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Abstract 

Free-living bacteria such as Pseudomonas putida are frequently exposed to temperature shifts and 

non-optimal growth conditions. We compared the transcriptome and metabolome of the cold 

adaptation of Pseudomonas putida KT2440 and isogenic cold-sensitive transposon mutants carrying 

transposons in their cbrA, cbrB, pcnB, vacB and bipA genes. P. putida changes the mRNA expression 

of about 43% of all annotated ORFs during this initial phase of cold adaptation, but only a small 

number of six to 93 genes were differentially expressed at 10°C between wild type strain and the 

individual mutants. The spectrum of metabolites underwent major changes during cold adaptation 

particularly in the mutants. Both KT2440 strain and the mutants increased the levels of the most 

abundant sugars and amino acids which were more pronounced in the cold-sensitive mutants. All 

mutants depleted their pools for core metabolites of aromatic and sugar metabolism, but increased 

their pool of polar amino acids which should be advantageous to cope with the cold stress. 
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Introduction 

Its metabolic versatility, degradative potential, and ability to colonize bulk soil and the rhizosphere 

make Pseudomonas putida an ideal candidate for genetic engineering and applications in 

biotechnology, bioremediation, and agriculture (Wu et al., 2011). Strain KT2440 is one of the best 

characterized pseudomonads (Nelson et al., 2002; Regenhardt et al., 2002) and has been optimized 

as a ‘laboratory workhorse’ for biotechnology (Dvořák and de Lorenzo, 2018;  Martínez-García and de 

Lorenzo, 2019) and systems biology (Sudarsan et al., 2014), but it has retained its ability to survive 

and function in the environment. 

Free-living bacteria are frequently exposed to temperature shifts and non-optimal growth conditions. 

In order to grow at low temperatures, a microorganism must overcome the growth-limiting effects of 

this stress condition. We previously had screened a transposon library for genes that are essential for 

the survival of P. putida KT2440 at low temperatures (Reva et al., 2006). The CbrAB two component 

system controlling catabolite repression and co-ordinating carbon metabolism (Valentini et al., 2014; 

Barroso et al., 2018), PcnB and VacB, which control mRNA stability (Hester et al., 2000), and BipA, 

which exerts transcript-specific translational control (Yuste et al., 2006), were essential to cope with 

cold stress. Here we report on the comparison of the transcriptome and metabolome of the cold 

adaptation of wild-type KT2440 and isogenic cold-sensitive transposon mutants carrying transposons 

in their cbrA, cbrB, pcn, vacb and bipA genes, respectively.  

 

Results and Discussion 

Growth characteristics during cold stress 

Screening of the P. putida KT2440 plasposon library had revealed that mutants carrying the 

plasposon in eight genes, namely cysM, nuoL, PP4646, cbrA, cbrB, pcnB, vacB and bipA (Suppl. Table1 
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– strain characteristics) were not growing at 4 °C when cultured in microtiter plates in M9 medium 

with 15 mM benzoate as sole carbon source  (Reva et al., 2006).  When we re-tested these mutants 

in cultures of 20 mL under shaking at 4 °C, the mutants in PP4646, cysM or nuoL were only slightly 

compromised in growth. Hence these three targets were not examined further. On the other hand, 

consistent with the initial screen no growth was detectable with the cbrA, cbrB, pcnB, vacB and bipA 

mutants.   

These five genes encode central functions in the P. putida cell and our experiments added the 

information that they are essential to cope with cold stress.  BipA is a master regulator of translation 

(Yuste et al., 2006), the 3’,5’ exoribonuclease VacB cleaves poly(A), poly(U) and rRNAs (Hester et al., 

2000) and the operon cbrA – cbrB – crcZ – pcnB controls the utilization of carbon sources and 

modulates mRNA stability by polyadenylation (Amador et al., 2016; Barroso et al., 2018; Fonseca et 

al., 2013; García-Mauriño et al., 2013; Hernández-Arranz et al., 2016; La Rosa et al., 2015; Moreno et 

al., 2012; Sánchez-Hevia et al., 2018; Tsipa et al., Valentini et al., 2014) . The central role of these 

genes for P. putida suggests that their inactivation affects numerous features of lifestyle and 

metabolism. Hence we next searched for the temperature that still keeps these mutants growing but 

is most informative to resolve the adaptation of these mutants to lower temperatures.  

Prior to testing different temperatures, we switched from benzoate as sole carbon source to 

succinate which had been chosen as the reference compound in studies on the systems biology of P. 

putida (Nogales et al., 2008; Park et al., 2009; Daniels et al., 2010; Nikel et al., 2014; La Rosa et al., 

2015; Hintermayer and Weuster-Botz, 2017; Tsipa et al., 2017). Wild type and mutants were cultured 

in M9 medium with 3, 10, 15 or 20 mM succinate. No or poor growth were observed with 3 and 10 

mM succinate, whereas the typical behavior of lag phase, exponential growth and smooth transition 

to stationary phase was seen with both 15 mM and 20 mM succinate. Next, the cells were cultured 
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with succinate as carbon source at 5, 10, 23 and 30 °C. Growth rates were indistinguishable at 23°C 

and 30°C. Minimal or no growth was seen for the mutants at 5°C and growth was retarded at 10°C. 

Thus the experimental conditions for cold adaptation were set to growth with 15 mM succinate at 

10°C. 

Transcriptome and metabolome of cold adaptation 

The KT2440 wild type strains and the five plasposon mutants were grown in a 1.5 L batch cultures 

using the BioFlo 110 fermenter at 30°C from OD600 0.05 until 0.8. After taking samples, the fermenter 

was cooled within 45 minutes to 10°C and then maintained at 10°C for 2 hours until final sampling.   

We previously reported that P. putida changes the mRNA expression of about 43% of all annotated 

ORFs during this initial phase of cold adaptation (Frank et al., 2011). In contrast to this vast number 

of changes in the global transcriptome only a comparably small number of six to 93 genes were 

differentially expressed at 10°C between wild type strain and the individual mutants (Suppl. Table 

S2). Interestingly, all five mutants showed a consistent down-regulation of ped genes (operon 

PP2663 – PP2682) involved in the degradation of 2-phenylethanol and aliphatic alcohols (C5 – C10) 

(Arias et al., 2008).  The PedS2/PedR2 two-component system (PP2671/2672) within the operon that 

is crucial for the rare earth element switch in P. putida KT2440 (Wehrmann et al., 2018) was not 

differentially regulated.  

In contrast to the comparably small changes in the transcriptome the spectrum of metabolites 

underwent major changes during cold adaptation particularly in the mutants (see Supplementary 

information 1 for experimental detail). Principal component analysis (Figure 1, Suppl. Table S3) 

revealed that the wild type strain maintained its metabolic profile, whereas peculiarly the cbrA and 

pcnB transposon mutants showed strong individual changes in their metabolic profiles. Even more 

remarkably, wild type strain and each mutant exhibited a strain specific signature of its metabolome 
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at both temperatures (Figure 2, Suppl Figure 1 and Table S4). In other words, the metabolic profiles 

of the strain at two temperatures were more similar to each other than the metabolomes of the 

strain panel at either 30°C or 10°C.  

Table 1 lists the concentrations of the 20 metabolites most abundant in KT2440 wild type and mutant 

strains at 10°C and 30°C. During cold adaptation KT2440 and the mutants consistently increased the 

levels of lactate and of the sugars fructose-6-phosphate, glucose-6-phosphate and of the amino acids 

valine and glutamic acid the latter also the major driver of intermediary metabolism in 

pseudomonads (Frimmersdorf et al., 2010).  P. putida accumulated its most prevalent sugar and 

amino acids to cope with the metabolic demands at lower temperature. The mutants behaved like 

wild type implying that this adaptation of the most abundant metabolites did not require the key 

sensors of cold stress. 

Principal component analysis segregated wt and mutants primarily by strain and not by temperature 

indicating that mutant-associated shifts should already be partly visible at the indifferent 

temperature of 30°C.  Compared to the wild type KT2440 strain, all cold-stress sensitive mutants had 

depleted pools for core metabolites of aromatic (benzoate) and sugar metabolism (pyruvate, 

glucose-6-phosphate, fructose-6-phosphate, mannose-6-phosphate) and the direct conversion 

products of the most abundant metabolite glutamic acid, i.e. oxoproline and oxoglutarate. Moreover 

pools were low for peripheral mono- or disaccharides such as galactose, xylulose-5-phosphate and N-

acetylglucosamine. Instead, the mutants kept higher levels of the membrane-disorganizing fatty acid  

dodecanoic acid utilized for lipid A biosynthesis  and increased the pool of amino acids, i.e. 

homoserine, tartaric acid, isoleucine and proline. After cold adaptation to 10°C wild type and mutant 

had increased the levels of glutamate and lactate, but in addition the cold-stress sensitive mutants 

had accumulated glutamine, aspartate and the hydroxyproline derivative 1-pyrroline-3-hydroxy-5-
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carboxylate (Koo and Adams, 1974) in their cells as highly abundant compounds (Table 1).  With the 

exception of the cbrB::Tn5, the pool of glutamate was more than twofold larger in the mutants than 

in wild type indicating that the mutants had to keep higher levels to cope with the challenges of cold 

stress 

The strain P. putida S12 had been cultured under similar conditions at 30°C in a fermenter with 

succinate as sole carbon source, however, the substrate concentration of 165.4 mM was 11-fold 

higher (van der Werf et al., 2008) than in our experiments. The concentrations of intermediates of 

the central carbon metabolism, namely pyruvate, glucose, glucose-6-phosphate and fructose-6-

phosphate were in the same range, but AMP, mannitol and trehalose were several orders of 

magnitude more abundant in the S12 strain (Suppl. Table S5). We hypothesize that the larger supply 

of succinate enabled the S12 cell to store the osmolytes mannitol and trehalose conferring tolerance 

to desiccation and organic solvents. 

In summary, the disruption of key genes of the adaptation to cold stress led to mutant-specific 

metabolic changes consistently observed at both 30°C and 10°C (Suppl. Figure S1). During cold 

adaptation to 10°C similar shifts were seen in wild type strains and isogenic mutants for numerous 

metabolites, but in contrast to wild type the cold-sensitive mutants accumulated higher levels of 

polar amino acids including 1-pyrroline-3-hydroxy-5-carboxylate, aspartate, glutamine and 

glutamate, one of the key compounds in pseudomonads. Thus a larger pool of polar amino acid 

metabolites emerged when the core genetic elements of adaptation to cold stress had been 

inactivated. However, in addition to this trend consistently observed in all mutants, each mutant 

exhibited an individual metabolome profile. This finding was somewhat unexpected for the cbrAB  

two-component system because the histidine kinase CbrA and its response regulator CbrB synergize 

in carbon metabolism and the uptake of amino acids (Li and Lu, 2007; Monteagudo-Cascales E et al., 
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2019). However, CbrB also indirectly regulates the ‘Carbon Repression Control’ (García-Mauriño SM 

et al., 2013; Barroso et al., 2018). In other words, features and targets not shared by CbrA and CbrB 

and the transposon-mediated loss of CbrAB regulation by phosphorylation may explain the different 

composition of the mutant CbrA and CbrB  metabolomes.  

 

Acknowledgments. We thank Robert Geffers, Helmholtz Institut für Infektionsforschung, 

Brauschweig, for the processing of the microarrays. Instructive discussions with Kerstin Schreiber and 

Lutz Wiehlmann are gratefully acknowledged. Partial financial support was provided by BMBF within 

the framework of the SysMO consortium, part PSYSMO ‘Towards a quantum increase in the 

performance of P. putida as the cell factory of choice for white biotechnology,’ project 3: Key 

determinants of abiotic stress response of P. putida KT2440'. 

The authors declare no potential sources of conflict of interest. 

 

References  

Amador CI, López-Sánchez A, Govantes F, Santero E, Canosa I. (2016) A Pseudomonas putida cbrB 

transposon insertion mutant displays a biofilm hyperproducing phenotype that is resistant to 

dispersal. Environ Microbiol Rep 8: 622-629.  

Arias S, Olivera ER, Arcos M, Naharro G, Luengo JM. (2008) Genetic analyses and molecular 

characterization of the pathways involved in the conversion of 2-phenylethylamine and 2-

phenylethanol into phenylacetic acid in Pseudomonas putida U. Environ Microbiol 10(2): 413-32. 

Barroso R, García-Mauriño SM, Tomás-Gallardo L, Andújar E, Pérez-Alegre M, Santero E, Canosa I. 

(2018) The CbrB Regulon: Promoter dissection reveals novel insights into the CbrAB expression 

network in Pseudomonas putida. PLoS One 13(12) :e0209191.  

This article is protected by copyright. All rights reserved.



Daniels C, Godoy P, Duque E, Molina-Henares MA, de la Torre J, Del Arco JM, Herrera C, Segura A, 

Guazzaroni ME, Ferrer M, Ramos JL. (2010) Global regulation of food supply by Pseudomonas putida 

DOT-T1E. J Bacteriol 192(8): 2169-81. 

Dvořák P and de Lorenzo V. (2018) Refactoring the upper sugar metabolism of Pseudomonas putida 

for co-utilization of cellobiose, xylose, and glucose. Metab Eng 48: 94-108.  

Fonseca P, Moreno R, Rojo F. (2013) Pseudomonas putida growing at low temperature shows 

increased levels of CrcZ and CrcY sRNAs, leading to reduced Crc-dependent catabolite repression. 

Environ Microbiol 15: 24-35.  

Frank S, Schmidt F, Klockgether J, Davenport CF, Gesell Salazar M, Völker U, Tümmler B. (2011) 

Functional genomics of the initial phase of cold adaptation of Pseudomonas putida KT2440. FEMS 

Microbiol Lett 318(1) :47-54. 

Frimmersdorf E, Horatzek S, Pelnikevich A, Wiehlmann L, Schomburg D. (2010) How Pseudomonas 

aeruginosa adapts to various environments: a metabolomic approach. Environ Microbiol 12(6) :1734-

47. 

García-Mauriño SM, Pérez-Martínez I, Amador CI, Canosa I, Santero E. (2013) Transcriptional 

activation of the CrcZ and CrcY regulatory RNAs by the CbrB response regulator in Pseudomonas 

putida. Mol Microbiol 89: 189-205.  

Hernández-Arranz S, Sánchez-Hevia D, Rojo F, Moreno R. (2016) Effect of Crc and Hfq proteins on the 

transcription, processing, and stability of the Pseudomonas putida CrcZ sRNA. RNA 22: 1902-1917.  

Hester KL, Lehman J, Najar F, Song L, Roe BA, MacGregor CH, Hager PW, Phibbs PV Jr, Sokatch JR. 

(2000) Crc is involved in catabolite repression control of the bkd operons of Pseudomonas putida and 

Pseudomonas aeruginosa. J Bacteriol 182(4): 1144-9. 

This article is protected by copyright. All rights reserved.



Hintermayer SB, Weuster-Botz D. (2017) Experimental validation of in silico estimated biomass yields 

of Pseudomonas putida KT2440. Biotechnol J 12(6). 

Koo PH, Adams E. (1974) Alpha-ketoglutaric semialdehyde dehydrogenase of Pseudomonas. 

Properties of the separately induced isoenzymes. J Biol Chem 249: 1704-16. 

La Rosa R, Nogales J, Rojo F. (2015) The Crc/CrcZ-CrcY global regulatory system helps the integration 

of gluconeogenic and glycolytic metabolism in Pseudomonas putida. Environ Microbiol 17: 3362-78.  

Li W, Lu CD. (2007) Regulation of carbon and nitrogen utilization by CbrAB and NtrBC two-component 

systems in Pseudomonas aeruginosa. J Bacteriol 189(15):5413-20. 

Martínez-García E, de Lorenzo V. (2019) Pseudomonas putida in the quest of programmable 

chemistry. Curr Opin Biotechnol 59: 111-121.  

Moreno R, Fonseca P, Rojo F. (2012) Two small RNAs, CrcY and CrcZ, act in concert to sequester the 

Crc global regulator in Pseudomonas putida, modulating catabolite repression. Mol Microbiol 83: 24-

40. 

Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VA, et al. (2002) Complete 

genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida 

KT2440. Environ Microbiol 4(12): 799-808. 

Nikel PI, Kim J, de Lorenzo V. (2014) Metabolic and regulatory rearrangements underlying glycerol 

metabolism in Pseudomonas putida KT2440. Environ Microbiol 16(1): 239-54. 

Nogales J, Palsson BØ, Thiele I. (2008) A genome-scale metabolic reconstruction of Pseudomonas 

putida KT2440: iJN746 as a cell factory. BMC Syst Biol 2: 79.  

Park SJ, Choi JS, Kim BC, Jho SW, Ryu JW, Park D, et al. (2009) PutidaNET: interactome database 

service and network analysis of Pseudomonas putida KT2440. BMC Genomics 10 Suppl 3:S18.  

This article is protected by copyright. All rights reserved.



Regenhardt D, Heuer H, Heim S, Fernandez DU, Strömpl C, Moore ER, Timmis KN. (2002) Pedigree 

and taxonomic credentials of Pseudomonas putida strain KT2440. Environ Microbiol 4(12): 912-5. 

Reva ON, Weinel C, Weinel M, Böhm K, Stjepandic D, Hoheisel JD, Tümmler B. (2006) Functional 

genomics of stress response in Pseudomonas putida KT2440. J Bacteriol 188: 4079-92. 

Sánchez-Hevia DL, Yuste L, Moreno R, Rojo F. (2018) Influence of the Hfq and Crc global regulators on 

the control of iron homeostasis in Pseudomonas putida. Environ Microbiol 20(10): 3484-3503.  

Sudarsan S, Dethlefsen S, Blank LM, Siemann-Herzberg M, Schmid A. (2014) The functional structure 

of central carbon metabolism in Pseudomonas putida KT2440. Appl Environ Microbiol 80(17): 5292-

303. 

Tsipa A, Koutinas M, Vernardis SI, Mantalaris A. (2017) The impact of succinate trace on pWW0 and 

ortho-cleavage pathway transcription in Pseudomonas putida mt-2 during toluene biodegradation. 

Bioresour Technol 234: 397-405.  

Valentini M, García-Mauriño SM, Pérez-Martínez I, Santero E, Canosa I, Lapouge K. (2014) 

Hierarchical management of carbon sources is regulated similarly by the CbrA/B systems in 

Pseudomonas aeruginosa and Pseudomonas putida. Microbiology 160: 2243-52.  

van der Werf MJ, Overkamp KM, Muilwijk B, Koek MM, van der Vat BJ, Jellema RH, et al. (2008) 

Comprehensive analysis of the metabolome of Pseudomonas putida S12 grown on different carbon 

sources. Mol Biosyst 4: 315-27. 

Wehrmann M, Berthelot C, Billard P, Klebensberger J. (2018) The PedS2/PedR2 Two-Component 

System Is Crucial for the Rare Earth Element Switch in Pseudomonas putida KT2440. mSphere 3(4). 

Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, van der Lelie D. (2011) Comparative genomics and 

functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35(2): 

299-323. 

This article is protected by copyright. All rights reserved.



Yuste L, Hervás AB, Canosa I, Tobes R, Jiménez JI, Nogales J, et al. (2006) Growth phase-dependent 

expression of the Pseudomonas putida KT2440 transcriptional machinery analysed with a genome-

wide DNA microarray. Environ Microbiol 8(1): 165-77. 

This article is protected by copyright. All rights reserved.



Figure Legend 

Figure 1. Principal component analysis of the profiles of 147 metabolites of P. putida KT2440 and 

isogenic transposon mutants grown in M9 mineral medium supplemented with 15 mM succinate at 

10°C and 30°C. The evaluation was based on normalized logarithmically transformed mean peak 

areas of two biological replicates independently processed at least in triplicate (see Supplementary 

Information for experimental details). 

Figure 2. Heatmap presentation of the metabolic profiles of P. putida KT2440 and isogenic 

transposon mutants. The figure depicts hierarchical clustering of the normalized logarithmically 

transformed mean peak areas of the 147 commonly detected metabolites.  

Table 1. Concentrations [µg/g dry weight] of the 20 most abundant metabolites in KT2440 wild 

type and mutant strains at 10°C and 30°C. Data are normalized to 100% ribitol as internal standard. 
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Metabolite KT2440 wt cbrA::Tn5 cbrB::Tn5 pcnB::Tn5 vacB::Tn5 bipA::Tn5 

 

30°C 10°C 30°C 10°C 30°C 10°C 30°C 10°C 30°C 10°C 30°C 10°C 

glutamic acid 105.5 151.9 108.0 346.8 93.6 160.7 126.0 389.0 165.2 347.8 155.7 347.2 

ribitol 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

putrescine 12.1 7.5 9.5 14.4 10.7 9.4 21.7 26.6 31.9 30.5 18.1 22.7 

palmitic acid 11.3 7.8 17.2 17.2 11.3 16.8 34.2 30.5 37.4 35.7 43.8 51.3 

pyruvic acid 11.1 10.8 0.3 1.5 0.5 0.7 1.0 0.0 0.0 0.0 0.3 0.0 

glucose 6-phosphate 9.8 33.3 5.6 70.7 1.1 7.8 2.6 57.9 8.3 97.9 7.3 94.5 

lactic acid 9.5 17.3 10.2 19.1 3.2 7.0 7.9 20.0 3.1 12.5 2.4 16.8 

valine 9.1 73.1 13.5 100.4 6.4 4.7 31.4 241.6 47.9 186.7 26.4 190.7 

beta-alanine 8.6 2.1 9.0 3.8 5.6 1.7 6.9 5.5 11.2 7.6 9.0 5.0 

aspartic acid 7.5 10.9 7.1 31.8 3.6 11.9 15.9 51.4 19.7 24.9 16.9 65.0 

benzoic acid 5.5 1.1 3.0 0.7 0.1 0.3 0.7 1.3 1.5 1.8 2.0 0.9 

alanine 5.4 13.2 17.2 29.3 10.8 8.1 25.5 69.6 23.0 60.0 18.0 66.3 

1-pyrroline-3-hydroxy-5-
carboxylate 5.1 6.9 3.7 16.1 3.1 4.6 9.7 33.1 7.8 17.7 9.0 24.9 

oxalic acid 4.4 3.2 6.7 8.0 3.0 6.1 4.4 4.6 20.5 19.9 10.3 13.1 

fructose 6-phosphate 4.2 21.7 1.5 26.3 0.2 2.1 0.5 12.9 2.4 45.2 2.1 47.6 

glycine 4.0 3.7 1.9 4.2 1.1 3.1 44.0 7.3 6.2 9.4 4.6 10.9 

phosphoric acid 3.7 5.2 55.6 93.5 26.8 51.9 135.9 82.5 83.0 100.9 103.2 84.6 

N-acetylglutamic acid 3.7 4.4 1.2 7.1 0.3 1.9 4.6 8.8 8.6 5.3 4.1 10.0 

threonine 3.0 4.1 3.4 7.4 2.6 2.1 4.7 14.8 6.2 13.0 7.3 16.1 

glycerol 3-phosphate 2.9 3.2 1.5 3.0 0.8 1.5 3.0 5.2 2.5 4.5 1.7 4.5 

lysine 2.8 1.5 3.4 3.0 2.0 1.7 7.1 11.4 6.7 15.5 6.3 11.3 

succinic acid 2.5 3.7 1.3 2.8 0.5 1.0 2.2 4.9 3.1 4.3 2.0 4.9 

glutamine 2.5 3.3 1.3 10.5 0.5 1.9 2.4 18.2 4.1 18.7 1.4 20.3 

mannose 6-phosphate 2.4 6.2 1.0 11.8 0.1 1.1 0.2 4.7 1.5 21.1 1.3 15.3 
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