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ABSTRACT

The present contribution addresses simultaneous state and
actuator/sensor false-data injection attacks reconstruction
for nonlinear systems. The considered actuator/sensor at-
tacks are modeled as time-varying parameters with a multi-
plicative effect on the actuator input signal and the sensor
output signal, respectively. Based on the sector non-linearity
approach and the convex polytopic transformation, the non-
linear model is written in a Linear Parameter-Varying (LPV)
form, then an observer allowing both state and attack re-
construction is designed by solving an LMZ optimization
problem.
Sensors and actuators
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1. INTRODUCTION

The isolation and reconstruction of Cyber-attacks, as well as
the design of attack-resilient control are currently the focus
of many industrial and academic research projects. Indeed,
due to the connectivity of modern physical systems, they are
more and more subject to malicious intrusions and attacks.
In addition to the classical IT approach in order to cope
with cyber-attacks, a pure control approach can also be ap-
plied. Different approaches have been investigated, as for
instance we can cite [14], [5], [1] and [12]. In this case, the
attacks can be modeled as an adversary signals (i.e. like
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disturbances, unknown inputs, faults,...) introduced via the
the internal network by hackers and affecting the sensors
and/or actuators data [13], [17]. The control signal is then
designed in order to detect, identify and possibly counter-
act malicious cyber-attacks by triggering the activation of
adaptive, attack-tolerant control laws [9], [5], [15].

Even if a considerable amount of results are available in the
linear framework, it is well established that the linearity
assumption is only valid around an operating point; con-
sequently, the natural nonlinear behaviors of the system in-
evitably affect the performances of the control laws or super-
vision modules designed with the system linearity assump-
tion. In order to enhance the system performances, it is
necessary to take into account the nonlinear behaviors of
the system from the modeling task to the control or diagno-
sis implementation. This can result in complex models to be
dealt with, requiring heavy mathematical tools. That is why,
a common strategy to deal with complex problems would be
to divide them into smaller and simpler one (also known di-
vide & conquer). Based on this idea, the so-called Polytopic
representation, also known as multiple-models approach or
Takagi-Sugeno (T-S) model is of an unquestionable interest.
Indeed, substituting the non-linear parts by locally valid set
of linear sub models will lead to a simple enough system,
easily understood and more convenient to study [18].

The complexity of nonlinear systems leads to consider some
specific and conservative assumptions in order to be able to
establish some results. One major reason would be the di-
versity of their nonlinearities, that does not allow to have
a generic and unique representation; Indeed, often we have
to deal with complex study case which imply to use a dif-
ferent tool for each of them. That is why, the polytopic
writing represents an interesting alternative for the nonlin-
ear framework, thanks to a unique writing, that allows us to
represent a large category of nonlinearties. A unified repre-
sentation of the system, including the model nonlinearities,
as well as the control constraints and observer design is ob-
tained. Another key point of this representation, is that we
can, thanks to some mathematical manipulation, transpose
some well-known results of the linear framework to the non-
linear one.

For nonlinear systems, only few contributions that are deal-
ing with the state and attack reconstruction problem can
be found [10], [8] and [11]. Indeed, as it was developed in
previous contribution [4], this approach provides an alterna-
tive and attractive path to deal with complex nonlinear sys-
tems and to obtain an equivalent representation by bounding



the parameters and using the well known sector nonlinearity
transformation (SNT).

1.1 Contributions and OQutline

In this contribution, we propose to use previously developed
approach, applied for joint state and time-varying parame-
ters estimation of Takagi-Sugeno models in order to recon-
struct the state and cyber-attack signals for nonlinear LPV
systems.

Indeed, based on [2] and [3], we will use the proposed decom-
position and the proposed strategy in the case of false-data
injection attacks on actuators and sensors. The considered
actuator/sensor attacks are modeled as time-varying param-
eters with multiplicative effect on the actuator input signal
and sensor output signal, respectively. Based on the sector
non-linearity writing, and using the convex property, the
nonlinear model will be presented in a Linear Parameter-
Varying (LPV) form, then an observer allowing both state
and attack reconstruction is designed by solving a LMZ op-
timization problem.

In the following contribution, the problem of secure state
estimation for nonlinear systems, i.e. state reconstruction
in the presence of faults and attacks is considered. Based
on the decomposition developed in [2] and [3], the special
case of false-data injection attacks on actuators and sensors
is considered by modeling them as time-varying parameters
with multiplicative effect on the actuator input signal and
sensor output signal, respectively.

The present contribution is organized as follows. After a
brief introduction and a short overview of related works in
section I, the problem statement is detailed in section II by
the presentation of the Polytopic modeling of time-varying
nonlinear systems and time-varying parameters (malicious
attacks) with a LPV model of physical plant under data de-
ception attacks. In section III the main result/contribution
of this work is given in terms of a general theorem for the ob-
server design strategy. In section IV, an illustrative example
is developed. From a basic nonlinear model of a biological
waste-water treatment plant, the proposed approach is ap-
plied and illustrated with simulations. Conclusion will be
given in the last section.

2. PROBLEM STATEMENT

The problem of state reconstruction in the presence of faults
and attacks, also denoted as secure state estimation, has
recently attracted considerable attention from the control
community. The problem of reconstructing the state under
actuator/sensor attacks is closely related to fault-detection
and fault-tolerant state reconstruction. Based on the ap-
proach presented in previous works [2], [3] and adapted to
the cyber-security problem, we address the design of ob-
servers that can accurately reconstruct the state and attacks
of a cyber-physical system under physical faults and actua-
tor/sensor attacks.

For that, we propose a simultaneous state and time-varying
(attacks) observers for nonlinear systems in the presence of
corrupted inputs and measurements, more specifically, the
so-called false-data injection attacks. In the spirit of a Lu-
enberger observer, a state and attacks reconstruction algo-
rithm is proposed based on the LMZ approach and convex
optimization problem.

2.1 False-Data Injection Attacks
on Actuators/Sensors

Faults and failures resilient control and estimation algo-
rithms design represent a common problem in control en-
gineering. In [6] and [19] for example, the authors investi-
gated the fault-detection and identification problem where
the objective is to detect if one or more of the components
of a system has failed based on the residual signals obtained
by comparing the measured output signal and the measured
ones. In the present work, our aim is not only to detect the
attacks, but more importantly, to estimate them in order to
design afterwords a robust and stable fault/attack tolerant
control. Indeed, in the absence of appropriate detection and
estimation strategies, attacks may lead to unwanted conse-
quences, such as damaging the physical plant.

In this paper, we focus on the attacks that aim at com-
promising the integrity of the system, often referred to as
deception attacks or false-data injection attacks. In con-
trol systems, in order to defend against these malicious at-
tacks, different types of detectors may be developed [17],
[7]. Among existing results in the literature, the most com-
monly used approach is to design a state estimator, and
detect the attack based on the estimation residue, i.e., the
difference between the measurement data and the estimator
output. However, even if residual gives good results for the
fault/attack detection, only few approaches give an estima-
tion or exact reconstruction, online, of the attack signal. For
this reason, we would like to adapt the previously developed
approach in [2], [3] in order to obtain an exact and simultane-
ous reconstruction of the state and the time-varying attack
signal.

In the current paper, we assume that the attacker modifies
the gain/s of the sensor and/or the actuator of the control
system, which represent the injection of false information
from sensors or controllers. Mathematically speaking, ex-
plicit equations of both sensor and actuator signal attacks
are derived and represented as time-varying multiplicative
actuator/sensor faults/attacks. The Polytopic T-S approach
is then used to reconstruct these signals in real-time.

In this section, we assume that a malicious third party wants
to compromise the integrity of the system. The attacker is
assumed to have the following capabilities:

e It knows the system model, i.e. we assume that the
hacker knows the system model and matrices.

e [t can control the readings of the sensors and the ac-
tuators, i.e. modifies their values.

e The intrusions are represented as time-varying multi-
plicative actuator/sensor faults/attacks. The attacks
signal are, of course, unknown, but bounded. Their
min and max values are supposed to be known. In-
deed, this assumption is not that conservative since
we suppose that if the boundaries are exceeded the at-
tacks effect will be too obvious and easily detectable.
Meaning, the hacker should respect the min and max
values to a certain extend if he/she wants to remain
undetectable.

2.2 Polytopic Modeling of Time-Varying Non-
linear Systems

Let us consider the nonlinear system represented by equation
(1) where the time-varying parameters vector 0(t), 6(t) € R™



is defined by 6(t) = ( zygg ) where 0"(t) € R™ and
6Y(t) € R™% correspond respectively to the actuator and
sensor attacks (n = ng, +ng,). z(t) € R"*, y(t) € R™ and
u(t) € R™ correspond respectively to the system state, out-
put and control. The nonlinear system is modeled thanks to
a Polytopic representation with r sub-models. This repre-
sentation may be obtained in a straightforward way by ap-
plying the Sector Nonlinearity Transformation (SNT). The
interested readers can refer to [2] and [16] for more calcula-
tion details.

System (1) is defined by:

i) = ZI«M
yt) = Ca()

with the time-varying matrices B;(t) and C(t) defined by
follow:

w(t) + Bilu(®) )

=B; +Ze“ @)

Ct) =Un +F( )HC

s.t. B;, Bi; are constant matrices with appropriate dimen-
sions and 6} (t) time-varying unknown parameters and cor-
respond to the multiplicative actuator attacks.

The matrix F(t) € R™*™ is defined by:

F(t) = diag(6” (1)) ®3)

s.t. diag(0”(¢t)) corresponds to a diagonal matrix with the
terms 0% (t) (sensor attacks) on its diagonal. F(t) may be
expressed as

ng,

=Y ewr, @)

with ng, = m, F; are matrices of dimension R™*™ and
where the element of coordinate (4,7) is equal to 1 and 0
elsewhere. The coordinate ¢ corresponds to the number of
the attacked sensor. The terms 6Y(t) are time-varying un-
known parameters and represent the multiplicative sensor
attacks.

2.3 Polytopic Modeling of Time-Varying Pa-
rameters (Malicious Attacks)

The actuator data deception, or false data injection are mod-

eled thanks to the time-varying parameters 6 (t). These at-

tacks are of course unknown but bounded 6} (t) € [03“,6; "],

with supposed known limits. Applying the SNT transfor-

mation, each parameter 6} (t) can always be expressed as:

07 (1) = 1 (65 (1))6; " + 1 (65 ()67 (5)
with
) = %
91” _ 9 ( ) (6)
E?(G;(t)) = W

i (07 (1) + 17 (05 (1)) = 1, vt

Based on the same reflexion, the sensor data deception, or
false data injection are modeled thanks to the time-varying
parameters 67 (t), such that:

0% (t) = 1; (0 (£)0; " + 15 (03 (1))63" (7
with
6v(t) — 62"
mOl) = S
ely _ 0 ( ) (8)
) = W

0(0) + YD) = 1, vt
Replacing (5) and (7) in (2), we obtain:
ng,

B+ZZ

ku
))0; Bij
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C(t) = I+ZZM ey | C

j=1k=1

2.4 LPV Model of Physical Plant Under Data
Deception Attacks

In order to have the same weighting functions for all the
time-varying matrices B;(t), and write C(¢) as a simple
polytopic matrix, exploiting the convex sum property of the
weighting functions fi; (67 (t)) and 7,(0¥(t)) of each param-
eter 07 (t) and 0(t) (see [2] for calculation details), (9) is
written as:

76,
Bi(t) =Y [[ 05 )0} + 1305 )63 ") By ] | x
j=1
n6,,
Iy + B
k=1m=1
k#j
o
= Bi+ Zﬂj (0"t
ney
ci)y = [I1+ Zuj (0¥ (t c
(10)
with
n6,, &
= [T a @)
e, (11)
B” = QZUJ Blk
k=1
and

(12)

where the global weighting functions p; (0% (t)) and 1; (6Y(t))
satisfy the convex sum property. The index af is either equal
to 1 or 2 and indicates which partition of the k*" parameter
(" or ix2, i.e. Txt or fx2) is involved in the j** sub-model.



The relation between the sub-model number 5 and the O';C
indices is given by the following equation:

j=2"0u o420 20l 4200 — (21427 420
(13)

for the actuator, and

j:Qney _10']1.—}—27191/ _20]2~+. . .—1—200';% —(21+22+. .27y _1)
(14)

for the sensor.

Finally, using equations (10), the nonlinear LPV system (1)

becomes:
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(15)
Bij = Bi + Bi;
@ =C+ F}CC (16)

3. MAIN RESULT: OBSERVER DESIGN

From the system equations (15), a state and actuator/sensor
data deception observer is designed. An L5 attenuation ap-
proach is applied in order to minimize the attacks effect on
the state and malicious input estimation error.

The state and actuator/sensor data deception observer is
given by the following equations:

0 =35 WO
o :gAia:u) T Bugu(t) + Lis (u(2) — (1))
D= 3 mEOE0)
o 53@@- (u(t) — (1)) — a2s0"(1)
- 22 e 1) (69 (1)
RO - 900 - a0
9(t) = 1 jméwt))ém(t)

(17)
where Li; € R™*™ K5 € R™™, oy € R™", K} €
R ™™ and oY, € R ™™ are obtained by solving LMT
constraints s.t. the estimated state and malicious input pa-
rameters converge to the real system state and attacks (i.e.
the estimation errors for both state and malicious input pa-
rameters converge to zero).

Let us define the state and data deception estimation errors
ex(t), egu(t) and eqv (t) as:

ex(t) = x(t) —2(t)
eu(t) = 0(t) —0%(t) (18)
egv(t) = 60Y(t) —6v(t)

Based on the convex sum property of the weighting func-

tions, from the results presented in [2] and in order to be
able to calculate the estimation errors dynamics, the system

equations (15) are rewritten as follows:

r 2"0u

=0 [l

i=1 j=1

)i (0 (£) (A (t) + Biju(t))+

8i5 () (Asz(t) + Biju(t))]

2" 0y

y(t) = > [ER ) Cra(t) + 3x(t)Cra(t)]
k=1
- (19)
d 01 (t) are defined by the following equations:

8i5(t) = pa(2(8) 5 (6" (1) — (@) 5 (62(1))  (20)

8k () = i (6” (1)) — Fr (6 (2)) (21)
and satisfy the inequalities:
—1<6i(t) <1, -1 < 8(t) <1 (22)

Representation (19) allows to deduce the state and data de-
ception estimation errors dynamics in a straightforward way,
since the state and output are written now only depending
on the weighting functions of the estimate p; (Z(¢)), 1; (6% (t))
and 715 (69 (t)).

Let us define now:

r 2"0u
AA(t) =" > 6ij(t)A; = AN(t)Ea (23)
i=1 j=1
r 2"0u
AB(t) =Y 8;(t)Bi; = BL(t)Ep (24)
i=1 j=1
2"0y N
AC(H) = S 0 (t)Cr = CS(t) Ec (25)
k=1
with
Ay A LA A,
A= (26)
QM0 times QM0 times
B=[Bu Bron | (27)
c=[& ... G, | (28)
5(t) = diag(611(t), - .., Oran (1)),
7 B (29)
3(t) = diag(d1(t), . .., 0 me, (1))
Ba=[In ... In]", Es=] I, I, 1"
Ec = Ly, ILpoy 1" =[Lm ... Im T
(30)
Thanks to (22) and definitions (29), we have:
SR <1, T (O <1 (31)

Using the above definitions (23)-(30), system (19) is then
written as an uncertain system given by:

Z Z (2 (8)) 1 ( ‘9“( )
((An9+JAA( )z(t) + (Bij + AB(t)u(t))  (32)

)(Cr + AC(1)z(t)

- Yoo



From equations (32) and (18), the estimation errors dynam-
ics are then given by:

r 2M0u 2"9’/

=22 D ma

)i (67 (£)) i (6¥ ()
i=1 j=1 k=1_

((Ai = LijCx)ex (t)
+(A A() Ly AC([#)z(t) + AB(t)u(t))
(@ ()15 (0 (1)) (6¥ (1))

éou(t Z
(= Ii ?() aijequ(t)

i=1 j=1_ (33)
Bz(t) + ai6" (1) + 6*(1))

éoy (t) = Z

ikckew(t)
—Kj.’kAC(t)x(t) +

)i (6 (1))

ay.eou (t) )
g% (1) + 6v(1))

Let us now consider the augmented vectors e, (t) and w(¢),
such that:

o 0
wt) = G0 | wo=| gy | @0
ey (t) (1)

From (33) and (34

0=y

i=1 j=

), it follows:

270y 2" 0y

1 kzl i (&(8)) 17 (67 (1) i (6¥ (1)) (35)

(Pijrea(t) + Vi (t)w(t))

with
A= LyCr 0 0
(I)ijk = —Ku Ck —afj 0
_szkck 0 —aj,
AA() 0 0 0 0 AB(t)
-KjAC(H) 0 of 0 I 0
(36)

Considering (35), the objective would be to design a simul-
taneous state and attacks observer with a minimal £, gain
of the transfer from w(t) to eq(t). The computation of the
gains is detailed in the next theorem.

REMARK 1. In order to apply the considered criterion, a
minimal Lo attenuation between the augmented estimation
error vector and eq(t) and external input w(t), we assume
that w(t) is of finite energy. For the considered example
(i.e. stable), knowing that the attacks do not appear all time
(stealthy attacks), the assumption is satisfied.

THEOREM 1. There exists a state and actuator/sensor date
deception attack observer (17) for a monlinear system (1)
with an Lo gain from w(t) to eq(t) bounded by B (B8 > 0) if
there exists positive symmetric matrices P, = PL >0, Py =
Pf >0, Ps = P3 > 0, positive matrices I'y, | = 1,...,6,
matrices oy, @b, Fij, F},, Rij and scalars positive ﬂ, )\A,
AB, Aic and A2 solution of the optimization problem (37)

under LMI constraints (38) and (39) (see next page)
_ min B (37)

{P1,P2,P3,Rj, Fi% Fly. a¥y,Gammay, A4, g, A1c 220}

fori=1,....r,j= 1,2"9u and k =1,2"%
Iy <BI foril=1,...,6 (38)
with
QHy = PiA; + ATP — R,C; — CIRY + I,
e (a0
ih = =0, — oy +1
Q" =-T1+ X aEiEa
The observer gains are given by
Lij = P 'Ry
K =Py ' F
szk =Py 1F;’ (41)

aiy = Py 16;3
al, = Py lay,
PRrROOF. Let us consider the following quadratic Lyapunov
function:

V(ea(t)) = el (t)Peq(t), P=P" >0 (42)
Using (35), its time derivative is given by

r 2"0u 2 "0y
=300 > @) (04 () (0¥ (1))
i=1 j=1 k=1 (43)
[ef(t)((q’ij)TP + P®;j)ea(t)
el ()P (Ew(t) + w0 (DUT (8) Pea ()]
It is known that e, (t) asymptotically converges toward zero
when w(t) = 0 and that the L2 gain from w(t) to eq(t) is
bounded by g if the following inequality holds

V(ea(t)) + el (t)ea(t) — w™ (t)Tw(t) < 0 (44)
with
I' =diag(I'y), I'' < I, fori=1,...,6 (45)

An appropriate choice of I" enables to attenuate the transfer
from some components of w(t) to eq(t).
From (43), (44) becomes:

r 2M0u 2"0y

SO @)

i=1 j=1 k=1

<< ®LP + PPy +1 | PUi(t)

N———
N

OGO

) (%) <o

Ul (t)P | -T
(46)
For a chosen structure of the Lyapunov matrix P (diagonal)
P= diag(Pl, P2, Pg) (47)

with a variables change as given in (41), based on decompo-
sitions (23), (24) and (25), properties (31), Schur’s comple-
ment and the following lemma:

LEMMA 1. [19] Consider two matrices X and Y with ap-
propriate dimensions, a time-varying matrice A(t) and a
positive scalar €. The following property is verified

XTATOY +YTAMX <eX"X +e'YTY (48)
for AT(t)A(t) < I.



B —CFrsT —CTF4™ 0 0 0 0 0 0 PLA PB 0 0
* 22]2 0 0 a;‘j 0 P 0 0 0 0 FZ; 0
* * 33 0 0 a) 0 P 0 0 0 0 Fje
* * * Q* 0 0 0 0 0 0 0 0 0
* * * * —I'a 0 0 0 0 0 0 0 0
* * * * *x —I's 0 0 0 0 0 0 0
* * * * * * —I'y 0 0 0 0 0 0 <0 (39)
* * * * * * * —I's 0 0 0 0 0
* * * * * * * x —Ig+ )\BE};EB 0 0 0 0
* * * * * * * * * —Aal 0 0 0
* * * * * * * * * * —Apl 0 0
* * * * * * * * * * * Aol 0
* * * * * * * * * * * * —Xocl
2
following the same development as the work presented in [2], h _ pi(t) —p1 _ pi—pi(t)
o OPIe with o11(p1) = —F—5—, o2(p1) = —5—5~
[3], the Lyapunov stability with an L2 transfer from w(t) to Py =P ) P — Pt (53)
ea(t) is obtained by solving the optimization problem (37) 021(p2) = p2(t) — p3 022(p2) = pa — p2(t)
under the LMZ constraints (38) and (39), which ends the py —p2 "’ Py — p2
roof. [J
P where the scalars pi p%, p% and p% are defined as
1 2 .
4. NUMERICAL SIMULATION pi=maxpi(t), pi=minpi(?) (54)

In the following, the proposed approach is applied to a ba-
sic model of a biological waste-water treatment plant. The
mathematical model is represented thanks to two state vari-
ables z1(t) and z2(t), corresponding to the biomass and sub-
strate concentration respectively, the input u(t), which rep-
resents the dwell-time in the treatment plant and the mea-
sured output which is the biomass concentration (y(t)

z1(t)).
4.1 LPV Representation of The Process

First step, let us write the nonlinear system equations (49)
in a polytopic form. As it was developed in [3], and under
specific assumptions, some simplifications can be made and
the nonlinear model may be given by:

(1) = 2z g (1)
(49)
ia(t) = — 2210220 4 (4 gy (1))ult)

zo(t)+b

Where a, b, c and d are known parameters.

From the system non-linearities, applying the Sector Non-
linearity Approach with the premise variables p1 (t) and p2(t)
chosen as follows:

az1(t)

PROET) (50)

p1(t) = —u(t), p2(t) =

From (49) and (50), the quasi-LPV system (51) is deduced:

&(t) = <p1(§t)76p2(’f)(ﬁr) 1 (t)) Ho (

Since a LPV representation is deduced in a compact set
of the state space, the max and min values of the terms
p1(t) and p2(t) may be calculated using the knowledge of
the domain of variation of u(t), i.e. p1(t) € [-1,—0.2] and
p2(t) € [0.004, 15].

Applying the convex polytopic transformation, two parti-
tions for each premise variable are defined:

{

0

7 )u0 6

p1(t) = e11(p1)pi + o12(p1)pi

(52)
p2(t) = 021(p2)p3 + 022(p2)p3

pz = max pa(t), p3 = min pa(t)

The sub-models are defined by the sets (A;, B;, C) with i =
1,2,3,4. Based on p; and ps definitions, all the B; matrices

are set to B = [ 0 d }T. The output matrix C = [ 10 ]
and the matrices A; are given by:

1 1 1 2

A =( A P2 A, = [ P1 P2
! ( 0 —cpz+pt )02 0 —cps+pi

2 1 2 2

A, = P2 P2 A= [ P P2
3 < 0 —epsb+pt )07 0 —cp3+pt

The weighting functions p;(t) are defined by the following
equations:

p1(t)= e11(p1(t))o21(p2(t)), p2(t)= o11(p1(t))022(p2(t))

p3(t)= 012(p1(t)) 021 (p2(t)), pa(t)= le(m(t))mz(ﬂz(t)() :

55

Since the polytopic representation is obtained in a compact

set of the state space, maximum and minimum values that

occur in p1(t) and p2(t) may be calculated using the knowl-

edge of the domain of variation of u(t): pi(t) € [-1,—0.2]
and p2(t) € [0.004,15].

4.2 Date Deception Attacks Representation on
The Actuator/Sensor

Two types of data deception attacks are considered, i.e. at-
tacks on actuators and sensors. It is assumed that, math-
ematically speaking, these attacks are modeled as bounded
multiplicative actuator and sensor time-varying faults.

For the considered example, it is assumed that parameter d
may be hacked. This actuator attack is represented by d(t),
such that:

d(t) = d+ Ad(t) (56)
It can also be written as:
d(t) =d+0“(t)d, 0“(t) € [0"%,6"") (57)

with d = 2.5, d = 2.1 and 6% = —0.1958,0“' = 0.1979.
Parameters a, b, ¢ have been identified and set to a = 0.5,
b=0.07 and ¢ = 0.7.



Considering the attack on the actuator, the polytopic rep-
resentation of the input matrix B is then given by two sub-
models, such that:

B =B+6“'B, By=B+6“B (58)

where is defined by B := [ 0 d ]T. The weighting func-
tions p;(0%(t)) are defined as given in (6) and (11).

Now, for the sensor attack, it is assumed that a bounded
multiplicative sensor fault 6Y(t) affects the output y(t) such
that:

y(t) = (14 06%(t))z (1) (59)
As previously explained, 6Y(t) can also be written as:
6V (1) = i, (6% (£)6”" + 1y (6% (1))6"°, (1) € [0”,6""]
(60)
with Y2 = 0.125,0%' = 0.625, 7, (0¥ (t)) and 73 (0¥(t)) are

defined by (8) and (12).
The polytopic form of the output is then given by:

1 (6" (£) Gz (1) (61)

NE

y(t) =

=~
Il

1
with C1 = (1462 0), Ca=( 146" 0).

4.3 Simulation Results

From the considered example, with both attacks on the ac-
tuator/sensor, applying the proposed approach by solving
the theorem 1, a simultaneous state and attacks observer is
designed such that the system initial conditions are taken
as z(0) = ( 0.1 1.5 ) and 2(0) = ( 0.09 2.3 ) for its ob-
server. For both attacks, the initial conditions are set to
zero, i.e 0*(0) = 0 and 6Y(0) = 0.

The state vector, its estimate as well as the data deception
attacks with their estimates are depicted in the figures 1,
and 2 respectively. From the obtained plots, the efficiency
of the proposed observer is highlighted; indeed, both system
states and the time-varying multiplicative actuator/sensor
attacks are well estimated.
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Figure 1: System states and their estimates

5. CONCLUSIONS

In the present paper, a polytopic approach was applied to
cope with the system state and data deception attacks esti-
mation. Based on previous work, both attacks on actuator
and sensor are modeled as multiplicative time-varying faults
and written in a convex set, based only on their min and max
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Figure 2: Data deception attacks and their estimates

bound. A simultaneous state and attack observer is designed
by minimizing the £o gain from the augmented input to the
different estimation errors. The chosen application example
is an activated sludge reactor with attacks represented by
unknown time-varying parameters on the parameter d and
the output. From the nonlinear equations of the system, a
LPV model is derived. The proposed observer is synthesized
and the obtained results illustrate its performance.
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