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ABSTRACT 

Accelerated global demand for low carbon operation of power systems have 

stimulated interest in Low Carbon Technologies (LCTs). The increased deployment 

of LCTs within power systems is fundamental to the emission abatement of power 

system. Carbon Capture Power Plant (CCPP) technology has a good potential for 

future low carbon emission. Existing Economic Dispatch (ED) formulations do not 

consider the flexibly-operated CCPPs. Flexible operation of Carbon Capture and 

Storage (CCS) units transforms conventional power plants in such a way that 

emission output and power output could be separately controlled. The resulting 

CCPPs have to be optimized in order to take advantage of the incentives available in 

both power and carbon markets. This thesis proposes an improved mathematical 

modelling for flexible operation of CCPPs. The developed work possesses simple 

and practical variables to appropriately model the flexible operation control of the 

CCPPs. Using this proposed model a new emission-oriented ED formulation is 

developed. With this new formulation, the thesis also proposes the concept of 

decoupling the emission and economic outputs and then quantifies its significance 

for power system operations. In addition to that, a new Metaheuristic Optimization 

Technique (MOT) named as Chaos-Enhanced Cuckoo Search Optimization 

Algorithm (CECSOA) has been developed to improve global optimum result for ED 

problem. The algorithm has been tested using standard test systems with varying 

degrees of complexity. The results proved that the CECSOA is superior to the 

existing techniques in terms of ability to obtain global optimal points and the stability 

of the solutions obtained. Simulation results also showed the possibility of $1.09 

million of annual operational cost savings based on a practical power system located 

in the Greek island of Crete by applying this methodology in comparison with 

conventional techniques such as Genetic Algorithm. Further results showed that for a 

carbon price of 20 $/tCO2 and a 60% of system capacity utilization, total emission of 

a power system is reduced by 10.90% as compared to a “business-as-usual” scenario. 

In terms of optimal ED for CCPPs, results showed that for carbon prices as low as (~ 

8 – 10 $/tCO2), it is economically viable to operate a post-combustion CCS unit.  
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ABSTRAK 

Permintaan global secara mendadak bagi operasi karbon rendah dalam sistem 

kuasa telah menarik minat kepada Teknologi Karbon Rendah (LCT). Peningkatan 

pelaksanaan LCTs dalam sistem kuasa adalah asas kepada pengurangan pelepasan 

daripada sistem kuasa. Loji Kuasa Penangkapan Karbon (CCPPs) adalah teknologi 

yang berpotensi untuk pelepasan karbon rendah pada masa depan. Formulasi 

Penghantaran Ekonomi (ED) yang sedia ada  tidak mengambil kira CCPP yang 

beroperasi secara fleksibel. Operasi Tangkap dan Simpan Karbon (CCS) yang 

fleksibel mengubah loji kuasa yang lazim di mana keluaran pelepasan dan penjanaan 

kuasa dapat dikawal secara berasingan. CCPP yang terhasil perlu diperkukuhkan 

untuk mengambil peluang daripada insentif sedia ada di pasaran kuasa dan karbon. 

Tesis ini mencadangkan satu model matematik yang dioptimumkan untuk operasi 

CCPP yang fleksibel. Kerja yang dibangunkan mempunyai pembolehubah yang 

mudah dan praktikal bagi mereka model kawalan operasi CCPP yang fleksibel. 

Dengan menggunakan model yang dicadangkan ini, satu formulasi penghantaran 

ekonomi baru yang berorientasikan pelepasan telah dibangunkan. Dengan formula 

baru ini, projek ini juga mencadangkan konsep pemisahan antara pelepasan dan 

keluaran ekonomi dan seterusnya mengukur keberkesanannya terhadap operasi 

sistem kuasa. Selain itu, satu Teknik Pengoptimuman  Metaheuristik (MOT) baharu 

yang dikenali sebagai Algoritma Pengoptimuman Carian Cuckoo Berkecamuk 

Tertambah (CECSOA) telah digunakan bagi mencari keputusan yang optimum untuk 

masalah penghantaran ekonomi. Algoritma ini telah diuji menggunakan beberapa 

sistem ujian piawai dengan pelbagai peringkat kerumitan. Keputusan simulasi 

menunjukkan bahawa CECSOA adalah jauh lebih baik berbanding dangan teknik 

yang sedia ada berdasarkan kualiti keputusan yang diperolehi. Keputusan tambahan 

juga menunjukkan penjimatan kos operasi tahunan sebanyak $1.09 juta berdasarkan 

sistem kuasa praktikal yang terletak di Crete, kepulauan Greek dengan metod ini 

berbanding dengan Algoritma Genetik. Keputusan seterusnya menunjukkan pada 

harga 20 $/tCO2 dan sistem beroperasi pada kapasiti 60%, jumlah pelepasan 

berkurang sebanya 10.90% berbanding dangan senario “business-as-usual”. Dari 

segi optimum ED untuk CCPP, keputusan menunjukkan pada harga karbon serendah 

(~8-10 $/tCO2) bagi operasi unit pasca-pembakaran CCS adalah secara ekonomikal 

berdaya maju dangan ekonomikal.  
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CHAPTER 1 

1INTRODUCTION 

1.1 Background 

The Intergovernmental Panel on Climate Change (IPCC) projections indicate 

that avoiding the most serious impacts on climate change demands to limit the 

increase in global average temperature at 2° C. This sets a global “carbon budget” 

that has to be met and puts constraint on the global fossil fuel use because of their 

inherent carbon dioxide (CO2) emission. Because of this carbon budget, the 

electricity industry, which accounts more than 42% [1] of the global CO2 emissions, 

is subjected to shift to a low-carbon future. To put the low-carbon future into 

perspective, for instance, in the European Union (EU) alone the power sector 

emission reductions “are projected to achieve reductions of 54% - 68% by 2030 and 

93% - 99% by 2050 compared to 1990” levels [2]. The transitions to such low carbon 

power systems, in global scale, demands a shift to low-carbon technologies such as 

renewable technologies, nuclear power and fossil fuel generators with carbon capture 

and storage (CCS) [3]. This underscores the significant impact of climate change 

measures on the power generation system.  

Concurrently, certain regulatory policies are advocated to be implemented 

globally in order to ease and accelerate the deployment of the low carbon 

technologies within the power generation. To this end, “many countries have 

introduced or are considering the introduction of some form of carbon price, 

typically through an emissions-trading scheme, whereby overall emissions are 

capped and the price that must be paid to emit a tonne of CO2 is set by the market, or 
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through a fixed-rate carbon tax” [4]. These measures put pressure on the heavy 

carbon emitters to curb their emissions.  

With these concurrent paradigms occurring simultaneously that drive 

modernisation of current grid configuration, system operational routines need to be 

revisited in a way that capitalizes the new low carbon technologies at the best interest 

of the grid. For example, the carbon pricing instruments bring in external costs to the 

electricity generation while the low carbon technologies bring in new forms of 

system operation and strategies. In line with this, this research work aims to bridge 

the knowledge between optimal operation of power systems, carbon capture and 

storage (CCS), and power system markets with consideration of system economics 

and carbon mitigation policies.  

The optimal setting of output levels of available generators can play a vital 

role in the economics of any power system. A proper schedule of available 

generating units may save millions of dollars per year in production cost within 

large-scale power systems [5, 6]. For any power system market, the optimization of 

economic dispatch (ED) is of economic value to the network operator. The economic 

dispatch is a relevant procedure in the operation of a power system [7]. ED 

determines the optimal real power settings of generating units. It is normally 

formulated as a mathematical optimization problem whose objective is to minimize 

the total operations cost of dispatch solutions for a specified load at a given time 

whilst satisfying system constraints [8].  

Because of the ED’s nature as a typical practical power system optimization 

problem, adopting a state-of-the-art solution-oriented technique in the field of ED 

has two advantages over the usability of the conventional techniques. Firstly, 

metaheuristic optimization techniques (MOTs) make possible to achieve better 

problem modelling that reduce assumptions related to problem formulations in terms 

of nonlinearity. Secondly, MOTs have better ability to obtain optimal solutions as 

compared with a conventional technique. Both of these issues would allow the power 

utilities to operate the least cost possible leading to significant cost savings over the 

years.  
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Metaheuristic optimization techniques (MOTs) are iterative techniques that 

can search not only local optimal solutions but also a global optimal solution 

depending on problem domain and execution time limit. They are general-purpose 

searching techniques based on principles inspired from the genetic and evolution 

mechanisms observed in natural systems and populations of living species and 

organisms [9]. These methods have the advantage of searching the solution space 

more thoroughly. The main difficulty is their sensitivity to the choice of parameters. 

Within the ED solution approach, MOTs are gradient-free methods with general 

purpose ability. However, they have randomness. For a practical problem, like ED, 

the MOTs should be modified accordingly so that they are suitable to solve ED 

problem with, and their randomness should be addressed. 

1.2 Problem Statement 

The total emission output in the modern power generation system has created 

global concern. With the world’s first carbon capture power plant of a utility-scale 

coming online in 2014, many of these types of plants are expected to be deployed in 

the near future for many different power systems throughout the world. The 

deployment of CCPPs in the power system bring in a new complexity to the system 

operations routines. In that regard, the system operations computational tools should 

be modified with respect to the changes of the technology mix of the system. With 

the introduction of a carbon market, the resulting CCPPs have to be optimized in 

order to take advantage of the incentives available in both the power and carbon 

markets. Thus, the optimal ED problem is reformulated by developing the decoupled 

emission economic dispatch problem formulation that aims to accommodate and 

simulate the expected changes within the system dispatch when CCPPs are 

considered.  

As ED problem is formulated as a mathematical optimization problem, 

efficient optimization techniques must be designed for global optimal search. 

Metaheuristic optimization techniques applied in ED problems typically adopt 

learning mechanisms to avoid being trapped at a local optimum. But they also suffer 
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from potential problems including divergence, parameter selection, termination 

condition and variance in outcomes. In particular, the lack of robustness in the 

optimal solutions was evident within the results obtained by the proposed algorithms 

when applied to nonlinear, nonconvex and highly multimodal ED problems. Optimal 

results which are not robust enough are not practical in reality within the practical 

power system context. These problems are addressed in this thesis by adopting a 

robust-oriented Chaos-Enhanced Cuckoo Search Optimization Algorithm 

(CECSOA).  

1.3 Objectives  

The objectives of the research are: 

i. To develop a new emission economic dispatch formulation based on CCPP 

adoption within the power generation portfolio.  

ii. To develop a new constraint handling mechanism (CHM) for metaheuristic 

optimization techniques solving the ED problems.  

iii. To develop a novel robust-oriented Chaos-Enhanced Cuckoo Search 

Optimization Algorithm (CECSOA) for result robustness using the developed 

CHM for the dual purpose of local searching and equality constraints 

fulfilment.  

iv. To improve the existing performance values achieved by the latest 

optimization algorithms when implemented in solving the ED problems with 

valve point effects using the developed CECSOA.  

1.4 Scope 

The scope of this research covers the following: 
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i. In terms of the various different types of low carbon technologies that are 

considered for power generation decarbonization pathways, this thesis 

focuses the CCS technology. Other technologies such as the wind and solar 

are not considered in this thesis.  

ii. While there are various established CCS technologies globally, the study does 

not aim to consider comprehensive options of CCS technologies. Instead, the 

study focuses, in terms of CCS’s integration pattern with the conventional 

power plant, on the post-combustion technologies. Post combustion 

technologies are the most mature technologies and already being deployed at 

a commercial scale, with examples such as the Boundary Dam Project [10] 

and the Toshiba pilot facility at Fukuoka [11, 12].  In terms of CO2 separation 

technology considered, the thesis considers the amine-based types. Other 

technologies such as the use of membrane is ignored in this thesis.  

iii. This work concentrates on the operational time-frame of the power system 

formulations. The time range of these operational tools involves hourly 

dispatch calculations of the operations of the network. The thesis also 

considers the static ED problem formulations which provides a snap-shot of 

the optimal settings of the generators at specific hourly interval.  

iv. The research focuses on the possible improvement for the stability of the 

solutions obtained by the algorithm as opposed to other research paradigms 

such as the computational time.  

v. IEEE 30 bus test system, the power system of Greek Island of Crete and 

algorithmic-oriented power system test systems (systems with 13 units and 40 

units) with different levels of complexity are utilized to test the algorithms 

developed within this thesis.  

1.5 Significance of the Research  

The significance of this research can be viewed from different perspectives 

that includes but not limited to: 
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i. In this new era of climate-controlled power generation systems, emission 

economic dispatch formulations can be re-formulated to contextualize the 

operations of the power system network. This thesis presents the opportunity 

to independently control the economic and emission outputs of the generation 

fleet by flexibly operating the CCS technologies retrofitted at the existing 

facilities. Consequently, net power output to the grid and emission output to 

the atmosphere can be decoupled as two independent variables that can be 

controlled by system operators in a way that best serves the grid under the 

existing regulations or market opportunities. To achieve this, this work 

attempts to model power system formulations that can represent the 

operational characteristics of the CCPP units within the power system 

operation calculations. These new formulations are then integrated within the 

existing ED problem formulations.  

ii. The work of this thesis is expected to be crucially useful worldwide, as 

different countries are adopting differing prices according to the respective 

socio-political and economic situations. For example, Australia adopted a CT 

price of 24 $/tCO2 [13] while China’s Guangdong province adopted a CT 

price of 95 $/tCO2 [14]. Many other high income countries are looking at 

ways to adopt similar carbon pricing instruments to force lowering the CO2 

emissions in the foreseeable future such as the case in South Africa [15] and 

Russia [16].  

iii. Currently, the incorporation of the CCPP models within the power system is 

still being researched world-wide. These models will allow the simulation of 

the facilities within the typical power system operations calculations. System 

planners will therefore use the developed tools to carry out their operations 

calculations without the need to mathematically and rigorously model the 

plant characteristics.  



7 

1.6 Thesis Organisation 

The thesis comprises of five chapters. The first chapter provides the general 

overview of the study by firstly giving the background, problem statement and the 

research objectives. It also provides the research scope and the significance of the 

research.  

The second chapter is designed in order to provide a comprehensive critical 

literature review of the different aspects. It is divided into two major parts. The first 

part focuses on the literature related to the different aspects of the power systems. 

The second part focuses on the improvement of optimization techniques adopted in 

solving the economic dispatch problems.  

The third Chapter defines the methodology of the research. Similar to the 

styles of the previous Chapters, the development of the power system formulations 

are firstly presented, followed by the description of the proposed optimization 

technique. Chapter 4 presents the results and discussion. Finally, the conclusions and 

further recommendations of the study are provided in Chapter 5.  
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