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ABSTRACT  

 Many attempts have been made to replace mineral oil-based with 

biodegradable lubricant such as vegetable oil in order to reduce environmental 

impacts. Palm oil based is available in abundance in Malaysia at cheaper price 

compared to mineral based lubricant but reports on using this oil as an alternative 

lubricant is hardly found especially in cold metal forming applications. This study 

aims to evaluate and compare the tribological performances between two different 

types of palm oil-based and mineral oil-based lubricants using modified die surface 

geometry (with and without micropits at top and bottom positions, sharp T45 and 

radius R45 taper angle) during cold extrusion process. All extrusion process 

parameters were fixed during experiments, i.e. deformation ratio (3:1), speed range 

(8.1-8.3 mm/s), piston displacement stroke (40 mm), micropit depth (30 μm),  

diameter (600 μm), distance (1 mm) and 27 percent of area density. Top position of 

micropit exhibits the lowest friction and extrusion load with finer billet surface in all 

trials. It is also found that palm stearin (PS) performs better than palm kernel (PK) in 

terms of extrusion load and billet surface roughness. Similar results also obtained in 

paraffinic mineral oils experiments where VG460 outperforms VG95. Higher 

viscosity in both type of lubricants is the main reason that contributes to this 

performance.  Comparing between PS and VG460, the performance of mineral oil-

based is still superior than palm oil-based but the difference is very marginal in terms 

of extrusion load and billet surface roughness. The achievable extrusion load and 

billet surface finish under PS lubricant are 48.9 kN and 0.11μm respectively. The 

optimum tribological performance of mineral oil-based VG460 over palm oil-based 

PS is attributed to the large viscosity  difference between VG460 (1347.60 mm
2
/s) 

and the PS (48.29 mm
2
/s). Since there is only marginal difference in tribological 

performance, it can be concluded that palm oil-based has a great potential to be 

developed further as an environmental friendly lubricant for replacing mineral oil-

based type. 
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ABSTRAK 

Terdapat beberapa kajian telah dijalankan untuk menggantikan minyak 

mineral dengan pelincir yang mesra alam seperti minyak sayuran untuk 

mengurangkan kesan alam sekitar. Minyak kelapa sawit boleh diperoleh di Malaysia 

pada harga yang lebih murah berbanding minyak mineral, namun kajian 

mengenainya untuk digunakan sebagai pelincir alternatif jarang dijumpai 

terutamanya dalam proses pembentukan logam. Oleh yang demikian, kajian ini 

dijalankan untuk menilai dan membandingkan prestasi tribologi antara dua jenis 

pelincir yang diubahsuai geometri permukaan acuannya (dengan dan tanpa micropit 

di posisi atas dan bawah, sudut bucu tajam T45 dan sudut jejari tirus R45) semasa 

proses penyemperitan sejuk. Semua parameter proses penyemperitan adalah malar 

semasa eksperimen, iaitu nisbah ubah bentuk penyemperitan (3:1), kelajuan (8.1-8.3 

mm/s), strok anjakan omboh (40 mm), kedalaman micropit (30 μm), diameter (600 

μm), jarak (1 mm) dan 27 peratus ketumpatan kawasan. Posisi atas micropit 

menunjukkan geseran dan penyemperitan beban yang paling rendah dengan 

permukaan billet yang lebih halus. Kajian juga mendapati bahawa palm stearin (PS) 

mempamerkan keputusan yang lebih baik berbanding palm kernel (PK) dari segi 

beban penyemperitan dan kekasaran permukaan billet. Keputusan yang sama juga 

diperoleh dalam minyak mineral dengan prestasi VG460 melebihi VG95. Kadar 

kelikatan tinggi dalam kedua-dua jenis minyak pelincir adalah sebab utama yang 

menyumbang kepada prestasi ini. Minyak VG460 dilihat lebih unggul daripada PS 

dengan perbezaan yang sangat kecil dari segi beban penyemperitan dan kekasaran 

permukaan billet. Oleh sebab terdapat hanya perbezaan kecil dalam prestasi tribologi, 

dapatlah disimpulkan bahawa minyak berasaskan sawit mempunyai potensi yang 

besar untuk dibangunkan sebagai pelincir mesra alam bagi menggantikan minyak 

pelincir berasaskan mineral. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Study 

 Metal forming is a wide characterization of a number of metal working 

processes that deform metal stock to create useful parts. It includes extrusion, 

forging, cold heading, spinning, roll forming and stamping. Forming operates on the 

materials science principle of plastic deformation, where the physical shape of a 

material is permanently deformed.   

 One of the most popular types of metal forming is an extrusion. Extrusion is a 

bulk-forming process or generally used to produce a long and straight aluminum 

profile from a cylindrical billet. The extrusion dies that determines the shape and 

dimensions of the profile are the core of the process since product quality, extrusion 

productivity and scrap rate depend strongly on the performance of the die. Aluminum 

extrusions are used in the building industry such as window and door frames, 

building structures, roofing and curtain walling (European Aluminium Association, 

2016) shipping and offshore industry, furniture, and in automotive, aerospace 

applications and rail vehicles (BOAL Aluminium, 2016).  

 The surface modification of a tool is one of the important tribological 

parameters for controlling the metal forming process. The pits, which are also known 

as oil pockets (Lesniak and Libura, 2007;  Gang et al., 2008), cavities (Schubert et 

al., 2011), dimples (Huang et al., 2012) or micro-pits (Norhayati et al., 2012; 
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Syahrullail et al., 2014), may reduce friction in two ways: by providing a lift as 

micro-hydrodynamic bearings (Nilsson et al., 2004), and by  acting as a lubricant 

reservoir (Koszela et al., 2010; Ing et al., 2012). They have also been successfully 

applied to mechanical seals that expand in real life. Modified surfaces can provide 

traps for wear debris in dry contacts subjected to fretting wear resistance and can 

almost double the fretting fatigue life (Koszela et al., 2007). 

 Surface modification, which also widely known as surface texturing, is 

among the cheap solutions with small modifications of die ((Tønder, 2011) compared 

to tool change, hot works and others. In the extrusion die design, pits are increasingly 

added to balance the metal flow. The balance of metal flow is particularly important 

for multiple cavity dies or sections with varying thicknesses in order to maintain a 

uniform velocity profile across the face of the die. Thus, it minimizes the distortion 

of the  extrudate (Li et al., 2003).    

 No disseminated rules regarding pocket die design are detailed in the 

available literature, but it remains under consideration as proprietary knowledge 

among die manufacturers and extrusion companies. Thus far, a number of studies 

have highlighted the factors associated with maintaining the lubricant flow. Galda et 

al. (2009) examined the influence of surface texture on sliding lubrication by means 

of a Stribeck curve. The study showed that proper shape and dimensions, as well as 

suitable area density of oil pockets, could improve the friction characteristics of the 

sliding pairs in comparison to non-textured surfaces.  

 The research by Norhayati et al. (2012) also found that micro-pits on the 

taper die sliding surface are able to control the frictional constraint compared to those 

surfaces without micro-pits. Furthermore, Sudeep et al. (2013) concluded that there 

are significant reductions in the coefficient of friction and vibration at the lubricated 

concentrated points of contact in surface texturing.  

 In recent years, a few authors have begun to perform numerical analyses and 

to compare them with experimental investigations. In 2011 and 2012, Reizer et al. 
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revealed that the results of the simulation of worn surface topography on a block-on-

ring tester matched the results obtained from experimental methods. In a study 

conducted by Ramesh et al. (2013), the trends obtained in the experiments matched 

well with the simulations, thus leading to the conclusion that the texture with 20-30% 

of area density and 100-200 µm of textured pin width showed a good friction 

performance.  

 In order to operate the metal forming process, some amount of lubricant need 

to be applied on the sliding surfaces. As cited in a studies by Batchelor and 

Stachowiak (1995), Křupka and Hartl (2007) and Tauviqirrahman et al. (2013), the 

main function of lubrication is to control wear and friction at the interface between 

interacting surfaces. Mineral oil is the most commonly used industrial lubricant. It is 

petroleum-based and is used in applications with moderate temperature requirements. 

There have been several studies in the literature reporting typical applications of 

mineral oils such as for cosmetics (DiNardo, 2005), bearings (Křupka and Hartl, 

2007), and gears (Lawal and Bolaji, 2008; Zhang et al., 2013). 

 More recently, the application has been studied and extended to various metal 

forming operations. For example, Caminaga et al. (2006) conducted a series of trials 

in which he mixed a mineral oil with additives and three semi-synthetic oils without 

chlorine in the cold extrusion process. Cold forging is one of the most popular metal 

forming processes to be investigated. Jung et al. (2008) carried out investigations 

into a number of mineral oils with different viscosity grades in order to learn the 

effects of surface roughness on cold forging. By employing the cold extrusion 

process, Hafis et al. (2013) used varying amounts of the additive-free ISO460-

paraffinic mineral oil to explore the effect of the lubricant quantity on friction.      
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1.2 Problem Statement 

 To date, mineral oils are still widely used as metal forming lubricants. 

However, the environmental and toxicity issues of these lubricants as well as their 

rising cost related to a global shortage has led to renewed interest in the development 

of environmental friendly lubricants (Hsien, 2015).  

 The presence of lubricant from the die surface is crucial, particularly in cold 

work forming processes. It has been reported that higher viscosity of the lubricant is 

one of the important physical properties that able to reduce wear problem (Andersson 

et al., 2007; Quinchia et al., 2010). It is believed that thicker layer tends to stay 

longer at the contact surfaces due to the fact that thick lubrication film is generated 

throughout the  forming process (Tang et al., 2013). By indenting several micropits 

on the sliding surface of the die, the lubricant mass can be maintained throughout the 

forming process, and therefore the die life can be extended (Bay et al., 2010; Praveen 

and Geeta, 2013). In the past micropits studies, different types of mineral oils in 

metal forming processes were evaluated together with varying their micropits 

physical parameters. There were contradictory results reported in these works in 

terms of the selection of shape (Qiu and Khonsari, 2011), the diameter (Galda et al., 

2009), the length (Koszela et al., 2010), the depth (Huang et al., 2012) and the area 

density (Sudeep et al., 2013) of micropits. Though the position of micropits on the 

die surface was studied, however, there was no comparison made by the researchers 

this far in terms of tribological performances using both mineral oil-based and 

vegetable oil-based lubricants.  

 Among the vegetable oil-based, rapeseed oil, canola oil, olive oil and 

soybean oil are the most potential alternative lubricants for metal forming processes 

(Gawrilow, 2003; Shashidhara and Jayaram, 2010; Yang et al., 2014; Zareh-desari 

and Davoodi, 2016). It was reported that rapeseed oil has the longest hydrocarbon 

chain length and the lowest degree of unsaturation that may contribute to the stronger 

absorption for lower frictional factor (Zareh-desari and Davoodi, 2016). 

Hydrocarbon chain in vegetable oil produces saturated fatty acids that may protect 
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the two contacting surfaces from tribological failures including severe wear and 

friction (Rustan and Drevon, 2005). The main drawback of these oils is very 

expensive, i.e up to 788.77 USD, 936.99 USD and 4,315.40 USD per metric ton for 

rapeseed, canola and olive oils respectively (www.indexmundi.com, 2016). 

  An alternative to these vegetable oils is palm oil where its properties are very 

similar to rapeseed oil. Palm oil is not only cheaper at the global market price (686 

USD per metric ton) but it also has in abundant in Malaysia and not fully exploited 

as a lubricant. Palm oil can be categorised into several types such as palm olein, palm 

stearin, palm kernel and palm fatty acid (MPOB, 2016). From these categories, only 

palm stearin and palm kernel oils have shown great potentials to be used in 

engineering applications as a lubricant due to their unique properties i.e longer 

hydrocarbon chain length and among the lowest degree of unsaturation levels (Zareh-

desari and Davoodi, 2016). However, there is limited study on these oils as an 

alternative lubricant in metal forming process. 

1.3 Objectives 

 The main aim of this study is to evaluate the effectiveness of vegetable based 

against mineral based oils as a lubricant during the cold metal forming process using 

modified die surface. The specific objectives of this study were as follows: 

1. To evaluate the effects of micropits and its position on die surface to the  

 tribological performances during the cold work extrusion process.  

 

2. To compare the tribological performances of palm oil-based and mineral oil- 

 based lubricants during the cold work extrusion process.   
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1.4  Scopes 

The study was conducted within the following limits: 

1. The work piece material used for the billet was pure aluminium (AA1100). 

The average surface roughness of the machined billet was fixed at Ra = 1.46 

μm. 

2. The cold work forward plane strain extrusion process was conducted at a 

deformation ratio 3:1, speed range between 8.1 to 8.3 mm/s and with piston 

displacement stroke of 40 mm. 

3. Two types of palm oil-based lubricant were tested, i.e RBD palm kernel and 

RBD palm stearin. Their performances were compared with three types of 

mineral oil-based lubricant, i.e commercial extrusion oil, additive free 

paraffinic mineral oil VG95 and VG460. 

4. Two types of taper die with 45 degrees were used in the experiment, i.e die 

with sharp taper angle and die with 5 mm radius taper angle. The surface 

roughness of taper die was controlled within 0.04 μm.  

5. Measurements of tribological performances were limited to extrusion load, a 

surface roughness of extruded billet, resultant of relative sliding velocity and 

effective strain distribution. 

6. Micropits design parameters were fixed in both lubricant’s environment as 

follows; depth = 30 μm, diameter = 600 μm, the distance between micropits = 

1 mm and 22% of the area density. 
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1.5 Significance of Study 

 Sustainability issues are becoming a major concern to world community and 

it affects all sectors including manufacturing industries. A huge pressure has been put 

to reduce or even eliminate the use of non-renewable resources such as mineral based 

oils since it causes pollution to environment and health problem to industrial 

workers. An alternative to these lubricants is vegetable oil-based. This study 

evaluates the potential of using palm oil-based lubricants in a cold work extrusion 

process. The findings from this study may open new opportunities for palm oil to be 

used as lubricants in many engineering applications that not only environmentally 

friendly, biodegradable and renewable, but it is also expected to be much cheaper as 

it is available in abundance in Malaysia. Furthermore, the applications of vegetable 

oil as a lubricant in manufacturing processes such as cutting, machining and forming 

could have a great potential in reducing health problems on industrial workers as 

opposed to mineral oil-based lubricants.  

1.6 Thesis Organization 

 This study consists of five chapters. Chapter 1 introduces the general 

background of the study, problem statement, objectives, scopes and significance of 

the study and ends with the organization of thesis. Chapter 2 deals with a review of 

the literature and relevant research associated with the problem applied in this study. 

It explains the important of surface modification on taper die sliding contact surfaces 

and the significant of alternating metal forming lubricant into vegetable oil-based. 

Chapter 3 provides the description of research methodology and procedures used for 

data collection and analysis to be carried out. Chapter 4 describes the results and 

discussion of the collected data as well as the analysis of the results. Finally, Chapter 

5 summarizes the research's findings in the form of conclusions and 

recommendations for future works.  
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