
BODYFITR: ROBUST AUTOMATIC 3D HUMAN BODY FITTING

Alexandre Saint? Abd El Rahman Shabayek? Kseniya Cherenkova?† Gleb Gusev†

Djamila Aouada? Björn Ottersten?

? SnT, University of Luxembourg † Artec Europe SARL

ABSTRACT

This paper proposes BODYFITR, a fully automatic method
to fit a human body model to static 3D scans with complex
poses. Automatic and reliable 3D human body fitting is nec-
essary for many applications related to healthcare, digital er-
gonomics, avatar creation and security, especially in industrial
contexts for large-scale product design. Existing works either
make prior assumptions on the pose, require manual anno-
tation of the data or have difficulty handling complex poses.
This work addresses these limitations by providing a novel
automatic fitting pipeline with carefully integrated building
blocks designed for a systematic and robust approach. It is
validated on the 3DBodyTex dataset, with hundreds of high-
quality 3D body scans, and shown to outperform prior works
in static body pose and shape estimation, qualitatively and
quantitatively. The method is also applied to the creation
of realistic 3D avatars from the high-quality texture scans of
3DBodyTex, further demonstrating its capabilities.

Index Terms— 3DBodyTex, 3D body model fitting, au-
tomatic fitting, 3D body scanning, body landmark estimation

1. INTRODUCTION

Automatic fitting of human body models to 3D scans is an
active research domain in computer vision and graphics due
to its high industrial value for several applications including
healthcare, digital ergonomic design, virtual changing rooms,
security checkups, and different 3D entertainment applica-
tions [1, 2, 3]. Fitting the same model to different scans pro-
vides cross-parametrization and enables statistical shape anal-
ysis and skeleton/texture transfer. This includes dense point-
to-point correspondence and applications such as symmetry
detection, articulated subject matching, shape completion and
pose reconstruction [4, 5, 6].

However, fitting a model to a 3D scan of a person in
unconstrained scenarios is a complex task with considerable
challenges in handling the body pose and shape variations,
the variability in density and connectivity of 3D scan meshes
and the accumulated noise from sensors and processing steps.
For a reliable fitting, the model and scan have to be aligned.
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Fig. 1: Sample fitting results of BODYFITR on challenging
poses of 3DBodyTex [1] with scan (back), fitted model (front)
and overlay (middle).

Previous works assume a standard body pose [7, 8] or the ex-
istence of guiding landmarks defined manually [9, 10]. The
problem of automatically estimating consistent body land-
marks has been tackled in the literature, but requires prior
annotation of a dataset of 3D scans [11] or shows limited
robustness to pose variations and arbitrary meshing [11, 12].
Recently, we have addressed these shortcomings in [13, 1]
by proposing a fully automatic pipeline for body landmark
estimation and 3D body model fitting (Fig 2a), which is more
robust to pose variations and is independent of the meshing.
It eliminates restrictive and tedious preprocessing routines by
exploiting texture and widely-available annotations of body
landmarks on 2D images. Despite the proposed improve-
ments, some limitations remain, namely: 1) the estimation of
3D landmarks on the scan is done heuristically and may lead
to unreliable predictions; 2) the landmark regressor on the
body model is defined manually, introducing human bias; 3)
the pose fitting considers all body parts together, hampering
the convergence on complex poses; and 4) the shape fitting
energy, based on a point-to-point metric, does not cope well
with detailed features such as ears, nose, mouth and toes.
These limitations affect the overall fitting quality.

This paper presents BODYFITR, a fitting method address-
ing the previously mentioned limitations and extending the
method of [1], henceforth referred to as BODYFIT. BODY-
FITR makes the overall approach fully automatic without
strong assumptions and provides a robust, systematic and
accurate body model fitting to a scan in unconstrained sce-
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Fig. 2: Pipeline and body model.

narios. Our contributions to enhance the pipeline in Fig. 2a
are summarised as follows: 1) a robust optimisation-based
approach to automatically estimate 3D landmarks on a 3D
scan; 2) an automatic and systematic approach to learn a
landmark regressor on a 3D body model, where landmarks
closely correspond to the landmarks detected on the 3D scan;
3) an incremental pose fitting strategy following the skeleton
tree; 4) a robust energy function for shape fitting.

The rest of the paper is organised as follows: The back-
ground and motivation are given in Section 2. In Section 3,
the proposed fitting method is presented. The experimental
evaluation is given in Section 4, and the paper is concluded in
Section 5.

2. BACKGROUND AND MOTIVATION

Fitting a human body model to a static 3D scan aims at esti-
mating pose and shape parameters of the model such that the
surfaces of the model and the scan match closely and are in
correspondence. Our previous work, BODYFIT [1], follows
the pipeline in Fig. 2a. The inputs are the body model and the
target scan. The output is the fitted body model. There are
three main stages: preprocessing, pose alignement, and shape
refinement. During preprocessing, the respective landmarks
of the body model and the scan are estimated. In the second
stage, the landmarks serve as guides to align the pose of the
body model with the scan. Finally, the shape of the model
is refined iteratively to match the scan. Each iteration of the
shape refinement is initialised by computing a dense vertex
correspondence between the model and the scan. This cor-
respondence is used in an iterative closest point (ICP) proce-
dure [14] using the body model for regularisation. Both pose
alignment and shape refinement steps are solved by minimis-
ing the following energy function,

E(y, r, s) = wlEl(y) + wvEv(y) + wsEs(s) + Em(y, r, s),
(1)

with relative scalar weights w∗, and where y, r and s are
the vertices, pose parameters, and shape parameters of the

body model, respectively. The energy terms in (1) ensure the
consistency of the landmark positions (El), the close-fitting
of the shape (Ev) and constrain the possible mesh deforma-
tions (Em) and shape parameters (Es), according to the body
model. The shape fitting term,

Ev =
∑

(y,z)∈C

‖y − z‖22, (2)

promotes the closeness of pairs of vertices, (y, z), belong-
ing to the correspondence set between model and scan, C.
The optimisation procedure and the formulation are further
detailed in [1].

The body model used in BODYFIT to regularise the fit-
ting is an adapted implementation of the Shape Completion
and Animation of PEople (SCAPE) model [15]. Any other
body model, such as [8, 16], could equivalently be used. The
body model is defined on a template mesh with N vertices
and a fixed connectivity pattern. For notation, the vertex po-
sitions are stacked as rows in the matrix V ∈ RN×3. A skele-
ton is defined on the template mesh, with a segmentation into
body parts (Fig. 2b) linked by body joints. Moreover, L = 26
landmarks are defined over the body (Fig. 2b), divided into a
subset of 13 body joints and 5 surface landmarks on the face
and 4 surface landmarks on each hand. The face landmarks
are the nose, eyes and ears. On the hands, the base knuckles
are used. The position of landmark l, denoted pl ∈ R3, is
obtained by regressing the vertex positions of the body model
with a vector gl ∈ RN , such that,

pl = V T gl. (3)

In [1], the regressor, gl, is defined manually.
Although BODYFIT is, to the best of our knowledge, the

first fully automatic method to fit a body model to a 3D body
scan, some components are limited in robustness or biased in
their definition. Specifically, the landmarks are defined man-
ually on the body model and estimated on the scan with a
heuristic, while the fitting procedure may struggle with com-
plex poses and the local shape features of realistic 3D body
scan data. The next section details our proposed solutions to
address these limitations.

3. PROPOSED ROBUST AUTOMATIC FITTING

This work brings notable improvements to the fitting pipeline
in Fig. 2a by targeting each of its core modules. The following
subsections detail our contributions to each of them.

3.1. Robust automatic 3D landmark estimation
To increase the robustness to outliers in a systematic way for
the estimation of 3D landmark positions, we propose to re-
place the heuristic of BODYFIT with an optimisation-based
formulation. As in [1], the 3D scan is projected onto 2D
images from Nv viewpoints from which 2D landmark posi-
tions are estimated using OpenPose [17]. Because the 2D



projection parameters are known, the problem is solved in 3D
space without reverting to backprojections on the generated
images, as in [17]. To this end, in each view, v, 3D rays are
reconstructed by joining the camera centre, c ∈ R3, to the
detected landmark positions, {pl ∈ R3}l, using the known
camera parameters. The rays are defined in parametric form,
rl(α) = c + αldl, for some scalar parameters, αl > 0, and
the direction, d = p − c ∈ R3, from camera to landmark.
For each landmark, l, the goal is to find the best approximate
intersection point of the rays, i.e. the point, x∗l ∈ R3, min-
imising the distance to all rays. This is cast as the following
l1-regression problem,

x∗l = argmin
x,α

∑
v∈views

‖x− (cv + αvl d
v
l )‖1 , (4)

with α ∈ RNvL, the vector of ray parameters, {αvl }v,l, one
per view and per landmark. The l1-norm makes the prob-
lem robust to outliers. Problem (4) is solved using iteratively
reweighted least squares (IRLS) [18].

3.2. Automatic landmark regressor
To reduce bias and error in defining the landmark regressor
on the body model, as with the manual process of [1], we pro-
pose to learn it from data, in a fully automatic and systematic
way. The learning is based on reference landmark positions of
the body model, in different configurations of pose and shape,
generated synthetically using the automatic landmark estima-
tion module of Section 3.1. The landmark positions are as-
sumed independent of each other such that there is a separate
regressor vector per landmark, gl ∈ RN . As in Equation (3),
the regression is performed separately in each spatial dimen-
sion, while the regressor vector is common to all.

The regressor is learned from K example data pairs,
{(V k, pkl )}k, that represent the template mesh of the body
model in different pose and shape configurations with the
corresponding ground-truth landmark positions. Since the
number of vertices is larger than the number of sample pairs,
N > K, the system is underdetermined. For regularisation,
sparsity is enforced on the regressor, with the added effect of
encouraging it to rely on the most relevant vertices from the
local neighbourhood. For landmark l, the problem is defined
as a basis pursuit denoising (BPDN) [19] formulation,

argmin
gl

1

2
‖b−Agl‖22 + λ‖gl‖1, (5)

with, A ∈ R3K×N , the stacked mesh vertices, {(V k)T }k,
and, b ∈ R3K , the stacked ground-truth landmark positions,
{pk}k.

Following this procedure, the landmark regressor on the
body model is learned in a systematic fashion and corre-
sponds tightly to the landmarks estimated on a scan (Sec-
tion 3.1), allowing a good initial alignment of the body model
on the scan in complex shape and pose configurations.

3.3. Incremental pose fitting
When the pose of the scan is far from the initial pose of the
body model, minimising (1) is an ill-posed problem. For reg-
ularisation, the problem is split into a series of simpler prob-
lems of gradually increasing complexity. In a first step, only
the trunk of the body is aligned, using the corresponding land-
marks. Then, the landmarks associated to the child body parts
are added successively, following the tree structure in Fig. 2b,
until all segments are finally considered together. This pro-
cedure has the advantage of starting each step in an initial
position close to the optimum, reducing the search space for
a more stable and faster convergence avoiding local minima.

3.4. Robust tight shape fitting
Our main objective is to tightly fit the shape in both smooth
and detailed areas without any manual intervention. Instead
of the point-to-point error metric (2), as used in [1], the fitting
of corresponding model and scan vertices in the correspon-
dence set, C, is performed with a point-to-plane error met-
ric [20],

Ev =
∑

(y,z)∈C

‖nTz (y − z)‖22, (6)

with, nz ∈ R3, the normal at point z on the target scan. As in
Equation (2), this objective encourages pairs of correspond-
ing vertices, (y, z), to be close. At the same time it gives
more flexibility to the surface of the model to slide and adapt
to the surface of the scan. This allows fitting curved and de-
tailed areas robustly with less opportunity for stalling in lo-
cal minima when the starting point is far from the optimum.
Moreover, the point-to-plane metric makes the convergence
faster, as shown in [14] for the related task of registering range
images. Hence, our new formulation of the shape fitting im-
proves on [1] on robustness and convergence.

4. EXPERIMENTS

The 3DBodyTex dataset [1] is used for validation of the pro-
posed automatic fitting pipeline. 3DBodyTex contains 400
scans of 100 female and 100 male subjects. Each subject
is dressed with light close-fitting clothing and performs two
poses, a standard ”U” or ”A” pose and a further random pose.
The SCAPE body model [15] is fitted to the 3DBodyTex data,
using both BODYFIT [1] and the newly proposed BODY-
FITR methods, as presented in Section 3. For a fair compar-
ison, the evaluation setup is shared by both methods where
possible. For the automatic landmark estimation on the scan
(Section 3.1), the camera rotates around the centre of mass
of the standing scan in Nv = 18 different views uniformly
sampled in azimuth. To learn the landmark regressor of Sec-
tion 3.2, a set of K = 100 pairs of example data is generated
synthetically. The body model is put in varying realistic poses
and shapes, and the corresponding ground-truth landmark po-
sitions are detected using the method in Section 3.1. During
the pose and shape fitting, the weights of the energy functions



BODYFIT BODYFITR (proposed)
mean 3.10 2.40

median 1.54 1.33

Table 1: Overall fitting error (mm).
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Fig. 3: Fitting error (mm) per body part on 3DBodyTex for
BODYFIT and BODYFITR. Central bar: median. L: left, R:
right.

in (1) are all initialised to 1. During shape fitting, the influ-
ence of the landmarks is gradually decreased by decaying wl
with a multiplicative factor of 0.5 at each iteration.

The fitting is evaluated quantitatively by estimating the
distance between the fitted mesh and the target scan. The
fitting error is defined for each vertex of the body model as
the Euclidean distance to the corresponding closest vertex on
the scan. Vertex errors are aggregated with a mean or median
operator to obtain an overall measure across scans, for the
whole mesh and for each body part separately.

On the full body, BODYFITR shows a lower overall fit-
ting error, as reported in Table 1, indicating its better per-
formance as compared to BODYFIT. It can be noted that for
both approaches, the mean error is higher than the median.
This suggests that most of the vertices are tightly fitted except
for a smaller subset of outliers. This can be explained, for
the most part, by limitations in the body model and realistic
data. Indeed, the body model has clenched fists while most of
the scans have open hands (Fig. 1); it smooths out sharper ar-
eas such as armpits, crotch, elbows and breast; and it discards
non-skin regions including protruding hair and clothing.

The fitting error per body part is presented in Fig. 3. The
error on the hands is not reported since the body model can-
not fit open hands, as explained in the previous paragraph,
making their analysis irrelevant. This is a limitation of the
body model implementation and not of the proposed con-
cept. It can be seen in Fig. 3 and Fig. 4 that most body parts
have aggregated errors between 1 to 2 mm, for the proposed
BODYFITR, and between 2 to 4 mm for BODYFIT. This is
in accordance with the estimated error on the full body (Ta-
ble 1). Moreover, the variability in the error is more controlled
in BODYFITR, showing the stability and the robustness of
the approach. Furthermore, the proposed method produces a
lower fitting error on all body parts, except for the lower legs

Fig. 4: Fitting error (mm) across all scans reported per vertex
for BODYFIT (left) and BODYFITR (right) on the full body
and with close-ups on the chest and right foot.

Fig. 5: Texture transfer from scan to fitted body model and
examples of reposed model with texture (from left to right).

where the error is matched. This highlights the performance
gain brought by BODYFITR. It can be noted that, although
the right foot displays a higher error than all the other body
parts with both methods (Fig. 4), the proposed approach per-
forms better with a mean error of 2 mm, instead of 5 mm
for BODYFIT. This comes from a specific challenging body
pose in the data, where the subject, kneeling with the right
leg, has a highly extended foot, see Fig. 1. This demonstrates
the added robustness of BODYFITR in challenging poses.

Qualitatively, the results of BODYFITR can be observed
in Fig. 1 for various challenging poses, with both male and
female subjects. Moreover, as a concrete application, Fig. 5
shows how the fitting can be used to create a realistic avatar
from the high-quality texture of 3DBodyTex. The texture of
the scan is transferred to the fitted body model, which is an-
imated in various new poses, keeping the fitted shape fixed.

5. CONCLUSION

We introduced BODYFITR, a novel robust approach to auto-
matically fit a body model to a static 3D scan. The method
builds on our previous work in [1] and improves the core
fitting components. The proposed enhancements bring ro-
bustness to the pipeline and a systematic way of preparing
it, removing the error and bias introduced by a human opera-
tor. An evaluation of the method conducted on the 3DBody-
Tex dataset [1] shows clear gains in performance with respect
to [1], both quantitatively and qualitatively. The capability of
the approach was also demonstrated for the create of realistic
3D avatars. A limitation of the presented approach lies in the
usage of a body model that cannot capture details and open
hands. However, the approach is independent of the specific
body model used. Hence, future works include augmenting
the proposed fitting method with a body model incorporating
finer body shape details. This will open the door to accu-
rate and automatic estimation of the 3D body shape under a
clothed static scan.
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