
 

 

 

 

 

EFFECT OF CERIUM AND BARIUM ADDITIONS AND SUPERHEATING MELT 

TREATMENT ON THE MORPHOLOGY AND HARDNESS OF Al-Mg2Si-Cu 

COMPOSITE 

 

 

 

 

NUR AZMAH BINTI NORDIN 

 

 

 

 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of  

Doctor of Philosophy (Mechanical Engineering) 

 

 

 

Faculty of Mechanical Engineering 

Universiti Teknologi Malaysia 

 

 

 

FEBRUARY 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/231742231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I dedicated this thesis to my beloved parents and family for their endless love and 

motivational support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

 

 

 

ACKNOWLEGDEMENT 

 

 

 

 

Alhamdulillah.   

I would like to express my special thanks to my supervisors, Dr. Tuty Asma 

Abu Bakar and Prof. Dr. Esah Hamzah for the constant guidance, thoughtful 

opinions and constructive comments during the course of my research work.  Not to 

forget, I also wish to convey my deep gratitude to Prof. Dr. Ali Ourdjini and my 

supportive research partner, Dr. Saeed Farahany for the great skill, priceless input 

and consistent encouragement during my journey as a PhD candidate.  

 

I would also like to acknowledge Universiti Teknologi Malayisa (UTM) and 

the Ministry of Education of Malaysia for the opportunity and facilities provided to 

complete my research work.  I would also like to extend my gratitude to UTM for 

the financial support via Zamalah Scholarship during years of my research.  Special 

thanks are also dedicated to all technicians in the Mechanical-Material’s lab and 

fellow friends for the help in supporting my project and tasks.  Last but not least, I 

would like to thank my internal/external panels, Associate Professor Dr. Astuty 

Amrin and Associate Professor Dr. Zuhailawati Hussain for their useful advices and 

encouragement to improve my current research work. 

 

 

 

 

 

 

 

 

 



v 

 

 

 

 

ABSTRACT 

 

 

 

 

Aluminium-based alloy, reinforced with particulate Mg2Si phase has been 

widely accepted to replace Al-Si alloy due to its improved properties in producing 

engineering products especially for automotive and aerospace applications.  

However, in as-cast Al-based reinforced with Mg2Si composite, the particles formed 

are coarse with large skeleton shapes and eutectic Al-Mg2Si phase which are also 

present in flake-like form.  These phases are known to have detrimental effect on the 

mechanical properties of the composite.  The present research is therefore aimed to 

investigate the effect of elements addition and superheating melt treatment in order 

to modify the undesired structures and phases in Al-Mg2Si-Cu metal matrix 

composite.  The elements addition were Ce (0.3-1.0 wt.%) and Ba (0.1-1.0 wt.%).  

Meanwhile, superheating above the melting temperature of Al-Mg2Si-Cu composite 

was carried out at three different temperatures (850°C, 900°C and 950°C) and three 

different holding times (15, 30 and 45 minutes) to further modify the 

microstructures.  The samples were produced by melting commercial Al-Mg-Si ingot 

and pouring into a ceramic mould and the transformation temperatures were 

determined by computer aided cooling curve thermal analysis (CACCTA).  The 

phase and microstructural changes were characterized using optical microscopy, field 

emission scanning electron microscopy (FESEM), scanning electron microscopy 

(SEM) and X-ray diffraction (XRD).  Hardness test (ASTM E92) was performed in 

order to investigate the effect of morphology modification on the hardness of the 

composite.  Both approaches, namely, elements addition and melt superheating with 

varying parameters were found to refine not only Mg2SiP reinforcement particles but 

also eutectic Al-Mg2Si phase.  Various morphologies of the phases were observed, 

particularly, coarse skeleton of Mg2SiP has been transformed to finer polygonal 

structure.  Likewise, flake-like morphology of Mg2SiE has transformed to rod and 

fibrous-like form while the needle-like intermetallic β has transformed to α phase.   

The optimum concentrations to achieve the adequate refinement effect were found to 

be 0.8wt% Ce and 0.2wt% Ba.  While, the optimum parameter for the melt 

superheating was 950°C and underwent 15 minutes holding melt duration.  The 

modified composite with addition of optimum concentration of Ce and Ba were 

observed to increase in hardness property from 61.32Hv to 74.3Hv and 67.95Hv for 

Ce and Ba, respectively.  Whereas, for the composite modified by melt superheating, 

the hardness improved from 61.32Hv to 70.22Hv. 
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ABSTRAK 

 

 

 

 

Aloi aluminium yang diperkuatkan dengan pengisian seramik partikel Mg2Si 

telah diterima secara meluas bagi menggantikan aloi Al-Si kerana sifatnya yang 

memuaskan dalam penghasilan produk-produk kejuruteraan, terutamanya dalam 

aplikasi automotif dan aeroangkasa.  Namun, dalam hasil tuangan komposit Al 

dengan pengisian seramik partikel Mg2Si, partikel-partikel tersebut telah wujud 

dalam bentuk yang kasar dengan saiz tetulang yang besar dan fasa eutektik Al-Mg2Si 

yang wujud adalah dalam bentuk kepingan-kepingan.  Fasa-fasa ini telah dikenalpasti 

memberi kesan yang memudaratkan ke atas sifat-sifat mekanikal komposit tersebut.  

Maka, kajian ini adalah bertujuan untuk menyelidik kesan penambahan unsur-unsur 

dan rawatan lebur pemanasan lampau untuk memperbaiki struktur dan fasa-fasa 

dalam komposit matrik logam Al-Mg2Si-Cu (MMC).  Penambahan unsur-unsur 

tersebut adalah dengan menggunakan Ce (0.3-1.0%berat) dan Ba (0.1-1.0%berat).  

Sementara itu, kaedah pemanasan lampau melebihi suhu leburan komposit Al-

Mg2Si-Cu (750°C) telah dijalankan pada tiga suhu (850°C, 900°C dan 950°C) dan 

dibiarkan dalam tempoh masa yang berbeza (15, 30 dan 45 minit), bagi penambaikan 

selanjutnya mikrostruktur-mikrostruktur tersebut.  Sampel tuangan diproses dengan 

meleburkan jongkong Al-Mg2Si-Cu komersil dan dituang dalam acuan seramik dan 

suhu-suhu perubahan telah ditentukan dengan menggunakan perisian komputer 

analisa haba lengkok penyejukan (CACCTA).  Perubahan fasa dan mikrostruktur-

mikrostruktur telah dicirikan dengan mengunakan mikroskop optik, mikroskop 

elektron pengimbasan medan (FESEM), mikroskop imbasan electron (SEM) dan 

pembelauan sinar x (XRD).  Ujian kekerasan (ASTM E92) telah dijalankan bagi 

menguji kesan pembaikan mikrostruktur ke atas sifat kekerasan komposit tersebut.  

Kedua-dua pendekatan iaitu penambahan unsur-unsur dan pemanasan lampau 

dengan pelbagai parameter telah dilihat dapat menghaluskan bukan sahaja partikel-

partikel penguat Mg2SiP malah fasa eutektik Al-Mg2Si.  Pelbagai morfologi fasa-fasa 

telah diperhatikan terutamanya partikel kasar Mg2Si telah berubah kepada struktur 

halus poligon.  Begitu juga dengan morfologi kepingan-kepingan fasa eutektik Mg2Si 
yang berubah kepada bentuk rod dan serabut halus,  sementara itu, bentuk jejarum 

bagi sebatian antara logam fasa β juga telah berubah kepada fasa α.  Komposisi 

optimum untuk mencapai kesan pembaikan yang mencukupi adalah 0.8%berat Ce 

dan 0.2%berat Ba.  Bagi kaedah pemanasan lampau pula, parameter yang terbaik 

adalah pada suhu 950° dan dibiarkan selama 15 minit.  Komposit yang terubah suai 

dengan penambahan unsur Ce dan Ba telah menunjukkan peningkatan dalam sifat 

kekerasan komposit, daripada 61.32Hv kepada 74.3Hv untuk Ce dan 67.95Hv untuk 

Ba.  Sementara itu, nilai kekerasan komposit yang terubah suai dengan pemanasan 

lampau pula telah meningkat daripada 61.32Hv kepada 70.22 Hv.      
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

As a class of advanced engineering materials, aluminium metal matrix 

composites (MMCs) have been paid greater attention extensively owing to their 

excellent properties which make them useful for high performance applications.  

Their properties such as low density, excellent castability, excellent mechanical 

properties and low production cost render these materials more attractive to meet 

further application demands especially for light-weight components [1-3], 

particularly in the manufacture of automotive parts where the pressure to use light-

weight material has been increasing due to environmental issues.  

 

The common aluminium metal matrix composites (Al-MMC) are mostly 

based on the Aluminium-Silicon (Al-Si) casting alloys reinforced with hard ceramic 

particles, such as silicon carbide (SiC) and alumina (Al2O3) [4, 5].  However, these 

metal matrix composites suffer from thermodynamic instability of interfaces between 

the ceramic reinforcement and matrix, in addition to poor wettability of the 

reinforcements [6].  Moreover, small particle size of the reinforcement and the 

density differences between reinforcement and matrix make the fabrication of these 

composites more difficult due to settling and agglomeration issues [7]. 
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Al-based composite, reinforced with particulate Mg2Si phase have recently 

been shown to possess advantages [5, 8].  However, mechanical properties in normal 

cast Al-Mg2Si in-situ composite is unsatisfactory due to the nature form of dendrite 

and coarse morphology of primary Mg2Si phase which lead to stress concentration at 

sharp edges and corners of Mg2Si structure [9, 10].  This would cause more brittle 

phase of structure [11] and low ductility of the in situ composite [2].  Thus, 

mechanical properties of the composite are rather limited especially at high 

temperature [10, 12].  Therefore, melt treatment by refinement and modification of 

the coarse primary Mg2Si structure as well as corresponding matrix phase of Al-

Mg2Si in-situ composite is crucial in order to improve the morphology of Mg2Si 

reinforcement and achieve better mechanical properties. 

 

Various methods have been employed and developed to enhance the 

composite properties by refining the structure of the primary Mg2Si as well as that of 

the matrix.  Among the techniques [13, 14], melt treatment method with modifier or 

refiner elements is chosen due to result effectiveness in addition to low cost because 

of the use of Al, Mg and Si as starting materials [6, 7].  Furthermore, the technique 

results in an even distribution of reinforcing phase, good particle wetting and less 

steps of processing for industrial utilization.  Besides, reinforcement particles are 

thermodynamically stable in the matrix, leading to less degradation in high 

temperature services [5, 11, 12]. 

 

It has been reported that potassium fluotitanate, K2TiF6 [15], potassium 

fluotitanate + potassium tetrafluoroborate (K2TiF6+KBF4) [16], strontium (Sr) [17-

19], sodium (Na) [19] and phosphorus (P) [9, 18, 20] are important additives to be 

introduced to the melt alloy in order to refine or modify the morphology of the 

primary Mg2Si and enhance the properties.  However, some of the findings from this 

research have reported drawbacks as described by and Zhao et al. [19] and Wang et 

al. [16] in their research respectively.  In particular, Na has limited solid solubility in 

Al melt and has a very high vapour pressure. Thus, Na is readily volatilized during 

the modification process, resulting in negative effects [19].  Another case, addition of 

K2TiF6 and KBF4 individually in Mg-Si composite have refined and modified the 

shape of primary Mg2Si respectively.  However, combination of K2TiF6+KBF4 in the 
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composite has reduced the role of KBF4 as modifier and as a result, primary Mg2Si 

become coarser again [16].    

 

Previous research also showed that the refinement effect have been achieved 

by addition of extra silicon (Si) [9, 21] since the morphology of coarse primary 

Mg2Si particles resulted in finer polyhedral shape with a reduced size.  The addition 

also caused modification in the eutectic Mg2Si phase by altering the flake-like 

structure to a finer fiber shape.  Similar results of refined primary and eutectic Mg2Si 

structures have also been obtained with the addition of lithium (Li) to Al-Mg2Si melt 

composite  [11, 22], addition of antimony (Sb) [23, 24], Sr [25, 26] and bismuth (Bi) 

[10, 27]. 

 

The role of rare earth elements as modifiers or refiners have also been 

investigated but most research have focused on Al-Si alloys [28-30].  It was reported 

that addition of rare earth elements (RE) such as lanthanum (La), cerium (Ce), 

nyeodium (Nd), yttrium (Y) and mischmetal could be capable to modify the eutectic 

structure but not the primary Si phase [31].  However, in a recent research by Qin 

Lin et al. [28] it has been shown that addition of Ce has a significant refining effect 

on the primary Si crystals besides modifying the eutectic Si structure as well.   

Knuutinen et al. [29] in their research on barium (Ba), calcium (Ca), Y and ytterbium 

(Yb) also concluded that both Ca and Ba can act as modifiers while Y and Yb act as 

refiners to modify and refine the morphology of Al-Si alloy respectively. 

 

Similar refinement result was obtained with the use of Ce into Al-Si-Cu 

composite on the primary Mg2Si structure as reported by Zhang et al. [32].  In other 

research, Zheng et al. [33] have proved that addition of  Y2O3 compound has caused 

modification of the morphology of primary Mg2Si in Mg-Si base composite while 

other findings have claimed that Y itself just affect the size and not the morphology 

of Mg2Si particles.  However, Emamy et al. [34] claimed that Y individually could 

modify both the morphology of Mg2Si phase as well as its size and produce a refined 

structure.  In addition, Wang et al. [35] who investigated the effect of La in Mg-Si 

composite have revealed that La could refine the morphology of Mg2Si from coarse 

to refined polygonal structure. 
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Instead of melt treatment by the elements addition approach, the morphology 

of cast alloys can also be affected by superheating melt treatment.  It is a process that 

involves preheating the cast alloy at higher temperature, basically above the melting 

temperature and holding it for a certain period of time and then immediately cooled 

to pouring temperature before casting or solidifying [36-38].  The process of 

preheating at elevated temperature would cause a change in heredity of the alloy by 

remelting the particles and clusters completely and homogeneously in the melt, then 

resolidify as finer particles.  This would result in finer grain nucleation [37, 39].  

 

It was reported that melt superheating temperature on Mg2Si/Al-Si-Cu 

composite resulted in a change of coarse dendritic primary Mg2Si particles to 

equiaxed shape and a decrease in their size while the eutectic Mg2Si phase has been 

improved from Chinese script type to irregular type [39].  Similar result was 

observed by Zhamin et al. [33] who claimed that superheating melt treatment on Mg-

3.5Si-1Al composite caused reduction in heredity phenomenon of the composite such 

that both primary and eutectic Mg2Si phase have been refined. 

 

Besides that, Chen et al. [38] in their study on Al-Si melt alloy have claimed 

that eutectic Si phase could be modified and refined by reducing heredity 

phenomenon in the melt and changing its growth phase to get better final structure.  

Meanwhile, Haque et al. [40] have clarified that superheating technique with 

addition of Sr results in better modification effect compared to modified alloy with 

Sr without superheating.  Indeed, the morphology of eutectic Si phase has been 

refined.  Although most of the research concerning superheating melt treatment 

focused on the eutectic Si phase in Al-Si alloy, it is believed that superheating could 

also result in similar modification effect on the primary Mg2Si phase in Al-Mg2Si in-

situ composite.   

 

In summary, modification and refinement of coarse morphology of any 

material by addition of inocculation agents and superheating melt treatment are 

important and may be considered as useful routes to enhance the mechanical 

properties of the material.  Inocculation agents, similar to neutralizer or modifier 

elements would be induced to the Al melt alloy/composite in order to treat the 

undesirable structure and produced modified and refined morphology.  Although, 
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most of research studies on refinement and modification treatment are related to the 

Al-Si alloy, there is great similarities between the solidification behaviour of Al-Si 

and Al-Mg2Si systems [31].  Therefore, it is believed that element additions of Ce 

and Ba as well as superheating melt treatment at certain temperature ranges and 

holding time can be effective routes to alter the morphology of primary Mg2Si 

structure in the Al-Mg2Si in-situ composite.  Control of their microstructure is more 

practical and cost effective method because of low production cost commercially and 

is the same as that practiced in casting of metallic alloys.  

 

 

 

 

1.2 Problem Statement 

 

 

High performance of Al-Mg-Si composites containing Mg2Si reinforced 

phase are attractive candidates to manufacture industrial products especially for 

automotive and aerospace components.  However, the presence of Mg2Si reinforced 

particles in the form of dendrite and coarse shape have adverse effect on the 

mechanical properties of the composites due to ease of crack formation at sharp 

edges and corners of the Mg2Si particles.  Therefore, modification and refinement of 

the coarse morphology is required in order to improve the structure and thus enhance 

the mechanical properties such as reduce the brittleness of the Al-Mg2Si in-situ 

composite. 

 

Elements addition and superheating melt treatment have been proposed to 

alter the coarse morphologies of the phases in the melt alloys.  The first approach is 

by element addition.  Examples of elements addition are cerium (Ce) and barium 

(Ba).  However, scarcity of Ce and Ba elements has limited their use as modifier or 

refiner elements and restricted their use in general industrial applications.  Research 

findings, albeit very little have proved that addition of such elements causes 

modification and refinement effects of phases in many melt alloys.  Moreover, the 

interaction between these rare earth elements and the exact mechanism of 
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modification is still unclear.  In fact, focus of Ce and Ba elements are rather limited 

that inspired to further emphasis its role as modifier and refiner agents.      

 

Superheating melt treatment as a second approach has been suggested to 

achieve refinement in the in-situ composite melt.  Preheating the melt composite at 

elevated temperature, normally above the melting temperature of Al-20%Mg2Si-

2%Cu in-situ composite, causes complete dissolution of particles and yet lead to 

nucleation of finer particles.  However, the exact reasons and role of modifying 

effect is not clearly understood, in addition to very little research work done 

regarding the superheating treatment on primary phase and in Al-Mg-Si composite. 

 

Therefore, this current research is carried out in order to investigate the effect 

of elements addition namely Ce and Ba as well as superheating melt treatment on the 

primary Mg2Si phase.  Both methods will be carried out with computer aided cooling 

curve thermal analysis (CACCTA) technique in order to monitor the solidification 

behavior of the composite and to determine the characteristic temperatures for each 

phase.  Understanding the characteristic temperatures can be beneficial in controlling 

the solidification process of the cast alloy, yet producing improved microstructure of 

composite with the corresponding desired mechanical properties.  As both methods 

are expected to improve the morphology and properties of the in situ composite, they 

will be compared and the best method will be proposed at the end of this research 

study. 

 

 

 

 

1.3 Objectives of the Research 

 

 

The primary aim of this research is to investigate the effect of elements 

addition (Ce and Ba) and superheating melt treatment on the morphology of primary 

Mg2Si phase and mechanical property namely hardness of commercial Al-

20%Mg2Si-2%Cu in-situ composite. 
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The specific objectives of the research are: 

 

1. To evaluate the characteristic temperatures of the in-situ composite 

during solidification process by elements addition and superheating 

melt treatment using computer aided cooling curve thermal analysis 

(CACCTA) technique. 

 

2. To determine the effects of elements addition (Ce and Ba) on the 

morphology of in-situ Mg2Si reinforced particles in Al-Mg2Si-Cu 

composites and the hardness of respective in-situ composites using 

gravitational casting process.  

 

3. To determine the effect of superheating temperature (850-950°C) and 

holding time (15-45 minutes) on primary Mg2Si structure phase and 

the hardness of the corresponding Al-Mg2Si-Cu in-situ composite. 

 

4. To determine the optimum concentration of Ce and Ba addition and 

the optimum parameter of superheating melt treatment that resulted in 

adequate modification and refinement effect on the morphology of Al-

Mg2Si-Cu in-situ composite. 

 

5. To propose the mechanisms related to phase transformation of Al-

20%Mg2Si-2%Cu in situ composite, in addition to modification effect 

of primary Mg2Si as a result of Ce and Ba additions as well as 

superheating melt treatment.  
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1.4 Scopes of the Research 

 

 

The scopes of the research are as follows: 

 

1. Preparation of ceramic moulds for the casting process. 

 

2. Preparation of samples by casting as-cast commercial Al-Mg2Si-Cu 

composite with and without elements addition (Ce and Ba) and 

superheating melt treatment. 

 

3. Analysis of the as-cast molten Al-Mg-Si-Cu in-situ composite with 

and without elements addition using computer aided cooling curve 

thermal analysis (CACCTA) in order to determine the characteristic 

temperatures of the primary Mg2Si phase.  

 

4. Analysis of Al-Mg2Si-Cu composite melt during superheating melt 

treatment using CACCTA to characterize the characteristic 

temperatures of the primary Mg2Si. 

 

5. Microstructural and phase analysis of as-cast prepared samples using 

optical microscopes, field emission scanning electron microscopy 

(FESEM) with energy dispersive x-ray analysis (EDX) and x-ray 

diffraction (XRD). 

 

6. Perform hardness test on as-cast samples that have treated with 

elements addition and superheating melt treatment. 
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