REFLE	CTARR	AV ANTI	ENNA BASED ON TILTED	
SIDE PATCH			711		99
	5.1		pment of T	Tilted Side Patch Element	100
		5.1.1	•	Field Analysis of Tilted Side	
			Patch El	·	102
		5.1.2	Wideba	nd Dual Resonance (DR) Ele-	
			ment		105
			5.1.2.1	Progressive Phase Distribu-	
				tion	108
		5.1.3	Wideba	nd Single Resonance (SR) Ele-	
			ment		108
			5.1.3.1	Progressive Phase Distribu-	
				tion	110
	5.2	Possibi	lities of De	esigning a Reflectarray Antenna	
				Patch Elements	111
		5.2.1	Estimati	on of a Suitable Progressive	
				istribution	112
		5.2.2	Differen	t Mirror Orientations of the	
			Element	TS .	113
		5.2.3	All Poss	sibilities	114
	5.3	Circula	r Aperture	Reflectarray Antenna with 76	
		Tilted S	Side Patch	Elements	115

	5.3.1	Analysis of Gain Performance with	
		Different Progressive Phase Distribu-	
		tions	116
	5.3.2	Cross Polarization Reduction by Differ-	
		ent Mirror Orientation of Elements	119
	5.3.3	Comparative Analysis for a Proper	
		Design Selection	121
5.4	Circula	r Aperture Reflectarray Antenna with 332	
	Tilted S	Side Patch Elements	122
	5.4.1	Simulated and Measured Radiation	
		Pattern Results and Discussion	124
	5.4.2	Comparison with Square Patch Ele-	
		ment Reflectarray	128
5.5	Tilted	Side Patch Element with Circular Ring	
	Slot in	Ground Plane	129
	5.5.1	Extra Effects of Circular Ring Slot in	
		Ground Plane	133
5.6	Reflect	array Antenna of Tilted Side Patch	
	Elemen	nts with Ground Embedded Circular Ring	
	Slot		134
	5.6.1	Simulated Results of Tilted Side Patch	
		Reflectarray based on DR and SR El-	
		ements of Ground Embedded Circular	
		Ring Slot	135
	5.6.2	Simulated and Measured Radiation	
		Pattern Results and Discussion	138
	5.6.3	Comparison with Square Patch Reflec-	
		tarray and Tilted Side Patch Reflectar-	
		ray of Full Ground Plane	141
5.7	Tilted S	Side Patch Reflectarray with Dual Linear	
	Polariz	ation	142
	5.7.1	Simulated and Measured Radiation	
		Pattern Results and Discussion	144

		5.7.2	Comparative Analysis of Vertically	
			and Horizontally Polarized Tilted Side	
			Patch Reflectarray	146
	5.8	Tilted S	Side Patch Reflectarray with Dual Circular	
		Polariz	ation	147
		5.8.1	Right Hand Circular Polarization	147
		5.8.2	Left Hand Circular Polarization	151
		5.8.3	Comparative Analysis of Dual Cir-	
			cularly Polarized Tilted Side Patch	
			Reflectarray	152
	5.9	Numer	ical Analysis of Tilted Side Patch Reflec-	
		tarray f	or Beamsteering	154
		5.9.1	Ideal Scenario for Beamsteering	158
		5.9.2	Real Scenario for Beamsteering under	
			Possibility of Phase Errors	160
	5.10	Summa	ıry	164
CHAPTER 6	CONC	LUSION	AND FUTURE WORKS	167
	6.1	Conclu	sions	167
	6.2	Novelty	y	170
	6.3	Future	Recommendations	170
REFERENCE	S			173
LIST OF PUB	LICATI	ONS		185

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2.1	Broadband elements for reflectarray antenna design (band-	
	width refers as 1-dB gain drop reflectarray bandwidth)	18
Table 2.2	Summary of the main bandwidth enhancement techniques	
	(symbols refer as H=High, N=Neutral and L=Low)	21
Table 2.3	Summary of the main gain enhancement approaches (symbols	
	refer as H=High, N=Neutral and L=Low)	27
Table 2.4	Selected elements with high efficiency reflectarray antenna	
	operation	30
Table 2.5	Summary of adaptive beamsteering techniques (symbols refer	
	as C=Continuous, A=Analog, D=Discrete/Digital, H=High,	
	N=Neutral and L=Low)	45
Table 4.1	Dimensions of selected pyramidal feed horns	70
Table 4.2	Selection of the reflectarray feed based on variable feed	
	distance	84
Table 4.3	Measured and simulated efficiencies of the selected reflectar-	
	ray apertures at 26 GHz	96
Table 4.4	Quantification of the loss performance for the selected	
	reflectarray apertures at 26 GHz	97
Table 5.1	Simulated and measured radiation parameters of tilted side	
	patch reflectarray with different element orientations	126
Table 5.2	Comparison of measured parameters of square patch	
	reflectarray and tilted side patch reflectarray	129
Table 5.3	Simulated gain and front to back ratio (FBR) of ground slotted	
	reflectarray at 26 GHz with different types of elements	137
Table 5.4	Simulated bandwidth of ground slotted reflectarray with	
	different types of elements	138
Table 5.5	Simulated and measured radiation parameters of tilted side	
	patch reflectarray with embedded ground slots and different	
	element orientations	140

Table 5.6	Comparison of measured parameters of square patch				
	reflectarray and tilted side patch reflectarray with full ground				
	and slotted ground	143			
Table 5.7	Simulated and measured radiation parameters of tilted side				
	patch reflectarray with embedded ground slots for dual linear				
	polarization	146			
Table 5.8	Simulated and measured radiation parameters of tilted side				
	patch reflectarray with embedded ground slots for dual				
	circular polarization	151			

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
Figure 1.1	Operational layout of (a) Reflectarray antenna (b) Parabolic	
	reflector (c) Phased array antenna	3
Figure 2.1	Basic architecture of a microstrip reflectarray with an offset	
	feed	10
Figure 2.2	Reflection of the incident signals from the surface of (a)	
	Reflectarray and (b) Parabolic reflector	12
Figure 2.3	Different reflectarray configurations	13
Figure 2.4	Broadband reflectarray elements (a) solo element (b)	
	combination of elements (c) parasitic elements (d) element	
	with open ended stub (e) element with aperture coupled delay	
	line	17
Figure 2.5	(a) X/Ku-band reflectarray with dual layer and dual band	
	operation (b) Single layer dual band reflectarray element for	
	X-band and Ku-band operation (c) Reflectarray element for	
	X-band and K-band operation	19
Figure 2.6	Reflectarray unit cell elements for high gain operation (a) ring	
	element with slot on ground plane (b) amplitude and phase	
	controlled element	23
Figure 2.7	High gain reflectarray with combination of three types of	
	elements	24
Figure 2.8	(a) Reflectarray antenna with a reflectarray sub-reflector (b)	
	Variable height dielectric reflectarray (c) Metallic grooves	
	reflectarray	25
Figure 2.9	Representation of the sources of losses for a reflectarray	
	antenna (a) Illumination loss (b) Spillover loss (c) Other	
	sources of loss in reflectarray	29
Figure 2.10	(a) Mirroring of elements for cross-polarization reduction (b)	
	Combination of radiated and reflected waves for efficiency	
	improvement of reflectarray	32

Figure 2.11	Dual linear polarized elements (a) Crossed dipoles (b) Two	
	orthogonal dipoles (c) Transmit-receive elements	34
Figure 2.12	(a) Dual CP reflectarray (b) Unit cell element with lego type	
	patch element	36
Figure 2.13	Single layer dual band dual CP reflectarray operating in Ku	
	and K-band	37
Figure 2.14	(a) Liquid crystal based multi-resonance reflectarray unit cell	
	element (b) Ferroelectric based capacitive loaded reflectarray	
	antenna	39
Figure 2.15	(a) Graphene based reflectarray patch element (b) dynamic	
	reflection phase range of Graphene based patch element	40
Figure 2.16	Reflectarray unit cell elements with (a) PIN diode (b) Surface	
	mounted varactor (c) Single varactor based dual resonance	
	element	42
Figure 2.17	RF-MEMS in transmission lines of reflectarray for beam	
	switching	43
Figure 3.1	Depiction of technical research flow of the work	48
Figure 3.2	Research flow based on the objectives of the work	49
Figure 3.3	Main performance parameters of reflectarray antenna for its	
	plausible 5G compatibility	49
Figure 3.4	Proposed design of tilted side patch element with a circular	
	slot in the ground plane (a) Patch element evolution (b)	
	Ground plane (c) Substrate parameters	51
Figure 3.5	Structure of the reflectarray antenna for realization of the	
	progressive phase distribution	53
Figure 3.6	Infinite boundary conditions for the reflectarray unit cell	
	element in (a) CST MWS (b) Ansys HFSS	55
Figure 3.7	Printed design of reflectarray unit cells on a transparent sheet	58
Figure 3.8	Ultraviolet exposure unit	59
Figure 3.9	Fabrication of the reflectarray unit cells showing (a)	
	Developing machine (b) Etching machine (c) Fabricated	
	samples	60
Figure 3.10	(a) Fabricated waveguide simulator with WR-34 waveguide	
	adapter (b) Schematic of a fabricated unit cell element	62

Figure 3.11	Measurement setup for scattering parameter measurements of	
	unit cell element	63
Figure 3.12	Far-field measurement setup for reflectarray antenna (Figure	
	is rotated for good visibility)	64
Figure 3.13	Required orientations of the source antenna and reflectarray	
	antenna for the measurement of (a) Azimuth plane (b)	
	Elevation plane	66
Figure 4.1	(a) Fabricated square patch unit cell elements (b) Reflection	
	response of the square patch unit cell element with variable	
	length at 26 GHz	68
Figure 4.2	(a) Square and circular aperture reflectarrays (b) Progressive	
	phase distribution on the surface of square and circular	
	aperture reflectarrays	69
Figure 4.3	(a) Feed horn design (b) Side view of the reflectarray antenna	
	with different f/D used for the analysis	70
Figure 4.4	Simulated gain and SLL performance with respect to variable	
	feed distance for selected reflectarray apertures	72
Figure 4.5	Simulated bandwidth performance with solid lines showing	
	3dB gain drop bandwidth and dotted lines showing 1dB gain	
	drop bandwidth for selected reflectarray apertures	73
Figure 4.6	Simulated efficiency performance with respect to variable	
	feed distance for selected reflectarray apertures	75
Figure 4.7	Sources of the aperture loss in the reflectarray antenna	79
Figure 4.8	Condition for the maximum aperture efficiency of the	
	reflectarray antenna	81
Figure 4.9	Simulated \overrightarrow{E} -plane radiation patterns of three different horn	
	antennas	82
Figure 4.10	Aperture efficiency of the circular aperture reflectarray	
	antenna as a function of its feed distance with three	
	different feeds (Colors refer efficiencies as: Blue=Spillover,	
	Red=Illumination, Black=Aperture)	83
Figure 4.11	Variation in the feed footprint with respect to its position	85
Figure 4.12	Square aperture with its equivalent circular aperture (a)	
	Conventional square aperture (b) Rotated square aperture	86

Figure 4.13	Comparison of the aperture efficiency for different reflec-	
	tarray apertures with different feeds having variable feed	
	distance (Colors refer feeds as: Black=10 dB, Blue=15 dB,	
	Red=20 dB)	90
Figure 4.14	(a) Fabricated Pyramidal horn antenna (b) Measured loss	
	performance of the Pyramidal horn antenna	91
Figure 4.15	Simulated and measured radiation characteristics of the	
	Pyramidal horn antenna	92
Figure 4.16	Circular and square aperture reflectarrays with their	
	progressive phase distribution	94
Figure 4.17	Measured and simulated \overrightarrow{E} -plane radiation patterns with	
	measured cross polarization of the selected reflectarrays at 26	
	GHz	94
Figure 4.18	Measured and simulated gain versus frequency performance	
	of the selected reflectarrays	95
Figure 5.1	Development of tilted side patch element from a square patch	
	element	100
Figure 5.2	Reflection parameters of tilted side patch element with	
	variable angle of inclination (Here $W = L = L_1 = 3.65 \text{ mm}$)	102
Figure 5.3	Slope optimization of reflection phase curve of tilted side	
	patch element with $\theta = 82^{\circ}$ by (a) variable length with W	
	= 3.65 mm (b) variable width with L_1 = 3.65 mm	103
Figure 5.4	Surface current flow on tilted side patch element	104
Figure 5.5	Two tilted side patch elements in mirror orientation	105
Figure 5.6	Wideband dual resonance element (a) Dimensions (b) Surface	
	currents (c) Fabricated samples	106
Figure 5.7	Simulated and measured reflection response of wideband dual	
	resonance element	107
Figure 5.8	Comparison between measured response of mirror and no-	
	mirror orientation of wideband dual resonance unit cell	
	element	107
Figure 5.9	Variation in the reflection response of wideband DR element	
	with respect to change in its length at 26 GHz	108

Figure 5.10	Wideband single resonance element (a) Dimensions (b)	
	Surface currents (c) Fabricated samples	109
Figure 5.11	Simulated and measured reflection response of wideband	
	single resonance element	110
Figure 5.12	Comparison between measured response of mirror and no-	
	mirror orientation of wideband single resonance unit cell	
	element	110
Figure 5.13	Variation in the reflection response of wideband SR element	
	with respect to change in its length at 26 GHz	111
Figure 5.14	Possible points of estimating progressive phase distribution	
	with different phase spans	112
Figure 5.15	Different possibilities of mirroring the orientation of elements	
	on reflectarray surface	114
Figure 5.16	Different possibilities of selecting a reflectarray antenna with	
	tilted side patch elements	115
Figure 5.17	Progressive phase distribution of reflectarray elements with	
	360° and 720° phase span on top right quadrant of the	
	reflectarray	116
Figure 5.18	Simulated gain performance of different progressive phase	
	distribution based tilted side patch element reflectarray with	
	different element orientations (gain values are taken at 26	
	GHz)	118
Figure 5.19	Simulated cross polarization performance of selected	
	reflectarray designs with different mirror orientations of the	
	elements	119
Figure 5.20	Reflected electric field from tilted side patch elements with	
	different mirror orientations	120
Figure 5.21	Allocation of progressive phase distribution at 26 GHz for	
	first and second resonance of DR element	123
Figure 5.22	Reflectarray with elements associated to the progressive	
	phase distribution of DR element at (a) First resonance (b)	
	Second resonance	123
Figure 5 23	Fabricated designs of tilted side patch element reflectarray	125

Figure 5.24	Radiation pattern results of tilted side patch element	
	reflectarray without mirror orientation of elements at 26 GHz	125
Figure 5.25	Gain versus frequency response of tilted side patch element	
	reflectarray without mirror orientation of elements	126
Figure 5.26	Radiation pattern results of tilted side patch element	
	reflectarray with mirror orientation of elements at 26 GHz	127
Figure 5.27	Gain versus frequency response of tilted side patch element	
	reflectarray with mirror orientation of elements	128
Figure 5.28	Design of the tilted side patch (DR) element with a circular	
	ring slot in ground plane	130
Figure 5.29	Surface current concentration of tilted side patch element with	
	a circular ring slot in ground	130
Figure 5.30	Fabricated samples of tilted side patch element with variable	
	radius of ground ring slots	131
Figure 5.31	Simulated and measured reflection response of tilted side	
	patch element with ground ring slot of 1 mm radius	132
Figure 5.32	Variation in the reflection response of tilted side patch	
	element with variable radius of ground ring slot at 26 GHz	132
Figure 5.33	Reflection and transmission effects of tilted side patch	
	element with ground ring slot	133
Figure 5.34	(a) Simulated transmission effects of ground ring slot with	
	variable radius (b) Simulated and measured reflection loss	
	versus radius of ground ring slot at 26 GHz	134
Figure 5.35	Fabricated samples of tilted side patch reflectarray with	
	circular ring slots in ground plane	135
Figure 5.36	Simulated results of reflectarray antenna based on different	
	orientations of various elements with embedded ground slot	136
Figure 5.37	Radiation pattern results of tilted side patch element	
	reflectarray with embedded ground slots and without mirror	
	orientation of elements at 26 GHz	139
Figure 5.38	Gain versus frequency response of tilted side patch element	
	reflectarray with embedded ground slots and without mirror	
	orientation of elements	140

Figure 5.39	Radiation pattern results of tilted side patch element reflec-	
	tarray with embedded ground slots and mirror orientation of	
	elements at 26 GHz	141
Figure 5.40	Gain versus frequency response of tilted side patch	
	element reflectarray with embedded ground slots and mirror	
	orientation of elements	142
Figure 5.41	Different orientations of fabricated tilted side patch reflectar-	
	ray for dual linear polarization operation	144
Figure 5.42	Radiation pattern results of tilted side patch element	
	reflectarray with embedded ground slots for horizontal	
	polarization at 26 GHz	145
Figure 5.43	Gain and axial ratio of tilted side patch reflectarray with	
	embedded ground slots for horizontal polarization	146
Figure 5.44	Tilted side patch reflectarray with vertical orientation to	
	achieve RHCP	148
Figure 5.45	Radiation pattern results of tilted side patch element	
	reflectarray with embedded ground slots for RHCP at 26 GHz	149
Figure 5.46	Gain and axial ratio of tilted side patch reflectarray with	
	embedded ground slots for RHCP	150
Figure 5.47	Tilted side patch reflectarray with horizontal orientation to	
	achieve LHCP	152
Figure 5.48	Radiation pattern results of tilted side patch element	
	reflectarray with embedded ground slots for LHCP at 26 GHz	153
Figure 5.49	Gain and axial ratio of tilted side patch reflectarray with	
	embedded ground slots for LHCP	154
Figure 5.50	Tilted side patch reflectarray as planar array representation	
	with amplitudes and phases of its elements	155
Figure 5.51	Comparison between Matlab and CST simulations for fixed	
	beam representation of tilted side patch reflectarray antenna	
	at 26 GHz	157
Figure 5.52	Progressive phase shift in tilted side patch reflectarray for	
	±45° beamsteering	159
Figure 5.53	Representation of simulated ideal beamsteering scenario for	
	tilted side patch reflectarray antenna	160

Figure 5.54	Conventional and proposed progressive phase shift of 50° in	
	tilted side patch reflectarray with a phase error of 160°	161
Figure 5.55	Effects of phase error in progressive phase shift for	
	beamsteering in tilted side patch reflectarray	162
Figure 5.56	Simulated beamsteering with tilted side patch reflectarray for	
	different amount of proposed progressive phase shift	163

LIST OF ABBREVIATIONS

5G – Fifth Generation

AF – Array Factor

AR – Axial Ratio

AUT – Antenna Under Test

CST – Computer Simulation Technology

dB – Decibel

DR – Dual Resonance

EF – Element Factor

FBR - Front to Back Ratio

FEM – Finite Element Method

FIM – Finite Integral Method

GHz – Giga Hertz

HFSS – High Frequency Structure Simulator

HP – Horizontal Polarization

LHCP – Left Hand Circular Polarization

LP – Linear Polarization

RHCP – Right Hand Circular Polarization

SNR – Signal to Noise Ratio

SR – Single Resonance

TE – Transverse Electric

VNA – Vector Network Analyzer

VP – Vertical Polarization

_

LIST OF SYMBOLS

Frequency fSpeed of Light cWavelength λ Reflection Phase φ **Element Spacing** S GGain DDirectivity \boldsymbol{E} Electric Field \boldsymbol{A} Area Efficiency η **Exponent of Feed Pattern Function** qLength L Diagonal d Dielectric Constant ε Surface Current Jk Wave Number Conductivity σ Progressive Phase Shift β

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	Waveguide Adapter Data Sheet	187
Appendix B	Matlab Code for Radiation Pattern of Reflectarray	
	Antenna	189

CHAPTER 1

INTRODUCTION

Fifth Generation (5G) communications are currently represented as a future technology, which is supposed to meet the high data rate goals, roughly 1000 times faster than the current systems. The peak data rate in the order of Gbps will require fast switching mechanism which is possible at short wavelengths of millimeter waves (mmwaves). The mm-waves are considered with the wavelengths ranging from 1 mm to 100 mm, occupying the frequency range from 3 GHz to 300 GHz [1]. However, due to congested frequency spectrum at lower frequencies, the frequencies over 20 GHz have a good potential to be considered for 5G communications [2]. Consequently, different frequency bands were proposed for 5G starting from 24.25 GHz up to 86 GHz in World Radiocommunication Conference (WRC-15) [3]. The data rate requirements of 5G can be met by enhancing the bandwidth and efficiency of the antenna systems at mm-waves [2, 4]. However, the mm-wave frequencies have some propagation limitations in terms of high path loss and very short communication distances. Massive improvements in the architecture of current communication systems are desperately required in order to adopt 5G technology [1].

The propagation issues related with mm-waves can be avoided by selecting a suitable type of antenna for 5G systems. Array antennas are considered as a good candidate to compensate the issues regarding path loss for short range communications [5]. Two dimensional planar arrays with large electrical apertures can provide narrow beamwidth, which is essential for 5G base station operations [1]. Large electrical aperture at mm-waves for 5G, does not affect the physical profile of the antenna due to short wavelengths. Massive MIMO systems have also been suggested for 5G due to their possible integrity with small cells [1, 6]. However, as compared to array antennas massive MIMO are not the potential candidate for 5G systems due to their design complexity and less adaptability with shorter wavelengths [1, 2]. There are many other types of antennas, which can be found in the literature for proposed 5G operation

[7, 8, 9]. Their main purpose is to achieve wide bandwidth to support high throughput of 5G systems [10]. The operation of antenna systems for 5G compatibility largely depends on the enhancement of its bandwidth performance. A massive bandwidth is required in mm-wave range to support high data requirements [11]. Bandwidth of the order of GHz is attainable at mm-wave frequency range, but some extra design efforts are still required to fully utilize it with other requirements.

However, by just enhancing the bandwidth of proposed antenna does not solve all issues regarding 5G compatibility. Significant improvements in some other parameters like gain, efficiency, polarization diversity and adaptive beamsteering are also considered as a need of time [11, 12, 1]. It is because, the antenna performance for 5G can directly depend on the mode of antenna operation. Antenna used for transmission or reception can significantly affect its required parameters for 5G operation. It is widely believed that the requirement of improvement in antenna parameters for transmission is higher than the same parameters for reception. An improved gain performance can ensure the strong transmission capabilities for antenna [11]. In the case of 5G, when antenna systems are required to work at mm-waves, their communication distances significantly decrease due to the short wavelength. In this case, a high gain antenna can radically improve the path loss performance, without disturbing its original power consumption [7].

A high aperture efficiency of antenna systems ensures the best utilization of maximum gain value for the reduction of path loss [12]. On the other hand, the data rate can also be increased by enhancing the spectral efficiency of antenna systems [2]. Polarization diversity can be achieved when a single antenna is used with two or more different polarizations [13]. The concept of frequency reuse also emerges from polarization diversity, where a single frequency can be dually utilized with different polarizations of the signal. Frequency reuse is useful for 5G systems, where wide bandwidth is essentially required. The mm-wave antennas support fixed narrow beam operation for high gain performance, which enables the need of adaptive beamsteering [1]. Moreover, the highly directional nature of mm-waves can produce blockage of signals, which can be countered by performing adaptive beamsteering [2]. These described parameters of a potential 5G antenna, are attainable with a reflectarray

antenna.

The array of elements combined together on a flat dielectric surface to reflect the incidence signals coming from a properly distant feed defines the main architecture of a reflectarray antenna [14]. Figure 1.1 distinguishes between the basic operational characteristics of a reflectarray antenna, parabolic reflector and phased array antenna. As demonstrated in Figure 1.1, the reflection of the signals can be directed like a parabolic reflector with an additional advantage of a plane and light weighted surface. Moreover, reflectarray can also perform beam scanning like a phased array antenna, but without the aid of any power divider or additional phase shifters [15]. The less complex design of reflectarray makes it more cost effective and competitive, especially for beam scanning applications. The bulky and curvy design of parabolic antenna is not a good candidate for high frequency applications [14]. Alternatively a reflectarray antenna can easily be designed from as low as Microwave [16] to as high as Terahertz frequency range [17]. The adaptability of reflectarray to high frequencies makes it suitable for high gain and high bandwidth operation.

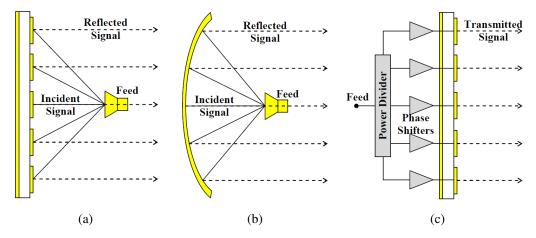


Figure 1.1 Operational layout of (a) Reflectarray antenna (b) Parabolic reflector (c) Phased array antenna

Phased array antenna is the nearest possible competitor of reflectarray antenna for 5G operation, but it faces efficiency lacking problems at mm-waves due to its additional loss performance at high frequencies [18]. Moreover, its design complexity

and power consumption are also major issues at mm-wave frequencies. On the other hand, the discussed antenna parameters for possible 5G application are inevitable with reflectarray antenna. Its bandwidth can be enhanced by optimizing its unit cell designs with different substrate thicknesses [19]. The high gain performance can be obtained by increasing the size of the reflectarray, which can produce sharp beams [14]. Its reflection loss performance along with its feeding mechanism can be optimized for efficiency enhancement. Different design configuration of patch elements can be utilized for various polarization combinations. Furthermore, the incident signal from feed or the reflection phase of the reflectarray can be dynamically tuned to get adaptive beamsteering [20].

There are a lot of techniques mentioned in the literature for the enhancement of each discussed parameters of reflectarray. In this work, the emphasis has been given specially on the design configuration needed for reflectarray bandwidth and gain enhancement as a 5G base station antenna. Improvement in the bandwidth performance surely reduces the gain of the reflectarray antenna. Therefore, various techniques have been implemented in the reflectarray comprised of the proposed elements for high gain and high efficiency performance. The finalized design of the reflectarray antenna has also been realized for the possibility of acquiring polarization diversity and electronic beamsteering at mm-wave frequency range.

1.1 Problem Statement

High reflection loss and narrow bandwidth are the two main performance degradation of reflectarray antenna, which also limit its gain and efficiency. The losses in the reflectarray are associated with the design of its unit cell element and the material used to construct it. A wide patch element, such as a square patch, reflects back most of the incident signals and offers low loss performance. However, it also provides narrow bandwidth performance due to its limited reflection phase range. In order to coincide with the 5G high data rate requirements, a wide bandwidth reflectarray antenna is required with high gain and high efficiency at mmwave frequency range. The main problem associated with mm-wave is its high design

sensitivity due to shorter wavelengths. It means that, a slight change in the dimension of reflectarray element would drastically affect its performance. This slight change in the dimension is unavoidable in the case of an imperfect fabrication. Alternatively, the high performance parameters of 5G reflectarray antenna come with increasing design complexity. The high design complexity also increases the chances of imperfect fabrication at mm-wave frequencies due to very short physical dimensions. bandwidth of the reflectarray antenna can be improved by introducing extra resonances at its unit cell level. However, this may trigger extra losses with a possibility of mutual coupling between the elements and degradation in gain performance. This effect of mutual coupling can alter the resonant behavior, increase the cross polarization level and limit the efficiency of reflectarray antenna. Gain and efficiency of the reflectarray antenna are largely dependent on its aperture size and feeding mechanism. The spillover and illumination efficiencies can be optimized by selecting a proper feed distance in front of the reflectarray. A suitable feed distance also eliminates the chances of high side lobe formation that limits the gain performance. The mm-wave array antennas produce highly directional narrow beams, which shrink down their coverage area and limit the full bandwidth utilization by introducing signal blockage problem. The signal blockage can be avoided by introducing electronic beamsteering, whereas the diversity in the polarization can be utilized as an efficient tool for frequency reuse. Therefore in this work, a novel reflectarray unit cell with simple design and extended reflection phase range has been proposed to avoid the design complexity issue at mm-waves. The mutual coupling and hence the high cross polarization issue of the proposed unit cells has been tackled by selecting the proper orientation of the elements on the surface of constructed reflectarray. The gain and efficiency of the constructed reflectarray have been optimized by a suitable aperture size with a proper feed distance. The reflectarray antenna comprising the new unit cells has also been realized with the available possibilities of polarization diversity and beamsteering.

1.2 Research Objectives

There are four main research objectives of this work, which are listed below;

- 1. To design and investigate the performance of a wideband tilted side reflectarray patch element with wide reflection phase range.
- 2. To numerically analyze the relationship between the efficiency, aperture size and feeding mechanism of the reflectarray antenna.
- 3. To develop a wideband reflectarray antenna with improved gain and reduced cross polarization.
- 4. To implement a technique for the realization of polarization diversity and beamsteering in the reflectarray antenna.

1.3 Research Scope

The main scope of this research work comprises of the designing of a reflectarray antenna that could satisfy the requirements for the 5G communications systems. Unit cell patch element of the reflectarray antenna has been characterized in order to obtain dual resonance response operating at 26 GHz for bandwidth enhancement. The unit cell simulations has been performed using CST MWS and Ansys HFSS simulations tools, while measurements have been done by waveguide simulator approach. Rogers 5880 material has been selected as the substrate for the reflectarray antenna with 0.254 mm thickness. A full reflection phase span of 720° and 360° is selected for the realization of a proper full reflectarray antenna design. Far-field measurements of the full reflectarray antenna have been performed in anechoic chamber. Three different horn feeds with different gains are used to analyze the effect of variable feed distance on the performance of the reflectarray antenna. A mathematical relation has been derived to estimate the efficiency of the reflectarray antenna by considering its aperture shape and feeding mechanism characteristics within the frequency range of 24 GHz to 28 GHz. Gain enhancement in the reflectarray antenna is characterized by embedding circular ring slots in its ground plane. Reduction in the cross polarization of the reflectarray antenna has been optimized by selecting different element orientations on its surface. Different polarization operation of the reflectarray antenna has been tested by 90° rotating its aperture, while keeping the same feed orientation. Finally, Matlab software is used to numerically obtain the maximum possible beamsteering by the finalized reflectarray

antenna design.

1.4 Thesis Organization

The second chapter of the thesis discusses the main techniques available in the literature for the performance enhancement of reflectarray antenna. The performance parameters of reflectarray antenna in terms of its bandwidth, gain, efficiency, polarization diversity and adaptive beamsteering are thoroughly analyzed in this chapter. Importance of each of these parameters is also explored for their plausible compatibility with 5G communication systems.

The conventional tactics and procedures involving the design and analysis of a reflectarray antenna are provided in the third chapter. Detailed design analyses of a unit cell element with its proper boundary conditions and excitation is included. The step by step process involving the design of a full reflectarray antenna is mentioned in this chapter. The methods of performing simulations, fabrication and measurements of the reflectarray antenna are also thoroughly discussed.

Chapter four studied the efficiency characteristics of reflectarray antenna in conjunction with its feeding mechanism. Mathematical equations for the aperture efficiency of reflectarray antenna are formulated and analyzed by performing far-field simulations and measurements of a square path reflectarray antenna. Total efficiency of the reflectarray antenna is also estimated by the developed equations and the results are validated by the conventional gain-directivity relation.

The tilted side patch element and its full reflectarray configuration are thoroughly analyzed in chapter five. Process of the evaluation of the tilted side patch element from a square patch element is defined in this chapter. The wide reflection phase range of the tilted side patch element is then utilized to study different configurations of the reflectarray antenna for its performance improvement. The main techniques for the enhancement of bandwidth and gain, and reduction of the cross polarization of developed reflectarray antenna are also provided in this chapter. The

REFERENCES

- 1. Boccardi, F., Heath, R., Lozano, A., Marzetta, T. L. and Popovski, P. Five disruptive technology directions for 5G. *IEEE Communications Magazine*, 2014. 52(2): 74–80. ISSN 01636804. doi:10.1109/MCOM.2014.6736746.
- Andrews, J. J. G., Buzzi, S., Choi, W., Hanly, S. V. S., Lozano, A., Soong, A. C. K. and Zhang, J. J. C. What will 5G be? *IEEE Journal on Selected Areas in Communications*, 2014. 32(6): 1065–1082. ISSN 0733-8716. doi: 10.1109/JSAC.2014.2328098.
- 3. ITU. Final Acts WRC-15. *World Radiocommunication Conference*. Geneva. 2015.
- 4. Rappaport, T. S., Mayzus, R., Azar, Y., Wang, K., Wong, G. N., Schulz, J. K., Samimi, M. and Gutierrez, F. Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! *IEEE Access*, 2013. 1: 335–349.
- Malkowsky, S., Vieira, J., Liu, L., Harris, P., Nieman, K., Kundargi, N., Wong, I. C., Tufvesson, F., Owall, V. and Edfors, O. The World's First Real-Time Testbed for Massive MIMO: Design, Implementation, and Validation. *IEEE Access*, 2017. 5: 9073–9088. ISSN 2169-3536. doi:10.1109/ACCESS. 2017.2705561.
- Zhao, X., Li, S., Wang, Q., Wang, M., Sun, S. and Hong, W. Channel Measurements, Modeling, Simulation and Validation at 32 GHz in Outdoor Microcells for 5G Radio Systems. *IEEE Access*, 2017. 5: 1062–1072. ISSN 2169-3536. doi:10.1109/ACCESS.2017.2650261.
- Haraz, O. M., Elboushi, A., Alshebeili, S. A. and Sebak, A. R. Dense Dielectric Patch Array Antenna With Improved Radiation Characteristics Using EBG Ground Structure and Dielectric Superstrate for Future 5G Cellular Networks. *Access, IEEE*, 2014. 2: 909–913. ISSN 2169-3536. doi: 10.1109/ACCESS.2014.2352679.
- 8. Elsharkawy, R., Sebak, A. R., Hindy, M., Haraz, O. M., Saleeb, A. and El-Rabaie, E. S. Single layer polarization independent reflectarray antenna for future 5G cellular applications. *IEEE International Conference on*

- *information and Communication Technology Research (ICTRC)*. IEEE. 2015. 9–12. doi:10.1109/ICTRC.2015.7156408.
- 9. Ban, Y. L., Li, C., Sim, C. Y. D., Wu, G. and Wong, K. L. 4G/5G Multiple Antennas for Future Multi-Mode Smartphone Applications. *IEEE Access*, 2016. 4: 2981–2988. ISSN 2169-3536. doi:10.1109/ACCESS.2016. 2582786.
- Ka Ming, M., Hau Wah, L., Kwai Man, L. and Chi Hou, C. Circularly Polarized Patch Antenna for Future 5G Mobile Phones. *IEEE Access*, 2014.
 1521–1529. ISSN 2169-3536. doi:10.1109/ACCESS.2014.2382111.
- 11. Roh, W., Seol, J. Y., Park, J., Lee, B., Lee, J., Kim, Y., Cho, J., Cheun, K. and Aryanfar, F. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. *IEEE Communications Magazine*, 2014, 52(2): 106–113.
- 12. Dinh Thuy, P. H., Sternad, M. and Svensson, T. Making 5G Adaptive Antennas Work for Very Fast Moving Vehicles. *IEEE Intelligent Transportation Systems Magazine*, 2015. 7(2): 71–84. doi:10.1109/MITS. 2015.2408151.
- 13. Guo, L., Tan, P. K. and Chio, T. H. A simple approach to achieve polarization diversity in broadband reflectarrays using single-layered rectangular patch elements. *Microwave and Optical Technology Letters*, 2015. 57(2): 305–310. doi:10.1002/mop.28833.
- 14. Huang, J. and Encinar, J. *Reflectarray antennas*. USA: Wiley Inter Science. 2007.
- 15. Huang, J. Analysis of microstrip reflectarray antenna for microspacecraft applications. Technical report. Spacecraft Telecommunications Equipment Section: TDA Progress Report. 1995.
- 16. Yu, A., Yang, F., Elsherbeni, A. Z., Huang, J. and Kim, Y. An offset-fed X-band reflectarray antenna using a modified element rotation technique. *IEEE Transactions on Antennas and Propagation*, 2012. 60(3): 1619–1624.
- 17. Chang, Z., You, B., Wu, L. S., Tang, M., Zhang, Y. P. and Mao, J. F. A Reconfigurable Graphene Reflectarray for Generation of Vortex THz Waves.

- *IEEE Antennas and Wireless Propagation Letters*, 2016. 15: 1537–1540. doi: 10.1109/LAWP.2016.2519545.
- 18. Hum, S. V. and Perruisseau Carrier, J. Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: A review. *IEEE Transactions on Antennas and Propagation*, 2014. 62(1): 183–198.
- 19. Abbasi, M. I. and Ismail, M. Y. Reflection loss and bandwidth performance of X-band infinite reflectarrays: Simulations and measurements. *Microwave and Optical Technology Letters*, 2011. 53(1): 77–80. doi:10.1002/mop. 25662.
- 20. Nayeri, P., Yang, F. and Elsherbeni, A. Z. Beam-Scanning Reflectarray Antennas: A technical overview and state of the art. *IEEE Antennas and Propagation Magazine*, 2015. 57(4): 32–47. ISSN 1045-9243. doi: 10.1109/MAP.2015.2453883.
- 21. Kishor, K. K. and Hum, S. V. An amplifying reconfigurable reflectarray antenna. *IEEE Transactions on Antennas and Propagation*, 2012. 60(1): 197–205.
- 22. Pozar, D. M. and Metzler, T. A. Analysis of a reflectarray antenna using microstrip patches of variable size. *Electronics Letters*, 1993. 29(8): 657–658. ISSN 00135194. doi:10.1049/el:19930440.
- 23. Jamaluddin, M. H., Gillard, R., Sauleau, R. and Milon, M. A. Perturbation Technique to Analyze Mutual Coupling in Reflectarrays. *IEEE Antennas and Wireless Propagation Letters*, 2009. 8: 697–700. ISSN 1536-1225.
- 24. Pozar, D. M. and Metzler, T. A. Analysis of a reflectarray antenna using microstrip patches of variable size. *Electronics Letters*, 1993. 29(8): 657–658. ISSN 00135194.
- 25. Huang, J. and Pogorzelski, R. A Ka-band microstrip reflectarray with elements having variable rotation angles. *IEEE Transactions on Antennas and Propagation*, 1998. 46(5): 650–656.
- 26. Ismail, M. Y. and Inam, M. Resonant Elements for Tunable Reflectarray Antenna Design. *International Journal of Antennas and Propagation*, 2012. 2012: 1–6. doi:10.1155/2012/914868.

- 27. Chang, D. C. and Huang, M. Multiple-polarization microstrip reflectarray antenna with high efficiency and low cross-polarization. *IEEE Transactions on Antennas and Propagation*, 1995. 43(8): 829–834.
- 28. Chang, D. C. and Huang, M. C. Microstrip reflectarray antenna with offset feed. *Electronics Letters*, 1992. 28(16): 1489–1491. ISSN 00135194. doi: 10.1049/el:19920946.
- 29. Yi, M., Lee, W., Yoon, Y. J. and So, J. Non-resonant conductor reflectarray element for linear reflection phase. *Electronics Letters*, 2015. 51(9): 669–671. doi:10.1049/el.2015.0194.
- 30. Jamaluddin, M. H., Gillard, R., Sauleau, R., Le Coq, L., Castel, X., Benzerga, R. and Koleck, T. A dielectric resonator antenna (DRA) reflectarray. European Microwave Week 2009, EuMW 2009: Science, Progress and Quality at Radiofrequencies - 39th European Microwave Conference, EuMC 2009. 2009. doi:10.1109/EUMC.2009.5296579.
- 31. Abd Elhady, M., Hong, W. and Zhang, Y. A Ka-band reflectarray implemented with a single-layer perforated dielectric substrate. *IEEE Antennas and Wireless Propagation Letters*, 2012. 11: 600–603.
- 32. Wenxing An, W., Shenheng Xu, S. and Fan Yang, F. A Metal-Only Reflectarray Antenna Using Slot-Type Elements. *IEEE Antennas and Wireless Propagation Letters*, 2014. 13: 1553–1556. doi:10.1109/LAWP. 2014.2342376.
- 33. Polenga, S. V., Stankovsky, A. V., Krylov, R. M., Nemshon, A. D., Litinskaya, Y. A. and Salomatov, Y. P. Millimeter-wave waveguide reflectarray. 2015 International Siberian Conference on Control and Communications, SIBCON 2015 Proceedings. Institute of Electrical and Electronics Engineers Inc. 2015.
- 34. Berry, D. C., Malech, R. G. and Kennedy, W. A. The reflectarray antenna. *IEEE Transactions on Antennas and Propagation*, 1963. 11(6): 645 651.
- 35. Huang, J. Microstrip reflectarray. *Antennas and Propagation Society Symposium 1991 Digest*, 1991: 612–615. doi:10.1109/APS.1991.174914.
- 36. Gohil, A., Modi, H. and Patel, S. K. 5G technology of mobile

- communication: A survey. 2013 International Conference on Intelligent Systems and Signal Processing, ISSP 2013. IEEE. 2013. ISBN 9781479903160. 288–292. doi:10.1109/ISSP.2013.6526920.
- 37. Han, S., I, C. L., Xu, Z. and Rowell, C. Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. *IEEE Communications Magazine*, 2015. 53(January): 186–194. ISSN 0163-6804. doi:10.1109/MCOM.2015.7010533.
- 38. Rajagopalan, H. and Samii, Y. R. Loss quantification for microstrip reflectarray: Issue of high fields and currents. 2008 IEEE Antennas and Propagation Society International Symposium. 2008. ISBN 9781424420414. 1–4. doi:10.1109/APS.2008.4619755.
- 39. Pozar, D. M. Bandwidth of reflectarrays. *Electronics Letters*, 2003. 39(21): 1490–1491.
- 40. Misran, N., Cahill, R. and Fusco, V. Design optimisation of ring elements for broadband reflectarray antennas. *IEE Proceedings Microwaves, Antennas and Propagation*, 2003. 150(6): 440–444.
- 41. Sayidmarie, K. and Bialkowski, M. Fractal unit cells of increased phasing range and low slopes for single-layer microstrip reflectarrays. *IET Microwaves, Antennas & Propagation*, 2011. 5(11): 1371.
- 42. Li, Q. Y., Jiao, Y. C. and Zhao, G. A novel microstrip rectangular-patch/ring-combination reflectarray element and its application. *IEEE Antennas and Wireless Propagation Letters*, 2009. 8: 1119–1122.
- 43. Li, L., Chen, Q., Yuan, Q., Sawaya, K., Maruyama, T., Furuno, T. and Uebayashi, S. Novel broadband planar reflectarray with parasitic dipoles for wireless communication applications. *IEEE Antennas and Wireless Propagation Letters*, 2009. 8: 881–885.
- 44. Li, Y., Bialkowski, M. E. and Abbosh, A. M. Single layer reflectarray with circular rings and open-circuited stubs for wideband operation. *IEEE Transactions on Antennas and Propagation*, 2012. 60(9): 4183–4189.
- 45. Venneri, F., Costanzo, S., Di Massa, G., Venneri, F., Costanzo, S. and Di Massa, G. Bandwidth Behavior of Closely Spaced Aperture-Coupled

- Reflectarrays. *International Journal of Antennas and Propagation*, 2012. 2012: 1–11. doi:10.1155/2012/846017.
- 46. Xue, F., Wang, H. J., Yi, M. and Liu, G. A broadband KU-band microstrip reflectarray antenna using single-layer fractal elements. *Microwave and Optical Technology Letters*, 2016. 58(3): 658–662. doi:10.1002/mop.29637.
- 47. Zhao, J. J., Gong, S. X., Xu, Y. X. and Ren, L. S. Design of a broadband reflectarray using meander-shaped elements. *Microwave and Optical Technology Letters*, 2012. 54(2): 500–503. doi:10.1002/mop.26563.
- 48. Wu, W. W., Qu, S. W. and Zhang, X. Q. Single-layer reflectarray with novel elements for wideband applications. *Microwave and Optical Technology Letters*, 2014. 56(4): 950–954. doi:10.1002/mop.28208.
- 49. Yoon, J. H., Yoon, Y. J., Lee, W. S. and So, J. H. Broadband microstrip reflectarray with five parallel dipole elements. *IEEE Antennas and Wireless Propagation Letters*, 2015. 14: 1109–1112.
- 50. Derafshi, I., Komjani, N. and Mohammadirad, M. A single-layer broadband reflectarray antenna by using quasi-spiral phase delay line. *IEEE Antennas and Wireless Propagation Letters*, 2015. 14: 84–87.
- 51. Pan, Y., Zhang, Y. R. and Yu, X. A X/Ku dual-band reflectarray design with cosecant squared shaped beam. *Microwave and Optical Technology Letters*, 2014. 56(9): 2028–2034. doi:10.1002/mop.28525.
- 52. Hamzavi Zarghani, Z. and Atlasbaf, Z. A New Broadband Single-Layer Dual-Band Reflectarray Antenna in X- and Ku-Bands. *IEEE Antennas and Wireless Propagation Letters*, 2015. 14: 602–605. doi:10.1109/LAWP.2014. 2374351.
- 53. Malfajani, R. S. and Atlasbaf, Z. Design and Implementation of a Dual-Band Single Layer Reflectarray in X and K Bands. *IEEE Transactions on Antennas and Propagation*, 2014. 62(8): 4425–4431. doi:10.1109/TAP.2014.2327137.
- 54. Oh, S., Ahn, C. and Chang, K. Reflectarray element using variable ring with slot on ground plane. *Electronics Letters*, 2009. 45(24): 1206.
- 55. Pochiraju, T. and Fusco, V. Amplitude and phase controlled reflectarray element based on an impedance transformation unit. *IEEE Transactions on*

- Antennas and Propagation, 2009. 57(12): 3821–3826.
- 56. Yoon, J. H., So, J. h., Yoon, Y. J., Kim, J. s. and Lee, W. s. Single-layer reflectarray with combination of element types. *Electronics Letters*, 2014. 50(8): 574–576. doi:10.1049/el.2014.0435.
- 57. Tienda, C., Encinar, J. A., Arrebola, M., Barba, M. and Carrasco, E. Design, manufacturing and test of a dual-reflectarray antenna with improved bandwidth and reduced cross-polarization. *IEEE Transactions on Antennas and Propagation*, 2013. 61(3): 1180–1190.
- Nayeri, P., Liang, M., Sabory Garcia, R., Tuo, M., Yang, F., Gehm, M., Xin, H. and Elsherbeni, A. High gain dielectric reflectarray antennas for THz applications. 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI). IEEE. 2013. ISBN 978-1-4673-5317-5. 1124–1125. doi:10.1109/APS.2013.6711222.
- 59. Yi, M., Lee, W. and So, J. Design of cylindrically conformed metal reflectarray antennas for millimetre-wave applications. *Electronics Letters*, 2014. 50(20): 1409–1410. doi:10.1049/el.2014.2206.
- 60. Mohammadirad, M., Komjani, N., Chaharmir, M. R., Shaker, J. and Sebak, A. R. Phase error analysis of the effect of feed movement on bandwidth performance of a broadband X-Ku band reflectarray. *International Journal of RF and Microwave Computer-Aided Engineering*, 2013. 23(5): 517–526. doi:10.1002/mmce.20685.
- 61. Park, J. H., Choi, H. K. and Kim, S. H. Design of Ku-band reflectarray using hexagonal patch with crossed slots. *Microwave and Optical Technology Letters*, 2012. 54(10): 2383–2387. doi:10.1002/mop.27095.
- 62. Tahseen, M. M. and Kishk, A. A. Ka-Band Circularly Polarized High Efficiency Wide Band Reflectarray Using Cross Bow-Tie Elements. *Progress In Electromagnetics Research*, 2015. 153: 1–10. doi:10.2528/PIER15072305.
- 63. Florencio, R., Boix, R. R., Carrasco, E., Encinar, J. A., Barba, M. and Pérez-Palomino, G. Broadband reflectarrays made of cells with three coplanar parallel dipoles. *Microwave and Optical Technology Letters*, 2014. 56(3):

- 748–753. ISSN 08952477. doi:10.1002/mop.28171.
- 64. Chen, H. W., Zhang, G. Q., Lei, X. and Wu, J. M. A slotted hollow ring element for Ku-band high-efficiency circularly polarized reflectarrays. *Microwave and Optical Technology Letters*, 2015. 57(11): 2629–2632.
- 65. Deng, R., Mao, Y., Xu, S. and Yang, F. A Single-Layer Dual-Band Circularly Polarized Reflectarray With High Aperture Efficiency. *IEEE Transactions on Antennas and Propagation*, 2015. 63(7): 3317–3320. doi:10.1109/TAP.2015. 2429684.
- 66. Hasani, H., Kamyab, M. and Mirkamali, A. Low cross-polarization reflectarray antenna. *IEEE Transactions on Antennas and Propagation*, 2011. 59(5): 1752–1756.
- 67. Kim, D. and Park, I. Y. A Miniaturized Reflectarray Antenna for Scanned Beam Applications. *IEEE Transactions on Antennas and Propagation*, 2016. 64(3): 960–967. doi:10.1109/TAP.2016.2517676.
- 68. Zhong, X. J., Chen, L., Shi, Y. and Shi, X. W. A Dual-Frequency Single Layer Circularly Polarized Reflectarray with Frequency Selective Surface Backing. Progress In Electromagnetics Research C, 2014. 51: 87–93. doi:10.2528/ PIERC14040103.
- 69. Lim, E. H. and Leung, K. W. *Compact Multifunctional Antennas for Wireless Systems*. John Wiley & Sons, Inc. 2012. ISBN 978-0-470-40732-5.
- 70. Martinez Lopez, L., Rodriguez Cuevas, J., Martynyuk, A. E. and Martinez Lopez, J. I. Wideband-reconfigurable reflectarrays based on rotating loaded split rings. *Journal of Electromagnetic Waves and Applications*, 2016. 29(2): 218–232. doi:10.1080/09205071.2014.993770.
- 71. Encinar, J., Boix, R. R., Perez Palomino, G. and Florencio, R. Dual-polarisation reflectarray made of cells with two orthogonal sets of parallel dipoles for bandwidth and cross-polarisation improvement. *IET Microwaves, Antennas & Propagation*, 2014. 8(15): 1389–1397. doi:10.1049/iet-map. 2014.0202.
- 72. Pereira, R., Gillard, R., Sauleau, R., Potier, P., Dousset, T. and Delestre, X. Four-state dual polarisation unit-cells for reflectarray applications.

- Electronics Letters, 2010. 46(11): 742.
- 73. Chaharmir, M. R., Shaker, J., Gagnon, N. and Lee, D. Design of broadband, single layer dual-band large reflectarray using multi open loop elements. *IEEE Transactions on Antennas and Propagation*, 2010. 58(9): 2875–2883. ISSN 0018926X. doi:10.1109/TAP.2010.2052568.
- 74. Mener, S., Gillard, R., Sauleau, R., Bellion, A. and Potier, P. Dual Circularly Polarized Reflectarray With Independent Control of Polarizations. *IEEE Transactions on Antennas and Propagation*, 2015. 63(4): 1877–1881. doi: 10.1109/TAP.2015.2398458.
- 75. Visser, H. J. *Array and Phased Array Antenna Basics*. England: John Wiley & Sons Ltd. 2005. ISBN 13 978-0-470-87117-1.
- 76. Askeland, D., Fulay, P. and Wendelin, W. *The Science and Engineering of Materials*. Cengage Learning. 2010.
- Kelly, S. M. and O'Neill, M. Liquid Crystals for Electro-Optic Applications.
 In: Nalwa, H. S., ed. *Handbook of Advanced Electronic and Photonic Materials and Devices*. California: Academic Press, chap. Liquid Cry. 1–66.
 2000.
- 78. Bildik, S., Dieter, S., Fritzsch, C., Menzel, W. and Jakoby, R. Reconfigurable Folded Reflectarray Antenna Based Upon Liquid Crystal Technology. *IEEE Transactions on Antennas and Propagation*, 2015. 63(1): 122–132. ISSN 0018-926X. doi:10.1109/TAP.2014.2367491.
- Perez Palomino, G., Barba, M., Encinar, J., Cahill, R., Dickie, R., Baine, P. and Bain, M. Design and Demonstration of an Electronically Scanned Reflectarray Antenna at 100 GHz Using Multi-Resonant Cells Based on Liquid Crystals. *IEEE Transactions on Antennas and Propagation*, 2015. (99): 1–6. ISSN 0018-926X. doi:10.1109/TAP.2015.2434421.
- 80. Karnati, K. K., Shen, Y., Trampler, M. E., Ebadi, S., Wahid, P. F. and Gong, X. A BST-Integrated Capacitively Loaded Patch for Ka and X-band Beamsteerable Reflectarray Antennas in Satellite Communications. *IEEE Transactions on Antennas and Propagation*, 2015. 63(4): 1324–1333. doi: 10.1109/TAP.2015.2389252.

- 81. Velu, G., Blary, K., Burgnies, L., Marteau, A., Houzet, G., Lippens, D. and Carru, J. C. A 360 degree BST phase shifter with moderate bias voltage at 30 GHz. *IEEE Transactions on Microwave Theory And Techniques*, 2007. 55(2): 438–444. ISSN 00189480. doi:10.1109/TMTT.2006.889319.
- 82. Carrasco, E. and Perruisseau-Carrier, J. Reflectarray antenna at terahertz using graphene. *IEEE Antennas and Wireless Propagation Letters*, 2013. 12: 253–256. ISSN 15361225. doi:10.1109/LAWP.2013.2247557.
- 83. Chang, Z., Wu, L. S., Tang, M., Zhang, Y. P. and Mao, J. F. Generation of THz wave with orbital angular momentum by graphene patch reflectarray. 2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). IEEE. 2015. ISBN 978-1-4799-6450-5. 1–3. doi:10.1109/IMWS-AMP.2015. 7325042.
- 84. Carrasco, E., Michele, T. and Carrier, J. P. Tunable Graphene-Based Reflectarray Element for Reconfigurable Beams. *7th European Conference on Antennas and Propagation (EUCAP 2013)*. Gothenburg: IEEE. 2013. 1779–1782.
- Montori, S., Cacciamani, F., Gatti, R. V., Sorrentino, R., Arista, G., Tienda, C., Encinar, J. A. and Toso, G. A Transportable Reflectarray Antenna for Satellite Ku-band Emergency Communications. *IEEE Transactions on Antennas and Propagation*, 2015. 63(4): 1393–1407.
- 86. Abbosh, A. and Li, Y. Reconfigurable reflectarray antenna using single-layer radiator controlled by PIN diodes. *IET Microwaves, Antennas & Propagation*, 2015. 9(7): 664–671. doi:10.1049/iet-map.2014.0227.
- Hajian, M., Kuijpers, B., Buisman, K., Akhnoukh, A., Pelk, M., de Vreede, L. C. N., Zijdeveld, J., Ligthart, L. P., Spitas, C., Hajian, M., Kuijpers, B., Buisman, K., Akhnoukh, A., Pelk, M., de Vreede, L. C. N., Zijdeveld, J., Ligthart, L. P. and Spitas, C. Passive and Active Reconfigurable Scan-Beam Hollow Patch Reflectarray Antennas. *ISRN Communications and Networking*, 2012. 2012: 1–10. doi:10.5402/2012/290534.
- 88. Tayebi, A., Tang, J., Paladhi, P. R., Udpa, L., Udpa, S. S. and Rothwell, E. J. Dynamic Beam Shaping Using a Dual-Band Electronically Tunable

- Reflectarray Antenna. *IEEE Transactions on Antennas and Propagation*, 2015. 63(10): 4534–4539. doi:10.1109/TAP.2015.2456939.
- 89. Venneri, F., Boccia, L., Angiulli, G., Amendola, G. and Di Massa, G. Analysis and design of passive and active microstrip reflectarrays. *International Journal of RF and Microwave Computer-Aided Engineering*, 2003. 13(5): 370–377.
- 90. Carrasco, E., Barba, M., Arrebola, M., Encinar, J. A., Carrasco, E., Barba, M., Arrebola, M. and Encinar, J. A. Recent Developments of Reflectarray Antennas for Reconfigurable Beams Using Surface-Mounted RF-MEMS. *International Journal of Antennas and Propagation*, 2012. 2012: 1–12. doi: 10.1155/2012/386429.
- 91. Bayraktar, O., Civi, O. A. and Akin, T. Beam switching reflectarray monolithically integrated with RF MEMS switches. *IEEE Transactions on Antennas and Propagation*, 2012. 60(2): 854–862.
- 92. Pozar, D. M. *Microwave Engineering*. 3rd ed. USA: John Wiley and sons. 2005.
- 93. Balanis, C. A. *Antenna; Theory Analysis and Design*. 3rd ed. John Wiley and sons. 2005.
- 94. Huang, J. Analysis of microstrip reflectarray antenna for microspacecraft applications. Technical report. Spacecraft Telecommunications Equipment Section: TDA Progress Report. 1995.
- 95. Rajagopalan, H. and Rahmat Samii, Y. On the reflection characteristics of a reflectarray element with low-loss and high-loss substrates. *IEEE Antennas and Propagation Magazine*, 2010. 52(4): 73–89. ISSN 10459243. doi:10. 1109/MAP.2010.5638237.
- 96. Haraz, O. M. and Ali, M. M. M. A millimeter-wave circular reflectarray antenna for future 5G cellular networks. *IEEE Antennas and Propagation Society, AP-S International Symposium (Digest)*. Institute of Electrical and Electronics Engineers Inc. 2015, vol. 2015-Octob. 1534–1535.
- 97. Yang, X., Xu, S., Yang, F., Li, M., Hou, Y., Jiang, S. and Liu, L. A Broadband High-Efficiency Reconfigurable Reflectarray Antenna Using Mechanically

- Rotational Elements. *IEEE Transactions on Antennas and Propagation*, 2017. 65(8): 3959–3966. ISSN 0018-926X. doi:10.1109/TAP.2017.2708079.
- 98. Vosoogh, A., Keyghobad, K., Khaleghi, A. and Mansouri, S. A High-Efficiency Ku-Band Reflectarray Antenna Using Single-Layer Multiresonance Elements. *IEEE Antennas and Wireless Propagation Letters*, 2014. 13: 891–894. doi:10.1109/LAWP.2014.2321035.
- 99. Rajagopalan, H. and Samii, Y. R. Dielectric and conductor loss quantification for microstrip reflectarray: simulations and measurements. *IEEE Transactions on Antennas and Propagation*, 2008. 56(4): 1192–1196. ISSN 0018926X. doi:10.1109/TAP.2008.919225.
- Milligan, T. A. *Modern Antenna Design*. 2nd ed. John Wiley and sons,
 Hoboken, New Jersey. 2005.
- R. Zhou, H. X., D. Liu. A Wideband Circularly Polarized Patch Antenna for 60 GHz Wireless Communications. Wireless Engineering and Technology, 2012. 3: 97–105.