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ABSTRACT1 

This work presents a multi-population biased random-key genetic 

algorithm (BRKGA) for the electric distribution network 

reconfiguration problem (DNR). DNR belongs to the class of 

network design problems which include transportation problems, 

computer network restoration and telecommunication network 

design and can be used for loss minimization and load balancing, 

being an important tool for distribution network operators. A 

BRKGA is a class of genetic algorithms in which solutions are 

encoded as vectors of random keys, i.e. randomly generated real 

numbers from a uniform distribution in the interval [0, 1). A 

vector of random keys is translated into a solution of the 

optimization problem by a decoder. The decoder used generates 

only feasible solutions by using an efficient codification based 

upon the fundamentals of graph theory, restricting the search 

space. The parallelization is based on the single program multiple 

data paradigm and is executed on the cores of a multi-core 

processor. Time to target plots, which characterize the running 

times of stochastic algorithms for combinatorial optimization, are 

used to compare the performance of the serial and parallel 

algorithms. The proposed method has been tested on two standard 

distribution systems and the results show the effectiveness and 

performance of the parallel algorithm. 

CCS CONCEPTS 

• Computing methodologies → Parallel computing 

methodologies; • Applied computing → Physical sciences and 

engineering; Operations research → Decision analysis 

                                                                 

ACM Reference format: 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full 

citation on the first page. Copyrights for components of this work owned by others 

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, 

or republish, to post on servers or to redistribute to lists, requires prior specific 

permission and/or a fee. Request permissions from Permissions@acm.org. 

GECCO '19 Companion, July 13–17, 2019, Prague, Czech Republic  

© 2019 Association for Computing Machinery. 

ACM ISBN 978-1-4503-6748-6/19/07…$15.00  

https://doi.org/10.1145/3319619.3321950 

KEYWORDS 

Distribution network reconfiguration, biased random-key genetic 

algorithms, parallel computation 

1 INTRODUCTION 

The electric distribution system is a part of an electric power 

system that is responsible for distributing the electric energy to the 

final customers of electricity. These customers include residential, 

commercial and industrial loads. The electric distribution network 

reconfiguration problem (DNR) is an important tool for the 

engineers who operate the distribution power system. It is used to 

modify the topology of the distribution system in order to reduce 

active power losses on the feeders, improve the voltage profiles of 

the consumers, raise the operational reliability of the system, 

eliminate and/or isolate electric faults and increase the capacity of 

the network to accommodate renewable distributed generation, 

among other objectives. These objectives are attainable by 

altering the open or closed status of normally closed (NC) 

sectionalizing switches and normally open (NO) tie-line switches, 

while maintaining the radiality of the network. The radial 

configuration is a tree of a distribution network graph, without 

any closed paths and isolated vertices (nodes). In this tree, there is 

one root node called the substation, which supplies with power all 

the other nodes. 

The DNR is modeled mathematically as a nonlinear mixed integer 

optimization problem, due to the high number of switching 

elements in a distribution network, and to the nonlinear 

characteristics of the constraints used to model the electrical 

behavior of the system[1]. The most common version of the DNR 

problem is the one that minimizes electric losses in the network. 

Real distribution networks are unbalanced three-phase systems 

with loads of different nature and distributed energy sources 

connected throughout the system, but the classical DNR problem 

deals with a simplified network model. It assumes a balanced 

distribution network with loads modeled as constant power. This 

simplified DNR version is useful for comparison purposes 

because many different approaches have been applied to solve the 

same problem using the same standard test systems. It is one of 

the most studied combinatorial optimization problems in the 

power systems research field and large real-world problems are 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/231742076?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:haroldo.faria@ufabc.edu.br
mailto:willian.tessarolunardi@uni.lu
mailto:holger.voos@uni.lu
mailto:Permissions@acm.org
https://doi.org/10.1145/3319619.3321950


GECCO’19, July 13-17, 2019, Prague, Czech Republic H. de Faria Jr. et al. 

 

 

well suited for the application of metaheuristic techniques. Most 

methods applied to the DNR for loss reduction belong to the 

metaheuristic class of methods. A metaheuristic applies and 

coordinates more than one heuristic, such as local search, using 

the strengths of each one to efficiently explore the search space. 

They include genetic algorithms (GA), simulated annealing, tabu 

search, scatter search, ant colonies, variable neighborhood search, 

GRASP, and path-relinking [2]. 

The first application of a GA to solve the DNR for loss reduction 

was proposed in [3]. A modified GA presented by Chu-Beasley 

[4] was used in [5] to solve the problem. It proposes a codification 

where, instead of representing the switching devices, the entire 

network configuration resulting from the switching is used as the 

individual and considered as a tree graph, represented as a vector 

with the arcs in the tree (branches) sequentially organized, from 

top to bottom of the network, being the root node (generally the 

substation) the top. A combination of binary and discrete particle 

swarm optimization is proposed in [6] to solve the loss reduction 

problem. The method identifies groups of branches to represent 

the network and each group has unidimensional encoding. A Tabu 

Search algorithm with short term memory and an aspiration 

criterion based on the value of the objective function was 

implemented in [7]. It was able to obtain good-quality solutions 

for two real distribution systems of 136 nodes and 202 nodes. In 

[8], a node-depth encoding based on graph theory is proposed to 

solve very large scale DNR problems. A multi-objective 

evolutionary algorithm is used in conjunction with the node-depth 

encoding and two crossover operators: preserve ancestor operator 

(PAO) and change ancestor operator (CAO). These operators 

generate only feasible configurations, i.e., radial DNs that supply 

power to the entire network. The method obtains good quality 

solutions for very large distribution networks. An harmony search 

metaheuristic is proposed in [9] to solve the DNR for two test 

systems. The method is compared with a GA, an improved GA 

and an improved TS algorithm, showing better convergence 

characteristics. The work presented in [10] uses graph theory to 

represent the network and a GA to solve the reconfiguration 

problem. The objective function comprises electrical losses and 

switching mitigation. Two novel network representations that 

generate only radial topologies were proposed: subtractive 

sequential encoding and additive sequential encoding. Virtually 

every type of metaheuristic has already been applied to the DNR 

problem such as artificial bee colony algorithm, plant growth 

algorithm, mixed-integer hybrid differential evolution, among 

many others. 

In all metaheuristic techniques, the encoding of the solution is 

fundamental for the efficiency of the method. The encoding 

ideally should be able to generate only feasible solutions, reducing 

the size of the search space and running times of the 

algorithm[11]. 

The rest of the paper is organized as follows: Section 2 presents 

the formulation for the problem of distribution network 

reconfiguration for loss reduction. Section 3 describes the 

codification for DNR problems used in this paper. Section 4 

introduces biased random key genetic algorithms. Section 5 

presents information about the test systems and BRKGA 

parameters. Section 6 presents the results of the study and Section 

7 draws some conclusions. 

2 PROBLEM FORMULATION 

The electric distribution network reconfiguration problem for 

electric loss minimization can be formulated as follows: 

 

Min 𝑓 = ∑ 𝑘𝑖𝑗𝑟𝑖𝑗

|Ω𝑙|

𝑖𝑗=1

|𝐼𝑖𝑗|
2
 (1) 

Subject to  

𝑃𝑆𝑖 − 𝑃𝐷𝑖 − ∑ 𝑘𝑖𝑗𝑃𝑖𝑗 = 0     ∀𝑖 ∈ Ω𝑏

𝑗∈Ω𝑏𝑖

 

 

(2) 

𝑄𝑆𝑖 − 𝑄𝐷𝑖 − ∑ 𝑘𝑖𝑗𝑄𝑖𝑗 = 0     ∀𝑖 ∈ Ω𝑏

𝑗∈Ω𝑏𝑖

 

 

(3) 

𝑆𝑖𝑗 ≤ 𝑆�̅�𝑗     ∀(𝑖𝑗) ∈ Ω𝑙  

 

(4) 

𝑉𝑖 ≤ 𝑉𝑖 ≤ �̅�𝑖      ∀𝑖 ∈ Ω𝑏  

 

(5) 

𝑘𝑖𝑗𝜖{0,1}     ∀𝑖𝑗 ∈ Ω𝑙 

 

(6) 

𝑔𝜖𝐺 

 

(7) 

 

In this formulation, 𝑖  and 𝑗  represent generic nodes of the 

electrical distribution system, where Ω𝑙 is the set of all branches 𝑖𝑗 

of the network connecting nodes 𝑖 and 𝑗, and Ω𝑏is the set of all 

nodes 𝑖 . The symbol 𝑟𝑖𝑗  stands for the electrical resistance of 

branch 𝑖𝑗 . The symbols 𝑃𝑖𝑗  and 𝑄𝑖𝑗  are the active and reactive 

power flows of branch 𝑖𝑗. 

𝑃𝐷𝑖  is the active power demand at node 𝑖  and 𝑃𝑆𝑖  is the active 

power supply at the same node. 𝑄𝐷𝑖 is the reactive power demand 

at node 𝑖 and 𝑄𝑆𝑖 is the reactive power supply at the same node. 

The objective function (1) represents the power losses of the 

distribution system operation. Equations (2) and (3) represent the 

power flow balance equations, derived from Kirchhoff’s current 

law. Equation (4) represents operational limits on branch capacity 

where 𝑆𝑖𝑗is the apparent power flowing in branch 𝑖𝑗 and 𝑆𝑖𝑗 is the 

apparent power capacity of the branch. Equations (5) are the 

operational limits on the value of voltages at each node 𝑖 of the 

network, where 𝑉𝑖  and 𝑉𝑖  are the minimum and maximum 

acceptable voltage magnitudes at node i, respectively. Equation 

(6) represents the binary nature of 𝑘𝑖𝑗 . The circuit between 

buses 𝑖𝑗 is connected if the corresponding value is equal to one 

and is not connected if it is equal to zero. Equation (7) represents 

the radiality constraint of the DNR problem. It states that the 

graph g of the solution must belong to a set G composed of all 

allowed network structures, i.e. the set excluding meshed and 

islanded networks. Many heuristic techniques used for solving the 

DNR problem consider constraint (7) implicitly, applying 

equation (8). 

 

M = 𝑛𝑏 − 1 (8) 
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Where M is the number of branches of the solution and 𝑛𝑏is the 

number of nodes, where 𝑛𝑏 = |Ω𝑏|. However, this condition is 

necessary but not sufficient to guarantee the radiality constraint. 

Metaheuristic techniques normally ensure the radiality constraint 

in their solutions using graph theory or inside evolutionary 

operators. A feasible solution to the DNR for loss reduction is a 

distribution network that satisfies constraints (2) - (7) and whose 

electrical power losses can be calculated to obtain the value of the 

objective function 𝑓. The parallel BRKGA for DNR proposed in 

this work uses a set of rules derived from graph theory that ensure 

the feasibility of solutions generated by the metaheuristic. 

 

3 GRAPH THEORY BASED CODIFICATION 

In evolutionary computation, codification is the process of 

representing an element which belongs to the search space of a 

problem being solved. The evaluation of the fitness of a feasible 

element is accomplished after it has been decoded and this 

information is used to guide the search process. The BRKGA 

framework allows the decodification of encoded solutions to 

result in exclusive feasible solutions, without reliance on GA 

operators due to the independence of GA and decoder. 

Graph theory can be advantageously used to aid in the 

codification of solutions of DNR problems. A distribution 

network can be seen as a graph 𝐺 composed of a set of nodes 𝑁 

and a set of edges 𝐸 − 𝐺(𝑁, 𝐸). The codification used in this 

work is derived from graph theory and uses a set of rules to 

correct infeasible individuals and, thus, generate only feasible 

vectors during decodification. This set of rules was proposed in 

[12] to be used in conjunction with any metaheuristic technique. 

In a problem of DNR for loss reduction, feasibility of a solution 

means it is radial, without isolated nodes from the network. The 

radial configurations of a distribution network are called trees of 

its associated graph. Consider that every edge of the distribution 

network graph (DNG) contain a switch. A tree with 𝑁  nodes 

contains 𝑁 − 1  graph edges or twigs. The edges that were 

removed to form the tree are called links. These links form a 

cotree, which is the complement of the tree. The number of links 

of a DNG is given by 𝑙 = 𝐸 − (𝑁 − 1), which is usually much 

less than the twigs. Thus, the links can be used in the codification 

of solutions of metaheuristic techniques, reducing the size of the 

solution vector. In the following, some terms are defined. 

 

Principal node: the junction of three or more elements of the 

DNG. 

Exterior node: the node located at the perimeter of the DNG.  

Interior node: the node located inside the perimeter of the DNG. 

 

Loop vector: the set of elements constituting a closed path in a 

DNG. This closed path cannot contain in its interior another 

closed path. 

Common branch vector: the set of elements which are common 

between any two loop vectors of a DNG. 

Prohibited group vector: the set of the common branch vectors. 

From each of them, if one element is opened, then one or more 

interior nodes of the DNG will be islanded. The size of a 

prohibited group vector cannot be greater than 𝑙. 

 

With these definitions in mind, the switches that are actually links 

of a cotree, will be used to represent a solution of the DNR 

problem. The solution vector represents a cotree which must have 

a corresponding tree that is feasible. This is accomplished by 

forming the solutions vectors in accordance to the following set of 

rules: 

Rule 1: each candidate switch must belong to its corresponding 

loop vector. 

Rule 2: only one candidate switch can be selected from one 

common branch vector. 

Rule 3: all the common branch vectors of a prohibited group 

vector cannot participate simultaneously to form an individual. 

These set of rules guarantee the production of feasible individuals, 

meaning that only radial configurations without islanded nodes 

are built, avoiding the necessity of mesh checks on solutions. Rule 

1 prevents the islanding of exterior node(s), Rule 2 prevents the 

islanding of interior node(s) and Rule 3 prevents the islanding of 

principle interior node(s) of the distribution network, respectively. 

To illustrate the above definitions, Fig. 1 shows a 14-node graph 

where the principal nodes are 1,2,8, and 5. The exterior nodes are 

1,2,3,4,5,6, and 7. The interior nodes are 8,9,10,11,12,13, and 14. 

 

 
Figure 1: 14-node graph. 

 

Table 1 gives the vectors used to form a feasible solution to the 

14-node graph. 

Table 1: Loop Vectors, Common Branch Vectors 

and Prohibited Group Vectors of the 14-Node 

System. 

Loop vectors Common branch 

vectors 

Prohibited group 

vectors 

L1 = [1,7-11,15] C12 = [7] P1 = [C12, C13, C23] 

L2 = [4,12-14,7] C13 = [8-11,15]  

L3 = [8-11,15,2-3,16,5-

6,12-14] 

C23 = [12-14]  

 

More details about the codification can be found in [12]. 
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4 BIASED RANDOM-KEY GENETIC 

ALGORITHMS 

A biased random-key genetic algorithm is an evolutionary 

strategy that has been applied to solve search and optimization 

problems from many different research fields. They are nature 

inspired metaheuristics derived from the genetic algorithms with 

random keys (RKGA) introduced in [13] for solving 

combinatorial optimization problems involving sequencing. It 

uses a random-key alphabet comprised of random real numbers 

between 0 and 1. The search space comprised of vectors with 

entries between 0 and 1 is the search space of the BRKGA. Thus, 

these vectors must be decoded to find their representation in the 

search space of the problem being solved, and a problem-specific 

decoder must be devised to accomplish this task.  

At the beginning of the evolutionary process, the BRKGA 

generates an initial population of 𝑝  individuals. The initial 

population is then decoded so that the fitness of each individual 

can be computed. The population is then divided into a small set 

𝑝𝑒 of elite individuals with the best fitness, and another set of 𝑝 −

𝑝𝑒 individuals. To avoid entrapment in local optima, the BRKGA 

introduces 𝑝𝑚  mutants into the population. To form the 

population of the next generation, the set 𝑝𝑒 is copied, unchanged, 

to the next generation. The algorithm completes the number of 

individuals by generating 𝑝 − 𝑝𝑒 − 𝑝𝑚  vectors of random keys 

using parametrized uniform crossover [14]. The crossover 

operation is the main difference between a BRKGA and a RKGA. 

In a RKGA crossover, both parents are chosen randomly from the 

entire population, whereas in a BRKGA, a parent is always 

chosen from an elite set, which introduces the elitism principle in 

the reproduction process. This modification is enough to make the 

biased version of the GA to outperform the unbiased version [15]. 

The BRKGA uses the parameterized uniform crossover where, 

after two parents are selected for mating, for each gene, we toss a 

biased coin to select which parent will contribute with the allele to 

the offspring chromosome. Fig. 2 shows the transitional process 

between consecutive generations of a BRKGA. 

 

 

Figure 2: Parametrized uniform crossover used in BRKGAs. 

The flowchart of the BRKGA is shown in Fig. 3. The BRKGA 

evolutionary process is problem-independent and this allows for 

reuse of software and permits the algorithm designer to 

concentrate on building the problem specific decoder. The fitness 

evaluation of individuals is done after the execution of a load flow 

software, which calculates the electrical state of the network using 

the chromosome produced by the evolutionary process. 

4.1 Parallel Implementation 

Biased random-key genetic algorithms are well suited for the 

application of parallelization techniques. Candidates for 

parallelization include the operations: 

 

• Generate 𝑝 vectors of random keys. 

• Generate 𝑝 mutants in next population. 

• Combine elite parent with other parent to produce offspring. 

• Decode each vector of random keys and compute its fitness. 

 

Each of these four operations involve parallel computations, 

whereas the fourth is expected to contribute more significantly to 

overall computational speedup. Another type of parallel 

implementation involves the use of multiple populations that 

evolve independently and periodically exchange good quality 

solutions. This implementation represents the single program 

multiple data (SPMD) paradigm and was used in this work to 

speed up the convergence of the evolutionary process. Each core 

of a multiple-core processor runs a copy of the program and 

evolve a population of individuals. After a pre-determined number 

of generations, the two overall best chromosomes from all 

populations are inserted into all the other populations. 

 

 
Figure 3: Flowchart of the BRKGA. 
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5 IMPLEMENTATION DATA 

This section presents information about the test systems and the 

BRKGA parameter setting. 

 

5.1 BRKGA Parameters 
A BRKGA has a problem-independent module, which executes 

the evolutionary process, and a problem-dependent module, which 

consists of the decoder. A few parameters need to be set in a 

BRKGA. They are the number of genes in a chromosome (𝑛), the 

population size (𝑝), the size of the elite solution population (𝑝𝑒), 

the size of the mutant solution population (𝑝𝑚) , and the elite 

allele inheritance probability (𝜌𝑒) , i.e. the probability that the 

gene of the offspring inherits the allele of the elite. In this work, 

population sizes of 100, 80 and 50 individuals have been used. 

Table 2 gives the parameter values adopted for each population 

size. These parameter settings follow the guidelines given in [16]. 

Table 2: BRKGA Parameter Values 

Population Size 𝑝𝑒 𝑝𝑚 𝜌𝑒  

100 15 10 0.7 

80 

50 

12 

7 

8 

5 

0.7 

0.7 

 

 

5.2 Test Systems 

The first test system is a 33-bus distribution system [1] with 37 

branches and 5 NO switches. The second system is a 69-bus 

distribution system [17] with 73 branches and 5 NO switches. 

These two network topologies have five loop vectors, seven 

common branch vectors and six prohibited group vectors. Table 3 

gives the initial configurations for the test systems used in this 

work. 

Table 3: Initial Configurations of Tested Systems 

 

Data 

Systems 

33-node 69-node 

Number of Branches 37 73 

Number of Open 

Switches 

5 5 

Active Load (MW) 3.7 3.8 

Reactive Load (Mvar) 2.3 2.7 

Nominal Voltage (kV) 12.66 12.66 

Active Losses (MW) 0.208 0.239 

Minimum Voltage (pu) 0.911 0.903 

6 RESULTS AND DISCUSSION 

This section presents the computational results obtained from the 

application of the parallel BRKGA to solve the test systems. The 

algorithm performance is also compared with other GA 

implementations. The algorithm was developed in Matlab© using 

the Matpower toolbox [18] and the parallel programming toolbox 

[19]. The simulations were executed on a personal computer with 

an Intel Core i7-6700HQ @2.6 GHz with 16GB of RAM. This 

processor has a total of 4 computing cores, which were used to 

run the parallel BRKGA. 

 

6.1 33-Node Test System 
 

To compare the performance of the serial and parallel version of 

the BRKGA, they were independently executed 50 times each and 

the CPU times needed to find the optimal solution were recorded. 

Table 4 gives the optimal solution to this case. The optimal 

solution was found in all runs of the algorithm. 

 

Table 4: Optimal Solution for 33-Node System 

 

Test system Optimal 

configuration 

Real power 

loss (MW) 

Minimum 

node voltage 

(pu) 

33-node 7,9,14,37,32 0.1389 0.9423 

 

As with most stochastic search methods, the continuous random 

variable time to target solution of a BRKGA has an empirical 

distribution that approximates a shifted exponential distribution 

These graphs are used to characterize the running times of 

stochastic algorithms for combinatorial optimization. Time-to-

target (TTT) plots display on the ordinate axis the probability that 

an algorithm will find a solution at least as good as a given target 

value within a given running time, shown on the abscissa axis 

[21]. Table 5 compares the performance of the serial and parallel 

versions using the number of generations, number of power flows 

and TTT in seconds as performance indicators. 

 

Table 5: Performance Indicators for Serial and 

Parallel BRKGA – 33-Node 

 

Serial (S) And Parallel (P) Performance Indicators 

Indicators 

(Average) 

Population Size 

50 80 100 

S P S P S P 

Generations 34.42 8.76 28.64 6.62 16 5.52 

Power Flows 1721 488 1432 609.6 1600 652 

Time To 

Target (sec.) 
3.93 1.62 3.244 2.02 3.65 2.2 

 

The parallel version of the algorithm using a population of 50 

individuals shows the best performance in terms of running times 

and number of power flows executed. Fig. 4 shows the TTT plot 

for this case. The graph shows that the parallel algorithm always 

finds the optimal solution in less than 4 seconds and has a 70% 

probability of finding the optimal solution in around 2 seconds. 

The average speedup between the serial and parallel version is 
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2.42. The population of 100 individuals gives the best 

performance in terms of number of generations to reach the 

optimal solution. 

The parallel version was set to exchange elite solutions between 

the processors once at every 10 generations. Table 6 gives the 

performance indicators for exchanges at every 5 and 7 generations 

for a population of 50 individuals. 

 

Table 6: Performance Indicators for Parallel 

BRKGA – 33-Node 

 

Parallel BRKGA Performance Indicators 

Indicators 

(Average) 

Exchange of Elite Solutions 

Every 5 Generations Every 7 Generations 

Generations 7.4 7.3 

Power Flows 420 415 

Time To 

Target (sec.) 
1.39 1.39 

 

As shown in Table 6, the parallel BRKGA with solution exchange 

at every 7 generations and 5 generations exhibit the same 

performance with respect to running times, which is better than 

the algorithm with exchanges at every 10 generations. The 

average speedup between the serial and parallel version is of 2.83. 

 

 

Figure 4: TTT plot for a population of 50 individuals – 33-

Node. 

These results can be compared with four different genetic 

algorithms presented in [10], namely, conventional GA, improved 

GA, SSE and ASE. In this study, ten algorithm runs were 

executed and the average number of generations to convergence 

were recorded. Running times cannot be compared due to the 

different hardware used in the simulations. Only the serial 

BRKGA and ASE reached the optimal solution in all 10 

simulation runs and presented an average of 16 and 8.4 

generations to converge, using a population of 100 individuals. 

The parallel BRKGA required an average of 5.52 generations for 

the population of 100 individuals. 

6.1 69-Node Test System 
Table 7 gives the optimal solution to this case. The optimal 

solution was found in all runs of the algorithm. 

 

Table 7: Optimal Solution for 69-Node System 

 

Test system Optimal 

configuration 

Real power 

loss (MW) 

Minimum 

node voltage 

(pu) 

69-node 14,56,61,69,70 0.0997 0.9423 

 

Table 8 compares the performance of the serial and parallel 

versions for the 69-Node test system. 

 

 Table 8: Performance Indicators for Serial and 

Parallel BRKGA – 69-Node 
 

Serial (S) And Parallel (P) Performance Indicators 

Indicators 

(Average) 

Population Size 

50 80 100 

S P S P S P 

Generations 41.7 9.56 25.36 8.52 20.22 7.7 

Power Flows 2085 528 2028.8 761.6 2022 870 

Time To 

Target (sec.) 
6.32 2.23 6.19 3.24 6.08 3.66 

 

The parallel algorithm shows the best performance with a 

population of 50 individuals. The average speedup between the 

serial and parallel version is 2.83. Fig. 5 shows the TTT plot for 

this case. The parallel BRKGA takes at most 5 seconds 

approximately to find the optimal solution, while the serial 

BRKGA takes around 22 seconds in a worst-case execution. 

 
 

Figure 5: TTT plot for a population of 50 individuals – 69-

Node. 

Table 9 gives the performance indicators for exchanges at every 5 

and 7 generations for a population of 50 individuals. As it can be 

seen, the performance is almost identical, but worse than the 

algorithm with exchanges at every 10 generations. In this case, the 

average speedup between the serial and parallel version is 2.54. 
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This is because the 69-Node system requires more generations to 

find the optimal solution, and too frequent exchanges of solutions 

contributes more to the running times due to communication 

overhead between the cores.  

The performance of the BRKGA for the 69-Node system can also 

be compared with respect to average convergence generation with 

an artificial immune algorithm [20], a hybrid genetic particle 

swarm optimization algorithm [21], and a hybrid intelligent 

algorithm [22]. 

 

Table 9: Performance Indicators for Parallel 

BRKGA – 69-Node 

 

Parallel BRKGA Performance Indicators 

Indicators 

(Average) 

Exchange of Elite Solutions 

Every 5 Generations Every 7 Generations 

Generations 9.98 10.04 

Power Flows 549 552 

Time To 

Target (sec.) 
2.49 2.49 

 

These algorithms converge, on average, in 34, 43 and 30.20 

generations for 100 independent runs, respectively, whereas the 

serial BRKGA converges in 21.28 generations. The parallel 

BRKGA required an average of 7.7 generations for 50 simulation 

runs. 

7 CONCLUSIONS 

This paper proposes a parallel multi-population biased random 

key genetic algorithm to solve a classic power system 

combinatorial optimization problem called distribution network 

reconfiguration. The BRKGA produces solutions that are called 

random keys inside the real-valued interval [0,1) and a decoder is 

used to map these solutions into the problem’s search space. The 

decoder is built applying a set of rules derived from graph theory 

that guarantees the generation of only feasible solutions to the 

problem. This procedure reduces the size of the search space and 

avoids time consuming feasibility checks on solutions. Elitism is 

used efficiently by always using an elite parent on the crossover 

phase and by copying the entire elite set of one generation onto 

the next generation. Time to target plots for the BRKGA using 

different population sizes were drawn to assess the performance 

of the algorithm. Performance comparisons were made between 

the serial and parallel implementations of the BRKGA. Average 

speedups of 2.83 times were obtained with the parallel version for 

the most efficient implementations. The bigger sized populations 

were able to converge to the optimum solution in fewer 

generations in comparison to the smaller populations for both the 

serial and parallel implementations. 

The two test systems used are considered medium sized problems 

and future investigations will be done on larger systems. The use 

of multiple populations permits the exchange of information 

regarding good individuals found in each of these populations and 

reduces the computation time to find the optimal solution for the 

test systems. 

ACKNOWLEDGMENTS 

Haroldo de Faria Jr. acknowledges the University of Luxembourg 

for enabling his research stay and for providing the necessary 

conditions to conduct this research. 

REFERENCES 
[1] Savier, J.S. and Das, D. 2007. Impact of network reconfiguration on loss 

allocation of radial distribution systems. IEEE Transactions on Power Delivery. 

22, 4 (Oct. 2007), 2473–2480. 

[2] Festa, P., Pardalos, P., Pitsoulis, L. and Resende, M. 2007. GRASP with path 

relinking for the weighted MAXSAT problem. Journal of Experimental 

Algorithmics. 11, (Feb. 2007), 2.4. 

DOI:https://doi.org/10.1145/1187436.1216581. 

[3] Nara, K. A., Kitagawa, M. and Ishihara, T. 1992. Implementation of genetic 

algorithm for distribution systems loss minimum re-configuration. IEEE 

Transactions on Power Systems. 7, 3 (1992), 1044–1051. 

DOI:https://doi.org/10.1109/59.207317. 

[4] Chu, P.C. and Beasley, J.E. 1997. A genetic algorithm for the generalized 

assignment problem. Computers & Operations Research. 24, 1 (Jan. 1997), 17–

23. DOI:https://doi.org/10.1016/S0305-0548(96)00032-9. 

[5] Carreno, E.M., Romero, R. and Padilha-Feltrin, A. 2008. An efficient 

codification to solve distribution network reconfiguration for loss reduction 

problem. IEEE Transactions on Power Systems. 23, 4 (Nov. 2008), 1542–1551. 

DOI:https://doi.org/10.1109/TPWRS.2008.2002178. 

[6] Zhenkun, Li, Chen, X., Yu, K., Sun, Y. and Liu, H. 2008. A hybrid particle 

swarm optimization approach for distribution network reconfiguration problem. 

2008 IEEE Power and Energy Society General Meeting - Conversion and 

Delivery of Electrical Energy in the 21st Century (Jul. 2008), 1–7. 

[7] Guimarães, M.A.N. and Castro, C.A. 2005. Reconfiguration of distribution 

systems for loss reduction using tabu search. 15th PSCC (Liège, 2005). 

[8] Santos, A.C., Delbem, A.C.B., London, J.B.A. Jr. and Bretas, N.G. 2010. Node-

depth encoding and multiobjective evolutionary algorithm applied to large-scale 

distribution system reconfiguration. IEEE Transactions on Power Systems. 25, 3 

(Aug. 2010), 1254–1265. DOI:https://doi.org/10.1109/TPWRS.2010.2041475. 

[9] Srinivasa Rao, R., Narasimham, S.V.L., Raju, M.R. and Srinivasa Rao, A. 2011. 

Optimal network reconfiguration of large-scale distribution system using 

harmony search algorithm. IEEE Transactions on Power Systems. 26, 3 (Aug. 

2011), 1080–1088. DOI:https://doi.org/10.1109/TPWRS.2010.2076839. 

[10] de Macedo Braz, H.D. and de Souza, B.A. 2011. Distribution network 

reconfiguration using genetic algorithms with sequential encoding: Subtractive 

and additive approaches. IEEE Transactions on Power Systems. 26, 2 (May 

2011), 582–593. DOI:https://doi.org/10.1109/TPWRS.2010.2059051. 

[11] de Faria Jr., H., Resende, M.G.C. and Ernst, D. 2017. A biased random key 

genetic algorithm applied to the electric distribution network reconfiguration 

problem. Journal of Heuristics. (Aug. 2017), 1–18. 

DOI:https://doi.org/10.1007/s10732-017-9355-8. 

[12] Swarnkar, A., Gupta, N. and Niazi, K.R. 2011. A novel codification for meta-

heuristic techniques used in distribution network reconfiguration. Electric Power 

Systems Research. 81, 7 (Jul. 2011), 1619–1626. 

DOI:https://doi.org/10.1016/j.epsr.2011.03.020. 

[13] Bean, J.C. 1994. Genetic algorithms and random keys for sequencing and 

optimization. ORSA Journal on Computing. 6, 2 (May 1994), 154–160. 

DOI:https://doi.org/10.1287/ijoc.6.2.154. 

[14] Spears, V.M. and DeJong, K.A. 1991. On the virtues of parameterized uniform 

crossover. In Proceedings of the fourth international conference on genetic 

algorithms. (1991), 230--236. 

[15] Gonçalves, J.F., Resende, M. and Toso, R.F. 2014. An experimental comparison 

of biased and unbiased random-key genetic algorithms. Pesquisa Operacional. 

34, 2 (Aug. 2014), 143–164. DOI:https://doi.org/10.1590/0101-

7438.2014.034.02.0143. 

[16] Gonçalves, J.F. and Resende, M.G.C. 2011. Biased random-key genetic 

algorithms for combinatorial optimization. Journal of Heuristics. 17, 5 (Oct. 

2011), 487–525. DOI:https://doi.org/10.1007/s10732-010-9143-1. 

[17] Baran, M. E. and Wu, F. F. 1989. Network reconfiguration in distribution 

systems for loss reduction and load balancing. IEEE Transactions on Power 

Delivery. 4, 2 (1989), 1401–1407. 

[18] Zimmerman, R.D., Murillo-Sánchez, C.E. and Thomas, R.J. 2011. Matpower: 

Steady-state operations, planning and analysis tools for power systems research 

and education.  IEEE Transactions on Power Systems. 26, 1 (2011), 12–19. 

[18] Parallel Computing User’s Guide. 2004–2017. The MathWorks, Inc. 

[20] Wenchuan, M. and Jiaju, Q. 2006. An artificial immune algorithm to 

distribution network reconfiguration. In Proceedings of the CSEE. 26, 17 

(2006), 25-29. 



GECCO’19, July 13-17, 2019, Prague, Czech Republic H. de Faria Jr. et al. 

 

 

[21] Zhang, C. Q., Zhang, J. J. and Gu X. H. 2007. The application of hybrid genetic 

particle swarm optimization algorithm in the distribution network 

reconfigurations multi-objective optimization. In Proceedings of the Third 

International Conference on Natural Computation. 2, (2007), 455-459. 

[22] Zifa, L., Shaoyun, G. and Yixin, Y. 2005. A hybrid intelligent algorithm for loss 

minimum reconfiguration in distribution networks. In Proceedings of the CSEE 

5, 15 (2005), 73-78. 


