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ABSTRACT 

This thesis proposes an Interconnection and Damping Assignment Passivity-

Based Controller (IDA-PBC) to control a 5-level Cascaded H-Bridge Multilevel 

Inverter (CHMI). The proposed IDA-PBC uses the Port-Controlled Hamiltonian 

(PCH) theory to modify the CHMI system energy by adding damping, thereby 

modifying dissipation structures related to dynamics and stability. The objective is to 

maintain output voltage regulation, resulting in fast response and low Total 

Harmonic Distortion (THD) values.  Although the proposed IDA-PBC control 

algorithm showed outstanding performance during transient and nonlinear load 

condition, further improvements are required during no-load condition. To address 

this, improvements in the form of modification to the proposed IDA-PBC algorithm 

was made by adding a single loop Proportional-Integral (PI) controller at the voltage 

side, which was aimed at regulating the voltage before it was fed back into the IDA-

PBC. In order to verify the viability of the proposed IDA-PBC-PI controller for the 

CHMI, a simulation study was conducted using MATLAB/Simulink at a 20 kHz 

switching frequency and 1 µs sample time. The controller was tested at five load 

conditions, namely, steady state, no-load to full-load, load uncertainty, structural 

uncertainty and nonlinear load condition. The performance of the proposed controller 

showed regulated output voltage while maintaining THD values below 5% in all load 

conditions and a maximum of 220 µs response time during load uncertainty. The 

simulation results revealed the superiority of the proposed controller compared to the 

conventional double loop PI controller and the conventional IDA-PBC in terms of 

transient response, THD value, as well as regulation of the output voltage. The 

feasibility of the proposed IDA-PBC-PI controller was validated by developing its 

proof-of-concept hardware prototype. The simulation and experimental results 

obtained based on a 3 kHz switching frequency and 38 µs sample time were found to 

be consistent, which confirmed the capability of the proposed controller in 

controlling the 5-level CHMI output voltage.  
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ABSTRAK 

Tesis ini mengusulkan Penetapan Terhadap Sambungan dan Redaman bagi 

Pengawal yang Berasaskan Konsep Pasif (IDA-PBC) untuk mengawal 5-aras 

Penyongsang Jejambat-H Pelbagai Aras (CHMI). IDA-PBC yang diusulkan 

menggunakan teori Kawalan-Port Hamiltonian (PCH) untuk mengubah suai tenaga 

CHMI dengan menambah redaman dan mengubah suai struktur pelesapan yang 

berkaitan dengan dinamik dan kestabilan. Objektif kawalan adalah untuk 

mengekalkan aturan voltan keluaran, serta menghasilkan masa tindak balas yang 

cepat dan Jumlah Gangguan Harmonik (THD) yang rendah. Walaupun algoritma 

kawalan IDA-PBC yang diusulkan menunjukkan prestasi cemerlang semasa keadaan 

peralihan dan beban yang tidak linear, penambahbaikan diperlukan semasa keadaan 

ketiadaan beban. Oleh itu, pengubahsuaian kepada algoritma IDA-PBC yang 

diusulkan telah dilaksanakan dengan menambah kawalan Berkadar-Kamiran (PI) 

pada bahagian voltan, untuk mengawal selia voltan sebelum ia disuap-balik ke dalam 

IDA-PBC. Bagi mengesahkan kebolehupayaan kawalan ini, kajian simulasi 

dijalankan menggunakan MATLAB/Simulink pada frekuensi pensuisan 20 kHz dan 

1 μs sampel masa. Pengawal ini diuji pada lima keadaan beban iaitu pada keadaan 

tetap, tiada beban kepada beban penuh, beban yang tidak menentu, ketidakpastian 

struktur dan beban yang tidak linear. Prestasi pengawal yang diusulkan menunjukkan 

voltan keluaran adalah teratur selain mengekalkan nilai THD bawah 5% dan masa 

tindak balas maksimum sehingga 220 μs. Keputusan simulasi mendedahkan 

keunggulan pengawal yang dicadangkan berbanding pengawal PI dua gegelung 

konvensional dan pengawal IDA-PBC konvensional dari segi masa tindakbalas, nilai 

THD serta aturan voltan keluaran. Semua pelaksanaan pengawal IDA-PBC-PI yang 

dicadangkan telah disahkan dengan membangunkan perkakasan prototaip 

berdasarkan konsep-pembuktian. Keputusan simulasi dan eksperimen yang 

diperolehi berdasarkan frekuensi pensuisan 3 kHz dan 38 μs sampel masa adalah 

didapati konsisten, yang mengesahkan keupayaan pengawal yang dicadangkan dalam 

mengawal voltan keluaran bagi 5-aras CHMI. 
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

The rapid evolving industry in recent years has demanded higher power 

equipment which now reaches up to Megawatt level. These high power applications 

need to be connected to medium-voltage power electronics devices. In order to cater 

the demand, multilevel inverter has been introduced [1]. Multilevel inverters are built 

by a row of power semiconductors and voltage sources. This inverter structure is able 

to create staircase sinusoidal like voltages. The required output voltage of the 

inverter can be obtained by summing up the total of the DC voltage sources. This 

structure allows the multilevel inverter to produce higher output voltage, with less 

voltage for each semiconductor device to withstand. Thus, multilevel inverter 

structure increases the capability of the power converters to operate in medium-

voltage grid.  

Since its introduction in 1981 [1], its amazing and interesting properties in 

medium and high power application has attracted a large interest among researchers. 

This includes its capability to operate in higher voltage operation with low switching 

losses and reduced harmonics [2], [3]. As compared to conventional inverters, 

multilevel inverters are also preferred due to the low voltage stress on the power 



 

 

 

 

 

2 

switches where lower 
  

  
 is applied to the components since the voltages are divided 

into smaller values to perform the switching [4]. This cost-effective solution not only 

enables the inverters to meet high power ratings, but also capable to operate in low 

power operations such as in renewable energy application [5]–[7]. Other applications 

include tractions [8], [9], active power filtering [4], [10], VAR compensation [11], 

flexible AC transmission system [12] and induction motor drives [13].  

Providing a clean and stable sinusoidal output voltage regardless of any 

perturbations is the main requirement of a well-designed multilevel inverter. It is also 

important to ensure that the multilevel inverter can provide fast transient recovery 

time caused by load uncertainties or disturbances. Moreover, in the case of the 

presence of a non-linear load, the multilevel inverter will produce a highly distorted 

load current and in return will cause deterioration in the output voltage quality. The 

severe effects of the current and voltage distortion in power system quality have been 

reported in various cases [14], [15].  Thus, it is very important to maintain a 

regulated output voltage with fast transient response and low Total Harmonic 

Distortion (THD) of below 5% [16]. In order to achieve these, a reliable closed-loop 

control scheme is needed. 

There are two main approaches of ensuring output regulation of a multilevel 

inverter which are; linear or nonlinear strategies. One of the most frequently applied 

linear controllers is the Proportional Integral (PI) controller of which control 

objective is to regulate the output signals and reduce the steady state error to zero 

[17]. Although offering the advantage of constant switching frequency, this 

controller, however, is very sensitive to perturbations and variations of a system’s 

parameters. Since the mathematical model of the inverter itself is nonlinear, it is 

strongly agreed that a nonlinear control strategy from the nonlinear structure of the 

system will lead to better achievement in terms of performance. An example of a 

commonly used nonlinear approach is determining the inverter switching by using 
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hysteresis comparator. This method has been proven to achieve a good dynamic 

response in multilevel inverter applications [18], [19]. However, the variable 

switching frequency has become a major drawback of this approach. 

Another nonlinear controller that has gained researcher’s interest in recent 

years is a method based on energy function shaping known as Passivity-based 

Controller (PBC). The growing interest in PBC implementation in power electronics 

devices [20]–[22] has resulted in a very successful development of the so-called 

Interconnection and Damping Assignment PBC (IDA-PBC). This controller 

produces a closed-loop system based on Hamiltonian structure. In this structure, the 

closed-loop energy is required to have a minimum desired equilibrium point to 

assure its stability. The main advantage of the IDA-PBC algorithm is that the 

Lyapunov function is obtained naturally by the dynamic structure of the system 

itself, leading to the desired operating point, rather than imposing external dynamics 

which conventional controllers mostly do. The IDA-PBC has proven to be useful and 

efficient to meet regulatory objectives in various applications [22]–[25].  

1.2 Problem Statement 

The nonlinear nature of the multilevel inverters’ nonlinear equations is caused 

by the multiplication of the state variables by the control inputs. Traditional linear 

control methods as presented in [17], [27] often neglect the nonlinear characteristics 

of the multilevel inverter and physical characteristics of the LC filter. This in turn, 

leads to instability problems on the power converter system. In comparison to the 

linear controller, nonlinear controllers deal with a wider class of systems that are 

nonlinear, time-variant or both. It is generally applied to real-world systems that are 

often governed by nonlinear equations [28].  
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The nonlinear control systems can be classified into two major groups which 

are non-model based and model based. Non-model based controllers do not consider 

essential information of the system parameters and hence no mathematical model for 

the controller is needed. The controllers are more robust than their model based 

counterparts. An example of a non-model based controller in the market is Fuzzy 

Logic Controllers (FLC) [29]. This technique is useful to approximate a system 

because the fuzzy sets boundaries can be unclear or indefinite due to the gradual 

transition between membership and non-membership [30]. In CHMI, FLC has been 

applied successfully in improving power quality by minimizing the harmonics in the 

output voltage waveform [31]–[33]. However, these non-model based controllers are 

lacking in standard design guidelines and are normally designed in heuristic 

manners. Their performances are quite unpredictable and are generally difficult to 

optimize [34].  

On the other hand, model-based controllers require a precise mathematical 

model of the multilevel inverter in order to design the controller’s algorithm. Its 

design procedure is systematically structured and is widely accepted by the control 

system community [35]. A common design environment provided in a model-based 

controller design enhances general communications between the elements of power 

systems, provide easier data analysis and allow system verification. The impact of 

the controller’s design and modification in terms of time and cost can be reduced by 

synthesizing and troubleshooting the errors in the system as early as possible. It is 

also easier to reuse or upgrade the existing developed system especially for a system 

with expanded capabilities.  
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1.3 Thesis Objective 

This thesis proposes a model-based nonlinear controller which is a modified 

IDA-PBC for the control of a Cascaded H-bridge Multilevel Inverter (CHMI). This 

structured controller model enhances the stability and dynamical performance of the 

CHMI by adding damping elements and modifying the dissipation structure. The 

proposed modified IDA-PBC in this thesis improves the transient stability of power 

systems by proposing a new solution of the matching partial derivative equation 

through the desired interconnection matrix. The new matrix function for the 

interconnection and damping matrices shows outstanding performance during 

transient response and during the presence of a nonlinear load. However, in order to 

improve the performance of the controller during transition from no load to full load 

condition, and vice versa, a complementary PI controller is proposed to be added to 

the voltage part of the controller. This controller is referred to as the IDA-PBC-PI 

controller which is able to minimize the steady-state error between the actual output 

voltage with the equilibrium point before it is injected back into the IDA-PBC 

system. This results in the improvement of the inverter’s performance especially 

during the transition from no load to full load. This controller is able to maintain 

output voltage regulation with fast transient response while maintaining low THD 

value with various load conditions. This thesis critically looks into the aspect of the 

design, analysis, implementation and performance evaluation of both the IDA-PBC 

and IDA-PBC-PI controllers. The objectives of this thesis are: 

 

1. To study the multilevel inverter concept, topologies and control methods that has 

been implemented as well as the concept and types of Passivity-Based 

Controllers (PBC). 

2. To implement through simulation and experimental work the concept of 

Interconnection and Damping Assignment Passivity-Based Controller (IDA-

PBC) on Cascaded H-bridge Multilevel Inverters (CHMI). 
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3. To develop the related IDA-PBC mathematical model, design procedures and 

control performance evaluation in terms of output voltage regulation and 

transient response while maintaining the acceptable range of Total Harmonic 

Distortion (THD) percentage. 

1.4 Thesis Scope 

The thesis covers the development of the mathematical model and 

implementation of both the proposed IDA-PBC and IDA-PBC-PI controllers for a 5-

level CHMI. Performance evaluation of the controllers is based on maintaining 

output voltage regulation with fast transient response and low THD under various 

loading conditions. The performance is verified through both simulation and 

experimental work of the proposed controllers for the 5-level CHMI.   

1.5 Thesis Contribution 

In implementing the concept of IDA-PBC as applied to a 5-level CHMI, the 

following contributions are attained: 

  Two new matching equations of damping and injection matrices have been 

proposed in the controller’s algorithm. These equations are obtained by 

solving the Partial Differential Equation (PDE) derived from the structure of 

the 5-level CHMI. These two matrices are developed by following 

propositions that are subjected to the IDA-PBC control law. 
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 A new IDA-PBC-PI controller to improve the overall CHMI output voltage 

performance during no load condition. Although IDA-PBC itself is robust 

and performs well throughout various loading conditions, the PI controller 

added at the voltage part of the IDA-PBC has shown improved performance.  

1.6 Organization of Thesis 

This thesis consists of this introductory chapter and four other chapters 

organized as follows: 

Chapter 2 provides literature review on the various multilevel inverter 

topologies and controllers. The significance of choosing the 5-level CHMI is also 

included.  

Chapter 3 explains the research methodology of the thesis. It is divided into 

three sections namely, the mathematical model for the 5-level CHMI circuit and the 

development of IDA-PBC control algorithm, simulation model of the system and the 

experimental set-up.  

Chapter 4 presents the simulation and experimental results of the proposed 

controllers. The performance of each controller is evaluated in terms of output 

voltage regulation and THD as well as transient response during no load to full load 
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transition, load uncertainty and structural uncertainty. Comparison of the two 

proposed controllers with the double-loop PI controller is also included.  

Chapter 5 provides conclusions of the thesis and recommendation for future 

works is also included in this chapter. 
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