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ABSTRACT 

With the tremendous growth in numbers of mobile data subscribers and 
explosive demand for mobile data, the current wireless access network need to be 
augmented in order to keep up with the data speed promised by the future generation 
mobile network standards. Radio over fiber technology (RoF) is a cost effective 
solution because of its ability to support numerous numbers of simple structured base 
stations by consolidating the signal processing functions at the central station. RoF 
systems are analog systems where noise figure and spurious free dynamic range 
(SFDR) are important parameters in an RoF link. The nonlinearity of a laser 
transmitter is a major limiting factor to the performance of an RoF link, as it 
generates spurious spectral components, leading to intermodulation distortions 
(IMD), which limit the achievable SFDR of the analog RF wave transmissions. The 
device nonlinearity can be mitigated through various linearization schemes. The 
feedforward linearization technique offers a number of advantages compared to other 
techniques, as it offers good suppression of distortion products over a large 
bandwidth and supports high operating frequencies. On the other hand, feedforward 
linearization is a relatively sensitive scheme, where its performance is highly 
influenced by changing operating conditions such as laser aging, temperature effect, 
and input signal variations. Therefore, for practical implementations the feedforward 
system has to be real-time adaptive. This thesis aims to develop an adaptive optical 
feedforward linearization system for radio over fiber links. Mathematical analyses 
and computer simulations are performed to determine the most efficient algorithm 
for the adaptive controller for laser transmitter feedforward linearization system.  
Experimental setup and practical measurement are performed for an adaptive 
feedforward linearized laser transmitter and its performance is optimized. The 
adaptive optical feedforward linearization system has been modeled and simulated in 
MATLAB Simulink. The performances of two adaptive algorithms, which are 
related to the gradient signal method, such as least mean square (LMS) and recursive 
least square (RLS) have been compared. The LMS algorithm has been selected 
because of its robustness and simplicity. Finally, the adaptive optical feedforward 
linearization system has been set up with digital signal processor (DSP) as the 
control device, and practical measurement has been performed. The system has 
achieved a suppression of 14 dB in the third order IMD products over a bandwidth of 
30 MHz, in a two-tone measurement at 1.7 GHz.  
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ABSTRAK 

Dengan pertumbuhan yang besar dalam jumlah pelanggan data mudah alih 
dan permintaan yang meledak untuk data mudah alih, rangkaian akses tanpa wayar 
yang sedia ada perlu dikukuhkan dalam usaha untuk bersaing dengan kelajuan data 
yang dijanjikan oleh piawaian rangkaian mudah alih untuk generasi masa depan. 
Isyarat radio melalui gentian (RoF) ialah satu penyelesaian yang berkesan dari segi 
kos kerana keupayaannya untuk menyokong bilangan stesen pangkalan berstruktur 
ringkas yang banyak dengan menggabungkan fungsi pemprosesan isyarat di stesen 
pusat. Sistem RoF adalah sistem analog di mana angka hingar dan julat dinamik 
bebas isyarat yang tidak diingini (SFDR) adalah parameter penting dalam pautan 
RoF. Pemancar laser yang tidak linear adalah faktor utama yang mengehadkan 
prestasi pautan RoF, kerana ia menghasilkan komponen spektral palsu, yang 
menyebabkan herotan intermodulasi (IMD) yang mengehadkan SFDR yang boleh 
dicapai dalam penghantaran gelombang analog RF. Ketaklinearan peranti dapat 
dikurangkan melalui pelbagai skim pelinearan. Teknik pelinearan suapan depan 
menawarkan beberapa kelebihan berbanding dengan teknik yang lain, kerana ia 
menawarkan pengurangan yang baik terhadap produk herotan di bawah jalur lebar 
yang besar dan menyokong frekuensi operasi yang tinggi. Sebaliknya, pelinearan 
suapan depan merupakan satu skim yang agak sensitif, di mana prestasinya mudah 
dipengaruhi oleh perubahan keadaan operasi seperti penuaan laser, kesan suhu, dan 
variasi isyarat masukan. Oleh itu, untuk pelaksanaan praktikal, sistem pelinearan 
suapan depan harus mudah suai secara masa nyata. Tesis ini bertujuan untuk 
membangunkan sistem pelinearan suapan depan mudah suai optik untuk pautan RoF. 
Analisis matematik dan simulasi komputer dilakukan untuk menentukan algoritma 
yang paling cekap untuk sistem kawal mudah suai bagi sistem pelinearan suapan 
depan pemancar laser. Persediaan eksperimen dan pengukuran praktikal dilakukan 
untuk pemancar laser  bersuapan depan linear dan prestasinya dioptimumkan. Sistem 
pelinearan optik bersuapan depan mudah suai telah dimodelkan dan disimulasikan 
dalam MATLAB Simulink. Prestasi dua algoritma mudah suai yang berkaitan dengan 
kaedah isyarat kecerunan, iaitu least mean square (LMS) dan recursive least square 
(RLS) telah dibandingkan. Algoritma LMS telah dipilih kerana kekukuhan dan 
keringkasannya. Akhirnya, sistem pelinearan optik bersuapan depan mudah suai 
telah dihasilkan dengan pemproses isyarat digit (DSP) sebagai peranti kawalan, dan 
pengukuran praktikal telah dilakukan. Sistem ini telah mencapai pengurangan 
sebanyak 14 dB terhadap produk IMD tertib ketiga ke atas jalur lebar 30 MHz, dalam 
pengukuran dua-nada pada 1.7 GHz.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

1.1 Radio over Fiber Technology 

 

 

The proliferation of smart devices and mobile broadband subscribers has 

increased the demand for multimedia services and operations, such as social media, 

online games, video calls, and high definition video streams. Those are the activities 

that are only accessible on a personal computer a couple of years back, but now the 

end-users can perform them anywhere, anyhow and anytime. This means that wide 

coverage and high capacity are the essential requirements for the future data 

communication systems. While the 3rd generation (3G) wireless access network is 

still responsible in carrying most of the mobile data traffics globally, the 4th 

generation (4G) system has already been highly sought after.  

 

 

As the number of mobile data subscriber has been showing tremendous 

growth, it can be foreseen that in the future, with that mass number of users, the 

current access network technology will be unable to provide the data speed as 

promised by the future generation networks. Figure 1.1 illustrates the global statistics 

for the growth of mobile-broadband subscriptions for the past 5 years, presented by 

ITU facts and figures of 2017. The data shows that mobile-broadband subscriptions 
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have grown more than 20% annually in the last five years and are expected to reach 

4.3 billion globally by end 2017 [1].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Growth of mobile-broadband subscriptions from 2012 to 2017 [1] 

 

 

The frequency spectrum within a mobile cell, such as the Industrial, 

Scientific, and Medical (ISM) band is necessarily shared by all the users covered 

within that area. Spectral congestion is bound to happen when massive data traffics 

are handled. An automatic solution is to decrease the mobile cell size, to reduce the 

number of users per cell and improve the frequency spectral reusability. This can be 

achieved by the deployment of microcell or picocell architecture, which divides the 

conventional macrocell into several microcells or picocells. However, smaller mobile 

cells require a larger number of base stations (BS) per network area. This increases 

operating cost. Furthermore, the interference between cells is an issue as the cell size 

becomes small. Therefore, intercell interference cancellation needs to be applied. 

This requires cooperation among the BSs, which adds to the complexity of the BSs 

functionalities [2].  
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The radio over fiber (RoF) technology is able to provide a cost effective 

solution to the smaller cells configuration by consolidating the processing functions 

of the BSs onto a central station (CS). A CS is connected to multiple BSs through a 

fiber feeder network. As opposed to digital signals which are usually deployed in 

mainstream optical communication technologies, the digitally modulated RF 

waveforms are going to be transmitted between the BSs and CS in an RoF system. 

This implies that RF signal processing functions such as modulations, 

demodulations, coding, and routing are all being performed at the CS instead of BSs. 

The BSs are only remote antenna units (RAU) with functions of optoelectronics and 

electro-optics conversion and signal amplifications. As a result, the BS structure is 

significantly simplified, thus bringing about massive savings in operating and 

maintenance cost. By consolidating the signal processing functions at the CS, the 

transportation of the RF signals becomes transparent. This enables the 

interconnection task between the BSs to be performed easily.  

 

 

 

 

1.2 Basic Radio over Fiber System Configuration 

 

 

Figure 1.2 shows a basic RoF system configuration, where a CS is connected 

to a BS through an optical link. During transmission, the information-bearing RF 

signals are converted to optical domain through an electro-optical (E/O) convertor at 

the transmitter side. The resulting optical signal is carried over the optical link to the 

receiver side. At the receiver side, the optical signal is converted back to electrical 

domain by an opto-electrical (O/E) convertor. Both the CS and BS contain a pair of 

transmitter and receiver; thus, enabling bi-directional communications with each 

other. The transmission direction from the CS to the BS is called downlink; whereas, 

the opposite transmission direction is called uplink. At the BS, the received RF 

signals are amplified and fed to the antenna to be radiated to end users, such as 

mobile units (MU) and wireless terminal units (WTU). Meanwhile, at the CS side, 

the received RF signals are downconverted to baseband data to be handled by higher 

layer protocol, before entering the trunk network [2][3].  
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Figure 1.2 Basic RoF system configuration 

 

 

The most common method for the E/O and O/E conversion in the above 

context is intensity modulation of an optical source and direct detection by a 

photodetector. This method is referred to as intensity modulation direct detection 

(IM-DD). There are other methods such as phase and frequency modulations and 

interferometric demodulation [4][5], but IM-DD method is the most popular because 

of its simplicity. The IM-DD method is impractical for high frequency millimeter-

wave signal transmission because of fiber dispersions and coherent mixing of the 

sidebands of modulated light. Instead, the millimeter-wave signals are preferably 

optically generated at the receiver side through remote heterodyning [6]. As 

millimeter-wave signal transmission is beyond the scope of this project, it is not 

further discussed.  

 

 

There are 2 ways of modulating RF signals onto an optical carrier in IM-DD 

systems, which are direct intensity modulation and external modulation. For the 
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direct intensity modulation method, the RF signal modulates the input current of a 

laser diode to change the intensity of its emitted photons. Direct intensity modulation 

is easy and cost effective, but it has limited modulation bandwidth due to modulation 

cut-off frequency of a laser diode. Therefore, external modulation is normally used 

for RF frequencies higher than 10 GHz. For the external modulation method, the 

light emitted from a continuous wave laser diode is modulated by an external light 

intensity modulator, such as Mach-Zehnder modulator (MZM) and electro-

absorption modulator (EAM) [6][7].  

 

 

The current research of RoF technology is focusing on the higher end of the 

radio frequency spectrum, which means that external intensity modulation is 

prevalent nowadays. Despite that, direct intensity modulation of laser diode at lower 

frequencies, such as the ISM band is an interesting subject because of its simplicity 

and cost effectiveness [8][9]. Moreover, most of the widely deployed mobile and 

local area wireless standards are still operating at lower frequency microwave bands. 

Hence, the discussion for the remaining of this thesis will focus on the directly 

modulated IM-DD link.  

 

 

 

 

1.3 Benefits of RoF Technology 

 

 

The advantages of RoF technology compared to other existing remote 

antenna feeding technologies, such as RF signals over transmission lines and digital 

baseband over fiber, are discussed in this section.   
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1.3.1 Low Attenuation Loss 

 

 

An optical fiber has lower attenuation loss compared to a transmission line. 

Figure 1.3 compares attenuation loss among various types of electrical cables and 

optical fiber at three common wavelengths [10]. The optical fiber has attenuation loss 

of 0.25 dB/km and 0.4 dB/km at optical wavelength 1.5 μm and 1.3 μm respectively, 

and the attenuation maintains the same value over the frequency range. Meanwhile, 

even the highest performing ocean cable has a higher loss than the optical fiber. The 

advantage of optical fiber is more pronounced as the frequency increases. Through 

RoF technology, RF signals can be transmitted at a long distance with minimum use 

of repeaters. This results in a massive savings in operating expenditure (OPEX) and 

capital expenditure (CAPEX) [11].      

 

 

 

Figure 1.3 Attenuation loss of electrical cables and optical fiber [10] 
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1.3.2 Large Bandwidth 

 

 

The next advantage of optical fibers is in term of bandwidth. The analog 

bandwidth of a coaxial cable used in cable television networks is roughly 1 GHz 

[12]. A single mode fiber (SMF) has a combined bandwidth of 50 THz over the 3 

low-loss windows (850 nm, 1300 nm and 1550 nm) [13]. The 1550 nm window 

alone can already provide a bandwidth of 11 THz [14].   While most of today’s core 

networks have already been dominated by optical fibers, the RoF technology brings 

the bandwidth offered by the fiber even closer to the end users. In order to fully 

utilize the bandwidth of the optical fiber, multiplexing schemes such as sub-carrier 

multiplexing (SCM) and wavelength division multiplexing (WDM) have been 

carried out. Optical fiber is principally transparent to all types of radio interface 

format and protocol [15]. Therefore, a single fiber channel can be shared by multi-

operators and multi-services such as 3G or 4G networks, wireless local area networks 

(WLAN), and passive optical network (PON) services [16]. The sharing of network 

infrastructure among different services will lead to another massive savings in OPEX 

and CAPEX.  

 

 

 

 

1.3.3 Immunity to Electromagnetic Interference  

 

 

Unlike copper cables, optical fibers are immune to Electromagnetic 

Interference (EMI), because they are made of glass and do not conduct electricity. 

Moreover, RoF system transmits signals in the form of light instead of microwave. 

Hence, it is assured that electrical noises from the surroundings will not cause any 

interference to RoF system transmissions.  
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1.3.4 Easy Installation and Maintenance 

 

 

In RoF systems, the signal processing functions of the BSs are consolidated at 

the CS. Hence, the expensive equipment are centralized at the CS. The BS is only a 

remote antenna unit with no processing functions. As the BS is structurally simple, it 

can be made smaller, lighter, more compact, and less power consuming. This 

effectively reduces installation and maintenance costs. In addition, this can reduce 

the negative aesthetic effect that might be caused by the presence of large BSs [2]. 

Furthermore, RoF systems can provide the flexibility for upgrading and 

reconfiguring when network augmentation is needed for wireless services. For 

instance, if a wireless link is to be upgraded, only the central processing entity at the 

CS needs to be updated; whereas, hardware replacement is not needed at the BSs 

[17]. This flexibility is expected to bring about substantial upgrading cost savings in 

the long term.  

 

 

 

1.3.5 Low RF Power Remote Antenna Units 

 

 

RoF technology permits the use of low RF power RAUs because of smaller 

cell sizes. Low RF power RAUs are more environmental friendly and less likely to 

cause human health issues. As there have been growing concerns about the effect of 

electromagnetic radiation on public health, the distributed coverage by multiple 

RAUs instead of a single large BS can help to smoothen the radiation density pattern 

[2]. Meanwhile, the mobile devices at the end user side can also have more battery 

lifetime.  
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1.3.6 Centralized Processing 

 

 

The beauty of the RoF technology lies within its centralized processing 

feature. Firstly, centralized processing at the CS facilitates cooperation between the 

BSs; thereby, permitting coordinated multipoint (CoMP) transmission and multiple-

input and multiple-output (MIMO) technology to be carried out [18]. Consequently, 

the cell planning tasks become easier. Furthermore, the network resources and 

capacity can be allocated dynamically according to the populations in each area. This 

can avoid allocating permanent capacity, which would be a waste of resources as 

traffic loads vary frequently and by large margins [13].   

 

 

 

 

1.4 Applications of RoF Technology 

 

 

The RoF technology was first demonstrated on the distribution of second-

generation cordless telephony services back in 1990 [19]. Since then, the RoF 

technology has been actively researched. Until the present time, the deployment of 

RoF technology can be found in various applications such as mobile communication 

systems, wireless local area network (WLAN), broadband wireless access systems, 

video distribution systems and intelligent transport systems.  

 

 

The distributed antenna system (DAS) is a network of geographically 

distributed antenna nodes connected to a central unit via a transport medium that 

provides wireless service within an area, where the transport medium will be optical 

fibers in the RoF context. For the 2G and 3G mobile communication networks, the 

DAS system has been applied for the realization of microcellular networks and to 

overcome blind area issues [20][21][22][23][24]. The main motivation behind those 

applications is to reduce cost and power consumption. As for 4G and beyond 

networks, the spatially distributed feature of DAS has been exploited to further 
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improve the cell throughput by the use of distributed MIMO [25]. CoMP 

transmission enables inter-cell interference cancellation to enhance the spectral 

efficiency [26][18].  

 

 

Meanwhile, the RoF technology has niche applications in WLAN systems. 

The WLAN technology has been popular because of high speed access to the 

internet. The proliferation of WLAN access points (WLAN-AP) can cause serious 

signal interference problem if the wireless channels are not properly allocated. As a 

solution, the RoF techniques have been applied in WLAN systems, where a CS 

containing all the processing functions of a conventional WLAN-AP is fiber-

connected to a distributed set of RAUs [27][28], so that centralized processing and 

cognitive radio techniques can be carried out to enable dynamic channel allocations 

[17][29].  

 

 

Other than that, RoF can support the future broadband wireless access 

systems for in-building high speed personal networks [30][3].  In such systems, mm-

wave carrier frequencies and significantly small cells (picocells/ femtocells) are 

deployed, where the unlicensed spectrum in the 60 GHz region has been of particular 

interests [31][32][33][34].  Due to the large available bandwidth at the mm-wave 

region, data rates of multi-Gbps can be easily achieved to support applications of 

Gbps signal transmissions. Meanwhile, applications of in-building picocellular 

network with WLAN standards in lower microwave frequencies (2.4 and 5 GHz) can 

also be found in the literature [35][36].  

 

 

The concept of RoF has already been applied in the video distribution 

systems for community-antenna television (CATV) in the late 80’s [37]. Subcarrier 

multiplexing technique is used to carry multiple radio frequencies from different TV 

channels from the distribution center to the neighbourhood; thereby. extending the 

reach of the distribution network through optical fibers. The TV signals are then 

distributed to individual homes through conventional coaxial cables; thus, leading to 

a hybrid fiber-coax (HFC) network [38][14]. The HFC network has the advantage of 
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low loss, which it saves electrical amplifier, accommodates more users, and provides 

better signal quality [7].   

 

 

Intelligent transport systems (ITS) have the aims of communicating people, 

vehicles, and the road to realize a safer, more efficient, and more comfortable traffic 

environment. The ITS provides various services such as road-to-vehicle 

communication systems (RVC), vehicle information and communication system 

(VIC), electronic toll collection system (ETC), and personal handy-phone system 

(PHS) [39]. In order to provide seamless and extended coverage of the services, 

numerous BSs need to be installed. The RoF technology is introduced so that the BSs 

can be made simple and low cost, and easy installation can be made along the road 

[40]. Furthermore, the RoF systems can support multiple ITS services concurrently 

through the transmission of integrated broadband radio signals at 36 to 37 GHz mm-

wave band [41]. Moreover, the RoF systems provide diversity reception between 

adjacent cells to support rapid handover functions needed for moving vehicles. 

 

 

 

 

1.5 Limitations of RoF Technology 

 

 

RoF system is essentially an analog system, as it involves modulating an RF 

waveform that is modulated with information signal onto an optical signal, instead of 

the information signal like most optical communication systems do. Hence, the 

performance of an RoF link can be characterized using typical analog RF links 

performance parameters [10], where gain, bandwidth, noise figure (NF) and dynamic 

range (DR) are the important parameters.   

 

 

On the other hand, an RoF link consists of various sources of signal 

impairments. Each part of the link has their own share of contributions. For example, 

in a directly modulated IM-DD link, there are thermal noise and shot noise from the 
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photodiode, relative intensity noise (RIN) and nonlinear distortions from the laser 

diode, dispersions and nonlinearities from the optical fiber, and signal losses 

throughout the link. 

 

 

NF is a measurement of the degradation of the signal-to-noise ratio (SNR) 

caused by components in an RF signal chain. The NF of an RoF link is affected by 

noise sources like thermal noise, shot noise and laser RIN, combining with the effect 

of link loss. For a directly modulated link, the NF generally increases linearly with 

the link loss [42]. Thermal noise dominates in low optical power RoF links, and as 

the optical power increases, the shot noise and laser RIN start taking over. The shot 

noise and laser RIN are caused by the statistical fluctuations of the photocurrent in 

the photodiode and the optical power output from the laser diode respectively. 

Increasing the optical power and photocurrent results in increase in both shot noise 

and laser RIN. The laser RIN will increase faster than the shot noise due to its direct 

square relationship with the photocurrent. As a result, the laser RIN will emerge as 

the dominant noise source when the optical power reaches a certain level  [6][7]. 

 

 

In order to improve the SNR of an RIN limited RoF link, the RF signals have 

to be pre-amplified. Ideally, the SNR of an RoF link can be made to be large by 

increasing the pre-amplifier gain. However, for a practical RoF link, increasing the 

input RF signal level will eventually drive the modulation device to its nonlinear 

region; thus, leading to the occurrence of nonlinear distortions. Nonlinear distortions 

impose a limit on the SNR of an RoF link, and the dynamic range parameter defines 

the maximum achievable SNR. The spurious free dynamic range (SFDR) of the 

system is defined as the ratio of the maximum input signal power at which the 

distortion products exceed the noise floor to the minimum signal power at which its 

output becomes distinguishable from the noise floor. In simple terms, SFDR is the 

maximum achievable output SNR at which the distortion products exceed the noise 

floor.  
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Each RoF service has its specifications in terms of signal quality to be met in 

order to provide satisfying service. For example, AM-VSB signal for CATV requires 

CNR > 45 dB and distortion level > 50 dBc [38]. GSM picocellular and 

microcellular networks need input dynamic range (DR) varying from 40-55 dB to 

80-90 dB respectively [43]. The UMTS standard requires an adjacent channel power 

leakage ratio (ACLR) of -45 dBc (downlink) and -30 dBc (uplink) [44]. On the other 

hand, the laser diode produces harmonic and intermodulation distortions when 

modulated with high level signals, especially during the transmission of multiple 

channels. These distortion products result in constellation degradation in multilevel 

modulation signals, which eventually leads to degraded bandwidth efficiency due to 

constraint in modulation depth, channel spacing, and choices of modulation scheme 

[45]. The effect of the distortion products can be mitigated through linearization 

techniques, as will be discussed in the later sections. 

 

 

Other than the laser diode, the photodiode and optical fiber also have 

nonlinear properties. However, both the photodiode nonlinearity and fiber 

nonlinearity only cause problem when the optical power level is high: photodiode in 

the range of a few milliwatts, and optical fiber in the range of a few tens of 

milliwatts. Therefore, the effects of these two nonlinearities are normally neglected 

in most RoF links [7].  

 

 

Furthermore, fiber dispersion is an important signal impairment to be 

considered. The chromatic dispersion in a single mode fiber (SMF) causes different 

wavelengths to travel at different speeds, due to the variation of refractive index 

across the wavelengths [14]. This results in the lower and upper sidebands of an 

intensity modulated optical signal to be out of phase with respect to the optical 

carrier, leading to RF power fading at the receiver [5][46]. This problem normally 

occurs in millimeter-wave frequencies transmissions. Single-sideband modulation 

techniques or optical generation techniques have been deployed as a solution to the 

problem [6][7]. Other than that, fiber dispersion causes in-band linear distortions due 

to power differences of frequencies within the bandwidth. Those distortions can be 

mitigated by an equalizer in the receiver [6][14].  
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In general, the performance of the optical transmitter defines the SFDR of an 

RoF link. Hence, the nonlinearity of the optical transmitter is considered as a major 

limiting factor on the system performance for most applications. The only way to 

compensate this nonlinearity is to perform linearization techniques on the optical 

transmitter. This project will focus on improving the performance of RoF systems on 

the transmitter side through the application of an effective linearization scheme, 

namely feedforward system. 

 

 

 

 

1.6 Motivation 

 

 

The RF input signals of RoF links usually are composed of multiple 

frequency components. The nonlinearity of the optical transmitters causes spurious 

emissions, such as harmonic distortions and intermodulation distortions to appear at 

the output spectra. For systems with less than one octave bandwidth, the harmonic 

distortions and even-order intermodulation distortions are generally not taken into 

considerations, as they do not fall within the operating bandwidth. On the other hand, 

some of the odd-order intermodulation distortions fall in-band and mix with the 

fundamental signals. The third order intermodulation distortion (IMD3) product has 

the highest magnitude. Hence, the IMD3 product level is always used to define the 

SFDR of a narrowband system.    

 

 

In order to evaluate the linearity performance of a nonlinear system, it is a 

common practice to use a two-tone signal as the testing input and observe the 

fundamental signals and distortions at the output. Figure 1.4 shows the two-tone 

testing output spectrum of a nonlinear system. The 2 main tones, ω1 and ω2 are 

accompanied by second and third order distortion products at the harmonic 

frequencies and linear combinations of the main tone frequencies. The IMD3 

products at 2ω1 – ω2 and 2ω2 – ω1 are particularly close to the main tones and fall 
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within the transmission channel. Therefore, it is essential to suppress the IMD3 

products in order to enhance the SFDR of narrowband systems.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Two-tone testing output spectrum of a nonlinear system 

 

 

 

 

1.7 Problem Statement 

 

 

 Radio over fiber links suffers from performance degradation due to nonlinear 

distortions generated by optical transmitter. In order to meet the stringent 

requirement for the services of interests, linearization techniques have to be applied 

to improve the optical transmitter linearity. Several distortion-compensation 

techniques have been considered. Feedforward linearization is seen as the most 

effective, since it can offer good suppression of distortion products over a large 

bandwidth at high operating frequencies. Furthermore, it can suppress all orders of 

nonlinearities regardless of their characteristics, and even reduce laser relative 

intensity noise (RIN). However, feedforward is a relatively sensitive scheme, as it 
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requires cancellations between two signals which are almost identical. Hence, the 

gain, phase shift, and path delay parameters in the system have to be properly 

adjusted to facilitate the error cancellation mechanism. The optimum parameters are 

usually searched iteratively. However, the balance in magnitude and phase 

adjustments is bounded to disruption by parameter drifts and process variations, such 

as temperature effect, laser aging, and input signal variations. Therefore, for practical 

implementation, a feedforward system needs to be real-time adaptive. However, the 

reported works on adaptive feedforward linearization system in the electro-optics 

domain has been lacking compared to its deployment in RF amplifier linearization. 

Hence, this research will focus on developing an adaptive optical feedforward 

linearization system for radio over fiber links.  

 

 

 

 

1.8 Objectives 

 

 

 The main objective of this research is to develop an adaptive optical 

feedforward linearization system for radio over fiber links. The specific objectives of 

the research are listed below: 

 

 

1. To determine the most efficient algorithm for the adaptive controller for laser 

transmitter feedforward linearization system through mathematical analysis and 

computer simulation.  

2. To perform set-up and practical measurement for the adaptive optical 

feedforward linearization system to suppress laser diode’s third order 

intermodulation distortion products, and optimize the system performance.   

3. To demonstrate and evaluate a novel real-time adaptive feedforward 

linearization system which improves radio over fiber transceiver systems’ 

spurious free dynamic range. 
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1.9 Scope of Work  

 

 

 This research focuses on improving the SFDR performance of a directly 

modulated IM-DD RoF link. Among the impairments of an RoF link, the 

nonlinearity of the optical transmitter is considered as the main limitation on the 

achievable SFDR. A number of linearization techniques can be applied to 

compensate for the optical transmitter nonlinearity. Among those candidates, the 

feedforward linearization technique has been selected based on literature review on 

reported techniques and comparisons on their performances.  

 

 

The performance of a feedforward linearization system relies heavily on the 

matching of gain and phase-shift parameters; hence, an adaptive mechanism plays an 

important role in its practical implementation. The adaptation methods available 

include adaptation by power minimization and adaptation by gradient signal [47], 

with reference to the techniques derived from RF power amplifier’s adaptive 

feedforward linearization. The implementation of adaptation using power 

minimization has been reported for external modulated optical transmitter [48], but 

the method of adaptation using gradient signal has never been carried out in optical 

feedforward linearization systems.  

 

 

Compared to the power minimization method, the gradient adaptation method 

has the advantages that deliberate misadjustment is not needed during adaptation 

[47]. Moreover, digital signal processing functions can also be carried out to 

condition the gradient signal, which provides more robustness in this method. 

Therefore, the adaptive feedforward system developed in this project will be based 

on the gradient signal method.  

 

 

Specifically, the scope of this research involves step by step measures to 

implement an adaptive optical feedforward linearization system and examine on the 

system’s performance. This involves mathematical analysis, computer simulations, 
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and practical measurements. The details of these conducts will be discussed in the 

following section. The practical measurements in this research are subjected to a few 

practical limitations: 

i) The operating frequency is limited from 1.7 GHz to 2.3 GHz due to the 

limitations of the available commercial-off-the-shelf components.  

ii) As the research is only focussing on improving the nonlinearity at the optical 

transmitter part, the measurement only involves a short distance optical fiber 

link.  

iii) Characterizations of the optical feedforward linearization system performance 

are carried out with two-tone test signals instead of real-time wireless data 

channels.  

iv) This research is focussing on the reduction of optical transmitter’s nonlinear 

distortions, while the analysis of noises such as laser RIN and photodiode shot 

noise are not included in the scope. Throughout the simulation and 

experimental works in this research, the noise floor is considered to be constant 

at the thermal noise level at          [10], which is approximately -174 

dBm, as given by      , where    is Boltzmann’s constant, and   is the noise 

bandwidth (taken as 1 Hz herein).   

 

 

 

 

1.10 Research Methodology 

 

 

 This section will cover all the issues of the approach considerations towards 

this project as shown in Figure 1.5. The 6 phases of the research design are as 

follows:  

 

i) Literature Review 

 The literature review is started from the basic principle, benefits, applications, 

and limitations of RoF systems to discover the background and problems for this 
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research. Then, the investigation on the current researches and technologies of 

optical domain linearization techniques is carried out. The research progress on the 

feedforward linearization technique will be continued herein. The reported works for 

optical feedforward linearization systems are studied to get a good insight on the 

considerations for practical measurement. Next, the reported works for adaptive 

feedforward linearization system for power amplifiers are reviewed to identify the 

available control strategies and algorithms.  

 

 

ii) Model and Simulation (Laser Diode and Optical Feedforward Linearization 

System) 

 The laser diode is first modeled in MATLAB Simulink based on laser rate 

equations. The model is used to determine the modulation characteristics of a typical 

laser diode. The characterization results are validated with commercial software for 

optical communication system modeling, OptiSystem 13.0. Next, the optical 

feedforward linearization system is modeled and simulated using OptiSystem 13.0 to 

characterize its performance. The optical feedforward linearization system model is 

also developed in Simulink. Simulations are carried out in Simulink and the results 

are compared to the results obtained in OptiSystem for model verification.     

 

 

iii) System Design and Mathematical Analysis 

 The adaptive control system design starts with the consideration of system 

architecture based on the review from previous works. Both the power minimization 

and gradient signal method have distinctively different architectures. The latter has 

been adapted for this research. There are 2 algorithms which are related to the 

gradient signal method, namely the least mean square (LMS) and recursive least 

square (RLS) algorithm. Mathematical analysis is performed to analyze the 

convergence of both the LMS and RLS algorithm.  
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iv) Model and simulation (Adaptive Optical Feedforward Linearization System) 

 The adaptive optical feedforward linearization system is modeled in Simulink 

by integrating an adaptive controller block to the previously modeled optical 

feedforward linearization system. The adaptive controller block is programmed with 

either LMS or RLS algorithm. Simulations are carried out. The performances of both 

algorithms are optimized and then compared in terms of convergence speed and 

tracking ability. From the simulation results, the algorithm which performs better is 

determined and will be implemented in the practical measurement. 

 

 

v) System Implementation and Measurement 

 Firstly, the appropriate components are selected by carefully studying their 

specifications. The prototype development is started from the setup of a manually 

controlled optical feedforward linearization system. The system parameters are 

optimized and performance characterization for the optical feedforward linearization 

system is done. Due to the limitation in operating frequencies for the available 

commercially-off-the-shelf (COTS) RF components, the measurement will be limited 

to the highest achievable frequencies at the 2.3 GHz region. Next, additional 

circuitries are introduced. The adaptive algorithm chosen from the simulation phase 

is implemented; thus, completing the setup of an adaptive optical feedforward 

linearization system. System measurement and performance characterization are 

done using the developed prototype. The practical demonstration and measurement 

have been conducted in the Lightwave Devices Laboratory National Institute of 

Information and Communication Technology (NICT) Japan, Photonics Fabrication 

Laboratory and Microwave Laboratory of the Faculty of Electrical Engineering 

Universiti Teknologi Malaysia (FKE UTM).  

 

 

vi) Data Analysis  

 Finally, comparison is done between the results obtained from practical 

measurement and simulation. The problems and limitations on the design are 

identified and further implications, suggestions and any recommendations are 

illuminated.    
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Figure 1.5 Research methodology flowchart  
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1.11 Thesis Outline 

 

 

 The flow of the thesis is discussed in this section. The thesis starts off in 

Chapter 1 with the background introduction of this research.  An overview of the 

RoF system's basic configuration, benefits, applications, and limitations has been 

presented. Next, the motivation, problem statement, objectives, scope of work, and 

methodology of this research are discussed. This is followed by an overview of the 

thesis outline at the end of this chapter. 

 

 

Chapter 2 focuses on the literature review for the reported works on various 

optical transmitter linearization techniques, such as, analog predistortion, digital 

predistortion, digital post-compensation, dual-parallel, optical injection, and 

feedforward linearization. The principle and basic architecture of those linearization 

techniques are discussed. This is followed by a summary of the related works on 

their experiment or simulation setup details and achieved improvements. Next, 

comparisons between the linearization techniques in terms of their qualitative and 

quantitative performance, advantages, and disadvantages are presented. One section 

is also dedicated to the adaptive feedforward linearization system for RF power 

amplifier. The related works are reviewed in consideration on the system 

architectures and algorithms to be adapted in optical feedforward linearization 

systems.     

 

 

Chapter 3 mainly discusses on the design considerations of a laser transmitter 

and the modeling of laser diode. First, the important parameters for RoF system 

performance characterization, and some general means for improving those 

performance criteria are discussed. Next, the types of laser diode nonlinearities and 

their mathematical models are focused. Then, the bases for laser diode modeling, i.e. 

the laser rate equations are explored. Laser diode modeling based on laser rate 

equations are discussed afterwards. Finally, based on the laser model simulation 

results, the laser diode modulation characteristics are analyzed.   
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