
PhD-FSTC-2019-62
The Faculty of Science, Technology and Communication

Dissertation

Defense held on the 13th September 2019 in Luxembourg

to obtain the degree of

Docteur de l’Université du Luxembourg

en Informatique

by

Thierry Titcheu Chekam
Born on 22nd September 1988 in Yaoundé (Cameroon)

Assessment and Improvement of the
Practical Use of Mutation for
Automated Software Testing

Dissertation Defense Committee

Dr. Yves Le Traon, Dissertation Supervisor
Professor, University of Luxembourg, Luxembourg

Dr. Jacques Klein, Chairman
Assistant Professor, University of Luxembourg, Luxembourg

Dr. Mike Papadakis, Vice Chairman
Research Scientist, University of Luxembourg, Luxembourg

Dr. Serge Demeyer
Professor, University of Antwerp, Belgium

Dr. Paolo Tonella
Professor, Università della Svizzera Italiana, Switzerland



ii



To my Lord Jesus Christ and my family.



iv



Abstract

Software testing is the main quality assurance technique used in software engineering. In fact,
companies that develop software and open-source communities alike actively integrate testing into
their software development life cycle. In order to guide and give objectives for the software testing
process, researchers have designed test adequacy criteria (TAC) which, define the properties of a
software that must be covered in order to constitute a thorough test suite. Many TACs have been
designed in the literature, among which, the widely used statement and branch TAC, as well
as the fault-based TAC named mutation. It has been shown in the literature that mutation is
effective at revealing fault in software, nevertheless, mutation adoption in practice is still lagging
due to its cost.

Ideally, TACs that are most likely to lead to higher fault revelation are desired for testing and,
the fault-revelation of test suites is expected to increase as their coverage of TACs test objec-
tives increase. However, the question of which TAC best guides software testing towards fault
revelation remains controversial and open, and, the relationship between TACs test objectives’
coverage and fault-revelation remains unknown. In order to increase knowledge and provide
answers about these issues, we conducted, in this dissertation, an empirical study that evaluates
the relationship between test objectives’ coverage and fault-revelation for four TACs (statement,
branch coverage and, weak and strong mutation). The study showed that fault-revelation in-
crease with coverage only beyond some coverage threshold and, strong mutation TAC has highest
fault revelation.

Despite the benefit of higher fault-revelation that strong mutation TAC provide for software
testing, software practitioners are still reluctant to integrate strong mutation into their software
testing activities. This happens mainly because of the high cost of mutation analysis, which is
related to the large number of mutants and the limitation in the automation of test generation
for strong mutation.

Several approaches have been proposed, in the literature, to tackle the analysis’ cost issue of
strong mutation. Mutant selection (reduction) approaches aim to reduce the number of mutants
used for testing by selecting a small subset of mutation operator to apply during mutants gen-
eration, thus, reducing the number of analyzed mutants. Nevertheless, those approaches are not
more effective, w.r.t. fault-revelation, than random mutant sampling (which leads to a high loss
in fault revelation). Moreover, there is not much work in the literature that regards cost-effective
automated test generation for strong mutation. This dissertation proposes two techniques, FaRM
and SEMu, to reduce the cost of mutation testing. FaRM statically selects and prioritizes mu-
tants that lead to faults (fault-revealing mutants), in order to reduce the number of mutants
(fault-revealing mutants represent a very small proportion of the generated mutants). SEMu
automatically generates tests that strongly kill mutants and thus, increase the mutation score
and improve the test suites.

First, this dissertation makes an empirical study that evaluates the fault-revelation (ability to lead
to tests that have high fault-revelation) of four TACs, namely statement, branch, weak mutation
and strong mutation. The outcome of the study show evidence that for all four studied TACs,
the fault-revelation increases with TAC test objectives’ coverage only beyond a certain threshold
of coverage. This suggests the need to attain higher coverage during testing. Moreover, the study
shows that strong mutation is the only studied TAC that leads to tests that have, significantly,
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the highest fault-revelation.

Second, in line with mutant reduction, we study the different mutant quality indicators (used
to qualify "useful" mutants) proposed in the literature, including fault-revealing mutants. Our
study shows that there is a large disagreement between the indicators suggesting that the fault-
revealing mutant set is unique and differs from other mutant sets. Thus, given that testing aims
to reveal faults, one should directly target fault-revealing mutants for mutant reduction. We also
do so in this dissertation.

Third, this dissertation proposes FaRM, a mutant reduction technique based on supervised ma-
chine learning. In order to automatically discriminate, before test execution, between useful
(valuable) and useless mutants, FaRM build a mutants classification machine learning model.
The features for the classification model are static program features of mutants categorized as
mutant types and mutant context (abstract syntax tree, control flow graph and data/control
dependency information). FaRM’s classification model successfully predicted fault-revealing mu-
tants and killable mutants. Then, in order to reduce the number of analyzed mutants, FaRM
selects and prioritizes fault-revealing mutants based of the aforementioned mutants classification
model. An empirical evaluation shows that FaRM outperforms (w.r.t. the accuracy of fault-
revealing mutant selection) random mutants sampling and existing mutation operators-based
mutant selection techniques.

Fourth, this dissertation proposes SEMu, an automated test input generation technique aiming
to increase strong mutation coverage score of test suites. SEMu is based on symbolic execution
and leverages multiple cost reduction heuristics for the symbolic execution. An empirical eval-
uation shows that, for limited time budget, the SEMu generates tests that successfully increase
strong mutation coverage score and, kill more mutants than test generated by state-of-the-art
techniques.

Finally, this dissertation proposes Muteria a framework that enables the integration of FaRM
and SEMu into the automated software testing process.

Overall, this dissertation provides insights on how to effectively use TACs to test software, shows
that strong mutation is the most effective TAC for software testing. It also provides techniques
that effectively facilitate the practical use of strong mutation and, an extensive tooling to support
the proposed techniques while enabling their extensions for the practical adoption of strong
mutation in software testing.

vi



Acknowledgements

Throughout this thesis, I have received a great deal of support and assistance.

First of all, I am deeply grateful to my supervisor, Prof. Yves Le Traon, for his kindness and
support throughout my thesis. He trusted in my research and gave me valuable feedback for this
dissertation. I am also grateful for the opportunity he gave me to be involved in a few teaching
activities that taught me many things.

I am equally grateful to my daily supervisor, Dr. Mike Papadakis, for his patience, and his
advice, training, guidance, and encouragement. He helped me to have a good direction for my
thesis and showed me how to perform research and present to others. The frequent discussions
we had helped me to get a deeper understanding of software testing.

Of all the people involved in my thesis, I am thankful to my co-authors for their efforts and
feedbacks that contributed to making this thesis stronger. I also want to thank all jury members
for their interest in my research and the time invested for my dissertation.

I am thankful to the National Research Fund (FNR) of Luxembourg for trusting in the initial
ideas that lead to this dissertation by granting the fundings that supported my thesis.

I would like to express my gratitude to all my colleagues from SERVAL (SnT) for all the good
discussions we had and the interesting reading group sessions.

Finally and more personally, I thank my wife, Mrs. Titcheu Videline, for her love, constant
support and patience during my thesis. I also thank both my parents and my brothers and
sisters for their constant encouragement and help. They have been encouraging me ever since I
can remember, and getting to this level of studies has a lot to do with their love and kindness.
I am particularly thankful to my Lord and Savior Jesus Christ who gave me life, peace, health
and strength to start and finish this thesis with joy all through.

Thierry Titcheu Chekam

Luxembourg, Luxembourg, August 2019



viii



Contents

Abstract v

Contents viii

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Software Testing and Mutation Testing . . . . . . . . . . . . . . . . . . . . 2
1.1.2 State of Mutation Testing in Research and Adoption in Practice . . . . . 3

1.2 Challenges of Mutation Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 The added Value of Mutation . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 The Large Number of Mutants . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Mutation Testing Test Automation . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Overview of the Contribution and Organization of the Dissertation . . . . . . . . 6
1.3.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . 8

2 Technical Background and Definitions 11
2.1 Test Adequacy Criteria-based Software Testing . . . . . . . . . . . . . . . . . . . 12
2.2 Mutation Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Mutant Killing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Some Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Mutant Quality Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Symbolic Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Supervised Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Binary Classification problem . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Some Classification Models . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.3 Evaluation techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.4 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Additional Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.1 Average Percentage of Fault Detected . . . . . . . . . . . . . . . . . . . . 20
2.5.2 Statistical Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.3 Effect Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Related Work 23
3.1 Evaluation of Testing Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Mutant Selection and Prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . 25



3.2.1 Useful Mutants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Static Mutant Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Approaches Based on Static and Dynamic Ananlysis . . . . . . . . . . . . 27
3.2.4 Machine learning based approaches . . . . . . . . . . . . . . . . . . . . . . 27
3.2.5 Mutant Reduction Summary . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Automated Tests Input Generation For Mutation Testing . . . . . . . . . . . . . 29
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 An Empirical Evaluation of Test Adequacy Criteria 33
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Test Adequacy Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Statement and Branch Adequacy Criteria . . . . . . . . . . . . . . . . . . 36
4.2.2 Mutation-Based Adequacy Criteria . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Research Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.1 Programs Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.2 CoREBench: realistic, complex faults . . . . . . . . . . . . . . . . . . . . . 38
4.4.3 Test Suites Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.4 Tools for Mutation Testing and Coverage Measurement . . . . . . . . . . 40
4.4.5 Analyses Performed on the Test Suites . . . . . . . . . . . . . . . . . . . . 41

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5.1 RQ1: Clean Program Assumption . . . . . . . . . . . . . . . . . . . . . . 43
4.5.2 RQ2: Fault revelation at higher levels of coverage . . . . . . . . . . . . . . 44
4.5.3 RQ3: Fault Revelation of Statement, Branch, Weak and Strong Mutation 45

4.6 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Mutant Quality Indicators 51
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Mutant Quality Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.1 Unit-based MQIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.2 Set-based MQIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.1 Programs and Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.2 Automated Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.3 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4.1 Prevalence of mutant quality indicator categories . . . . . . . . . . . . . . 56
5.4.2 Relations between mutant quality indicators . . . . . . . . . . . . . . . . . 56
5.4.3 Mutant types and quality indicators . . . . . . . . . . . . . . . . . . . . . 58
5.4.4 Fault classes with no fault revealing mutants . . . . . . . . . . . . . . . . 59
5.4.5 Links between mutant types and fault classes . . . . . . . . . . . . . . . . 60

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Selecting Fault Revealing Mutants 65
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

x



6.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2.2 Mutant Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.3 Mutant Prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.2 Demonstrating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.5.1 Benchmarks: Programs and Fault(s) . . . . . . . . . . . . . . . . . . . . . 79
6.5.2 Automated Tools Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.5.3 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.5.4 Mutant Selection and Effort Metrics . . . . . . . . . . . . . . . . . . . . . 83

6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.6.1 Assessment of killable mutant prediction (RQ1 and RQ2) . . . . . . . . . 84
6.6.2 Assessment of fault revelation prediction . . . . . . . . . . . . . . . . . . . 85
6.6.3 Mutant selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.6.4 Mutant prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.6.5 Experiments with large programs (RQ7) . . . . . . . . . . . . . . . . . . . 96

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.7.1 Working Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.7.2 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.7.3 Representativeness of test subjects . . . . . . . . . . . . . . . . . . . . . . 102
6.7.4 Redundancy between the considered faults . . . . . . . . . . . . . . . . . . 103
6.7.5 Other Attempts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 Killing Stubborn Mutants Via Symbolic Execution 107
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2.1 Symbolic Encoding of Programs . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2.2 Symbolic Encoding of Mutants . . . . . . . . . . . . . . . . . . . . . . . . 112
7.2.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.3 Symbolic Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.4 Killing Mutants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.4.1 Exhaustive Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.4.2 Conservative Pruning of the Search Space . . . . . . . . . . . . . . . . . . 115
7.4.3 Heuristic Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.5 SEMu Cost-Control Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.5.1 Pre Mutation Point: Controlling for Reachability . . . . . . . . . . . . . . 117
7.5.2 Post Mutation Point: Controlling for Propagation . . . . . . . . . . . . . . 118
7.5.3 Controlling the Cost of Constraint Solving . . . . . . . . . . . . . . . . . . 119
7.5.4 Controlling the Number of Attempts . . . . . . . . . . . . . . . . . . . . . 119

7.6 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.6.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.6.2 Test Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.6.3 Employed Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.6.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xi



7.6.5 Experimental Settings and Procedure . . . . . . . . . . . . . . . . . . . . . 123
7.6.6 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.7 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.7.1 Killing ability of SEMu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.7.2 Comparing SEMu with KLEE . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.7.3 Comparing SEMu with infection-only . . . . . . . . . . . . . . . . . . . . . 125

7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8 Built Tools And Frameworks 129
8.1 Mart: A Mutant Generation tool for LLVM Bitcode . . . . . . . . . . . . . . . . 130

8.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.1.2 Mart Mutants Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.1.3 Implementation and Usage . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.2 Muteria: An Extensible and Flexible Multi-Criteria Software Analysis Framework 136
8.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.2.2 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.2.3 Muteria Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.2.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.2.5 Related Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

9 Conclusion 143
9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
9.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Bibliography 149

xii



xiii



xiv



List of Abbreviations

APFD Average Percentage of Faults Detected

AUC Area Under Curve

MQI Mutant Quality Indicator

MS Mutation Score

PUT Program Under Test

ROC Receiver Operation Characteristic

RQ Research Question

SDL Statement Deletion

TAC Test Adequacy Criterion

TCE Trivial Compiler Equivalence



xvi



List of Figures

1.1 Process of Test Adequacy Criteria-based Software testing (adapted from Introduc-
tion to Software Testing [AO16]) . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Issues addressed in this dissertation. . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Organization of the dissertation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Program Mutation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Symbolic execution and test input generation. . . . . . . . . . . . . . . . . . . . . 16

2.3 Supervised machine learning binary classification workflow. The top sub-figure
illustrates the training phase and the bottom sub-figure illustrates the testing
phase (class prediction). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 The test pool with overall coverage score values. . . . . . . . . . . . . . . . . . . . 40

4.2 RQ1: Comparing the “Faulty” with the “Clean” (‘Fixed’) programs. Our results
show that there is statistically significant difference between the coverage values
attained in the “Faulty” and “Clean” programs (subfigure 4.2a) with effect sizes
that can be significant (subfigure 4.2b). . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Fault coupling in the ‘Faulty’ and ‘Clean’ versions. . . . . . . . . . . . . . . . . . 45

4.4 Fault Revelation of the studied criteria for the highest 5% coverage threshold and
test suite size of 7.5% of the test pool. . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Fault coupling between the studied criteria. . . . . . . . . . . . . . . . . . . . . . 47

5.1 Relations between different mutant quality indicators. . . . . . . . . . . . . . . . 61

5.2 Types of mutants involved in the mutant quality indicator categories. . . . . . . . 62

5.3 Ratio of mutants involved in quality indicator categories per mutant type. . . . . 63

5.4 Ratio of faulty versions with fault revealing mutants (among all faults of the same
type) per fault class and mutant type. . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 Faulty versions (see Table 5.1) without fault revealing mutants (ratios) . . . . . . 64

6.1 Fault revealing mutant selection. Contrast between sufficient mutant set selection
and fault revealing mutant selection. Sufficient mutant set selection aims at select-
ing a minimal subset of mutants that is killed by tests that also kill the whole set
of mutants. Fault revealing mutant selection aims at selecting a minimal subset of
mutants that is killed by tests that reveal the same underlying faults as the tests
that kill the whole set of mutants. . . . . . . . . . . . . . . . . . . . . . . . . . . 69



LIST OF FIGURES

6.2 Overview of the FaRM approach. Initially, FaRM applies supervised learning
on the mutants generated from a corpus of faulty program versions, and builds
a prediction model that learns the fault revealing mutant characteristics. This
model is then used to predict the mutants that should be used to test other
program versions. This means that at the time of testing and prior to any mutant
execution, testers can use and focus only on the most important mutants. . . . . 70

6.3 Example of mutant ranking procedure by FaRM*. the ranking is a concatenation
of the ranked predicted killable mutants and the ranked predicted equivalent mutants. 75

6.4 Example program where mutation is applied. The C language comments on each
line show the number of mutants generated on the line. . . . . . . . . . . . . . . . 78

6.5 (a) An example of mutant M from the example program from Figure 6.4, (b) the
abstract syntax tree of the mutated statement and (c) the control flow graph of
the function containing the mutated statement. . . . . . . . . . . . . . . . . . . . 78

6.6 Distribution of Codeflaws Benchmark problems by number of implementations. . 80
6.7 Distribution of Codeflaws Benchmark faulty programs by number of lines of code

changed to fix the fault. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.8 Receiver Operating Characteristic For Killable Mutants Prediction on Codeflaws 85
6.9 Receiver Operating Characteristic For Fault Revealing Mutants Prediction on

Codeflaws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.10 Information Gain distributions of ML features on Codeflaws . . . . . . . . . . . . 86
6.11 Fault revelation of the mutant selection strategies on Codeflaws. All three FaRM

and FaRM* sets outperform the random baselines. . . . . . . . . . . . . . . . . . 88
6.12 Proportion of SDL and E-SELECTIVE mutants among all mutants for Codeflaws

subjects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.13 Fault revelation of FaRM compared with SDL on Codeflaws. FaRM sets outper-

form the SDL selection. Approximately 2% (number of SDL mutants) of all the
mutants are selected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.14 Fault revelation of FaRM compared with E-Selective on Codeflaws. Approxima-
tively 38% (number of E-Selective mutants) of all the mutants are selected. . . . 90

6.15 Fault revelation of FaRM compared with E-Selective for selection size 5% of all
mutants. FaRM and FaRM* sets outperform E-Selective selection. . . . . . . . . 90

6.16 Fault revelation of FaRM compared with E-Selective for selection size 15% of all
mutants. FaRM sets outperform E-Selective selection. . . . . . . . . . . . . . . . 90

6.17 APFD measurements considering all mutants for the selected mutants cost metric
for Codeflaws. The FaRM prioritization outperform the random baselines. . . . . 91

6.18 APFD measurements considering only killable mutants for the selected mutants
cost metric on Codeflaws. The FaRM prioritization outperform the random base-
lines, independent of non-killable mutants. . . . . . . . . . . . . . . . . . . . . . . 92

6.19 Mutant prioritization performance in terms of faults revealed (median case) for
the selected mutants cost metric on CodeFlaws. The x-axis represent the number
of considered mutants. The y-axis represent the ratio of the fault revealed by the
strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.20 Execution cost of prioritization schemes . . . . . . . . . . . . . . . . . . . . . . . 93
6.21 APFD measurements for the required tests cost metric on Codeflaws. The FaRM

prioritization outperform the random baselines. . . . . . . . . . . . . . . . . . . . 94

xviii



LIST OF FIGURES

6.22 Required tests prioritization performance in terms of faults revealed (median case)
on CodeFlaws. The x-axis represent the number of considered tests. The y-axis
represent the ratio of the fault revealed by the strategies. . . . . . . . . . . . . . 94

6.23 APFD measurements considering all mutants. The FaRM prioritization outper-
form the defect prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.24 Mutant prioritization performance in terms of faults revealed (median case) on
CodeFlaws. The x-axis represent the number of considered mutants. The y-axis
represent the ratio of the fault revealed by the strategies. . . . . . . . . . . . . . 96

6.25 FaRM performance in terms of faults revealed (median case) on CoREBench con-
sidering all mutants. The x-axis represent the number of considered mutants,
while the y-axis represent the ratio of the fault revealed by the strategies. . . . . 97

6.26 FaRM performance in terms of faults revealed (median case) on CoREBench con-
sidering only killable mutants. The x-axis represent the number of considered
mutants, while the y-axis represent the ratio of the fault revealed by the strategies. 97

6.27 Mutation score (median case) on CoREBench. The x-axis represent the number
of considered mutants, while the y-axis represent the mutation score attained by
the strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.28 Subsuming Mutation score (median case) on CoREBench. The x-axis represent
the number of considered mutants, while the y-axis represent the subsuming mu-
tation score attained by the strategies. . . . . . . . . . . . . . . . . . . . . . . . . 98

6.29 Ratio of equivalents (median case) on CoREBench. The x-axis represent the num-
ber of considered mutants, while the y-axis represent the proportion of equivalent
mutants selected by the strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.30 APFDmeasurements on CoREBench for the required tests cost metric. The FaRM
prioritization outperform the random baselines. . . . . . . . . . . . . . . . . . . . 99

6.31 Required tests prioritization performance in terms of faults revealed (median case)
on CoREBench. The x-axis represent the number of considered tests. The y-axis
represent the ratio of the fault revealed by the strategies. . . . . . . . . . . . . . 100

6.32 Correlations between mutants and faults in three defect datasets. Similar corre-
lations are observed in all three cases suggesting that Codeflaws provides good
indications on the fault revealing ability of the mutants. . . . . . . . . . . . . . . 102

6.33 CoREBench results on similar (repeatedIDs) and dissimilar (Non-RepeatedIDs)
implementation. We observe similar trend in both cases suggesting a minor or no
influence of code similarity on FaRM performance. . . . . . . . . . . . . . . . . . 103

7.1 Example. The rounded control locations represent conditionals (at least 2 possible
transition from them). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Example of Symbolic execution for mutant test generation. After control location
9, the symbolic execution on the original program contains transition 9→ 10 with
n = x while the symbolic execution of the mutant M2 contains transition 9→ 10

with n = x+ 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

xix



LIST OF FIGURES

7.3 Illustration of SEMu cost-control parameters. Subfigure (a) illustrates the Precon-
dition Length where the green subtree represents the candidate paths constrained
by the precondition (the thick green path prefix is explored using seeded sym-
bolic execution). Subfigure (b) illustrates the Checkpoint Window (here CW is
2). Subfigure (c) illustrates the Propagation Proportion (here PP is 0.5) and the
Minimum Propagation Depth (here if MPD is 1 the first test is generated, for
unterminated paths, from Checkpoint 1 ). . . . . . . . . . . . . . . . . . . . . . . . 117

7.4 Size of the test subjects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.5 Comparing the stubborn mutant killing ability of SEMu, KLEE and the infection-

only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.6 Comparing the mutant killing ability of SEMu and KLEE in per program basis. . 126
7.7 Comparing the mutant killing ability of SEMu and infection-only in per program

basis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.1 LLVM bitcode mutation process of Mart. The rounded edges rectangles with dou-
ble border lines represent LLVM bitcode files. The square edge rectangles represent
the steps of the mutation process. Each step is implemented by a component of
Mart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.2 Example of bitcode mutation by Mart. Sub-figure (a) is an example of a mutation
operators configuration description in a simple description language. Sub-figure
(b) illustrates an example of code mutation; the second fragment in the original
code is replaced by a mutant fragment. Sub-figure (c) presents an example of the
mutation using the configuration of (a). . . . . . . . . . . . . . . . . . . . . . . . 132

8.3 Mutant operators description language syntax diagram . . . . . . . . . . . . . . . 135
8.4 Test Adequacy Criteria (TAC) based software analysis process (adapted from Of-

fut’s “Two mutation processes” [Off11]). The Process 1 is adapted from the “Tra-
ditional process” and Process 2 from the “Post-Mothra Process” . . . . . . . . . . 138

8.5 Architecture of Muteria framework. The components with black rectangle provide
interfaces for corresponding tools to connect to the framework. The controller
enable the integration. All components are accessible by the users through the
framework API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.6 report of software analysis with Muteria. . . . . . . . . . . . . . . . . . . . . . . . 141

xx



List of Tables

2.1 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Summary of previous studies on the relationship of test criteria and faults. . . . . 24

4.1 The subject programs used in the experiments. For each of them, the number of
test cases (TC), their size in lines of code and number of considered faults are
presented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 The influence of coverage thresholds on fault revelation for test suite size 7.5% of
the test pool. All the coverage levels below the highest 20% are not significant.
Sub-table (a) records fault revelation at highest x% coverage levels and sub-table
(b) the results of a comparison of the form “rand” (randomly selected test suites)
VS “highest x%” (test suites achieving the highest x% of coverage), e.g., for Branch
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Chapter

1
Introduction

This Chapter presents the context and challenges of this dissertation. First, the general princi-
ples of software testing and mutation testing in particular are set, then, the challenges of using
mutation testing in practice, addressed in this dissertation, are presented.

Chapter content
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Software Testing and Mutation Testing . . . . . . . . . . . . . . . . . . 2

1.1.2 State of Mutation Testing in Research and Adoption in Practice . . . . 3

1.2 Challenges of Mutation Testing . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 The added Value of Mutation . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 The Large Number of Mutants . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Mutation Testing Test Automation . . . . . . . . . . . . . . . . . . . . . 5

1.3 Overview of the Contribution and Organization of the Dissertation 6

1.3.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . 8



1.1. CONTEXT

1.1 Context

This dissertation focuses on software functional white-box testing. In white-box testing, the
internal structures of the program under test are available and used to design the tests. Functional
testing verifies specific functionalities of the programs under test.

1.1.1 Software Testing and Mutation Testing

Software testing. Similarly to most engineering fields, software engineering makes use of quality
control practices to guarantee the quality of developed software. The most widely used software
quality control activity is software testing. The main goals of software testing are to find faults
in the developed software and give confidence on the correctness of the developed software.

Software testing involves, among others, the creation of tests (test suite), the execution of the
created tests against the developed software, and the observation of the program behavior after
the tests’ execution in order to determine its correctness. One key part of software testing is the
creation (design) of the test suites. The quality of software testing depends on the quality of the
created test suites.

Many studies suggest using coverage concepts, such as statement coverage, for testing [Gli+13;
GJG14; IH14; And+06; FI98a]. These coverages concepts are criteria (termed test adequacy
criteria (TAC)) used to measure the quality of test suites and guide testers to design new tests
(by targeting uncovered elements or test objectives).

The general process followed when using TACs for software testing is illustrated in Figure 1.1.
First, The targeted software (program) component is selected and tests are generated to exercise
it. Then, the tests are executed on the program and the TAC coverage of the tests is measured. If
the expected coverage level is not reached, the process execution jump back to the test generation
phase to create additional tests and cover the uncovered test objectives. This is repeated until
the pre-defined coverage threshold is reached. When the pre-defined threshold is reached, the
program is checked for functional correctness and, if the tests reveal faults in the program (tests
"fail"), the faults are fixed (program repaired) and the process is restarted. The whole process
described so far is repeated until the tests do not reveal any fault. When the tests do not reveal
faults or the time budget allocated has elapsed, the process ends and the software under test is
considered tested. We note that this process is the standard way of using TACs to improve the
test suites of software. However, recently, TACs are also used in different ways, as presented by
Petrovic et al. [Pet+18], where TAC test objectives are used, for instance, to help developers
understand the code. In this dissertation we focus on the traditional use od TACs.

Most TACs are based on the structure of the program. A few examples are statement, branch,
block, function, and paths coverage. However, in 1971, Richard Lipton originally proposed a
different TAC based on artificial faults and named Mutation [OU01]. Industrial studies show
that software practitioners find mutation useful to uncover faults in their software [SW09; PI18;
Pet+18].

Mutation testing. Mutation testing refers to the use of Mutation as TAC for software testing.
Mutation attempts to simulate real faults by inserting artificial faults into a program under test.
Those faults are simple syntactic alterations of the program syntax derived from a predefined
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Figure 1.1: Process of Test Adequacy Criteria-based Software testing (adapted from Introduction to
Software Testing [AO16])

set of rules called mutation operators. An example of mutation operator transforms the addition
operation into substraction operation (In a program, a statement such as sum = a + b will be
mutated into sum = a− b). The application of a mutant operator on a compatible code element
results in a new program called mutant (mutant of the program under test; the program under
tests is also called original program). Mutants are the test objectives for Mutation TAC. In order
to create mutants used to test a program, a predefined set of mutation operators are applied
throughout the code of the program under test to create multiple mutants. The creation of
mutants is performed, in an automated manner, by a mutant generation tool, which is a software
that inputs a program and applies a set of mutation operators to create mutants of the input
program.

The mutation, as previously described is called first-order mutation and the mutants are called
first order mutants. When two or more simples syntactic changes are simultaneously induced
into the program under test, the mutation is called higher order mutation and the mutants are
called a higher order mutants. In this dissertation, we focus on first order mutants and use the
terms mutant and mutation to refer to first order mutant and first order mutation, respectively.

When a test execution on the original program differs (at the output) from the test execution on
a mutant program, we say that the mutant is killed by the test (the test objective is covered).
Otherwise, we say that the mutant survives the test. Similarly, when a test execution creates a
difference in program state between the original program and a mutant right after the execution
of the mutated statement, we say that the mutant infects the program state under that test
execution.

1.1.2 State of Mutation Testing in Research and Adoption in Practice

Mutation testing has gained a lot of attention from the software engineering and testing research
community [Pap+19; JH11]. There is an increasing number of research papers related to muta-
tion and many address issues related to the adoption of mutation testing in practice (by software
development companies) [PI18; Pet+18; Del+18]. However, the software industry is somehow
slow to adopt mutation testing into the testing process. This is partially due to (1) the lack of
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Figure 1.2: Issues addressed in this dissertation.

familiarity with mutation testing and the lack of effective, fully integrated mutation toolkits; (2)
the satisfaction with popular and less effective test adequacy criteria; and (3) the challenges of
using mutation testing in practice [SW09; MR16].

1.2 Challenges of Mutation Testing

There are several issues that hinder the adoption of mutation in practice, most of which result
from the challenges of using mutation testing in practice. This section presents the challenges
of mutation testing that we identified as well as the the particular problems that we address in
this dissertation. We show in Figure 1.2 an overview of the challenges of mutation testing that
we identified.

1.2.1 The added Value of Mutation

The aim for software testing is to ensure the quality of the software, in other words, good
test suites should reveal potential faults in a program. One concern about relying on TAC for
software testing is the relationship between the fault revelation and the coverage of test suites.
It is important to know the achieved level of confidence on software quality (or the quantity of
potential fault that can be revealed) when a certain level of coverage is reached by the test suites.
These information would guide practitioners to set the optimal (cost-effective) coverage level for
their testing practices. However, the relationship between attained coverage and fault-revelation
of test suites remains unknown for mutation and other TACs. Furthermore, the question of
which TACs best guide software testing towards fault revelation remains controversial and open,
thus, the benefit of mutation over other TACs is not well established. Most of the studies
conducted in line of these problems make an assumption that we evaluate and prove to be
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unreliable. Therefore, the confidence on the partial knowledge drawn from existing studies is
further reduced. These challenge are addressed in this dissertation.

1.2.2 The Large Number of Mutants

Using mutation testing is a very costly activity due to the large number of mutants generated.
In fact, the number of mutants may easily reach 1,000 in a program having less than 50 lines of
code. Moreover, generating tests to kill mutants is a tedious task for software developers [SW09]
and mutant-test execution can be expensive. The large number of mutants leads to an overhead,
during the test generation and the test execution, for which software companies might not be
willing to spend extra resources. Thus, it is important to reduce the number of mutants early
(prior test generation or execution phase). Within the large number of mutants generated for
mutation testing, a large portion is semantically equivalent to the original program and thus,
need to be removed early. This form a challenge for mutation testing. Among the mutants that
are not equivalent, only a few are valuable for testing purposes. Reducing the generated mutants
set to the valuable mutants is another challenge of mutation testing.

Equivalent mutants. The problem of the equivalent mutants have been partly addressed by
recent approaches such as the Trivial Compiler Equivalence (TCE) [Pap+15] (which reduces the
mutants set by roughly 30%). Nevertheless, the number of non-equivalent mutants is still very
large and there is need for further mutant reduction to ensure the practical use of mutation
testing. Moreover, a technique that successfully selects valuable mutants (regardless of the
mutant quality indicator considered [Pap+15]) also tackles the equivalent mutants problem.
Therefore, the focus now goes to the valuable mutants, which are few.

Valuable mutants. Since the early days of mutation testing, researchers formed many mutant
reduction strategies, such as selective mutation [ORZ93; WM95a] and random mutant selec-
tion [T A+79] to select valuable mutants. However, the lost in fault revelation by those mutant
reduction techniques is still very high. This is partly due to the mutant quality indicator ("use-
fulness" or value metric) used by those techniques to select valuable mutants and the inability
of those approaches to properly make the selection. Thus, there is a need for an approach that
can reduce the number of mutants while retaining a reasonable fault revelation. This challenge
is addressed in this dissertation.

1.2.3 Mutation Testing Test Automation

Manual software testing is tedious. Software companies are leaning toward test automation
which mainly involves automated test generation and automated tests execution. For mutation
testing to receive increasing adoption, there is a need for efficient test automation. Regarding
tests execution, the main objective is to execute the tests, on mutants, in a cost effective manner.
Thus, to efficiently execute multiple tests with multiple mutants. A challenge of mutation testing
regards the efficiency of mutant-tests execution. Regarding the test generation, currently, most
of the test generation is manual and particularly costly for mutation testing [SW09]. In order to
reap the benefits of mutation, practitioners need to aim for tests that kill the mutants that are
not killed by tests generated using testing methods other than mutation testing. These mutants
are harder to kill but important for deep testing. Without a technique that eases the test
generation to kill such mutants, many practitioners will not use mutation testing. Therefore,
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DISSERTATION

another challenge of mutation testing is automated test generation to increase the mutation
coverage score.

Test execution Tackling the challenge of the large number of mutants automatically reduce the
cost of test execution. However, this cost is still very high if all tests need to be executed against
the mutants, separately. Several approaches have been proposed in the literature to reduce the
cost of mutant-test execution [Piz+19]. Kim et al. [KMK13] suggested executing only the tests
that make the mutation infect the program state. Wang et al. [Wan+17] used the concept
of mutant schemata [UOH93] to further reduce the cost of mutant test execution by enabling
shared execution between the mutants. Vercammen et al. [Ver+18] proposed an approach that
reduces the number of tests that need to be executed on each mutant by filtering-out the tests
that are not intended for the method (function) under test. These approaches, coupled with the
use of parallel execution give a satisfactory performance for mutant-test execution in practice.
However, before test execution, the tests need to be designed with the aim of killing mutants, as
long as the expected coverage score threshold is not reached. This is a tedious activity an needs
to be automated.

Test generation Many techniques targeting mutation-based test generation have been pro-
posed [Ana+13; Pap+19]. However, most of these focus on generating test suites from scratch,
by maximizing the number of mutants killed, mainly by either covering the mutants or by target-
ing mutant infection. These techniques often still fail to kill many mutants. Therefore, manual
effort is still highly required in order to build test suites that achieve high mutation coverage
score, which is a costly task for practitioners. The challenge here is to automatically generate
tests that kill additional mutants to improve the test suites for higher coverage. This challenge
addressed in this dissertation.

1.3 Overview of the Contribution and Organization of the Dis-
sertation

This section presents the contributions of this dissertation to address the aforementioned chal-
lenges on mutation testing, and the organization of this dissertation as depicted in Figure 1.3.

1.3.1 Contributions

Following are the contributions of this dissertation.

• An empirical study on mutation and widely used TACs (Chapter 4). We make an
empirical study on the relationship between TAC coverage and fault revelation of test suites
for mutation, statement and branch TACs. The empirical study is conducted on real-world
programs and in a real-world setting. The study shows that the fault revelation increases
with coverage only beyond a certain threshold of coverage and that (strong) mutation
has the highest fault revelation. This suggests to target very high coverage scores when
using mutation testing (and other studied TACs). Furthermore, we study an assumption
(called "clean program assumption") made in previous similar studies and found that the
assumption does not always hold, creating a potential threat to the validity of those studies.
Therefore, based on our empirical study, there is an even stronger motivation to improve
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the practicality of mutation testing (by reducing its cost), given that it is superior in
effectiveness to the most widely used TACs (namely statement and branch coverage) and
proven useful to reveal faults in software. The first step that we take in this cost reduction
quest is to reduce the number of mutant.

• An empirical study on mutant quality indicators for valuable mutants (Chap-
ter 5). We make an empirical study on the agreement between mutant quality indicators
(MQI) found in the literature, including fault-revealing MQI. The aim of the study is to
give an insight into whether there are important differences between the MQIs and what
are their links with fault revelation. Knowing this would guide mutant reduction tech-
niques to target the most appropriate set of mutants. The empirical study is conducted
on a large benchmark of programs and faults and, the results show that all studied MQIs
identify a small subset of mutants (less than 10% of the whole mutants set), suggesting
that targeting a particular MQI mutant set can greatly reduce the number of mutants.
Moreover, there is a large disagreement between the studied MQIs. This suggests that
considering MQIs mutants other than fault-revealing ones as valuable would incur a fault
revelation loss. Therefore, this study suggests to directly target fault revealing mutants for
mutant reduction.

• A mutant reduction technique with high fault revelation (Chapter 6). We present
FaRM, a mutant reduction technique that learns to select and prioritize fault-revealing
mutants. Fault revealing mutants are mutants whose killing lead to the revelation of
potential faults in the program under test. Our studies show that fault revealing mutants
account to less than 5% of the whole mutants set. Successfully selecting fault revealing
mutants can drastically reduce the number of mutants needed to be analyzed (in term
of test generation and execution) and thus reduce the cost of mutation testing. FaRM is
based on supervised machine learning and defines a set of mutant features that are used to
learn the characteristics of fault revealing mutants on existing faulty programs and predict
the fault revealing mutants on (new) programs under test. An evaluation of FaRM on two
benchmarks of faulty C programs show that FaRM outperforms all the existing mutant
selection approaches in term of faults revealed by the selected mutants. The machine
learning classification technique built in FaRM is usable to select killable mutants and
valuable mutants of other MQIs (such as subsuming mutants).

Despite the mutant reduction achieved by FaRM, practitioners also need to generate tests
to kill those mutants (this is a tedious task, especially when thorough testing is needed).
The next step that we take in our quest to reduce the cost of mutation is to automate the
test generation to improve the test suite for higher mutation coverage score.

• An automated test generation technique that targets stubborn mutants (Chap-
ter 7). We present SEMu, an automated test generation tool aiming at killing stubborn
mutants (mutants that survives existing test suites). We target stubborn mutants because
they enable thorough testing of specific software components and killing them would usu-
ally improve the test suites beyond the level that can be achieved by other TACs such
as statement and branch coverage. The stubborn mutants are often harder to kill and
therefore require more effort for manual analysis. Automating the test creation to kill
stubborn mutant would reduce to effort to apply mutation in practice. SEMu enables
such automation by leveraging symbolic execution to kill stubborn mutant. The main idea
is to propagate the program state infection (difference between the original and mutant
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Chapter 2
Background

Mutation Supervised Machine Learning Symbolic Execution

Chapter 3
Related Work

Chapter 4
An Empirical Study on TAC Fault Revelation 

Chapter 5 & 6
Mutants Reduction

Chapter 7
Automated Mutant Killing

Chapter 8
Supporting built Tools

Chapter 9
Conclusion and Future Work

Mutation Testing Cost Reduction

Figure 1.3: Organization of the dissertation.

program) in a cost effective manner to generate tests that kill the stubborn mutants. An
empirical evaluation of SEMu on real-world programs show that SEMu successfully kills
stubborn mutants and outperform existing test generation techniques in number of killed
stubborn mutants.

• A (mutation) TAC testing tool-set (Chapter 8). We present the tools and frame-
works that are built to implement and support the techniques presented in this dissertation,
and enable their use for research and in practice. The built tools are: Mart, a mutant gen-
eration tool for the LLVM [LA04] bitcode, and Muteria, a framework that automate the
mutation testing process by enabling an easy integration of the techniques implemented to
improve the cost of mutation testing.

1.3.2 Organization of the Dissertation

In the remaining of this dissertation, Chapter 2 presents an overview on the concepts and tech-
niques used in this dissertation. Chapter 3 presents the previous work that are related to the
contributions presented in this dissertation. Chapter 4 presents our empirical study that evalu-
ates the relation between test adequacy criteria coverage and fault revelation of test suites, and
shows that mutation is superior to widely used test adequacy criteria. Chapter 5 presents our
empirical study on mutant quality indicators that should be used to define valuable mutants for
mutant reduction. Chapter 6 presents and evaluates FaRM, our approach to tackle the mutant
reduction challenge of mutation testing. Chapter 7 presents and evaluates SEMu, our approach
to tackle the automated test generation challenge of mutation testing. Chapter 8 describes the
tools and frameworks built as the result of this work, to contribute for the adoption of mutation
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testing in practice. Finally, Chapter 9 concludes this dissertation and presents the future work.
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Chapter

2
Technical Background and
Definitions

This Chapter presents the technical background and definitions used in this dissertation.
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2.1. TEST ADEQUACY CRITERIA-BASED SOFTWARE TESTING

2.1 Test Adequacy Criteria-based Software Testing

Test adequacy criteria, or simply test criteria, define the requirements of the testing process.
Thus, they form a set of elements (requirements or objectives) that should be exercised by test
suites [ZHM97]. Goodenough and Gerhart [GG75] define test adequacy criteria as predicates
stating that a criterion captures “what properties of a program must be exercised to constitute
a thorough test, i.e., one whose successful execution implies no errors in a tested program”. As
a result, they guide testers in three distinct ways [ZHM97]; by pointing out the elements (test
objectives) that should be exercised when designing tests, by providing criteria for terminating
testing (when coverage is attained), and by quantifying test suite thoroughness.

The test thoroughness, or test adequacy of a test suite is quantified by measuring the number of
test objectives exercised by the test suite. In particular, given a set of test objectives, the ratio
of those that are exercised by a test suite is called the coverage (see Equation 2.1). A test suite
that manages to exercise all the objectives of a given test adequacy criterion is adequate with
regards to the criterion.

Coverage =
|Exercised Test Objectives|
|All Test Objectives|

(2.1)

2.2 Mutation Testing

2.2.1 General Information

Mutation testing [DLS78] is a test adequacy criterion that sets the revelation of artificial defects,
called mutants, as the requirements of testing. As every test adequacy criteria, mutation assists
the testing process by defining test requirement that should be fulfilled by the designed test
cases, i.e., defining when to stop testing.

Software testing research (including Chapter 4 of this dissertation) has shown that designing tests
that are capable of revealing mutant-faults results in strong test suites that in turn reveal real
faults [FWH97; LPO09; Pap+19; Jus+14] and are capable of subsuming or almost subsuming
all other structural testing criteria [Off+96b; FWH97; AO08].

Mutants form artificially-generated defects that are introduced by making changes to the program
syntax. The changes are introduced based on specific syntactic transformation rules, called
mutation operators. The syntactically changed program versions form the mutant-faults and pose
the requirement of distinguishing their observable behavior from that of the original program.
A mutant is said to be killed, if its execution distinguishes it from the original program. In the
opposite case it is said to be alive.

Figure 2.1 illustrates the creation of mutants from a sample C program. Two mutation operators
are applied on the original program to generate two mutants by mutating the statements at lines
3 and 2. The execution of a test input x = 0 will print "Even - Pos" on the original, "Odd -
Pos" on mutant 1 and "Neg" on mutant 2. Both mutants have an output that is different from
the original program’s output, thus, the test input kills both mutant 1 and mutant 2. However,
the test input x = −1 does not kill mutant 1 but kills mutant 2.
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int func (int x) {
1.    int b = 0;
2.    if (x >= 0) {
3.        b = x / 2;
4.        if (b * 2 == x)
5.        printf(“Even - Pos”);
6.        else 
7.            printf(“Odd - Pos”);
8.    } else {
9.        printf(“Neg”);
10.   }
}

>= → <

/ → +

int func (int x) {
1.    int b = 0;
2.    if (x >= 0) {
3.        b = x + 2;
4.        if (b * 2 == x)
5.        printf(“Even - Pos”);
6.        else 
7.            printf(“Odd - Pos”);
8.    } else {
9.        printf(“Neg”);
10.   }
}

int func (int x) {
1.    int b = 0;
2.    if (x < 0) {
3.        b = x / 2;
4.        if (b * 2 == x)
5.        printf(“Even - Pos”);
6.        else 
7.            printf(“Odd - Pos”);
8.    } else {
9.        printf(“Neg”);
10.   }
}

Original Mutant 2Mutant 1

Mutation Operators

Figure 2.1: Program Mutation.

Mutation quantifies test thoroughness, or test adequacy [DLS78; DO91; FI98b], by measuring
the number of mutants killed by the candidate test suites. In particular, given a set of mutants,
the ratio of those that are killed by a test suite is called mutation score. Although all mutants
differ syntactically from the original program, they do not always differ semantically. This means
that there are some mutants that are semantically equivalent to the original program, while being
syntactically different [OC94; Pap+15]. These mutants are called equivalent mutants [DLS78;
OC94] and have to be removed from the test requirement set. The mutation score is computed
using the Equation 2.2.

Mutation Score =
|Killed Mutants|

|All Mutants| − |Equivalent Mutants|
(2.2)

Mutation score denotes the degree of achievement of the mutation testing requirements [AO08].
Intuitively, the score measures the confidence on the test suites (in the sense that mutation score
reflects the fault revelation ability). Unfortunately, previous research [FWH97] and the study
presented in Chapter 4 of this dissertation show that the relation between killed mutants and
fault revelation is not linear as fault revelation improves significantly only when test suites reach
high mutation score levels.

2.2.2 Mutant Killing

In order to strongly kill the mutantM (created by mutating a program statement s of a program
P), a concrete test input t must satisfy the following 3 criteria (referred in the literature as RIP
model [AO08; DO91; Mor90]):

• Reachability (R). The execution of t on P must reach the program location s that is mutated
to createM.

• Infection (I). The execution of the input t must cause a difference in internal state of P and
M right after the execution of s.

• Propagation (P). The difference of internal states must be propagated through the executions
to the programs outputs.
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2.3. SYMBOLIC EXECUTION

2.2.3 Some Definitions

Definition 2.2.1. (Equivalent mutant). A mutant M of a program P is equivalent if and only
if M is semantically equivalent to P .
Definition 2.2.2. (Duplicate mutants). Two mutants M1 and M2 of a program P are duplicate
if and only if they are semantically equivalent.
Definition 2.2.3. (Killable). A mutant is killable if there exist (it is possible to create) a test
that kills it.
Definition 2.2.4. (indistinguished mutants). Two mutants M1 and M2 of a program P are
indistinguished if and only if any test that kills M1 also kills M2 and vice-versa. Note that this
is not necessarily semantical equivalence as a test may kill the two mutants differently (M1 and
M2 have different outputs which also differ from P ’ output).
Definition 2.2.5. (Subsumption). A mutant M1 subsumes another mutant M2 if and only if
M1 is killable and any test that kills M1 also kills M2.

2.2.4 Mutant Quality Indicators

The mutants generated during mutation testing have various characteristics. Mutants may be
considered as valuable based on specific mutant characteristics. These characteristics are quality
indicators for mutants (more details in Chapter 5). The 3 main mutant quality indicators empha-
sized in this dissertation are fault-revealing, subsuming and stubborn mutant quality indicators.

Fault Revealing are the mutants that are killed only by test cases that reveal a fault. Subsuming
are the mutants that are subsumed only by indistinguished mutant. Stubborn are the mutants
that are resistant to killing by test cases that execute them. Thus hard to infect or propagate.

Testing Requirement. Similarly to the mutation score defined in Equation 2.2, there exist a
mutation score for each mutant quality indicator, which represents the improved test thorough-
ness of mutation with regards to the mutant quality indicator. We represent the mutant quality
indicators mutation scores with the formula in Equation 2.3, where MQI is a mutant quality
indicator (e.g. Subsuming Mutation Score).

MQI Mutation Score =
|Killed MQI Mutants|
|All MQI Mutants|

(2.3)

2.3 Symbolic Execution

Symbolic execution replaces concrete input with symbolic representation of the input domain
and executes the program. When the execution begins, the path condition of the single ex-
ploration path is φ = True. Each non branching statement is symbolically executed by using
symbols (proceeding from the input) in place of concrete values. When a branching statement
is encountered, the branching condition g is evaluated. In case g → True, the then branch is
followed by the execution. In case g → False, the else branch is followed by the execution. If
g 9 True and g 9 false, both the then and else branches are feasible, thus, the execution is
split (forks) into 2 executions (one execution follows each branch). The execution following the
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then branch has the path condition updated as φ := φ∧ g, while the execution following the else
branch has φ := φ ∧ ¬g.

As the symbolic execution advances, the number of paths explored increase. At any point of
the symbolic execution, the paths explored form a tree [Kin76] whose nodes represent control
locations and, each node has an execution state 〈φ, σ〉 made of its path condition φ and symbolic
program state σ (made of control location (representing program counter value) and the symbolic
valuation of variables).

Figure 2.2 illustrates the symbolic execution of a program, followed by a test generation. The
left hand side sub-figure shows a sample C program and, the right hand side sub-figure shows
the complete symbolic execution tree of that program. Each node (box), on the tree, represents
the symbolic execution state (path condition and program state) at the point just before the line
of code represented in the gray circle. The execution goes from the top with a single execution
state. Each execution state is updated after the execution of each line of code and duplicated
at branching statements. Here we have 3 paths. The test input that follow each path can be
generated by solving (with a constraint solver like Z3 [DB08]) the path condition (φ) of the
paths, at the completion of the symbolic execution.

Path explosion. Symbolic execution suffers from the problem of path explosion, which is a
scalability bottleneck of symbolic execution caused by the huge or infinite number of paths that
a program may have. In order to handle the path explosion issue of symbolic execution, several
heuristic have been proposed to reduce the paths explored by the symbolic execution (guide the
symbolic execution).

Any set Π of program paths form a tree that could result from a (guided) symbolic execution.
Such a symbolic execution is restricted at branching statements to follow only the branches
leading to paths contained in Π.

Preconditioned Symbolic execution [Mec+18] is a form of guided symbolic execution where the
initial path condition (at the beginning of the symbolic execution) is set to a specific condition
(pre-condition). The precondition restricts the symbolic execution to only follow a subset of
program paths. The pre-condition can be derived from pre-existing tests and used to reduce the
scalability (path explosion) problem [CS13] of symbolic execution.

Seeded symbolic execution is a form of pre-conditioned symbolic execution that constrain sym-
bolic execution to explore the path followed by some concrete executions called seeds.

2.4 Supervised Machine Learning

Machine learning refers to techniques that use complex models to extract knowledge from existing
data (training) and apply to new data (testing) to make predictions.

Supervised machine learning is a from of machine learning where the data used to train the
models are labeled and the models are used to predict the labels of new data. There exist
two main classes of supervised machine learning, classification models and regression models.
Regression models are used to predict numerical values (e.g. predicting the house price in a
region) while classification models are used to predict the category of the data (e.g. classifying
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int func (int x) {
1.    int b = 0;
2.    if (x >= 0) {
3.        b = x / 2;
4.        if (b * 2 == x)
5.        printf(“Even - Pos”);
6.        else 
7.            printf(“Odd - Pos”);
8.    } else {
9.        printf(“Neg”);
10.   }
11.}

∅:𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝜎𝜎: 𝑥𝑥 = 𝑥𝑥0, 𝑏𝑏 = 02

∅: 𝑥𝑥0 ≥ 0
𝜎𝜎: 𝑥𝑥 = 𝑥𝑥0, 𝑏𝑏 = 03 ∅: 𝑥𝑥0 < 0

𝜎𝜎: 𝑥𝑥 = 𝑥𝑥0, 𝑏𝑏 = 09

∅: 𝑥𝑥0 ≥ 0
𝜎𝜎: 𝑥𝑥 = 𝑥𝑥0, 𝑏𝑏 = 𝑥𝑥0/24
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𝜎𝜎: 𝑥𝑥 = 𝑥𝑥0, 𝑏𝑏 = 𝑥𝑥0/2
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2 ) × 2 ≠ 𝑥𝑥0)
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7

∅: 𝑥𝑥0 ≥ 0 ∧ ((
𝑥𝑥0
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𝜎𝜎: 𝑥𝑥 = 𝑥𝑥0, 𝑏𝑏 = 𝑥𝑥0/2
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Test Generation example
(Solving ∅) 𝑥𝑥0 = 0 𝑥𝑥0 = 1 𝑥𝑥0 = −1

Program

Figure 2.2: Symbolic execution and test input generation.

an email as span or not). This dissertation makes use of classification based supervised learning
models.

2.4.1 Binary Classification problem

A k dimension classification problem is a problem that consists in classifying (labeling) data into
k classes (k ≥ 2). A binary classification problem is a classification problem where k = 2. The
problems tackled, in this dissertation, using supervised machine learning, are binary classification
problems.

Figure 2.3 illustrates the use of supervised machine learning for binary classification. At the
training phase, the training data is used to train the classifier. The training data is made of a
feature matrix and a class label vector. In the feature matrix each row represents a data point
and each column represents a feature. The cell (i, j) represents the value of feature j for the
data point i. The class label vector represents the class label of each data point (positive or
negative class). At the class prediction phase, the class label of new data points are predicted
using the feature matrix of the new data points. The feature vector (row of the feature matrix)
of each data point is input to the (previously trained) classifier which outputs the corresponding
predicted class label.

2.4.2 Some Classification Models

The two classification models evaluated in this dissertation are presented in this subsection.

2.4.2.1 Gradient Boosted Decision Trees

Decision trees are a form of supervised learning that builds models in form of a tree structure.
It breaks down the dataset into smaller subsets while developing an associated decision tree
incrementally. Each non leaf node of the tree represents a decision node. In the process of
constructing decision trees, two metrics are mainly used:
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Classification
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Classifier
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data2
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Class LabelsClassifierTest data

Prediction

TRAINING PHASE

CLASS PREDICTION PHASE

Figure 2.3: Supervised machine learning binary classification workflow. The top sub-figure illustrates
the training phase and the bottom sub-figure illustrates the testing phase (class prediction).

The Entropy calculates the homogeneity of a sample. It decreases as the homogeneity increase.
A sample that is equally divided has the highest entropy.

The Information Gain estimates the information contained in each of the data attributes by
measuring the relative change in entropy with respect to the independent attributes. During the
construction of a decision tree, the attributes are ranked according to their information gain and
the ranking is used for filtering at every node of the tree.

Decision trees easily over-fit to the training data as the number of data attributes (features)
increase and the decision tree becomes deeper.

Ensemble models based on decision tree help to leverage the overfitting of decision trees. They
use multiple learners to solve the classification problem. Gradient Boosted Decision Trees is an
example of ensemble based model that is shown to perform well in practice [CN06].

Gradient boosted decision trees combines multiple small decision trees (weak learners) in order
to reduce bias. the weak learners are organized in a cascading manner where the output of a
weak learner is the input of another. Thus, during prediction, each decision tree predicts the
error of the preceding decision tree to improve (boosting) the error gradient.

2.4.2.2 Deep Neural Networks

Neural networks or more precisely artificial neural networks are a type of machine learning
models inspired by the brain. The models are made of nodes, called neurons, that make com-
putations. Similar to brain neurons which are activated with electric signals, artificial neural
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Table 2.1: Confusion Matrix

Actual
Value

Prediction Outcome
Positive Negative Total

Positive True Positive (TP) False Negative (FN) TP+FN
Negative False Positive (FP) True Negative (TN) FP+TN

Total TP+FP FN+TN

network neurons are activated when their computed values reach a certain threshold.

A neural network is organized into sequential layers which are a set of neurons. neurons of each
layer are connected to all neurons of the next layer and a weight is assigned to each connection
between neurons. The inputs data is represented as a vector of numerical values corresponding
to the dimension of the first layer. The inputs are processed from the first to the last layer
and the computation results are propagated, throughout the network, to the last layer. The
learning (training) phase of a neural network consist in using the training data to assign the
weights between connected neurons. The learned weights are used during testing to compute the
predicted label of new data.

Neural networks that have more than 2 layers are called deep neural networks. Deep neural
network have a broad usage spectrum, including image recognition, text analysis, etc.

2.4.3 Evaluation techniques

It is important to evaluate machine learning classification models to estimate the generalization
of the models on future data. In this regard, there are two categories of model evaluation
techniques:

Holdout. This technique aims to test the model on different data than it was trained on.
Typically, the data is randomly divided into three subset:

(1) The training set which is used to build the classification models.

(2) The validation set which is used to asses the performance of the models during the training
phase. This enable fine tuning of the models’ parameters in order to find the best performing
model.

(3) The test set which is used to asses the likely performance of the models on future (unseen)
data.

Cross validation. This technique randomly partition the data into two subsets: one subset
used to train the models and another one used to evaluate the models. The most common form
of cross validation is k-fold cross validation where the original dataset is partitioned into (user
specified number) k equal size subsamples. k models are trained by iteratively training on k− 1

of the k subsamples and evaluating on the one remaining subsample. Each round of training and
evaluation is called fold. At the end, the model that has median performance is selected for use.
The most used values of k are 5 and 10.
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2.4.4 Performance evaluation

Supervised machine learning classifiers are evaluated by their ability to correctly classify new
data. Binary classifiers often predict the probability of the test data to belong to one of the two
classes called the positive class. In the mutant selection problem addressed in this dissertation,
the mutants of the targeted mutant quality indicator form the positive class. The prediction of a
binary classifier falls into one of the 4 situations presented in the confusion matrix (Table 2.1).
True positive (TP) represents the number of positive class data elements that the classifier
classifies in the positive class. False positive (FP) represents the number of negative class data
elements that the classifier classifies in the positive class. True negative (TN) represents the
number of negative class data elements that the classifier classifies in the negative class. False
negative (FN) represents the number of positive class data elements that the classifier classifies
in the negative class.

The metrics used in this dissertation for the evaluation of classification techniques are the fol-
lowing widely used metrics:

2.4.4.1 Precision, recall and F-Measure

The precision of a binary classifier is the probability that the a new data classified in the positive
class is actually a positive class data. In the evaluation, the precision is approximated statistically
based on the test data with the formula:

Precision = TP/(TP + FP )

The Recall of a binary classifier is the probability that the classifier correctly classify a new
positive class’s data as positive. The recall is also referred to as the sensitivity or true positive
rate (TPR). In the evaluation, the recall is approximated statistically based on the test data
with the formula:

Recall = TP/(TP + FN)

The F-measure or F-score or F1 score of a binary classifier is the harmonic average of the
precision and recall. The F-measure takes values between 0 and 1. higher F-measure means
better classification performance. In the evaluation, the F-measure is calculated as following:

F1 = 2× Precision×Recall
Precision+Recall

2.4.4.2 Receiver Operating Characteristics

The fall-out or false positive rate (FPR) of a classifier is computed using the formula FPR =

FP/(FP + TN).

A well known mean to visualize the performance of a classifier is to plot the FPR against the TPR
at various threshold settings (as binary classifiers returns probabilities, the threshold setting is the
cut-off point to classify data in either class). The resulting curve is called the Receiver Operating
Characteristics (ROC) curve. Each point of the ROC curve has coordinates (FPRi, TPRi) for
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each threshold setting i, where FPRi and TPRi are the FPR and TPR at the threshold setting
i, respectively.

The goal of the ROC curve is to visualize the separability of a model which is summarized by
the area under the ROC curve.

2.4.4.3 Area Under The Curve

The Area Under the ROC Curve (referred in this dissertation as AUC) represents the separability
of a binary classifier. In other words, the AUC is the probability that the classifier ranks a
randomly chosen positive class data higher than a randomly chosen negative class data. AUC
value range between 0 and 1. Higher AUC means better classifier performance.

2.5 Additional Definitions

2.5.1 Average Percentage of Fault Detected

Given a set of artifacts and a set of objectives that should be covered by the artifacts, where each
artifact may cover 0 or many objectives and an objective may be covered by 0 or many artifact,
artifacts prioritization consist in ordering the artifacts to reach higher objectives coverage when
selecting the top k artifacts. In order to evaluate the prioritizations, the cumulated artifacts
coverage curve is plotted. Each point (x, y) of the cumulated artifacts coverage curve is such
that y is the objective coverage of the top-x set of artifacts. The area under the cumulated
artifacts coverage curve gives a value that "scores" an artifacts prioritization.

In the context of software testing, test case prioritization aims to prioritize tests to find potential
faults early. Here, the artifacts are the tests and the objectives are the faults. The cumulated
artifacts coverage curve is called Average Percentage of Faults Detected (APFD) [Hen+16].
Similarly, this dissertation makes use of APFD to score mutants prioritizations. The artifacts
are the mutants and the objectives are faults. A mutant covers an objective (fault) if the mutant
can lead to the fault.

2.5.2 Statistical Test

The empirical studies conducted in this dissertation make use of statistical tests to check that
the values of one sample are higher than the values of another sample (validate or refute the
hypothesis that two sample are not statistically different). The statistical test used in this
dissertation is the Wilcoxon test which is a non-parametric test. The test gives a value (called
p-value) that decides whether the two samples are different based on a specified confidence level
threshold. Lower p-value increase the confidence in the difference between the two sample. The
p-value range from 0 to 1 and the two sample are considered different with statistical significance
when the p-value is less or equal to the confidence level threshold. A commonly used confidence
level threshold for difference is p-value = 0.05.
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2.5.3 Effect Size

In this dissertation, we use the Vargha Delaney effect size Â12 as metric for effect size. Vargha
Delaney effect size [VD00] quantifies the size of the differences (statistical effect size) [AB11;
Woh+00]. The Â12 effect size is simple and intuitive. It measures the probability that values
drawn from one set of data will have a different value to those drawn from another. Â12 = 0.5

suggests that the data of the two samples tend to be the same. Values of Â12 higher than
0.5 indicate that the first dataset tends to have higher values, while values of Â12 lower than
0.5 indicate that the second data set tends to have higher values. Note that the Â12 value is
meaningful only when the is statistical significant difference in the data samples.

2.6 Summary

This chapter presented an overview and the definitions of the the main concepts used in this
dissertation. The next chapter will present the work, from the literature, that are in line with the
problems tackled in this dissertation and, when needed, will contrast them with the contributions
of this dissertation.
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Table 3.1: Summary of previous studies on the relationship of test criteria and faults.

Author(s)

[Reference]
Year

Largest

Sub-

ject

Language
Test

Criterion

Fault

Types
Summary of Primary Scientific Findings

Frankl & Weiss
[FW91; FW93]

’91,
’93

78 Pascal branch, all-uses real faults
Coverage correlates with test effectiveness. All-uses
correlates with test effectiveness, while branch does
not.

Offutt et al.
[Off+96b]

’96 29 Fortran, C all-uses, mutation
seeded
faults

Both all-uses and mutation criteria are effective but
mutation detects more faults.

Frankl et al.
[FWH97]

’97 78
Fortran,
Pascal

all-uses, mutation real faults
Test effectiveness (for both all-uses and mutation
criteria) is increasing at higher coverage levels.
Mutation performs better.

Frankl &
Iakounenko
[FI98a]

’98 5,000 C all-uses, branch real faults
Test effectiveness increases rapidly at higher levels
of coverage (for both all-uses and branch criteria).
Both criteria have similar test effectiveness.

Briand & Pfahl
[BP00]

’00 4,000 C
block, c-uses,
p-uses, branch

simulation
There is no relation (independent of test suite size)
between any of the four criteria and effectiveness

Andrews et al.
[And+06]

’06 5,000 C
block, c-uses,
p-uses, branch

real faults
Block, c-uses, p-uses and branch coverage criteria
correlate with test effectiveness.

Namin &
Andrews [NA09]

’09 5,680 C
block, c-uses,
p-uses, branch

seeded
faults

Both test suite size and coverage influence
(independently) the test effectiveness

Li et al. [LPO09] ’09 618 Java
prime path,

branch, all-uses,
mutation

seeded
faults

Mutation testing finds more faults than prime path,
branch and all-uses test criteria.

Papadakis &
Malevris [PM10a]

’10 5,000 C
Mutant sampling,
1st & 2nd order

mutation

seeded
faults

1st order mutation is more effective than 2nd order
and mutant sampling. There are significantly less
equivalent 2nd order mutants than 1st order ones.

Ciupa et al.
[Ciu+11]

’09 2,600 Eiffel Random testing real faults
Random testing is effective and has predictable
performance.

Wei et al.
[WMO12]

’12 2,603 Eiffel Branch real faults
Branch coverage has a weak correlation with test
effectiveness.

Hassan &
Andrews [HA13]

’13 16,800
C, C++,
Java

multi-Point Stride,
data flow, branch

mutants

Def-uses is (strongly) correlated with test
effectiveness and has almost the same prediction
power as branch coverage. Multi-Point Stride
provides better prediction of effectiveness than
branch coverage.

Gligoric et al.
[Gli+13; Gli+15]

’13,
’15

72,490 Java, C
AIMP, DBB,
branch, IMP,

PCC, statement
mutants

There is a correlation between coverage and test
effectiveness. Branch coverage is the best measure
for predicting the quality of test suites.

Inozemtseva &
Holmes [IH14]

’14 724,089 Java
statement, branch,
modified condition

mutants

There is a correlation between coverage and test
effectiveness when ignoring the influence of test suite
size. This is low when test size is controlled. Also,
different criteria have little impact on the strength
of the correlation.

Just et al.
[Jus+14]

’14 96,000 Java
statement,
mutation

real faults
Both mutation and statement coverage correlate
with fault detection, with mutants having higher
correlation.

Gopinath et al.
[GJG14]

’14 1,000,000 Java
statement, branch,

block, path
mutants

There is a correlation between coverage and test
effectiveness. Statement coverage is the best
measure for predicting the quality of test suites.

This Dissertation
(Chapter 4)

’17 83,100 C
statement, branch,
weak & strong

mutation
real faults

There is a strong connection between coverage
attainment and fault revelation for strong mutation
but weak for statement, branch and weak mutation.
Fault revelation improves significantly at higher
coverage levels.
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CHAPTER 3. RELATED WORK

3.1 Evaluation of Testing Criteria

This section discusses empirical studies related to the evaluation of test adequacy criteria and is
mainly related to Chapter 4.

Table 3.1 summarizes the characteristics and primary scientific findings of previous studies on
the relationship between test criteria and fault revelation. As can be seen, there are three types
of studies, those that use real faults, seeded faults and mutants. Mutants refer to machine-
generated faults, typically introduced using syntactic transformations, while seeded faults refer
to faults placed by humans.

One important concern regards the Clean Program Assumption when using seeded or mutant
faults (see Chapter 4). In principle most of the previous studies that used seeded or mutant faults
assume the Clean Program Assumption as their experiments were performed on the original
(clean) version and not on the faulty versions. This is based on the intuitive assumption that
as artificial faults denote small syntactic changes they introduce small semantic deviations. Our
work (Chapter 4) shows that this assumption does not hold in the case of real faults and thus,
leaves the case of artificial faults open for future research. Though, previous research has shown
that higher order (complex) mutants [PM10a; Off92] are generally weaker than first order (simple)
ones and that they exhibit distinct behaviors [GJG17], which implies that the assumption plays
an important role in the case of artificial faults.

Only the studies of Frankl and Weiss [FW91; FW93], Frankl et al. [FWH97], Frankl and Iak-
ounenko [FI98a], Ciupa et al. [Ciu+11] and Wei et al. [WMO12] does not assume the Clean
Program Assumption. Unfortunately, all these studies have a limited size and scope of their
empirical analysis and only the work of Frankl et al. [FWH97] investigates mutation. Generally,
only three studies (Offutt et al. [Off+96b], Frankl et al. [FWH97] and Li et al. [LPO09]) inves-
tigate the fault revelation question of mutation, but all of them use relatively small programs
and only the work of Frankl et al. [FWH97], uses real faults, leaving open the questions about
the generalizability of their findings.

The studies of Andrews et al. [And+06] and Just et al. [Jus+14] used real faults to investigate
whether mutants or other criteria can form substitutes of faults when conducting test experi-
ments. This question differs from the fault revelation one as it does not provide any answer on
the ability of the test criteria to uncover faults. Also, both these studies make the Clean Program
Assumption and do not control for test suite size.

Overall, although the literature contains results covering a considerable number of test adequacy
criteria, including the most popular (branch, statement and mutation-based criteria), our cur-
rent understanding of these relationships is limited and rests critically upon the Clean Program
Assumption.

3.2 Mutant Selection and Prioritization

Since the early days of mutation testing, researchers realised that the number of mutants is one of
the most important problems of the method. Therefore, several approaches have been proposed
to address this problem. This section discusses work related to mutant reduction and mainly
related to Chapter 6.
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3.2.1 Useful Mutants

Although effective, mutation requires too many mutants making the cost of generating, analysing
and executing them particularly high. Recent studies have shown that only a small number of
mutants is sufficient to represent them [KPM10; ADO14; Pap+16] and that the majority of the
mutants are somehow “irrelevant” to the underlying faults (faults that testers seek for) [Pap+18].
Along these lines, Natella et al. [Nat+13] experimented with fault injection and demonstrated
that up to 72% of injected faults are non representative.

3.2.2 Static Mutant Selection

Static Mutant Selection approaches typically fall into 2 categories: mutant sampling and selective
mutation.

3.2.2.1 Mutant Sampling

Mutant random sampling was one of the first attempts to mutant reduction [Bud80; Acr80].
Random sampling randomly selects a fixed proportion of the generated mutants for analysis,
non-selected mutants are discarded. Random sampling was evaluated by Wong [Won93] who
found that a sampling ratio of 10% results in a test effectiveness loss of approximately 16%
(evaluated on Fortran programs using the Mothra mutation testing system [DeM+88]). More
recently, Papadakis and Malevris [PM10a], using the Proteum mutation testing tool [DMV01],
reported a fault loss on C operators of approximately 26%, 16%, 13%, 10%, 7% and 6% for
sampling ratios of 10%, 20% ..., 60% respectively.

3.2.2.2 Selective Mutation

An alternative approach to reduce the number of mutants is to select them based on their types,
i.e., according to the mutation operators. Mathur [Mat91] introduced the idea of constrained mu-
tation (also called selective mutation), using only two mutation operators. Wong et al. [WM95a]
experimented with sets of operators and found that two operators alone have a test effectiveness
loss of approximately 5%. Offutt et al. [ORZ93; Off+96a] extended this idea and proposed a set
of 5 operators, which had almost no loss on its test effectiveness. This 5 mutation operator set
is considered as the current standard of mutation as it has been adopted by most of the modern
mutation testing tools and used in most of the recent studies [Pap+19].

Many additional selective mutation approaches have been proposed. Mresa and Bottaci [MB99]
defined a selective mutation procedure focused on reducing the number of equivalent mutants,
instead of the number of mutants alone, as done by the studies of Mathur [Mat91] and Offutt et
al. [Off+96a; ORZ93]. They report significant reductions on the numbers of equivalent mutants
produced by the selected operators, with marginal effectiveness loss (evaluated on Fortran with
Mothra). Later, Barbosa et al. [BMV01] defined a selective mutation procedure aimed at
reducing the computational cost of mutation testing of C programs. They found that a set of
10 operators could give almost the same results with the whole set of C operators supported by
Proteum (78 operators). Namin et al. [NAM08] used regression analysis techniques and found
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that a set of 13 mutation operators of Proteum could provide substantial cost execution savings
without any significant effectiveness loss (mutant reductions of approximately 93% are reported.

More recently, researchers have experimented with mutations that involve only mutants dele-
tion [Unt09]. Deng et al. [DOL13] experimented with Java programs and the MuJava mutation
operators [MOK06] and reported reductions of 80% on the number of mutants with marginal ef-
fectiveness losses. Delamaro et al. [DOA14] defined deletion operators for C and reported that
they significantly reduce the number of equivalent mutants, with again marginal effectiveness
losses.

After several years of development of various selective mutation approaches, recent research has
established that literature approaches perform similarly to random mutant sampling. Zhang et
al. [Zha+10b] compared random mutant selection and selective mutation (using C programs and
the Proteum mutation operators) and found that there are no significant differences between the
two approaches. The most recent approach is that of Kurtz et al. [Kur+16a] (using C programs
and the Proteum mutation operators), which also reached the same conclusion (reporting that
mutant reduction approaches, both selective mutation and random sampling, perform similarly).

3.2.3 Approaches Based on Static and Dynamic Ananlysis

Other attempts have explored the identification of the program locations to be mutated. The
key argument in these research directions is that program location is among the most important
factor that determines the utility of the mutants. Sun et al. [Sun+17] suggested selecting
mutants that are diverse in terms of static control flow graph paths that cover them. Gong et al.
[Gon+17] used code dominator analysis in order to select mutants that, when they are covered,
maximize the coverage of other mutants. This work applies weak mutation and attempts to
identify dominance relations between the mutants in a static way.

Petrovic and Ivankovic [PI18] identified the arid nodes (special AST nodes) as a source of in-
formation related to utility of the mutants. Their work uses dynamic analysis (test execution)
combined with static analysis (based on AST) in order to identify mutants that are helpful dur-
ing code reviews. We include such features in our study in Chapter 6 with the hope that they
can also capture the properties of fault revealing mutants. Nevertheless, still as part of future
work it is interesting to see how our features can fit within the objectives of code reviews [PI18].

Mirshokraie et al. [MMP15] used static (complexity) and dynamic (number of executions) anal-
ysis features to select mutants, for JavaScript programs, that reside on code parts that have
low failed error propagation (they are likely to propagate to the program output). Their results
show that more than 93% of the selected mutants are killable, and that more than 75% of the
non-trivial mutants resided in the top 30% ranked code parts.

3.2.4 Machine learning based approaches

Recently, there have been a handful work that use machine learning techniques to reduce the
cost of mutation.
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3.2.4.1 Mutant Selection

The closest studies to ours are the “predictive mutation”, by Zhang et al. [Zha+16; Zha+18;
MCZ19], and the “fault representativeness” of software fault injection by Natella et al. [Nat+13].
Predictive mutation testing attempts to predict the mutants killed for a given test suite without
any mutant execution. It employs a classification model using both static and dynamic features
(both on test suite and the mutants) and achieves remarkable results with an overall 10% error on
the predicted mutation scores. Predictive mutation has a similar goal with our killable mutant
prediction method. Though, predictive mutation assumes the existence of test suites, while
our killable mutant prediction method does not. Nevertheless, our method targets a different
problem, the prediction and prioritization of the important mutants prior to any test execution.
To do so, we use only static features (on the code under test), while predictive mutation heavily
relies on test code and dynamic features [MCZ19], and evaluate our approach using real faults
(instead of mutants).

Natella et al. [Nat+13] proposed removing injected faults to achieve meaningful ‘representative’
results and reduce the application cost of fault injection. This was achieved by employing classi-
fication algorithms that use complexity metrics. This approach has a similar goal with our fault
revealing mutant selection, but in a different context, i.e., it targets emulating fault behaviour
and not fault revelation. Nevertheless, Natella et al. rely on complexity metrics, which in our
case do not seem to be adequate (as we show in RQ6). Still it is interesting to see how our
approach performs in the fault injection context.

Another similar line of work is Evolutionary Mutation Testing (EMT) [DM18]. EMT is a tech-
nique that attempts to select useful mutants based on dynamic features (test execution traces)
and uses them to support test augmentation. EMT learns the most interesting mutation oper-
ators and locations in the code under analysis using a search algorithm and mutant execution
results. Overall, EMT achieve a 45% reduction on the number of mutants. Although EMT aims
at the typical mutant reduction problem (while we aim at the fault revealing one), it can comple-
ment our method. Since EMT performs mutant selections after the mutant-test executions, our
method can provide a much better starting point. Another way to combine the two techniques
is to use the search engine of EMT, together with our features, to refine the mutant rankings.

3.2.4.2 Mutants Prioritization

A different way to reduce the mutants’ number is to rank the live mutants according to their
importance, so that testers can apply customised analysis according to their available budget.
Along these lines, Schuler et al. [SZ13] used the mutants’ impact to rank mutants according to
their likelihood of being killable. Namin et al. [Nam+15] introduced the MuRanker approach.
MuRanker uses three features: the differences that mutants introduce (a) on the control-flow-
graph representation (Hamming distance between the graphs), (b) on the Jimple representation
(Hamming distance between the Jimple codes) and (c) on the code coverage differences produced
by a given set of test cases (Hamming distance between the traces of the programs). Although
our mutant prioritization scheme is similar to these approaches, we target a different problem,
the static detection of valuable mutants. Thus, we do not assume the existence of test suites and
mutants executions. The benefit of not making any such assumptions is that we can reduce the
number of mutants to be analysed by testers, to be generated and executed by mutation testing
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tools.

3.2.5 Mutant Reduction Summary

From the above discussion it should be clear that despite the plethora of the selective mutation
testing approaches, random sampling remains one of the most effective ones. This motivated our
work, which used machine learning techniques and source code features in order to effectively
tackle the problem. Moreover, as most of the methods use only one features, the mutant type,
which according to our information gain results does not have relatively good prediction power,
they should perform poorly. More importantly, our approach differs from the previous work in
the evaluation metrics used. All previous work measured test effectiveness in terms of artificial
faults (i.e., mutant kills or seeded faults found), while we used real faults. We believe that this is
an important difference as our target (dependent variable) is the actual measurement of interest,
i.e., the real fault revelation, and not a proxy, i.e., the number of mutants killed.

3.3 Automated Tests Input Generation For Mutation Testing

Many techniques targeting mutation-based test generation have been proposed [Ana+13; Pap+19].
However, most of these focus on generating test suites from scratch, by maximizing the number
of mutants killed, mainly by either covering the mutants or by targeting mutant infection. In
contrast we aim at deep testing of specific program areas by targeting stubborn mutants that
are hard to propagate.

Papadakis and Malevris [PM11] and Zhang et al. [Zha+10a] proposed embedding mutant related
constraints, called infection conditions, within the meta-programs that inject and control the
mutants in order to force symbolic execution to cover them. As a result, symbolic execution
modules can produce test cases that satisfy the infection conditions and have good chances to
kill the mutants. Although, simple and to some extend effective, these approaches only target
mutant infection, which makes them relatively weak as our results show, i.e., they are similar to
the ’no-propagation’ strategy that we investigate in this Cahpter 7.

To bypasss the abovementioned problem Papadakis and Malevris [PM10b] and Harman et al.
[HJL11] aimed at indirectly handling mutant propagation. The former technique searches sym-
bolically the path space of the mutant programs (after the mutation point), while the later one
searches the input program space defined by the path conditions in order to bypass constraints
not handled by the used solver and to indirectly make the mutants propagate. In contrast our ap-
proach aims at incrementally differentially exploring the path space by considering the symbolic
states and making a relevant exploration.

Panichella et al. [PKT18b] applied search-based testing in order to generate tests for any TAC by
aggregating the multiple test objectives into a single fitness function for single-objective search.
Regarding mutation, they estimate, for each mutant, the state infection and propagation using
distances from the test execution trace to the mutant. Due to the information loss from the
aggregation of multiple objectives, they also propose an approach [PKT18a] based on multiple-
objectives search. However, these approaches do not guarantee the infection and in case of
stubborn mutants, the initial tests might even already maximize the fitness function (because
the initial test suite execute the mutants). Fraser and Zeller [FZ12] and Fraser and Arcuri

29



3.3. AUTOMATED TESTS INPUT GENERATION FOR MUTATION TESTING

[FA15] also applied search-based testing in order to generate mutation-based tests. Their key
advancement was to guide the search by measuring the differences between the test traces of the
original and mutant programs. While such an attempt is potentially powerful, it still fails to
provide the guidance needed in order to trigger such differences. Moreover, search techniques
rely on the ability to execute test cases fast (applied at the unit level), making them less effective
in cases of slow test execution (such as system level testing that we target here). Nevertheless, a
comparison between search-based test generation and symbolic execution falls out of the scope
of this dissertation.

Much of work on testing software patches has also been performed the recent years [Tan+11;
MC12; MC13]. However, most of these methods aim at covering patches and not the program
semantics (behavioural changes). Moreover, these techniques target the general patch testing
problem, which in a sense assume very few patches with many changes. The mutation case
though involves many mutants, which are small syntactic deviations, facts that our method
takes advantage in order to optimize the mutant killings.

Differential symbolic execution [Per+08] aims at reasoning about semantic differences of program
versions, but since it performs a whole program analysis it can experience significant scalability
issues when considering large programs and multiple mutants. Directed incremental symbolic
execution [Per+11] guides the symbolic exploration through static program slicing. Such a
method can be imprecise due to the static nature of slicing and expensive when used with many
mutants. Nevertheless, program slicing could be used to further guide our appraoch towards the
relevant mutant exploration space.

Partition-based regression verification [BSR13] employs random testing and dynamic symbolic
execution to identify partitions of the input space that when sampled can reach and propagat-
ing version differences on the program output. Similarly to the directed incremental symbolic
execution, partition-based verification relies on expensive program whole program executions
and static slicing, which is often imprecise, leading to large execution overheads. Our approach
in contrast does not execute multiple prefixes to reach the mutation points and controls the
exploration on a relatively small/manageable space.

Shadow symbolic execution [PKC16] applies a combined execution on both program versions
under analysis. It relies on analysis a meta-program that is similar to the mutant’s meta-program
in order to take advantage of the common program parts. The major difference with our method
is that we specifically target multiple mutants at the same time, limit the program exploration
through data state comparisons in order to optimize performance. Since shadow targets single
patches and exhaustively searches the path space (after the mutation point) it can experience
scalability issues.

Overall, while many related techniques have been proposed, they have not been investigated in
the context of mutation testing and particularly to target stubborn mutants. Stubborn mutants
are hard to kill and their killing results in test inputs that are linked with corner cases and
increase fault revelation (see Chapter 4).
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3.4 Summary

This chapter presented the work, in the literature, that are related to the contributions of this
dissertation. Overall, this chapter shows that the work in the literature are inconclusive about the
coverage criteria that best guide the testing of software, and the relation between coverage and
fault revelation. Furthermore, the problems of the large number of mutants and automated test
generation for mutation testing remains unhandled. The next chapters present our contributions
to fill the gap in the literature regarding those problems.
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Chapter

4
An Empirical Evaluation of
Test Adequacy Criteria

The relationship between coverage and fault-revelation is not well established. Most previous
studies on coverage criteria rely on the Clean Program Assumption, that a test suite will ob-
tain similar coverage for both faulty and fixed (‘clean’) program versions. This chapter presents
evidence that the Clean Program Assumption does not always hold. Also, a study is conducted
using a robust experimental methodology that avoids this threat to validity, suggesting that strong
mutation testing has the highest fault revelation of four widely-used criteria. The findings also
reveal surprisingly high non-linearity, with the result that fault revelation only starts to increase
once relatively high levels of coverage are attained.

This chapter is based on the work published in the following paper:

• Thierry Titcheu Chekam, Mike Papadakis, Yves Le Traon, and Mark Harman. 2017. An
empirical study on mutation, statement and branch coverage fault revelation that avoids the
unreliable clean program assumption. In Proceedings of the 39th International Conference
on Software Engineering (ICSE 2017), 2017
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4.1. INTRODUCTION

4.1 Introduction

The question of which coverage criterion best guides software testing towards fault revelation
remains controversial and open [Gli+13; GJG14; IH14; And+06; FI98a]. Previous research has
investigated the correlation between various forms of structural coverage and fault revelation us-
ing both real and simulated faults (seeded into the program under test as mutants). Determining
the answer to the test coverage question is important because many software testing approaches
are guided by coverage [CS13; HJZ15; FZ12; PM10a], and the industry standards used by prac-
tising software engineers mandate the achievement of coverage [Rad92; Rei95]. Nevertheless, the
findings of the studies hitherto reported in the literature have been inconclusive, with the overall
result that this important question remains unanswered.

Most previous studies make an important assumption, the veracity of which has not been previ-
ously investigated. We call this assumption the ‘Clean Program Assumption’. The assumption
is that test suites are assessed based on the coverage they achieve on ‘clean’ programs, which do
not contain any known faults. This practice might be problematic when using faulty versions
(in order to check the fault-revealing potential of the test suites) since test suites are assessed on
each of the faulty versions and not the clean program from which (and for which) the coverage
was measured.

Of course, it is comparatively inexpensive (and therefore attractive to experimenters) to use a
single test suite for the clean program, rather than using separate test suites for each of the
faulty versions. However, a test suite that is adequate for the clean program may be inadequate
for some of the faulty versions, while test suites that have been rejected as inadequate for the
clean program may turn out to be adequate for some of the faulty versions. Furthermore, the
coverage achieved by inadequate test suites may differ between the clean version of the program
and each of its faulty versions.

These differences have not previously been investigated and reported upon; if they prove to be
significant, then that would raise a potential threat to the scientific validity of previous findings
that assume the Clean Program Assumption. We investigated this assumption and found strong
empirical evidence that, it does not always hold; there are statistically significant differences
between the coverage measurements for clean and faulty versions of the programs we studied.

Given that we found that we cannot rely on the Clean Program Assumption, we then implemented
a robust methodology, in which the test suite for each test adequacy criteria is recomputed for
each of the faulty versions of the program under test. We studied statement, branch, strong and
weak mutation criteria, using a set of real-world faults, recently made available [BR14], located
in 145,000 lines of C code spread over four different real-world systems.

We used systems with mature test suites, which are augmented by using the popular test data
generation tool KLEE [CDE08] and by hand, to ensure the availability of a high quality pool of
test data, from which to draw test suites. Unfortunately, such a high quality test pool cannot yet
be guaranteed using automated test data generation tools alone, partly because of the inherent
undecidability of the problem, and partly because of the limitations of current tools [LMH09;
Ana+13]. Nevertheless, it is important for us to have such a high quality test pool in order
to allow us to sample multiple test suites related to the faults studied and to achieve different
experimentally-determined levels of coverage we choose, while controlling for test suite size.
Using randomised sampling from the augmented high-quality test pool, we were thus able to
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generate test suites that achieve many different coverage levels, thereby placing coverage level
under experimental control.

Perhaps the most surprising result from our study is that we find evidence for a connection only
between coverage attainment and fault revelation for one of the four coverage criteria: strong
mutation testing. For statement, branch and weak mutation testing, we found no evidence that
increased coverage is connected to increased fault revelation. This is a potentially important
finding, notwithstanding the ‘Threats to Validity’ of generalisation discussed at the end of this
chapter, especially given the emphasis placed on branch coverage by software tools and industrial
standards. While some previous studies have made similar claims (for branch and block coverage
[BP00]), these conclusions were subsequently contradicted [And+06; NA09; Gli+13; Gli+15].

One of the other interesting (and perhaps surprising) findings of our study is that the relation-
ship between strong mutation and fault revelation is not only non-linear, but exhibits a form
of ‘threshold behaviour’. That is, above a certain threshold, we observed a strong connection
between increased coverage and increased fault revelation. However, below this threshold level,
the coverage achieved by a test suite is simply irrelevant to its fault-revealing potential. This
‘threshold observation’ and the apparent lack of connection between fault revelation and state-
ment/branch/weak mutation coverage may go some way to explaining some of the dissimilar
findings from previous studies (and may partially reduce the apparent controversy). According
to our results, any attempt to compare inadequate test suites that fail to reach threshold cov-
erage may be vulnerable to ‘noise effects’; two studies with below-threshold coverage may yield
different findings, even when the experimenters follow identical experimental procedures.

More research is needed in this important area to fully understand this fundamental aspect of
software testing, and we certainly do not claim to have completely answered all questions in this
chapter. We do, however, believe our findings significantly improve our understanding of coverage
criteria, their relationship to each other and to fault revelation. Our primary contributions are
to expose and refute the Clean Program Assumption, and to present the results of a larger-scale
empirical study that does not rest on this assumption. The most important finding from this
robust empirical study is the evidence for the apparent superiority of strong mutation testing
and the observation of threshold behaviour, below which improved coverage has little or no effect
on fault revelation.

4.2 Test Adequacy Criteria

Although there is a large body of work that crucially relies upon test adequacy criteria [Ana+13;
Ber07], there remain comparatively few studies in the literature that address questions related
to actual fault revelation (using real faults) to reliably confirm the coverage-based assessment
of test thoroughness. We therefore, empirically examine the ability of criteria-guided testing in
uncovering faults. We investigate four popular test adequacy criteria; the main two structural
criteria (namely statement and branch testing), and the main two fault-based criteria (namely
weak and strong mutation testing).
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4.2.1 Statement and Branch Adequacy Criteria

Statement testing (aka statement coverage) relies on the idea that we cannot be confident in our
testing if we do not, at least, exercise (execute) every reachable program statement at least once.
This practice is intuitive and is widely-regarded as a (very) minimal requirement for testing.
However, programs contain many different types of elements, such as predicates, so faults may
be exposed only under specific conditions, that leave them undetected by statement adequate test
suites. Therefore, stronger forms of coverage have been defined [ZHM97]. One such widely-used
criteria, commonly mandated in industrial testing standards [Rad92; Rei95] is branch coverage
(or branch testing). Branch testing asks for a test suite that exercises every reachable branch
of the Control Flow Graph of the program. Branch testing subsumes statement testing, which
only asks for a test suite that exercises every node of the graph.

4.2.2 Mutation-Based Adequacy Criteria

Mutation testing deliberately introduces artificially-generated defects, which are called ‘mutants’.
A test case that distinguishes the behavior of the original program and its mutant is said to
‘kill’ the mutant. A mutant is said to be weakly killed [VM97; AO08; PM10a], if the state
of computation immediately after the execution of the mutant differs from the corresponding
state in the original program. A mutant is strongly killed [VM97; AO08; PM10a] if the original
program and the mutant exhibit some observable difference in their output behaviour. Strong
mutation does not subsumes weak mutation because failed error propagation [PM10a; And+14]
may cause state differences to be over-written by subsequent computation.

For a given set of mutants,M , mutation coverage entails finding a test suite that kills all mutants
in M . The proportion of mutants in M killed by a test suite T is called the mutation score of
T . It denotes the degree of achievement of mutation coverage by T , in the same way that the
proportion of branches or statements covered by T denotes its degree of branch or statement
adequacy respectively.

Previous research has demonstrated that mutation testing results in strong test suites, which
have been empirically observed to subsume other test adequacy criteria [AO08]. There is also
empirical evidence that mutation score correlates with actual failure rates [And+06; Jus+14]
indicating that, if suitable experimental care is taken, then these artificially-seeded faults can be
used to assess the fault revealing-potential of test suites.

4.3 Research Questions

Our fist aim is to investigate the validity of the ‘Clean Program Assumption’, since much of
our understanding of the relationships between test adequacy criteria rests upon the validity of
this assumption. Therefore, a natural first question to ask is the extent to which experiments
with faults, when performed on the “clean” (fixed) program versions, provide results that are
representative of those that would have been observed if the experiments had been performed
on the “faulty” program versions. Hence we ask:

RQ1: Does the ‘Clean Program Assumption’ hold?

36



CHAPTER 4. AN EMPIRICAL EVALUATION OF TEST ADEQUACY CRITERIA

Given that we did, indeed, find evidence to reject the Clean Program Assumption, we go on
to investigate the relationship between achievement of coverage and fault revelation, using a
more robust experimental methodology that does not rely upon this assumption. Therefore, we
investigate:

RQ2: How does the level of fault revelation vary as the degree of the coverage attained increases?

Finally, having rejected the Clean Program Assumption, and investigated the relationship be-
tween fault revelation for adequate and partially adequate coverage criteria, we are in a position
to compare the different coverage criteria to each other. Therefore we conclude by asking:

RQ3: How do the four coverage criteria compare to each other, in terms of fault revelation, at
varying levels of coverage?

The answers to these questions will place our overall understanding of the fault-revealing potential
of these four widely-used coverage criteria on a firmer scientific footing, because they use real-
world faults and do not rely on the Clean Program Assumption.

4.4 Research Protocol

Our study involves experiments on mature real-world projects, with complex real faults, devel-
oper, machine-generated and manually-written tests. All these tests yields a pool from which
we sample, to experimentally select different coverage levels, while controlling for test suite size
(number of test cases). Our experimental procedure follows the following five steps:

1. We used CoREBench, a set of real faults that have been manually identified and isolated,
using version control and bug tracking systems in the previous work by Böhme and Roy-
choudhury [BR14]. Böhme and Roychoudhury with the introduction of CoREBench have
created a publicly available set of real-world bugs on which others, like ourselves, can
experiment.

2. We extracted the developer tests for each of the faults in CoREBench.

3. We generated test cases covering (at least partially) all the faults using the state-of-the-art
dynamic symbolic execution test generation tool, KLEE [CDE08; PKC16].

4. We manually augmented the developer and automatically generated test suites that were
obtained in the previous steps. To do so we used the bug reports of the faults and generated
additional test cases to ensure that each fault can potentially be revealed by multiple test
cases from the test pool. The combined effect of Steps 2, 3 and 4 is to yield an overall
test pool that achieves both high quality and diversity, thereby facilitating the subsequent
selection step.

5. We perform statement, branch, weak and strong mutation testing, using multiple subsets
selected from the test pool (constructed in the Steps 2, 3 and 4), using sampling with
uniform probability. Test suites for varying degrees of coverage according to each one of
the four criteria were constructed for all faulty programs, one per fault in CoREBench, in
order to avoid the Clean Program Assumption.
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Table 4.1: The subject programs used in the experiments. For each of them, the number of test cases
(TC), their size in lines of code and number of considered faults are presented.

Program Size Developer TC KLEE TC Manual TC Faults

Coreutils 83,100 4,772 13,920 27 22

Findutils 18,000 1,054 3,870 7 15

Grep 9,400 1,582 4,280 37 15

Make 35,300 528 138 25 18

4.4.1 Programs Used

To conduct our experiments it is important to use real-world programs that are accompanied
by relatively good and mature test suites. Thus, we selected the programs composing the
CoREBench [BR14] benchmark: “Make”, “Grep”, “Findutils”, and “Coreutils”. Their standardized
program interfaces were helpful in our augmentation of the developers’ initial test suites, using
automated test data generation. Furthermore, the available bug reports for these programs were
helpful to us in the laborious manual task of generating additional test cases.

Table 4.1 records details regarding our test subjects. The size of these programs range from 9
KLoC to 83KLoC and all are accompanied by developer test suites composed of numerous test
cases (ranging from 528 to 4,772 test cases). All of the subjects are GNU programs, included
in GNU operating systems and typically invoked from the command line (through piped com-
mands). Grep is a tool that processes regular expressions, which are used for text matching and
searching. The Make program automates the source code building process. Findutils and Core-
utils are each collections of utilities for, respectively, searching file directories and manipulating
files and text for the UNIX shell.

4.4.2 CoREBench: realistic, complex faults

To conduct this study we need a benchmark with real-world complex faults that can be reliably
used to evaluate and compare the four coverage criteria we wish to study. Unfortunately bench-
marks with real errors are scarce. CoREBench [BR14] is a collection of 70 systematically isolated
faults, carefully extracted from the source code repositories and bug reports of the projects we
study.

The most commonly-used benchmarks are the Siemens Suite and the Software Infrastructure
Repository SIR [Hut+94; DER05], but sadly neither can help us to answer our particular chosen
research questions. While the Siemens suite has been widely used in previous studies, the degree
to which generalisation is possible remains limited, because the programs are small, and cannot
truly be said to be representative of real-world systems. The SIR repository overcomes this
limitation, because it contains real-world programs, and is a very valuable resource. Nevertheless,
many of the faults collected for the SIR programs are artificially seeded faults. This repository is
thus less relevant to our study, because we seek to study the relationship between such artificially
seeded faults and real faults as part of our set of research questions.

The CoREBench benchmark we chose to use was built by analysing 4,000 commits, which led to
the isolation and validation (through test cases) of 70 faults [BR14]. Every fault was identified
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by exercising the project commits with validating test cases that reveal the faults. Thus, the
test cases pass on the versions before the bug-introducing commit and fail after the commit.
Also, the test cases pass again after the fixing commit. Further details regarding the benchmark
can be found in the CoREBench paper by Böhme and Roychoudhury [BR14] and also on its
accompanying website1.

When conducting our analyses, we also verified the faulty and fixed versions using both the devel-
oper and additionally generated (either manually or automatically) test cases (details regarding
the test suites we used can be found in Section 4.4.3). As the “faulty” and “fixed” program
versions were mined from project repositories by analysing commits, they had differences that
were irrelevant to the faults we study. While, these were only a few, they could potentially bias
our results because they might arbitrarily elevate the number of program elements to be covered
(due to altered code unrelated to the fault). Thus, we removed this irrelevant code, using the
test suites, as behaviour-preserving indicators, using delta debugging [ZH02] to minimise the
differences between the “faulty” and “fixed” versions.

Finally, we excluded nine faults from our analysis due to technical problems. Faults with
CoREBench identifiers 57 and 58 for the Make program failed to compile in our environment.
Also we had technical problems forming the annotations for (Make) faults with identifiers 64 and
65 and thus, KLEE could not create additional test suites for these faults. Fault 42 of Grep, 33
and 37 of the Findutils and 60, 62 of Make took us so much execution time that we were forced
to terminate their execution after 15 days.

4.4.3 Test Suites Used

The developer test suites for all the projects we studied were composed of approximately 58,131
tests in total. As these were not always able to find the faults (because in this case bugs would
have been noticed before being reported), the authors of CoREBench designed test cases that
reveal them (typically only one test to expose each bug). However, we not only need to expose
the bugs, but also to expose them multiple times in multiple different ways in order to allow our
uniform test suite selection phase to benefit from a larger and more diverse pool from which to
select.

Therefore, to further strengthen the test suites used in our study, we augment them in a two-
phase procedure. In the first phase we used KLEE, with a relatively robust timeout limit of 600
seconds per test case, to perform a form of differential testing [ES07] called shadow symbolic
execution [PKC16], which generates 22,208 test cases. Shadow symbolic execution generates
tests that exercise the behavioural differences between two different versions of a program, in
our case the faulty and the fixed program versions. We guided shadow symbolic execution by
manual annotations to the subject programs that have no side-effects.

Unfortunately, the current publicly available version of the tool KLEE does not yet handle calls to
system directories, i.e., test cases involving system directories, rendering it inapplicable to many
cases of the Findutils and Make programs. Also, due to the inherent difficulty and challenge of
the test data generation problem, we could not expect, and did not find, that KLEE was able to
expose differences between every one of the pairs of original and faulty programs. Therefore, in a
second phase we manually augment the test suites, using the bug reports (following the process

1http://www.comp.nus.edu.sg/~release/corebench/
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of Böhme and Roychoudhury [BR14]), designing 96 additional test cases that reveal (and that
fail to reveal) the bugs. We manually generate tests in all situations where there are either fewer
than five test cases that reveal a given fault or fewer than five that cover the fault but fail to
reveal it, thereby ensuring that all faults have at least five revealing and five non-revealing test
cases.

Our experiments were performed at the system level and involved 323,631 mutants, 53,716
branches and 77,151 statements. Every test exercises the entire program as invoked through
the command line (rather than unit testing, which is less demanding, but vulnerable to false
positives [GFZ12]). As a result, both automated and manual test generation were expensive.
For example, the machine time that was spent on symbolic execution took approximately 1
day, on average, for each studied bug. All the test execution needed for our experiment took
approximately 480 days of computation time to complete (of single-threaded analysis).

Following the recommendations of Xuan et al. [Xua+16] we refactored2 the test cases we used
to improve the accuracy of our analysis. This practice also helps to elevate the performance of
symbolic execution [Gro+16]. Finally, each test ‘case’ is essentially a test input that needs a test
oracle [Bar+15b], in order to determine its corresponding output. Fortunately, in our case, we
have a reliable and complete test oracle: the output differences between the fixed and the faulty
versions.

Overall, the coverage scores levels achieved by the whole test pool are presented in Figure 4.1.

4.4.4 Tools for Mutation Testing and Coverage Measurement

To conduct our experiment we used several tools in additional to the shadow symbolic execution
[PKC16] feature implemented3 on top of KLEE [CDE08]. To measure statement and branch
coverage we used the GNU Gcov utility. To perform mutation, we built a new tool on top of the
Frama-C framework [Kir+15] as existing tools are not robust and scalable enough to be applied
on our subjects. This tool supports both weak and strong mutation, by encoding all the mutants
as additional program branches [PM11; PM12; Bar+15a] (for weak mutation testing), and uses

2Many test cases form a composition of independent (valid) test cases. We split these tests and formed multiple
smaller and independent ones, which preserve their semantics.

3http://srg.doc.ic.ac.uk/projects/shadow/
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Figure 4.1: The test pool with overall coverage score values.
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program wrappers, similar to those used by shadow symbolic execution, that automatically and
precisely record the program outputs (for strong mutation testing).

Our mutation tool reduces the execution cost of strong mutation by checking for strong death,
only those mutants that were already weakly killed [PM10a], since any mutant that is not weakly
killed by a test case cannot be strongly killed, by definition. We also used the recently-published
TCE (Trivial Compiler Equivalence) method [Pap+15] to identify and remove strongly equivalent
and duplicated mutants, detected by TCE.

We use a timeout in order to avoid the infinite loop problem: a mutant may lead to an infinite
loop, which evidently cannot be detectable in general, due to the undecidability of the halting
problem. In this way, we are treating (sufficient difference of) execution time as an observable
output for the purpose of strong mutation testing. Thus, a mutant is deemed to be distinct from
the original program if its execution differs by more than two times the execution of the original
program.

The mutation tool includes the (large and varied) set of mutant operators used in previous
research [Pap+15; And+06; Jus+14]. Specifically, we used mutants related to arithmetic, rela-
tional, conditional, logical, bitwise, shift, pointers and unary operators. We also used statement
deletion, variable and constant replacement.
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(a) p-values for all scores
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(b) Â12-values for all scores

Figure 4.2: RQ1: Comparing the “Faulty” with the “Clean” (‘Fixed’) programs. Our results show that
there is statistically significant difference between the coverage values attained in the “Faulty” and “Clean”
programs (subfigure 4.2a) with effect sizes that can be significant (subfigure 4.2b).

4.4.5 Analyses Performed on the Test Suites

To answer our research questions we performed the following analysis procedure. We constructed
a coverage-mutation matrix that records the statements and branches covered and mutants killed
by each test case of the test pool.

For RQ1 we select arbitrary test sets, execute them in both the fixed (clean) and faulty versions
and measure their coverage and mutation scores. We used the Wilcoxon test to compare these
values. In order to facilitate inferential statistical testing, we repeat the sampling process 10,000
times so that, for each fault and for each coverage criterion, we perform 10,000 testing experi-
ments, each with a different sampled test suite. The Wilcoxon test is a non-parametric test and
thus, it is suitable for samples having unknown distribution [AB11; Woh+00]. The statistical test
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allows us to determine whether or not the Null Hypothesis (that there is no difference between
the test coverage achieved for the clean and faulty versions of the program) can be rejected. If
the Null Hypothesis is rejected, then this provides evidence that the Clean Program Assumption
does not hold.

However, statistical significance does not imply practical significance; even when the assumption
does not hold, if the effect of assuming it is found to be always small, then the pernicious effects
(on previous and potential future experiments) may also be small. Therefore, we also measured
the Vargha Delaney effect size Â12 (Section 2.5.3).

To study further the differences between the faulty and the fixed program versions, we use the
notion of coupling [Jus+14; Off92; PT15]. A fault is coupled with a mutant, statement or
branch if every test that kills the mutant (respectively covers the statement or branch) also
reveals the fault. Thus, if, for example, a statement is coupled with a fault, then every test set
that covers this statement will also reveal this fault. Unfortunately, computing the exact coupling
relations is infeasible since this would require exhaustive testing (to consider every possible test
set). However, should we find that a fault, f remains uncoupled with all mutants, statements
or branches then this provides evidence that the adequacy criterion is not particularly good at
uncovering f . Based on the coupled faults we can provide further evidence related to the Clean
Program Assumption. If we observe many cases were faults are coupled in one version (either
faulty or fixed) while not in the other, then we have evidence against the assumption.

To answer RQ2 and RQ3 we examined the relation between coverage score and fault revelation by
selecting test sets of equal size (number of tests). We thus, select 10,000 suites of sizes 2.5% 5%,
7.5%, 10%, 12.5%, and 15% of the test pool (composed of all developer, machine and manually
generated test cases). Then, for every score, ci, in the range [0, maximum recorded score], we
estimate the average fault revelation rate for all the tests that have coverage values at least ci.
This rate estimates the probability that an arbitrary ci%-adequate test suite detects a fault.

We then compare these fault revelation probabilities for different levels of minimal coverage
attainment. Ideally, we would like to control both test size and coverage across the whole
spectrum of theoretically possible coverage levels (0-100%). However, since coverage and size
are dependent it proved impossible to do this, i.e., large test sizes achieve high coverage, but
not lower, while smaller sizes achieve lower coverage but not higher. Therefore, to perform our
comparisons we record the highest achieved scores per fault we study. For RQ2 we compared
the fault revelation of scores for arbitrary selected test suites with those of the highest 20%,
10%, and 5% coverage attainment (of same size). For RQ3 we compared the fault revelation
of the criteria when reaching each level of coverage in turn. To perform the comparisons we
used three metrics: a Wilcoxon test to compare whether the observed differences are statistically
significant, the Vargha Delaney Â12 for the statistical effect size of the difference and the average
fault revelation differences. Finally, to further investigate RQ3, we also compare the number of
faults that are coupled with the studied criteria according to our test pool.
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Table 4.2: The influence of coverage thresholds on fault revelation for test suite size 7.5% of the test pool.
All the coverage levels below the highest 20% are not significant. Sub-table (a) records fault revelation
at highest x% coverage levels and sub-table (b) the results of a comparison of the form “rand” (randomly
selected test suites) VS “highest x%” (test suites achieving the highest x% of coverage), e.g., for Branch
and highest 20% the Â12 suggests that Branch provides a higher fault revelation in its last 20% coverage
levels in 53% of the cases with average fault revelation difference of 1.4%.

Test Criterion
Av Fault Revelation

highest 20% highest 10% highest 5%

Statement 0.507 0.523 0.541

Branch 0.512 0.530 0.553

Weak Mutation 0.501 0.523 0.541

Strong Mutation 0.551 0.625 0.674

(a) Fault Revelation for Higher Coverage Test-suites

Test Criterion
rand vs. highest 20% rand vs. highest 10% rand vs. highest 5%

p− value Â12 Av diff p− value Â12 Av diff p− value Â12 Av diff

Statement 0.673 0.478 -0.009 0.408 0.456 -0.024 0.230 0.437 -0.041

Branch 0.527 0.467 -0.014 0.374 0.453 -0.031 0.123 0.419 -0.054

Weak Mutation 0.978 0.498 -0.001 0.619 0.474 -0.023 0.388 0.455 -0.041

Strong Mutation 0.163 0.427 -0.054 0.009 0.364 -0.128 0.001 0.334 -0.176

(b) Fault Revelation of Random vs Higher Coverage Test-suites

4.5 Experimental Results

4.5.1 RQ1: Clean Program Assumption

The Clean Program Assumption relies on the belief that the influence of faults on the program
behaviour is small. However, white-box adequacy criteria depend on the elements to be tested
[VM97]. Thus, faulty and clean programs have many different test elements simply because
their code differs. Unfortunately, applying experiments to the clean version does not tell us
what would happen on the program execution (of the same test) of the faulty program versions.
Therefore, we seek to investigate the differences in the coverage scores of test suites when applied
to the clean and the faulty programs.

The results of our statistical comparison (p-values) between the coverage scores obtained from
the faulty and clean programs are depicted in Figure 4.2a. These data show that all measures
differ when applied on the clean rather than the faulty program versions.

These differences are significant (at the 0.05 significance level) for all four criteria and for 86%,
74%, 66% and 60% of the cases for strong mutation, weak mutation, branch and statement
coverage respectively. Strong mutation differences are more prevalent than those of the other
criteria indicating that the Clean Program Assumption is particularly unreliable for this coverage
criterion.
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The results related to the effect sizes are depicted in Figure 4.2b, revealing that large effect sizes
occur on all four criteria. Strong mutation has larger effect sizes than the other criteria, with
some extreme cases having very high or low Â12 values.

One interesting observation from the precedent results is that the faults do not always have the
same effect. Sometimes they decrease and sometimes they increase the coverage scores. It is
noted that the effect sizes with Â12 values higher than 0.5 denote an increase of the coverage,
while below 0.5 denote a decrease. Therefore, the effect of the bias is not consistent and thus,
not necessarily predictable.

To further investigate the nature of the differences we measure the couplings between statements,
branches and mutants with the faults. Figure 4.3 presents a Venn diagram with the number of
coupled faults in the “Faulty” and the “Clean” versions. We observe that 10, 12, 6, and 4 couplings
(represent 16%, 20%, 10% and 7% of the considered faults) are impacted by the version differences
when performing statement, branch, weak mutation and strong mutation testing.

We also observe that for statement, branch, weak and strong mutation, 1, 2, 2, and 2 faults
are coupled only to test criteria elements on the faulty versions, while 9, 10, 4 and 2 faults
only coupled on the clean versions. Interestingly, in the clean versions branch coverage performs
better than weak mutation (couples with 37 faults, while weak mutation with 33), while in the
faulty version it performs worst (couples with 29, while weak mutation with 31). These data,
provide further evidence that results drawn from the two programs can differ in important ways,
casting significant doubts on the reliability of the Clean Program Assumption.

4.5.2 RQ2: Fault revelation at higher levels of coverage

The objective of RQ2 is to investigate whether test suites that reach higher levels of coverage (for
the same test suite size) also exhibit higher levels of fault revelation. To answer this question we
selected 10,000 arbitrary test suites (per fault considered) using uniform sampling so that they
all have the same test size. We then compare their fault revelation with that of the tests suites
that achieve the highest levels of coverage. Thus, we compare with test suites that lie in the top
5%, 10% and 20% of coverage, to investigate different levels of maximal coverage attainment.

Table 4.2 records the results for the controlled test size equal to 7.5% of the test pool, which are
representative of those we attained with the other sizes, i.e., 2.5%, 5%, 10%, 12.5% and 15%.
Overall, our data demonstrate that all criteria do not exhibit any significant improvement in
their fault revelation when considering the threshold of the highest 20% (all p-values are above
the 0.05). This is also true for lower coverage thresholds, i.e., when considering the highest 25%,
30% etc. The fact that the fault revelation differences are not significant indicates that test sets
having coverage values lying within the highest 20% cannot be said to find significantly more
faults than arbitrary test sets of the same size.

The surprising finding is that fault revelation does not improve when test suites achieve the top
20% of the levels of coverage for a given test suite size for any of the four criteria. However, for
strong mutation, and only for strong mutation, we do observe more significant differences when
the top 10% and the top 5% of coverage are attained. Furthermore, for strong mutation, the
average fault revelation rate was 5% higher than the arbitrary test sets (for the highest 20%).
This increases to approximately 13% and 18% when considering the test suites that had the
highest 10% and 5% coverage attainment.
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Figure 4.3: Fault coupling in the ‘Faulty’ and ‘Clean’ versions.

As can also be seen from the results, confining our attention to only the top 10% (and even
the top 5%) levels of coverage attainable for a given test suite size does not produce any such
improvement in fault revelation for the other three criteria. That is, test suites with the higher
10% and higher 5% of coverage attainment for statement, branch and weak mutation in Table
4.2 do not exhibit statistically significantly higher fault revelation than arbitrary test suites of
the same size.

By contrast, test suites that lie within the highest 10% and 5% for strong mutation do achieve
significantly higher fault revelation than arbitrary test suites of the same size. For both the
10% and 5% thresholds, the differences are statistically significant at the 0.05 level, and also
exhibit relatively strong effect sizes (the Vargha Delaney effect size measures, of 0.364 and 0.334
respectively, are noticeably lower than 0.5). Furthermore, at the highest 5% the p-value is lowest
and the effect size largest. This p-value remains significant at the 0.05 level after the (highly
conservative) Bonferroni correction.

Taken together, these results provide evidence that test suites that achieve strong mutation
coverage have higher fault revelation potential than those that do not, while there is no such
evidence for statement, branch and weak mutation. Finally, we notice that relatively high levels
of strong mutation are required (top 10%) for this effect to be observed; below this threshold
level, differences between arbitrary and (partially) strong mutation adequate test suites are
insignificant.

4.5.3 RQ3: Fault Revelation of Statement, Branch, Weak and Strong Muta-
tion

RQ2 compared arbitrary test suites with higher adequacy test suites of the same size for each
coverage criterion. This answered the within-criteria question, for each criterion, of whether
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Table 4.3: Comparing fault revelation for the highest 5% coverage threshold and test suite size of 7.5%
of the test pool.

Criteria comparison p− val Â12 Av Fault Revelation Diff

Strong Mut vs Statement 0.013 0.630 0.134

Strong Mut vs Weak Mut 0.025 0.618 0.122

Strong Mut vs Branch 0.012 0.631 0.134

Weak Mut vs Statement 0.836 0.489 -0.001

Weak Mut vs Branch 0.570 0.470 -0.013

Branch vs Statement 0.722 0.519 0.012

increasing coverage according to the criterion is beneficial. However, it cannot tell us anything
about the differences in the faults a tester would observe between criteria, a question to which
we now turn.

Table 4.3 reports the differences in pairwise comparisons between the four criteria, for test suites
containing 7.5% of the overall pool of test cases available; the same size test suites we used to
answer RQ2. Results for other sizes of test suites are similar, but space does not permit us to
present them all here. We report p-values without correction for multiple statistical testing, since
we are simply interested in the relative differences between each coverage criteria, rather than
determining statistical significance (p-values below some predetermined α-level threshold).

The results from this analysis suggest that there are no significant differences between the fault
revelation achieved by statement, branch and the weak mutation, when compared to one another.
The results also indicate that fault revelation achieved by strong mutation is likely to outperform
all other criteria, i.e., weak mutation, branch and statement coverage. Figure 4.4 visualises these
results (fault revelation of the four criteria and randomly selected test suites) and demonstrate
the superiority of strong mutation over the other criteria.

Finally, Figure 4.5 shows the faults coupled uniquely (and jointly) to each of the four adequacy
criteria. This provides another view of the likely behaviour of test suites that target each of
these coverage criteria with respect to the real-world faults considered. Each region of the Venn
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Figure 4.4: Fault Revelation of the studied criteria for the highest 5% coverage threshold and test suite
size of 7.5% of the test pool.
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Figure 4.5: Fault coupling between the studied criteria.

diagram corresponds to an intersection of different coverage criteria, and the number recorded for
each region indicates the number of faults coupled by the corresponding intersection of criteria.
This allows us to investigate the faults that are uniquely coupled by each criterion, and those
coupled jointly by pairs, triples and quadruples of criteria.

In the fault dataset we study there are 61 faults, 6 are not coupled to any of the criteria and
18 are coupled to all four criteria (the quadruple of criteria region depicted in the centre of the
Venn diagram). It is interesting that all faults coupled by weak mutation are also coupled by
strong mutation, since strong mutation does not subsumes weak mutation. Branch coverage
theoretically subsumes statement coverage, but only when 100% of the feasible branches and
100% of the reachable statements are covered; there is no theoretical relationship between partial
branch coverage and partial statement coverage. Therefore, it is interesting that, for our partially
adequate test suites, all faults are coupled with statement coverage are also coupled with branch
coverage. By contrast, 3 faults coupled to branch coverage are not to weak mutation (one of which
is coupled to strong mutation), while weak mutation has 5 faults coupled that are uncoupled
with branch coverage.

However, differences between statement, branch and weak mutation are relatively small by com-
parison with the differences we observe between strong mutation and the other three criteria.
Indeed, Figure 4.5 provides further compelling evidence for the superiority of strong mutation
testing over the other coverage criteria. As can be seen, 21 faults are uniquely coupled to strong
mutation. That is, 21 faults are coupled to strong mutation that are not coupled to any of the
other criteria (showing that strong mutation uniquely couples to 38% of faults that are coupled
to any of the four criteria). By contrast, each of the other three criteria has no faults uniquely
coupled, and even considering all three together only have two faults that are not coupled to
strong mutation. These faults are only coupled to branch and statement coverage.

4.6 Threats to Validity

As in every empirical study of programs, generalisation remains an open question, requiring
replication studies. We used C utility programs. Programs written in other languages and with
different characteristics may behave differently. All four programs we used are “well-specified,
well-tested, well-maintained, and widely-used open source programs with standardized program
interfaces” [BR14] with bug reports that are publicly accessible. Our results may generalise
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to other well-specified, well-tested, well-maintained, and widely-used open source C programs,
but we have little evidence to generalise beyond this. Additional work is required to replicate
and extend our results, but clearly any future work should either avoid the Clean Program
Assumption or first investigate its veracity for the selected pool of subjects.

Another potential threat to the validity of our findings derives from the representativeness of our
fault data. We used real faults, isolated by Böhme and Roychoudhury [BR14] and used by other
researchers [TR15; PKC16]. Since these faults were found on well-tested widely-used programs,
we believe that they are representative of faults that are hard to find, but further research is
required to test this belief.

The use of automatically generated and manually augmented test suites also poses a threat to
generalisability. While we cannot guarantee the representativeness of this practice, it is desirable
in order to perform experiments involving multiple comparisons that use a good mix of tests
that reveal (and fail to reveal), the faults studied. We control for test suite size and different
levels of achievement of test adequacy, and perform multiple samples of test suites to cater
for diversity and variability. Nevertheless, we cannot claim that the test suites we used are
necessarily representative of all possible test suites.

We restricted our analysis to the system level testing, since the developers’ tests suites were also
system level tests and we used a wide set of mutation operators, included in most of the existing
mutation testing tools, as suggested by previous research [And+06; Jus+14; AO08; Pap+15]. We
view this as an advantage, because, according to Gross et al. [GFZ12], applying testing at the
system level makes robust experimentation that reduces many false alarms raised when applying
testing on the unit level, while focusing on a narrower set of mutation operators would tend to
increase threats to validity. However, this decision means that our results do not necessarily
extend to unit level testing, nor to other sets of mutation operators.

All statements, branches and mutants that cannot be covered (or killed) by any test in our test
pool are treated as infeasible (or as equivalent mutants). This is a common practice in this kind
of experiment [Gli+13; Zha+13; And+06; FI98a], because of the inherent underlying decidability
problem. However, it is also a potential limitation of our study, like others. Furthermore, since
we observe a ‘threshold’ behaviour for strong mutation, it could be that similar thresholds apply
to statement branch and weak mutation criteria, but these thresholds lie above our ability to
generate adequate test suites.

There may be other threats related to the implementation of the tools, our data extraction and
the measurements we chose to apply, that we have not considered here. To enable exploration
of these potential threats and to facilitate replication and extension of our work, we make our
scripts, tools and data available4.

4.7 Conclusions

We present evidence that the Clean Program Assumption does not always hold: there are often
statistically significant differences between coverage achieved by a test suite applied to the clean
(fixed) program and to each of its faulty versions, and the effect sizes of such differences can
be large. These differences are important as they may change the conclusions of experimental

4https://sites.google.com/site/mikepapadakis/faults-mutants
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studies. According to our data, weak mutation is more effective than branch testing in the
faulty programs and less effective in the clean ones. This finding means that future empirical
studies should either avoid the Clean Program Assumption, or (at least) treat it as a potential
threat to the validity of their findings. Note that this affects the empirical studies that involve
techniques that rely on test criteria coverage. The unreliability of the Clean Program Assumption
motivated us to reconsider the relationship between four popular test adequacy criteria and their
fault revelation. We thus reported empirical results based on an experimental methodology that
benefits from enhanced robustness (by avoiding the Clean Program Assumption).

In this study, we provide evidence to support the claim that highest levels of strong mutation
testing yield increased fault revelation, while statement, branch and weak mutation testing enjoy
no such fault revealing ability. Our findings also revealed non-linearity in the relationship between
strong mutation coverage attainment and fault-revealing potential. An important consequence
of this non-linearity is that testers will need to have first achieved a threshold level of coverage
before they can expect to receive the benefit of increasing fault revelation with further increases
in coverage.

Knowing that strong mutation has the highest fault revelation among the studied test adequacy
criteria, the next chapter presents an empirical study that evaluates the various mutant quality
indicators in the literature and their fault revelation.
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Chapter

5
Mutant Quality Indicators

The question of which are the valuable mutants has received little attention in mutation testing
literature. Naturally, the choice of mutants impacts the quality of the performed analysis and has
the potential of changing the conclusions of empirical studies. To this end, in this chapter, we
collect definitions related to mutant quality indicators and analyze their relations. We identify
two classes of indicators, related to individual mutants and to mutant sets. We analyse a large
set of mutants from 3,902 (real) faulty program versions, belonging to 40 fault classes, collected
from an on-line programming contest. Our analysis categorises mutants as valuable, according to
the studied quality indicators, profiles their types and examines the relations between them. Our
results suggest that there is a large disagreement between the indicators and that the connection
between mutant type, its quality and its ability to reveal faults is weak. Additionally, our findings
reveal that the ability of mutants to uncover faults differs significantly across the different fault
classes and that some mutant types are well linked (or completely disconnected) to specific fault
classes.

This chapter is based on the work published in the following paper:

• Mike Papadakis, Thierry Titcheu Chekam, Yves Le Traon. 2018. Mutant Quality Indica-
tors. 2018 IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW 2018), 2018
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5.1. INTRODUCTION

5.1 Introduction

The question of what constitutes a good mutant remains controversial and unknown. Naturally,
in mutation testing, the ‘quality’ of mutants plays a central role and can have major implications
on the performed analysis. For instance, empirical studies may come to biased conclusions if they
use all available mutants [Pap+16]. Similarly, the use of restrictive mutant sets may result in a
much lower strength testing [Lau+17].

Previous research has investigated this problem by examining the types of mutants. Mutants of
specific types are considered as more important than others as they encode test requirements
not captured by other mutant types [Off+96a]. Apart from the types of mutants, some early
studies set specific ‘quality’ criteria to judge mutants’ quality. Thus, they suggested that mutants
quality should be measured through the ‘easiness’ (ratio of valid program inputs that kill the
mutant) of killing them. The underlying idea is that easy to kill mutants (killed by most of the
test inputs) are not of a particular value.

Other studies suggested that quality mutants are those that are stubborn, i.e., resistant to killing
by the test cases that execute them, [HHD99]. Thus, mutants that are hard to infect or propagate,
i.e., killed by few test cases that execute them are valuable. The reason is that these mutants go
beyond coverage, i.e., the mutants are not killed by coverage-based test cases [YHJ14].

Another way to define mutants’ quality is based their diversity w.r.t to the program input domain.
This way good mutants are a subset that is defined w.r.t to a reference set of all mutants.
Thus, good mutants are those that are killed by different test cases than other mutants. This
means that the selected set of mutants is as much disjoint, in terms of their killing condition,
as possible [KPM10]. In other words, disjoint mutants have a minimum overlap between the
mutants’ killings. The underlying idea is that a disjoint mutant set should be representative of
all mutants, i.e., their killing must result in the killing of all mutants, and at the same time they
are the set of the harder to kill than any other alternative set of mutants.

This dissertation (Chapter 6) suggests that quality mutants are those that guide testers towards
revealing real faults (see Chapter 6). The underlying idea is that good mutants should lead
to test cases that reveal frequent real faults. Thus, instead of covering the whole spectrum of
mutants one should cover the mutants that are most likely to be linked with faults.

Given the plethora of the mutant quality indicators, a natural question to ask is whether there
are important differences between them and what are the links with fault revelation. In other
words, we are interested to see if the indicators agree on which are the valuable mutants and
whether these mutants are linked with fault revelation. Answering these questions is important
in order to direct future research (such as Chapter 6) and increase the understanding of the
mutation testing foundations.

In this chapter we study the relatively differences between the quality indicators. We investigate
the types of mutants that they involve and explore the link between different mutant types and
different fault classes. We find that all quality indicators identify only a few,less than 10%,
mutants as good. We also find that there is a large disagreement, between the indicators, on
which are the good mutants. In particular we find that 39%, 42% and 6% of the fault revealing
mutants are also subsuming, hard-to-kill and hard-to-propagate, while 17%, 60% and 4% of the
subsuming mutants are fault revealing, hard-to-kill and hard-to-propagate.
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Perhaps more importantly, we find a weak connection between fault revelation and quality in-
dicators, suggesting the need for specialized approaches targeting the particular class of fault
revealing mutants. We also show that the link between mutants and faults differs significantly
across fault classes. We demonstrate that almost half of the faults related to missing code are
weakly linked with mutants, while 90% of the faults related to OAAN (wrong arithmetic operator
used) category are strongly linked with SCALAR.BINARY mutants (mutants created by muta-
tion operators that mutate scalar binary expressions). These results suggest that future studies
should consider the particular classes of faults targeted by the proposed approaches. Overall,
our study increases the understanding on what contributes to the mutants’ quality and opens
several directions for future research.

5.2 Mutant Quality Indicators

We performed an expert literature review by considering the papers collected in the recent survey
of mutation testing [Pap+19]. Our analysis revealed the following two classes of indicators:

5.2.1 Unit-based MQIs

Fault Revealing (F.R.) are the mutants that are killed only by test cases that reveal a fault.
Note that this assume a program under test that contains unknown faults, and the testers would
then look for the mutants that when killed, a fault is revealed. These mutants are fault revealing
mutants and their intuition is taht faults have patterns that can be captured by some mutants
(the fault revealing ones). These mutants are the ones that are linked with fault revelation. Thus,
one should cover only the mutants that are most likely to be linked with frequently occuring (real)
faults (refer to Chapter 6). In our experiment, we approximate fault revealing mutants based
on test suites (mutants killed only by tests that reveal a fault in the program under test are fault
revealing).

We use the notation “F.R.-1.0” for fault revealing mutants. We consider another (more relaxed)
class of fault revealing mutants, denoted as “F.R.-0.9” which involves the mutants for which at
least 90% of the killing tests are fault revealing tests.

Subsumming mutants are defined based on the subsumption relation and the indistinguished
mutants. According to Ammann et al. [ADO14] “one mutant subsumes another if at least one
test kills the first and every test that kills the first also kills the second”. Indistinguished are two
mutants that are always killed by the same tests.

Subsuming are the mutants that are subsumed only by indistinguished mutants. We consider
as subsuming, all mutants that are in the leaf nodes of the mutant subsumption graphs [Kur+14],
built based on the employed test suites.

Hard-to-kill (Hard) are the mutants that are killed only by a small fraction of test cases. We
consider two classes of hard-to-kill mutants. Those that are killed by at most 5% and 2.5% of
the available test suites. We denote these as “Hard-0.050” and “Hard-0.025”.

Another way to define the hardness to kill is based on the RIP model [AO08]. Thus, hardness
can be defined as hardness to reach, infect and propagate. Here, we only consider mutants that
are hard to propagate.
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Hard-to-propagate (HardP) are the mutants that are killed only by a small fraction of test
cases that infect them. We consider two classes of hard-to-propagate, those that are killed by
at most 25% and 10% of the test cases that infect them. We denote these as “HardP-0.25” and
“HardP-0.10”.

5.2.2 Set-based MQIs

Non-duplicated is the set of mutants that has no indistinguished mutants. We approximate
mutant duplication based on the available test suites.

Disjoint/Surface - Minimal/Dominator. is the subset of mutants with the minimum num-
ber of subsuming mutants. Conceptually, there are no difference between disjoint/surface and
minimal/dominator mutants. The actual differences are thin and are due to the selection pro-
cedure. Disjoint mutants are a subset with minimum joint killings, approximated through a
greedy heuristic [Pap+16; KPM10]. Surface mutants [Gop+16] are also approximated by a sim-
ilar heuristic. The minimal/dominator mutants form the actual minimal subset, selected bases
on a systematic procedure [Kur+14].

The set-based indicators depend on the individual choice of the individual mutants and cannot
be compared with the unit-based ones. Their relations are also well understood and thus, in the
rest of the chapter we mainly focus on the unit-based.

5.3 Experiment Setup

5.3.1 Programs and Faults

We used the Codeflaws benchmark [Tan+17] that involves programs selected from an on-line
programming contests1. In Codeflaws, every faulty program version is unique and has two
instances, the ‘faulty’ and the ‘fixed’ one. The former regards the rejected, while the later
the accepted submission. In total, Codeflaws contains 3,902 faults of 40 defect classes. These
programs are of 1 to 322 lines of code and are accompanied by a test suite that was used to test
and judge the programs as faulty and fixed. We choose Codeflaws because it contains many,
diverse, relatively hard to expose faults.

To conduct a valid experimentation, we augment the available test suites using KLEE [CDE08],
a state-of-the-art test generation tool. Although, these test suites greatly increased the cost of
our experiment, we considered their use of vital importance as otherwise our results could be
subject to “noise effects” (see Chapter 4). Overall, our experiment involved 122,261 test cases,
3,213,543 mutants, whose execution required a total of 8,009 CPU days of computation.

We aim at investigating the link between mutants and faults. Thus, we consider important to
focus at hard faults, i.e., fault not revealed by every test case. In total, approximately half of our
faults are trivial ones (revealed by a large fraction of test case). Thus, we restrict our analysis
on the 1,629 faults that are revealed by less than 25% of the test cases involved.

1http://codeforces.com/
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Table 5.1: Fault Classes

AST Type Fault Class Example

Higher Order

Expression HEXP 	 if(C) ⊕ if(C || D)

Non-branch Stmt HDMS 	 printf(s); 	 x = y + 3;

Combination HCOM 	 rep(i, n) ⊕ for(...)

Non-branch Stmt HIMS ⊕ printf(s); ⊕ x = y + 3;

Branch Stmt HBRN ⊕ if(C) {printf(s); }

Others HOTH 	 g(0); ⊕ for(...){f(i); }

Statement

Function Call SISF ⊕ scanf(“%d′′,&n);

Type STYP 	 int a ⊕ long a

Control Flow SRIF 	 if(a > b) ⊕ if(g(a) > b)

Data Flow SISA ⊕ t = 0

Move SMOV 	 f(x); g(x); ⊕ f(x);

Operand

Variable DRWV 	 b = 0; ⊕ a = 0;

Array DCCA 	 int x[2]; ⊕ int x[20];

Variable DRVA 	 if(i > 0) ⊕ if(k > 0)

Constant DCCR 	 if(x > 4) ⊕ if(x > 3)

Operator

Control Flow ORRN 	 if(a > 0) ⊕ if(a >= 0)

Arithmetic OAAN 	 v2 -= 2 ⊕ v2 += 2

Function Call OFPF 	 f(“%d′′, i); ⊕ f(“%ld′′, i);

Control Flow OILN 	 if(x) ⊕ if(x&&f(x))

Arithmetic OAIS 	 x += y ⊕ x += y / 2

Table 5.1 records the main fault classes in the dataset. It is noted that these 20 classes involve
more than 10 fault instances that are revealed by less than 25% of the tests in our test suites.
Following the classification scheme of Codeflaws the faults fall into 4 categories. The fault
classes are related to faults in operators of expressions, faults in operands of expressions, faults in
control-flow related statements (e.g., missing if conditional) and faults in function call statements
or other statements. The last column of Table 5.1 records examples of the fault classes (taken
from [Tan+17]). These demonstrate the way the example faults were patched, i.e., "−" denotes
the statement(s) deleted/modified and "+" the statements added in order to fix the fault.

5.3.2 Automated Tools

We used KLEE to perform test augmentation with the following settings: a two hours time limit
per program, a Random Path search strategy, Randomize Fork Enabled, Max Memory 2048,
Symbolic Array Size 4096, Symbolic Standard input size 20 and Max Instruction Time of 30
seconds. This resulted in 26,229 test cases. Since the automatically generated test cases do not
include any test oracle, we used the programs’ fixed version as oracle. Thus, we considered as
failing, every test case that resulted in different observable output when executed in the ‘faulty’
than in the ‘fixed’ program. Similarly, we identified the killed mutants using the program output.

We use our built mutation testing tool (Mart), presented in Chapter 8, that operates on LLVM
bitcode. Actually all our metrics and analysis were performed on the LLVM bitcode. We use the
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default configuration of Mart, which consists in 18 operators, composed of 816 transformation
rules. Refer to Chapter 8, sub-section 8.1.2.2 for more information about the mutation operators.

To reduce the influence of redundant and equivalent mutants, we applied TCE [Pap+15] imple-
mented in Mart. TCE Detected 523,097 and 934,415 equivalent and redundant mutants.

5.3.3 Experimental Procedure

We start our analysis by forming a pool of all availale test cases. We then constructed a mutation-
fault matrix that records the mutants killed and faults revealed by each one of the available test
cases. We then applied mutation on the faulty program versions so that we are faithful to real
settings and avoid making the Clean Program Assumption studied in Chapter 4. We used this
matrix to categorize the mutants.

In summary, we form the population of all mutants, identify the mutants’ categories and analyze
their relations. We consider the relations between the indicators w.r.t to all killable mutants and
to mutants of the same type. For the different fault classes, we follow the taxonomy adopted
by Codeflaws [Tan+17]. Details about the considered fault classes are recorded on Tables 5.1
and details about the mutant types are recorded in Table 8.1 of Chapter 8. Each mutant
type is written as a ’-’ separated pair of matching code fragment and replacing code fragment,
e.g. "SCALAR.BINARY-DELSTMT" mutation operator matches a scalar binary expression and
mutates it by deleting its statement (see Chapter 8 Section 8.1.2.2)

5.4 Results

5.4.1 Prevalence of mutant quality indicator categories

We start our analysis by measuring the prevalence of the mutants that are characterized as good
by the studied quality indicators. Table 5.2 records the total number of mutants involved, the
ratio and average (per program) number of them, per considered indicators. Interestingly, we
can observe that only a small fraction of all mutants (less than 10%) is characterized as good,
according to all categories (the only exception is the HardP-0.25).

This finding suggests that the great majority of the mutants are not good and may have unde-
sirable effects on the interpretation of the mutation score. Thus, it is likely that one can achieve
a good mutation score by simply killing bad mutants and not the good ones. Unfortunately,
this fact can have serious implications on the confidence inspired by mutation testing [Pap+16].
Therefore, a first finding is that the majority of the mutants are bad ones according to every
quality indicator.

5.4.2 Relations between mutant quality indicators

Up to this point, our analysis has shown that few mutants are characterized as good by every
quality indicator. However, we have seen nothing about the relations between the different
categories of the good mutants. In other words we would like to see whether the indicators agree
between themselves on which are the good mutants and which are not.
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Table 5.2: Prevalence of mutant categories.

Category No. Mutants Ratio Program Av.

Fault Revealing (FR-1.0) 44,221 3% 27

Fault Revealing (FR-0.9) 65,809 4% 40

Subsuming 98,709 6% 61

Hard-to-kill (Hard-0.050) 111,442 7% 68

Hard-to-kill (Hard-0.025) 45,286 3% 28

Hard-to-propagate (HardP-0.25) 325,158 21% 200

Hard-to-propagate (HardP-0.10) 137,864 9% 85

Non-Duplicated 321,822 21% 80

Disjoint/Dominator 20,182 1% 12

To investigate this issue we explore the geography of the mutants’ population. Thus, we char-
acterize every mutant according to the studied indicators and measure the number of them that
belong on the same and different categories. We present these results in a pairwise manner in
Figure 5.1. In these diagrams the surface represent the number of mutants that belong to each
category. The surfaces have been scaled so that they reflect the actual size relation between
the different categories. Thus, we can see that FR-1.0 are less (in number) than the subsuming
mutants.

A first observation from Figure 5.1 is that there is a large disagreement, between the indicators,
on which are good mutants. In particular we observe that hard-to-propagate mutants is a distinct
category, i.e., it has a very small overlap with every other category. We also observe a medium
to small overlap of fault revealing with the subsuming and hard-to-kill mutants. Interestingly
when relaxing the fault revealing probability to 90% (FR-0.9) results in a movement away from
the subsuming or hard-to-kill mutants. These results suggests that not all the mutants are linked
to faults. As subsuming mutants represent the whole spectrum of mutants they include many
that are not linked with faults. On the contrary fault revealing ones belong to those parts of
the spectrum that are linked with the faults and overall these two categories are not the same.
Thus, future research should devise techniques to specialize mutants to the targeted domain or
faults.

Another interesting result is that hard-to-kill mutants have a large overlap with subsuming
mutants. Still they are not the same, but a large proportion of them is included. We continue
our analysis by presenting the exact relations in terms of percentages, measured w.r.t to each
category.

Fault Revealing VS. Subsuming: Our results suggests that 39% and 27% of the fault re-
vealing mutants, with probability equal to 1.0 and 0.9, are also subsuming. Interestingly, 17%
and 18% of the subsuming mutants are also fault revealing (with probability equal to 1.0 and
0.9). This results suggest that only a few of the subsuming mutants are linked with the faults
and that more than half of all the mutants that are linked with the faults are subsumed (not
subsuming!).

Fault Revealing VS. Hard-to-kill: We find that 42% and 29% of the fault revealing mutants,
with probability equal to 1.0 and 0.9, are also Hard-to-kill (killed with less than 5% of the tests).
On the other side, 16% and 17% of the Hard-to-kill mutants (killed with less than 5% of the tests)
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are also fault revealing (with probability equal to 1.0 and 0.9). This result suggests that there is
a (slightly) stronger link between faults and hard-to-kill than faults and subsuming mutants.

When consider stronger mutants, killed by less than 2.5% of the tests, we find that 18% and 12%
of the fault revealing mutants, with probability equal to 1.0 and 0.9, are also Hard-to-kill (killed
with less than 2.5% of the tests). Considering the inverse relation we find that 18% and 18% of
the Hard-to-kill mutants (killed with less than 2.5% of the tests) are also fault revealing (with
probability equal to 1.0 and 0.9). This suggests that stronger mutants have a weaken link with
the faults than less strong ones.

Fault Revealing VS. Hard-to-propagate: 6% and 7% of the fault revealing mutants, with
probability equal to 1.0 and 0.9, are also Hard-to-propagate (killed by less than 25% of the tests
that infect the mutant) and 1% and 1% of the Hard-to-propagate mutants (killed by less than
25% of the tests that infect the mutant)are also fault revealing (with probability equal to 1.0
and 0.9). When consider stronger mutants, 1% and 1% of the fault revealing mutants, with
probability equal to 1.0 and 0.9, are also Hard-to-propagate (killed by less than 10% of the tests
that infect the mutant). The inverse relation shows that ≈ 0% and 1% of the Hard-to-propagate
mutants (killed by less than 10% of the tests that infect the mutant) are also fault revealing
(with probability equal to 1.0 and 0.9). These show that a very weak link exists between the
faults and hard-to-propagate mutants.

Subsuming VS. Hard-to-kill: 60% and 38% of the subsuming mutants are also Hard-to-kill
(killed with less than 5% and 2.5% of the tests) and 53% and 83% of the Hard-to-kill mutants
(killed with less than 5% and 2.5% of the tests) are also subsuming. This relation shows the
relatively strong link between the subsuming and hard-to-kill mutants.

Subsuming VS. Hard-to-propagate: 4% and 1% of the subsuming mutants are also Hard-
to-propagate (killed by less than 25% and 10% of the tests that infect the mutant) and 1% and
1% of the Hard-to-propagate mutants (killed by less than 25% and 10% of the tests that infect
the mutant) are also subsuming. This relation shows the weak link between hard-to-propagate
mutants and other categories.

Hard-to-kill VS. Hard-to-propagate: 1% and ≈ 0% of the Hard-to-kill mutants, killed by
less than 5% and 2.5% of the tests, are also Hard-to-propagate (killed by less than 25% of the
tests that infect the mutant) and ≈ 0% and ≈ 0% of the Hard-to-propagate mutants (killed by
less than 25% of the tests that infect the mutant) are also Hard-to-kill (killed by less than 5%
and 2.5% of the tests). When consider stronger mutants, 0% and 0% of the Hard-to-kill mutants,
killed by less than 5% and 2.5% of the tests, are also Hard-to-propagate (killed by less than 10%
of the tests that infect the mutant). 0% and 0% of the Hard-to-propagate mutants (killed by less
than 10% of the tests that infect the mutant) are also Hard-to-kill (killed by less than 5% and
2.5% of the tests). This relation also shows the weak link between hard-to-propagate mutants
and other categories.

5.4.3 Mutant types and quality indicators

We investigate the link between mutant type (characterized by its syntactic transformation)
and quality indicators by checking whether there are types of mutants that are more likely to
generate good mutants. We thus, check the types of mutants involved in every category, i.e., the
ratio of the good mutants that are of each type. We also measure the ratio of the good mutants
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among those generated per considered mutant type. The former case shows the types of mutants
composing the good ones, while the later shows whether the type of mutants relates to the good
ones.

Figure 5.2 presents the types of mutants involved in the studied categories. For simplicity we
have omitted the results of Hard-to-kill-0.025 and Hard-to-propagate-0.10, as they are quite sim-
ilar to those of Hard-to-kill-0.050 and Hard-to-propagate-0.25. Interestingly, the majority of the
mutants are of the same types (the top 4 most prevalent types are the same). Thus, the types of
SCALAR.BINARY-SCALAR.BINARY, SCALAR.BINARY-SCALAR.UNARY, SCALAR.ATOM-
SCALAR.UNARY and SCALAR.ATOM-SCALAR.BINARY cover more than 80% of all the
good mutants. However, this is due to the number of mutants that are generated by these
operators.

The graphs of Figure 5.3 record the ratios of mutants (of the same type) involved in the studied
categories for every considered mutant type. Interestingly, the profiles of the four categories differ
significantly. This shows (again) that the indicators disagree between them and characterize
different mutants (and different types) as good ones. Interestingly, all types of mutants (with
one exception) contributes to all the categories, indicating that all of them are of a value.

We also observe that with a few exceptions the mutant type does not seem to mater much on any
category. Regarding the fault revealing mutants, 5 types seems to generate larger proportions of
good mutants than the other 12, but overall all types have a similar ratio. Subsuming and hard-
to-kill mutants have one type, the SWITCH-REMOVECASES, which generates a significantly
higher ratio of good mutants. However, beside this type all other mutant types generate similar
ratios. The case of hard-to-propagate mutants is a bit different as it involves 6 types with a
rather low contribution, while the rest 12 types have similar ratios. Overall, by comparing the
results of Figures 5.2 and 5.3 we see that some (few) mutant types are more important than
others but overall, all mutant types are important.

5.4.4 Fault classes with no fault revealing mutants

Having investigated the link between mutant type and quality indicators, we turn our analysis
on the different fault classes. We thus, investigate which types of faults have no fault revealing
mutants. This is important as these cases are faults that are likely to be missed by mutation
testing. Overall, in our dataset, we have 462 faulty program versions without any fault revealing
mutant. To investigate whether there is any link between fault class and absence of fault revealing
mutants we report the percentage of faults (per class of faults) without fault revealing mutants.
In order to avoid coincidental results we removed from our dataset every faulty class that includes
less than 10 fault instances. This resulted in 20 faulty classes, out of the 40 faulty classes included
in the dataset.

Figure 5.5 reports the percentages of the faulty program versions (of the same fault class) with
no fault revealing mutants. From these results we observe that 5 classes have a relatively low
ratio (with less than 15%) of cases with no fault revealing mutants. 12 classes have ratios
between 15%-35%, while 3 classes have a relatively large number of faults (without fault revealing
mutants). Thus, we can conclude that mutation is not particularly good at detecting faults
of these three classes, (Operator-ControlFlow-OILN, Operand-Array-DCCA and HigherOrder-
Expression-HEXP). Interestingly, the OILN and HEXP classes are faults belonging to the general
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category of omission faults, i.e., faults due to missing code. Omission faults form a known weaknes
of code-based techniques [VM97] and thus, having a strong link with more than half of them is
important. The other problematic category is the DCCA class that regards the size of arrays
indicating the need for mutation operators related to these faults.

5.4.5 Links between mutant types and fault classes

To investigate the link between mutant types and fault classes, we measure, for every considered
class, the ratio of faulty programs with fault revealing mutants. Thus, we expect a high ratio
when there is a strong link, and a low ratio when there is a weak link. Since every type of
mutants involve different number of mutant instances, we also normalize our results with respect
to the number of mutants involved. This way we can see whether there are significant differences
between the pairs of mutant types and fault classes.

Figure 5.4 presents the ratios of faulty versions with fault revealing mutants for all pairs of mutant
type and fault classes. From these plots we can see that some mutant types (SCALAR.BINARY-
SCALAR.BINARY ) are linked with specific fault classes (OAAN), while some mutant types
(POINTER.ATOM-POINTER.UNARY ) are linked with many fault classes. This suggests that
for specific cases there is a strong link between mutant type and revealed class of fault. When
normalizing with respect to the number of mutants the link is less clear, but strong for specific
pairs, such as the mutant types CALL-SHUFFLEARGS and SCALAR.BINARY-DELSTMT
with fault class OAAN.

In conclusion, our results suggests that considering fault classes is important as every class is
linked with different mutant types. The differences between mutant types and fault classes
provide further evidence that all types of mutants are needed and that there is no dominant type
of mutants. Perhaps more importantly, our results reveal that experimental results need to be
validated with a diverse class of faults, each one of which should be separately be considered.

5.5 Conclusion

In this chapter we studied the relatively differences between the mutant quality indicators. We
found that all indicators identify only a few (less than 10%) mutants as good and that there is no
consensus on which mutants should be considered as good. We also found that all mutant types
generate valuable mutants, fact indicating that all types of mutant should be used. Overall,
we find that some isolated mutant types contribute more on the good mutants, the general
trend is that the discriminative power of the mutant type is limited. Perhaps more importantly,
we find a weak connection between the fault revelation and quality indicators, suggesting the
need for specialized approaches targeting the particular class of fault revealing mutants. Finally,
our results demonstrate that the fault revelation ability of mutants differs significantly across
the studied classes of faults, indicating that future studies should consider the particular fault
classes they target and are involved in the experimental datasets.

The next chapter presents a mutant reduction technique that targets the fault-revealing mutants.
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FR-1.0

FR-0.9

Subsuming

Killable

(a) Fault Revealing VS. Subsuming

FR-1.0

FR-0.9

Hard-0.0050

Killable

(b) Fault Revealing VS. Hard-to-kill (5%)

FR-1.0

FR-0.9

Hard-0.0025

Killable

(c) Fault Revealing VS. Hard-to-killl (2.5%)

FR-1.0

FR-0.9

HardP-0.25

Killable

(d) Fault Revealing VS. Hard-to-prop. (25%)

FR-1.0

FR-0.9

HardP-0.10Killable

(e) Fault Revealing VS. Hard-to-prop. (10%)

Hard-0.050

Hard-0.025

Subsuming

Killable

(f) Hard-to-kill VS. Subsuming

HardP-0.25

HardP-0.10
Subsuming

Killable

(g) Hard-to-prop. VS. Subsuming

Figure 5.1: Relations between different mutant quality indicators.
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(a) Fault Revealing mutants (b) Subsuming mutants

(c) Hard-to-kill mutants (5%) (d) Hard-to-prop. mutants (10%)

Figure 5.2: Types of mutants involved in the mutant quality indicator categories.
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Figure 5.3: Ratio of mutants involved in quality indicator categories per mutant type.
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(b) Normalized ratio of faults for every fault class

Figure 5.4: Ratio of faulty versions with fault revealing mutants (among all faults of the same type) per
fault class and mutant type.
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Figure 5.5: Faulty versions (see Table 5.1) without fault revealing mutants (ratios)
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Chapter

6
Selecting Fault Revealing Mu-
tants

Mutant selection refers to the problem of choosing, among a large number of mutants, the (few)
ones that should be used by the testers. This chapter presents a machine learning approach.
named FaRM, that tackles the mutant selection problem. The main focus is the fault revealing
mutants, i.e., the mutants that are killable and lead to test cases that uncover unknown program
faults. Experimental results show that FaRM achieves a good trade-off between application cost
and effectiveness (measured in terms of faults revealed) and outperforms all the existing mutant
selection methods.

This chapter is based on the work published in the following papers:

• Thierry Titcheu Chekam, Mike Papadakis, Tegawendé F. Bissyandé, Yves Le Traon and
Koushik Sen. 2019. Selecting Fault Revealing Mutants. Empirical Software Engineering
(EMSE). https://doi.org/10.1007/s10664-019-09778-7. 2019

• Thierry Titcheu Chekam, Mike Papadakis, Tegawendé F. Bissyandé, and Yves Le Traon.
2018. Poster: Predicting the fault revelation utility of mutants. In Proceedings of the 40th
International Conference on Software Engineering: Companion (ICSE-Companion 2018),
2018
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CHAPTER 6. SELECTING FAULT REVEALING MUTANTS

6.1 Introduction

We show in Chapter 4 that mutation testing is one of the most effective techniques with respect
to fault revelation. Researchers typically use mutation as an assessment mechanism (measuring
effectiveness) for their techniques [Pap+19], but it can be used as every other test criterion. To
this end, mutation can be used to assess the effectiveness of test suites or to guide test generation
[AO08; FZ12; PI18; Pap+18].

Unfortunately, mutation testing is expensive. This is due to the large number of mutants that
require analysis. An important cost parameter is the so-called equivalent mutants, which are
mutants forming equivalent program versions [Pap+15; AO08]. These need to be manually
inspected by testers since their automatic identification is not always possible [BA82].

While the problem of the equivalent mutants have been partly addressed by recent methods
such as the Trivial Compiler Equivalence (TCE) [Pap+15], the problem of the large number of
mutants remains challenging. Yet, addressing this problem will in return contribute to addressing
the equivalent mutant problem: any approach that is effective in reducing the large number of
mutants, would indirectly reduce the equivalent mutant problem since less equivalent mutants
will be available.

Nevertheless, producing a large number of mutants is impractical. The mutants need to be
analyzed, compiled, executed and killed by test cases. Perhaps, more importantly testers need
to manually analyse them in order to design effective test cases. The scalability, or lack thereof,
of mutation testing, with respect to the number of mutants to be processed, is thus a key factor
that hinders its wide applicability and large adoption [Pap+19]. Consequently, if we can find a
lightweight and reasonably effective way to diminish the number of mutants without sacrificing
the power of the method, we would then manage to significantly improve the scalability of the
method. Since the early days of mutation testing, researchers attempted to find such solutions
by forming many mutant reduction strategies [Pap+19], such as selective mutation [ORZ93;
WM95a] and random mutant selection [T A+79].

Our goal is to form a mutant selection technique that identifies killable (non equivalent) mutants
that are fault revealing, prior to any mutant execution. We consider as fault revealing, any
mutant (i.e. test objective) that leads to test cases capable of revealing the faults in the program
under test. We argue that such mutants are program specific and can be identified by a set
of static program features. In this respect, we need features that are simultaneously generic,
in order to be widely applicable, and powerful to approximate well the program and mutant
semantics.

We advance in this research direction by proposing a machine learning-based approach, named
FaRM, which learns on code and mutants’ properties, such as mutant type and mutation lo-
cation in program control-flow graphs, as well as code complexity and program control and
data dependencies, to (statically) classify mutants as likely killable/equivalent and likely fault
revealing. This approach is inspired by the prediction modelling line of research, which has
recorded high performance by using machine learning to triage likely error-prone characteristics
of code [MGF07; KS16].

The use case scenario of FaRM is a standard testing scenario where mutants are used as test
objectives, guiding test generation. To achieve this, we train on a set of faulty programs that
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have been tested with mutation testing, prior to any testing or test case design for the particular
system under analysis. Then, we predict the killable (non equivalent) and fault revealing mutants
based on which we test the particular system under analysis. The training corpus can include
previously developed projects (related to the targeted application domain) or previous releases
of the tested software. In a sense, we train on system(s), say x, and select mutants on the system
under test, say y, where x 6= y.

Experimental results using 10-Fold cross validation on 1,692 + 45 faulty program versions show
a high performance of FaRM in yielding an adequately selected set of mutants. In particular our
method achieves statistically significantly better results than the random, selective mutation and
defect prediction (mutating the areas predicted by defect prediction), mutant selection baselines
by revealing 23% to 34% more faults than any of the baselines. Similarly, our mutant priori-
tization method achieves statistically significant higher Average Percentage of Faults Detected
(APFD) [Hen+16] values than the random prioritisation (4% to 9% higher in the median case).
With respect to test execution, we show that our selection method requires less execution time
(than random).

We also demonstrate that our method is capable of selecting killable (non-equivalent) mutants.
In particular, by building an equivalent classification method, using our features, we achieve an
AUC value of 0.88 and 95%, 35% precision and Recall. These results indicate drastic reductions
on the efforts required by the analysis of equivalent mutants. A combined approach, named
FaRM*, achieves similar to FaRM fault revelation, but potentially at a lower cost (lower number
of equivalent mutants), indicating the capabilities of our method.

In summary, this chapter makes the following contributions:

• It introduces the fault revealing mutant selection and fault revealing mutant prioritization
problems.

• It demonstrates that the killability and fault revealing utility of mutants can be captured
by simple static source code metrics.

• It presents FaRM, a mutant selection technique that learns to select and rank mutants
using standard machine learning techniques and source code metrics.

• It provides empirical evidence suggesting that FaRM outperforms the current state-of-the-
art mutant selection and mutant prioritization methods by revealing 23% to 34% more
faults and achieving 4% to 9% higher average percentage of revealed faults, respectively.

• It provides a publicly available dataset of feature metrics, kill and fault revelation matrices
that can support reproducibility, replication and future research.

This chapter is organized as follows. Section 6.2 provides background information on the mutant
selection problem and defines the targeted problem(s). Section 6.3 overviews the proposed ap-
proach. Evaluation research questions are enumerated in Section 6.4, while experimental setup
is described in Section 6.5 and experimental results are presented in Section 6.6. A detailed dis-
cussion on the applicability of our approach and the threats to validity are given in Section 6.7.
Section 6.8 concludes this chapter.
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Sufficient Mutant Set
Whole Set of Mutants 
that Reveal Faults

FaRM’s Targeted Set of 
Mutants

Whole Set of Mutants 

• Sufficient Mutants Set: 

Killing all mutants of Killing all mutants of

• Fault Revealing Mutant Set:

The Set of faults revealed 
by killing all mutants of

The Set of faults revealed 
by killing all mutants of=

Figure 6.1: Fault revealing mutant selection. Contrast between sufficient mutant set selection and fault
revealing mutant selection. Sufficient mutant set selection aims at selecting a minimal subset of mutants
that is killed by tests that also kill the whole set of mutants. Fault revealing mutant selection aims at
selecting a minimal subset of mutants that is killed by tests that reveal the same underlying faults as the
tests that kill the whole set of mutants.

6.2 Context

6.2.1 Problem Definition

Our goal is to select among the many mutants the (few) ones that are fault revealing, i.e., mutants
that lead to test cases that reveal existing, but unknown, faults. This is a challenging goal since
only 2% (according to our data) of the killable mutants are fault revealing.

The fault revealing mutant selection goal is different from that of the “traditional” mutant reduc-
tion techniques, which is to reduce the number of mutants [Off+96a; WM95b; FPO18; Pap+19].
Mutant reduction strategies focus on selecting a small set of mutants that is representative of
the larger set. This means, that every test suite that kills the mutants of the smaller set, also
kills the mutants of the large set. Figure 6.1 illustrates our goal and contrasts it with the “tra-
ditional” mutant reduction problem. The blue (and smallest) rectangle on the figure represents
the targeted output for the fault revealing mutant selection problem.

In line with previous research [Pap+18] we show in Chapter 5 that the majority of the mutants,
even in the best case, are “irrelevant” to the sought faults. This means that testers need to analyse
a large number of mutants before they can find the actually useful ones (the fault revealing ones),
wasting time and effort. According to our data, 17% of the minimal mutants (ideal mutant
reduction), i.e., subsuming mutants (a set of mutants with minimal overlap that are sufficient
for preserving test effectiveness [JH09; KPM10; ADO14]) is fault revealing. This also indicates
that the majority of the mutants, even in the best case, are “irrelevant” to the sought faults. We
therefore claim that mutation testing should be performed only with the mutants that are most
likely to be fault revealing. This will make possible the best effort application of the method.

Formally, we consider two aspects of this selection problem: the mutant selection one and the
mutant prioritization one.

The fault revealing mutant selection problem is defined as:
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Faulty Programs’ Mutants
Mutants

(Programs under test)

Learning Phase Validation Phase

Classification Training

Mutants Features Extraction

ML Classifier Mutants ranked by
probability of utility

Mutants’ Utilities 
Computation

Mutants Features Extraction

Figure 6.2: Overview of the FaRM approach. Initially, FaRM applies supervised learning on the mutants
generated from a corpus of faulty program versions, and builds a prediction model that learns the fault
revealing mutant characteristics. This model is then used to predict the mutants that should be used to
test other program versions. This means that at the time of testing and prior to any mutant execution,
testers can use and focus only on the most important mutants.

Given: A set of mutants M for program P .

Problem: Subset selection. Select a subset of mutants, S ∈ M , such that F (S) = F (M) and
(∀m ∈ S), (F (S − {m}) 6= F (M)).

S represents a subset of M ; F (X) represents the number of faults in P that are revealed by the
test suites that kill all the mutants of the set X. In practice, the challenge is to approximate
well S, statically and prior to any test execution, by finding a relatively good trade-off between
the number of selected mutants (to minimise) and the number of faults revealed by their killing
(to maximize).

Similarly, the fault revealing mutant prioritization problem is defined as:

Given: A set of mutants, M and the set of permutations of M , PM for program P.

Problem: Find Pm′ ∈ PM such that (∀Pm′′)(Pm′′ ∈ PM) (Pm′′ 6= Pm′) [f(Pm′) ≥
f(Pm′′))]

PM represents the set of all possible mutant orderings of M , and f(X) represents the average
percentage of faults revealed by the test cases that kill the selected mutants in the given order X
(measures the area under the curve representing the faults revealed by the killing of each one of
the mutants in the order). The challenge is to statically and prior to any test execution, rank the
mutants so that the fault revealing potential is maximized when killing any (arbitrary) number
of them. The idea is that fault revelation is maximized whenever the tester decides to stop killing
mutants.
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6.2.2 Mutant Selection

In the literature many mutant selection methods have been proposed [Pap+19; FPO18] by
restricting the considered mutants according to their types, i.e., applying one or more mutant
operators. Empirical studies [Kur+16a; DOL13], have shown that the most successful strategies
are the statement deletion [DOL13] and the E-Selective mutant set [Off+96a; ORZ93]. We
therefore compare our approach with these methods. We also consider the random mutant
selection [T A+79] since there is evidence demonstrating that it is particularly effective [Zha+10b;
PM10a].

6.2.2.1 Random Mutant Selection

Random mutant sampling [T A+79] forms the simplest mutant selection technique, which can
be considered as a natural baseline method. Interestingly, previous studies found it particularly
effective [Zha+10b; PM10a]. Therefore, we compare with it.

We use two random selection techniques, named as SpreadRandom and DummyRandom. Spread-
Random iteratively goes through all program statements (in random order) and selects mutants
(one mutant among the mutants of each statement), while DummyRandom selects them from
the set of all possible mutants. The first approach is expected to select mutants residing on most
of the program statements, while the second one is expected to make a uniform selection.

6.2.2.2 Statement Deletion Mutant Selection

Mutant selection based on statement deletion is a simple approach that, as the name suggests,
deletes every program statement (once at a time). To avoid introducing compilation issues
(mutants that do not compile) and introduce relatively strong mutants, the statement deletion
is usually applied on parts of a statement (deleting parts of expressions, i.e., the expression
a + b becomes a or b ). Empirical studies have shown that statement deletion mutant selection
is powerful (achieves a very good trade-off between the number of selected mutants and test
effectiveness) and has the advantage of introducing few equivalent mutants [DOL13].

6.2.2.3 E-Selective Mutant Selection

E-Selective refers to the 5 operator mutant set introduced by Offutt et al. [Off+96a; ORZ93].
This set is the most popular operator set [Pap+19] that is included in most of the modern
mutation testing tools. This set includes the mutants related to relational, logical (including
conditional), arithmetic, unary and absolute mutations. According to the study of Offutt et
al. [Off+96a] this set has the same strengths as a much larger comprehensive set of operators.
Although there is empirical evidence demonstrating that the E-Selective set has lower strengths
than a more comprehensive set of operators [Kur+16a], it still provides a very good trade-off
beetween selected mutants and strengths [Kur+16a].
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6.2.3 Mutant Prioritization

Mutant prioritization has received little or even no attention in literature (refer to the Related
Work Chapter 3, section 3.2 for details). Given the absence of other methods, we compare
our approach with the random baselines. We also consider alternative schemes, such as Defect
Prediction prioritization.

6.2.3.1 Random Mutant Prioritization

Random mutant prioritization forms a natural baseline for our approach. Comparing with ran-
dom orderings is a common practice in test case prioritization studies [Rot+01; Hen+16] and
shows the ability of the prioritization method to systematically order the sought elements. Sim-
ilarly to mutants selection, we applied two random ordering techniques, the SpreadRandom
and DummyRandom. SpreadRandom orders mutants by iteratively going through all program
statements (in random order) and selects one mutant among the mutants of each statement
(statement-based orders), while DummyRandom orders them from the mutant set (uniform or-
ders).

6.2.3.2 Defect Prediction Mutant Prioritization

Naturally, one of the main attributes determining the utility of the mutants is their location.
Thus, instead of selecting mutants based on other properties, one could select them based on
their location. To this end, we form a prioritization method that predicts and orders the error-
prone code locations, i.e., code parts that are most likely to be faulty. Then, we mutate the
predicted code areas and form a baseline method. Such an approach is in sense equivalent to the
application of mutation testing on the results of defect prediction. Moreover, such a comparison
demonstrates that mutants depend on the attributes (features) we train on not solely on their
location.

6.3 Approach

Our objective is to select mutants that lead to effective test cases. In view of this, we aim at
selecting and prioritizing mutants so that we reveal most of the faults by analysing the smallest
possible number of mutants.

We conjecture that mutant selection strategies should account for the properties that make them
killable and fault revealing. Defect prediction studies [MGF07; KS16] investigated properties re-
lated to error-prone code locations, but not related to mutants. Mutation testing is a behaviour
oriented criterion and requires mutants introducing small and useful semantic deviations. There-
fore, we propose building a model, which captures the essential properties that make mutants
valuable (in terms of their utility to reveal faults).

Figure 6.2 depicts the FaRM approach, which learns to rank mutants according to their fault
revealing potential (likelihood to reveal (unknown) faults). Initially, FaRM applies supervised
learning on the mutants generated from a corpus of faulty program versions, and builds a pre-
diction model. This model is then used to predict the mutants that should be used to test the
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particular instance of the program under test. This means that at the time of testing and prior
to any mutant execution, testers can use and focus only on the most important mutants.

Regarding FaRM supervised learning training phase (when the prediction model is built), the
faulty programs mutants’s features are extracted and used as training data’s features and, their
utilities are computed and used as training data’s expected output. The mutant’s utility for
fault revealing and killable mutant prediction is respectively the mutants’ fault revealing and
killability information. Regarding the validation phase, features of the mutants of the program
under test are extracted and used as validation data’s features to predict the mutants’ utilities
with the trained model. Mutants with high predicted utility are the useful ones.

Definition: For a given problem, we define as classifier’s performance the prediction performance
of the classifier, which is the accuracy of the predictions (precision, recall, F-measure and Area
Under Curve metrics that are detailed in Section 6.5.3) of the classifier for the given problem.

ML-based measurement of mutant utility. The selection process in FaRM is based on
training a predictor for assessing the probability of a mutant to reveal faults. To that end, we
explore the capability of several features, which are designed to reflect specific code properties
which may discriminate a useful mutant from another. Let us consider a mutantM associated to
a code statement SM on which the mutation was applied. This mutant can be characterized from
various perspectives with respect to (1) the complexity of the relevant mutated statement, (2)
the position of the mutated code in the control-flow graph, (3) dependencies with other mutants,
(4) the nature of the code block where SM is located.

ML features for characterizing mutants. Recently, the studies of Wen et al. [Wen+18],
Just et al. [JKA17] and Petrovic and Ivankovic [PI18] found a strong connection between mu-
tants’ utility and the surrounding code (captured by the AST father and child nodes). Therefore,
in addition to the mutant types, typically considered by selective mutation approaches [Off+96a;
NAM08; Pap+19], we also considered the information encoded on the program AST. We include
three such features, the Data type at the mutant location, the parent AST node (of the mu-
tant expression) and the child AST node (of the mutant expression), in our machine learning
classification scheme.

Let BM be the control-flow graph (CFG) basic block associated to a mutated statement SM
containing the mutated expression EM . Table 6.1 provides the list of all 28 features that we
extract from each mutant. The features named TypeAstParent, TypeMutant, TypeStmtBB, Ast-
ParentMutantType, OutDataDepMutantType, InDataDepMutantType, OutCtrlDepMutantType,
InCtrlDepMutantType, DataTypesOfOperands and DataTypesOfValue are categorical. We rep-
resented them using one hot encoding. Besides the categorical features listed above, all other
features are numerical. The values of numerical features are normalized between 0 and 1 using
feature scaling, more precisely min-max normalization/scaling.

A demonstrating example on how mutant features are computed is given in the following sub-
section (section 6.3.2). After extracting feature values, we feed them to a machine learning
classification algorithm along with the killablity and fault revealing information for each mu-
tant for a set of faults. The training process then produces two classifiers (one for the killable
(non equivalent) and one for the fault revealing mutants) which, given the feature values of a
given mutant, they are capable of computing the utility probabilities for this mutant, i.e., its
probability to be killable and its probability to be fault revealing.
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Complexity Complexity of statement SM approximated by the total number of mutants
on SM

CfgDepth Depth of BM according to CFG
CfgPredNum Number of predecessor basic blocks, according to CFG, of BM

CfgSuccNum Number of successors basic blocks, according to CFG, of BM

AstNumParents Number of AST parents of EM

NumOutDataDeps Number of mutants on expressions data-dependents on EM

NumInDataDeps Number of mutants on expressions on which EM is data-dependent
NumOutCtrlDeps Number of mutants on statements control-dependents on EM

NumInCtrlDeps Number of mutants on expressions on which EM is control-dependent
NumTieDeps Number of mutants on EM

AstParentsNumOutDataDeps Number of mutants on expressions data-dependent onEM ’s AST parent state-
ment

AstParentsNumInDataDeps Number of mutants on expressions on which EM ’s AST parent expression is
data-dependent

AstParentsNumOutCtrlDeps Number of mutants on statements control-dependent on EM ’s AST parent
expression

AstParentsNumInCtrlDeps Number of mutants on expressions on which EM ’s AST parent expression is
control-dependent

AstParentsNumTieDeps Number of mutants on EM ’s AST parent expression
TypeAstParent Expression type of AST parent expressions of EM

TypeMutant Mutant type of M as matched code pattern and replacement. Ex: a+b→ a−b
TypeStmtBB CFG basic block type of BM . Ex: if − then, if − else
AstParentMutantType Mutant types of M’s AST parents
OutDataDepMutantType Mutant types of mutants on expressions data-dependents on EM

InDataDepMutantType Mutant types of mutants on expressions on which EM is data-dependent
OutCtrlDepMutantType Mutant types of mutants on statements control-dependents on EM

InCtrlDepMutantType Mutant types of mutants on expressions on which EM is control-dependent
AstChildHasIdentifier AST child of expression EM has an identifier
AstChildHasLiteral AST child of expression EM has a literal
AstChildHasOperator AST child of expression EM has an operator
DataTypesOfOperands Data types of operands of EM

DataTypeOfValue Data type of the returned value of EM

Table 6.1: Description of the static code features

By using these two classifiers we form three approaches, two of them using each one of the clas-
sifiers alone and one of them by combining them. The first two, named FaRM and PredKillable,
respectively classify mutants according to their probability to be fault revealing and killable.
The third one, named FaRM*, divides the mutant set in two subsets, likely killable and likely
equivalent (based on PredKillable predictions), separately ranks them according to their fault
revealing probability and concatenates them by putting the likely killable subset first. Figure 6.3
show an example of mutant ranking by FaRM*. The motivation for FaRM* results from the
hypothesis that equivalent mutants could be noise to FaRM and, PredKillable performs better
at filtering equivalent mutants (or predicting killable mutants). Given that fault revealing mu-
tants are killable, we expect them to have higher predicted utility value with both FaRM and
PredKillable. Therefore, FaRM* gives priority to the most likely fault revealing mutants that
are also most likely killable.

We implement a prioritization scheme by considering the ranking of all mutants in accordance
to the values of the developed probability measure. This forms our mutant prioritization ap-
proaches. Our mutant selection strategy sets a threshold probability value (e.g., 0.5) or a cut-off
point according to the number of the top ranked mutants to keep only mutants with higher
utility probability scores in the selected set. This forms our mutant selection approach. For the
combined approach (FaRM*) we divide the mutant set in the killable and equivalent subsets by
using a cut-off point of 0.5.
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Mutants M1 M2 M3 M4 M5 M6

FaRM’s Fault Revelation proba. 1.0 0.3 0.7 0.9 0.0 0.2

predKillable’s Killability proba. 0.6 0.4 0.3 0.0 1.0 0.7

group mutants according to killability threshold
(𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.5)

Rank each set by decreasing Fault Revelation

Mutants M1 M5 M6 M2 M3 M4

FaRM’s Fault Revelation proba. 1.0 0.0 0.2 0.3 0.7 0.9

Mutants M1 M6 M5 M4 M3 M2

FaRM’s Fault Revelation proba. 1.0 0.2 0.0 0.9 0.7 0.3

FaRM* ranking: M1 M6 M5 M4 M3 M2

Predicted killable Predicted equivalent

Figure 6.3: Example of mutant ranking procedure by FaRM*. the ranking is a concatenation of the
ranked predicted killable mutants and the ranked predicted equivalent mutants.

6.3.1 Implementation

We implemented FaRM as a collection of tools in C++. We leverage stochastic gradient boost-
ing [Fri02] (decision trees) to perform supervised learning. Gradient boosting is a powerful
ensemble learning technique which combines several trained weak models to perform classifica-
tion. Unlike common ensemble techniques, such as random forests [Bre01], that simply average
models in the ensemble, boosting methods follow a constructive strategy of ensemble formation
where models are added to the ensemble sequentially. At each particular iteration, a new weak,
base-learner model is trained with respect to the error of the whole ensemble learnt so far [NK13].
We use the FastBDT [Kec16] implementation by setting the number of trees to 1,000 and the
trees depth to 5.

6.3.2 Demonstrating Example

Here we provide an example on how the features of Table 6.1 are computed. We consider
the program in figure 6.4 (extracted from the Codeflaws benchmark, ID: 598-B-bug-17392756-
17392766), on which mutation is applied. We present the feature extraction for a mutant M ,
which is created by replacing the right side decrement operator by the right side increment
operator on line 16 (m − − becomes m + +). We also present in figure 6.5-a the mutant, the
abstract syntax tree (AST) of the mutated statement (while condition) in figure 6.5-b and in
figure 6.5-c the control flow graph (CFG) of the function containing the mutated statement.

The features, for mutant M , are computed as following:
- The complexity feature value is the number of mutants generated on the statement containing
the mutant M (Line 16). In this case 72 mutants. Thus, the complexity is 72.
- The CfgDepth feature value is the minimum number of basic blocks to follow, along the CFG,
from main function’s entry point to the basic block containing M (BB2 ). In this case 1 basic
block as shown in Figure 6.5-c. Thus, the CfgDepth is 1.
- The CfgPredNum feature value is the number of basic blocks directly preceding the basic block
containing M (BB2 ) on the control flow graph. In Figure 6.5-c there are 2 basic blocks (BB1
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and BB3 ). Thus, the CfgPredNum is 2.
- The CfgSuccNum feature value is the number of basic blocks directly following the basic block
containing M (BB2 ) on the control flow graph. In Figure 6.5-c there are 2 basic blocks (BB3
and BB4 ). Thus, the CfgSuccNum is 2.
- The AstNumParents feature value is the number of AST parents of the mutated expression.
In this case, the only AST parent is the relational expression, in Figure 6.5-b, whose sub-tree is
rooted on the greater than sign (>). Thus the feature value is 1.
- The NumOutDataDeps feature value is the number of mutants on expressions data dependent
on the mutated expression. In this case, looking at Figure 6.4, the value of variable m written
in the mutated expression m−− is only used in the same expression. Thus the feature value is
the number of mutants on the mutated expression m−−.
- The NumInDataDeps feature value is the number of mutants on expressions on which the
mutated expression is data dependent. In this case, looking at Figure 6.4, the value of variable
m used on the mutated expression m − − is either written on the scanf statement at line 15,
or in the same expression. Thus the feature value is the sum of the number of mutants on the
statement at line 15 and the number of mutants on the mutated expression m−−.
- The NumOutCtrlDeps feature value is the number of mutants on statements control dependent
on the mutated expression. In this case, looking at Figure 6.4, no statement is control dependent
on the mutated expression m−−. Thus the feature value is 0.
- The NumInCtrlDeps feature value is the number of mutants on expressions on which the mu-
tated statement is control dependent. In this case, looking at Figure 6.4, no expression controls
the mutated expression. Thus the feature value is 0.
- The NumTieDeps feature value is the number of mutants on the right decrement expression
(mutated expression).
- The AstParentsNumOutDataDeps feature value is the number of mutants on expressions data
dependent on the AST parent of the mutated expression. In this case, looking at Figures 6.4
and 6.5-b, the value of the relational expression (AST parent of m − −) is not used in other
expressions. Thus the feature value is 0.
- The AstParentsNumInDataDeps feature value is the number of mutants on expressions on
which the AST parent of the mutated expression is data dependent. In this case, looking at
Figures 6.4 and 6.5-b, the value of the relational expression (AST parent of m−−) only depends
on the value of expression m−−. Thus the feature value is the number of mutants on expression
m−−.
- The AstParentsNumOutCtrlDeps feature value is the number of mutants on statements control
dependent on the AST parent of the mutated expression. In this case, looking at Figures 6.4 and
6.5-b, all the statements in basic block BB3 are control dependent on the relational expression
(AST parent of m−−). Thus the feature value is the sum of the number of mutants in lines 17,
18 and 19 of the code in Figure 6.4.
- The AstParentsNumInCtrlDeps feature value is the number of mutants on expressions on which
the AST parent of the mutated expression is control dependent. In this case, looking at Fig-
ures 6.4 and 6.5-b, no expression controls the relational expression (AST parent of the mutated
expression m−−). Thus the feature value is 0.
- The AstParentsNumTieDeps feature value is the number of mutants on the relational expres-
sion, AST parent of the mutated right decrement expression. The feature value here is the
number of mutants of the relational expression of operator greater than.
- The TypeAstParents feature value is AST type of the AST parent expression of the mutated
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expression. Here, that is the AST type of the relational expression with operator greater than.
- The TypeMutant feature value is the type of the mutant as a string representing the matched
and replaced pattern. The feature value is "()−− → () + +".
- The TypeStmtBB feature value is the type of the basic block containing the mutated statement.
The feature value here is the type of BB2 (see Figure 6.5-c), which is "While Condition".
- The AstParentMutantType feature value is the aggregation of types of the mutants on the AST
parents of the mutated expression. That is the aggregation of the mutants types of the relational
expression whose sub-tree is rooted on the greater than sign (>) as shown in Figure 6.5(b). The
aggregation of a set of mutant types is performed by summing up the one encoding vectors of
the mutants types, allowing each mutant type to be represented in the encoding.
- The OutDataDepMutantType feature value is the aggregation (as computed for AstParentMu-
tantType) of the mutant types of the mutants counted to compute NumOutDataDeps.
- The InDataDepMutantType feature value is the aggregation (as computed for AstParentMu-
tantType) of the mutant types of the mutants counted to compute NumInDataDeps.
- The OutCtrlDepMutantType feature value is the aggregation (as computed for AstParentMu-
tantType) of the mutant types of the mutants counted to compute NumOutCtrlDeps.
- The InCtrlDepMutantType feature value is the aggregation (as computed for AstParentMutant-
Type) of the mutant types of the mutants counted to compute NumInCtrlDeps.
- The AstChildHasIdentifier feature value is the Boolean value representing whether the mutated
expression has an identifier as operand. In this case, the mutated expression has the identifier
m as operand. Thus, the value of the feature is 1 (True).
- The AstChildHasLiteral feature value is the Boolean value representing whether the mutated
expression has a literal as operand. In this case, the mutated expression does not have the literal
as operand. Thus, the value of the feature is 0 (False).
- The AstChildHasOperator feature value is the Boolean value representing whether the mutated
expression has an operator. In this case, the mutated expression has the operator right decre-
ment operator −−. Thus, the value of the feature is 1 (True).
- The DataTypesOfOperands feature value is the datatype of the operand of the right decrement
operation −−. That is the datatype of m which is "int".
- The DataTypeOfValue feature value is the datatype of the value of the mutated expression,
Which is "int" as the data type of m.

6.4 Research Questions

When building prediction methods, the first thing to investigate is their prediction ability. Thus,
our first question can be stated as:

RQ1: How well does our machine learning method predict the killable mutants?

Similarly, our second question can be stated as:

RQ2: How well does our machine learning method predict the fault revealing mutants?

After demonstrating that our classification method predicts satisfactorily the fault revealing
mutants, we continue by investigating its ability to practically support mutant selection with
respect to the actual measure of interest, the revealed faults, and with respect to the random
baseline techniques. Therefore, we investigate:
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#include <stdio.h>
#include <string.h>

void rotate(char *s, int n, int k) {
char t[10000];
memcpy(t, s + n - k, k); // 49 mutants
memcpy(t + k, s, n - k); // 65 mutants
memcpy(s, t, n); // 10 mutants

}

int main(int argc, char *argv[]) {
char s[10000];
int m, l, r, k;
scanf("%s", s);    // 6 mutants
scanf("%d", &m); // 3 mutants
while (m-- > 0) { // 72 mutants

scanf("%d%d%d", &l, &r, &k); // 6 mutants
l--; // 55 mutants
rotate(s + l, r - l, k); // 60 mutants

}
printf("%s\n", s); // 7 mutants
return 0; // 3 mutants

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Figure 6.4: Example program where mutation is applied. The C language comments on each line show
the number of mutants generated on the line.

char s[10000];
int m, l, r, k;
scanf("%s", s);
scanf("%d", &m);

BB1: Lines 12 to 15

scanf("%d%d%d",…);
l--;
rotate(s + l,…);

BB3: Lines 17 to 19

printf("%s\n", s);
return 0;

BB4: Lines 21 and 22

while(m-- > 0)

BB2: Line 16

while(m++ > 0)

while(m-- > 0)

m

>

0()--

while

while(m-- > 0) Function main

Control Flow Graph

Abstract Syntax Tree

Mutation

(a) (b) (c)

Figure 6.5: (a) An example of mutant M from the example program from Figure 6.4, (b) the abstract
syntax tree of the mutated statement and (c) the control flow graph of the function containing the mutated
statement.

RQ3: How do our methods compare against the random strategies with respect to the fault
revealing mutant selection problem?

In addition to the random strategies, we also compare with the current state-of-the-art mutant
selection methods. Thus, we ask:

RQ4: How do our methods compare against the E-Selection and SDL with respect to the fault
revealing mutant selection problem?

As we already discussed an alternative mutant cost reduction technique is mutant prioritization.
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Hence, we ask:

RQ5: How do our methods compare against the random strategies with respect to the fault
revealing mutant prioritization problem?

In addition to the random strategies, we also compare with the defect prediction mutant priori-
tization baseline. Therefore, we ask:

RQ6: How do our methods compare against the defect prediction mutant prioritization method?

Finally, by demonstrating the benefits of our approach, we turn to investigate the generalization
ability of our approach on larger and complex programs. Therefore we conclude by asking:

RQ7: How well do our method generalise its findings on independently selected programs that
are much larger and complex?

6.5 Experimental Setup

6.5.1 Benchmarks: Programs and Fault(s)

For the purposes of our study we need a large number of programs that are not trivial and are
accompanied with real faults. The fault set has to be large and of diverse types. Unfortunately,
mutation testing is costly and its experimentation requires generating strong test suites (see
Chapter 4). Therefore, there are two necessary tradeoffs, between the number of faults to be
considered, the strengths of the test suites to be used and the size of the used programs.

To account for these requirements, we used the Codeflaws benchmark [Tan+17]. This benchmark
consists of 7,436 programs (among wich 3,902 are faulty) selected from the Codeforces1 online
database of programming contests. These contests consist of three to five problems, of varied
difficulty levels. Every user submits its programs that resolve the posed problems. In total, the
benchmark involves programs from 1,653 users “with diverse level of expertise” [Tan+17].

Every fault in this benchmark has two program instances: the rejected ‘faulty’ submission and the
accepted ‘correct’ submission. Overall, the benchmark contains 3,902 faulty program versions of
40 different defect classes. It is noted that every faulty program instance in our dataset is unique,
meaning that every program we use is different from the others (in terms of implementation).
To the best of our knowledge, this is the largest number of faults used in any of the mutation
testing studies. The size of the programs varies from 1 to 322 with an average of 36 lines of code.
Applying mutation testing on Codeflaws yielded 3,213,543 mutants and required a total of 8,009
CPU days for all computations.

To strengthen our results and demonstrate the ability of our approach to handle faults made by
actual developers, we also used the CoREBench [BR14] benchmark. CoREBench includes real-
world complex faults that have been systematically isolated from the history of C open source
projects. These programs are of 9-83 KLoC and are accompanied by developer test suites. It is
noted that every CoREBench fault forms a single fault instance (it differs from the other faults).

We used the available test suites augmented by KLEE [CDE08]. Although these test suites
greatly increased the cost of our experiment, we considered their use of vital importance as

1http://codeforces.com/
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Figure 6.6: Distribution of Codeflaws Benchmark problems by number of implementations.

otherwise our results could be subject to “noise effects” (as presented in Chapter 4).

Due to the very high cost of the experiments and technical difficulties to reproduce some faults,
we conducted our analysis on 45 faults (22 in Coreutils, 12 in Find and 11 in Grep). Applying
mutation testing on these 45 versions yielded 1,564,614 mutants and required a total of 454 CPU
days of computation (without considering the test generation and machine learning computations
and evaluations). Test generation resulted in a test pool composed of 122,261 and 22,477 test
cases related to Codeflaws, CoREBench.

The goal of our study is to evaluate the fault revealing ability of the mutants we select. However,
approximately half of our faults are trivial ones (triggered by most of the test cases), and their
inclusion in our analysis would artificially inflate our results. Thus, we restrict our analysis on
the faults that are revealed by less than 25% of the test cases involved in our test suites. Taking
such a threshold is usual in fault injection studies [SiR18], but it ensures that the targeted faults
and our focus is on faults that are hard enough to find. Practically, taking a lower threshold will
significantly reduce the number of faults to be considered hindering our ability to train, while
taking a higher threshold will make all the approaches perform similarly, as the faults will be
easy to reveal. Overall, from the Codeflaws benchmark we consider 1,692 out of the 3,902 ones
(1,692 are the non-trivial faults) and from the CoreBench benchmark 45 faults.

Figure 6.6 shows the distribution of number of problems by number of implementations for the
considered faulty programs from Codeflaws. We observe that 85% of the problems have at most
3 implementations.

Despite that Codeflaws benchmark faults were mined from a programming contest, the faults
nevertheless are relatively small syntactical mistakes. We observe on figure 6.7 that 82% of the
faults are fixed by modifying a single line of source code. This ensures that we are compatible
with the competent programmer hypothesis2, which is one of the basic assumptions of mutation
testing [DLS78].

2The competent programmer hypothesis states that programs have a small syntactic distance from the correct
version so that we need a few keystrokes to correct the program
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Figure 6.7: Distribution of Codeflaws Benchmark faulty programs by number of lines of code changed
to fix the fault.

6.5.2 Automated Tools Used

We used KLEE [CDE08] to support the test generation. We used KLEE with a relatively large
timeout limit, equal to two hours per program, the Random Path search strategy, with Randomize
Fork Enabled, Max Memory 2048 MB, Symbolic Array Size 4096 elements, Symbolic Standard
input size 20 Bytes and Max Instruction Time of 30 seconds. This resulted in 26,229 and 1,942
test cases for CodeFlaws and CoREBench. Since the automatically generated test cases do not
include any test oracle, we used the programs’ fixed version as oracle. We considered as failing,
every test case that resulted in different observable program output when executed in the ‘faulty’
from that in the ‘correct’-fixed one. Similarly, we used the program output to identify the killed
mutants. We deemed a mutant as killed if it resulted in a different output than in the original
program.

We used our built mutation testing tool (Mart), presented in Chapter 8, that operates on LLVM
bitcode. Actually all our metrics and analysis were performed on the LLVM bitcode. We used
the default configuration of Mart which consists of 18 operators, composed of 816 transformation
rules. These include all those that are supported by modern mutation testing tools [Off+96a;
Pap+19; Col+16] and are detailed in Chapter 8.

Applying mutation testing on CodeFlaws and CoREBench yielded 3,213,543 and 1,564,614 mu-
tants.

To reduce the influence of redundant and equivalent mutants, we applied TCE [Pap+15; Har+16;
Kin+18]. Since we operate on LLVM bitcode we compared the mutated optimized LLVM codes
using the llvm-diff utility. llvm-diff is a tool like the known Unix diff utility but for LLVM bitcode.
TCE Detected 1,457,512 and 715,996 mutant equivalences on CodeFlaws and CoREBench. Note
that the equivalent and redundant mutants detected by TCE are removed from the mutants set
and neither executed nor considered in the experiments.

The execution of the mutants post TCE resulted in killing the 87% and 54% of the mutants for
CodeFlaws and CoREBench. It is important to note that our tool applies mutant test execution
optimizations by recording the coverage and program state at the mutation points avoiding the
execution of mutants that do not infect the program state [PM10b]. This optimization enables
huge test execution reductions and forms the current state of the art at the test execution opti-
mizations [Pap+19]. Despite these optimization our tool required a total of 8,009 and 454 CPU
days of computations for CodeFlaws and CoREBench indicating the large amount of computation
resources required to perform such an experiment.
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6.5.3 Experimental Procedure

To answer our research questions we performed an experiment composed of three parts. The first
part regards the prediction ability of our classification method, answer RQ1 and RQ2, the second
regards the fault revealing ability of the approaches, answer RQ3-RQ6, and the third regards the
fault revealing ability of our approach on large independently selected programs, answer RQ7. To
account for our use case scenario, in our experiments we always train and evaluate our approach
on a different sets of programs (CodeFlaws) or program versions (CoREBench).

As a first step we used KLEE to generate test cases for all the programs we study and formed a
pool of test cases by joining the generated and the available test cases. We then constructed a
mutation-fault matrix, which records for every test case the mutants that it kills and whether it
reveals the fault or not (we construct a matrix for every single fault we study). We also record the
execution time needed to execute every mutant-test pair so that we can simulate the execution
cost of the approaches. We make the data available3.

To measure fault revelation we mutated the faulty program versions. This is important in order to
avoid making any assumption related to the interaction of mutants and faults, aka Clean Program
Assumption evaluated in Chapter 4. Based on this matrix we compute the fault revealing ratio
for each mutant. The fault revealing ratio is the ratio of tests that kill the mutant and reveal
the fault to the total number of tests that kill the mutant.

First experimental part: The first task of prediction modeling is to evaluate the contribution of the
used features. We computed the information gain values for each one of the used features. Higher
information gain values represent more informative features for decision trees. Demonstrating the
importance of our features helps us understand what is the most important factors affecting the
utility of mutants. Having measured information gain, we then measure the prediction ability of
our classification method by evaluating its ability to predict killable and fault revealing mutants.
For this part of the experiment we considered as fault revealing the mutants that have fault
revealing ratio equal to 1. We relax this constraint in the second part of the experiment.

We evaluate the trained classifiers using four typically adopted metrics such as the precision,
recall, F-measure and Area Under Curve (AUC). The precision of a classifier is defined as the
number of items that are truly relevant among the items that the classifier predicted to be
relevant. The recall of a classifier is defined as the number of items that are predicted to
be relevant by the classifier among all the truly relevant items. The F-measure of a classifier is
defined as the weighted harmonic mean of the precision and recall, it is also named F1 score. The
Area Under Curve (AUC) of a classifier is the area under the Receiver Operating Characteristic
(ROC) curve (The ROC curve shows how many true positive classifications can be gained as
more and more false positives are allowed) [Zhe15]. Precision represents the ratio of the identified
killable and fault revealing mutants out of those classified as such. Recall represents the ratio
of the identified killable and fault revealing mutants out of all existing ones. In classification
usually recall and precision are competitive metrics in the sense that higher values of one imply
lower values for the other. To better compare classifiers researchers use the F-measure and AUC
metrics. These measure the general classification accuracy of the classifier. Higher values denote
better classification.

To reduce the risk of overfitting, we applied a 10-fold cross validation by partitioning our program
3https://mutationtesting.uni.lu/farm
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set into 10 parts and iteratively train on 9 parts and evaluation on one. We report the results
for all the partitions.

This experiment part was performed on the Codeflaws programs.

Second experimental part: Our analysis requires comparing mutation-based strategies with re-
spect to the actual value of interest, the number of faults revealed. Given that killing a mutant
does not always result in revealing a fault, we train the classifier in accordance with the actual
fault revealing ratios (i.e., the ratio of tests that kill a mutant and also reveal faults).

We then select and prioritise our mutants. To evaluate and compare the studied approaches with
respect to fault revelation, we follow a typical procedures [Kur+16a; NAM08] (also followed in
Chapter 4) by randomly selecting test cases, from the formed test pools, that kill the selected
mutants. In case none of the available test cases on our test pool kills the mutant we treat it as
equivalent. We repeat this process for each one of the studied approaches. As done in the first
part of the experiment we report results using a 10-fold cross validation.

For the mutant selection problem we randomly pick a mutant and then randomly pick a test
case that kills it. Then we remove all the killed mutants and pick another one. If the mutant
is not killed by any of the test cases on our test pool we treat it as equivalent. We repeat this
process 100 times and compute the probability of revealing each one of the faults.

For the mutant prioritisation case we follow the mutant order by picking test cases that kills each
mutant. We do not attempt to kill a mutant twice. Again, we repeat this process 100 times and
compute the Average Percentage of Faults Detected (APFD) values, which is typical metric used
test case prioritization studies [Hen+16]. Again we align the compared approaches with respect
to their cost (number of mutants need manual analysis) and compare their effectiveness.

To account for coincidental results and the stochastic selection of test cases and mutants we used
the Wilcoxon test, which is a non-parametric test, to determine whether the Null Hypothesis
(that there is no difference between the studied methods) can be rejected. In case the Null
Hypothesis is rejected, then we have evidence that our approach outperforms the others. Even
when the null hypothesis does not hold, the size of the differences might be small. To account
for this effect we also measured the Vargha Delaney effect size Â12 (Section 2.5.3).

This experiment part was performed on the Codeflaws programs.

Third experimental part: To further evaluate the fault revealing ability of our approach, we
applied it on the CoreBench programs. We also adopted the 10-fold cross validation as for the
experiments on Codeflaws. We report results related to both fault revelation and APFD values.
The CoreBench corpus is small in size and hence FaRM might not be particularly important.
However, in case the signal of our features is strong, we will be able to experience the benefits
of our method even with those few data.

6.5.4 Mutant Selection and Effort Metrics

When comparing methods, a comparison basis is required. In our case we measure fault revelation
and effort. While measuring fault revelation based on the fault set we use is direct, measuring
effort/cost is hard. Effort/cost depends on a large number of uncontrolled parameters, such as
the followed procedure, level of automation, skills, underlying infrastructure and the learning
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curve. Therefore, we have to account for different scenarios. and we adopt three frequently used
metrics; the number of selected mutants, the number of test cases generated and the number of
mutants requiring analysis.

The first metric (selected mutants) represents the number of mutants that one should use when
applying mutation testing. This is a direct and intuitive metric as it suggest that developers
should select a particular set of mutants to generate (form an actual executable codes), execute
and analyse. Although such a metric conforms to our working scenario, it does not focus on the
required test generation effort involved. Generating test cases is mostly a manual task (due to
the test oracle problem) and so, we also consider a second metric, the number of test cases that
can be generated based on a selected set of mutants.

We also adopt a third metric, the number of mutants that need to be analysed (equivalent mutants
and those we pick, i.e., analysed in order to generate test cases). This metric somehow reflects
the effort a tester needs to put in order to kill or identify as equivalent the selected mutants
(under the assumption that equivalent mutants require the same effort as the test generation).

To fairly compare the random selection methods, we select mutants until we analyse the same
number of mutants as analysed by our selection method. This establishes a fixed cost point for
all the approaches and compare their effectiveness.

There are other cost factors, such as the mutant-test execution cost and the analysis of equivalent
mutants (for the first two metrics) that we investigate separately. The reason for that is that
we would like to see if our approaches are also faster to execute and require reasonably less
equivalent mutants.

6.6 Results

6.6.1 Assessment of killable mutant prediction (RQ1 and RQ2)

To check the prediction performance of our classifier we performed a 10-Fold cross-validation for
three different selected sets. These were the results of applying PredKillable to predict killable
mutants and selecting the 5%, 10% and 20% of the top ranked mutants. The PredKillable
classifier achieves 98.8% 5.7%, 10.7% precision, recall and F-measure when selecting the 5%
of the mutants. With respect to 10% and 20% sets of mutants, it achieves 98.8% and 98.7%
(precision), 11.4% and 22.8% (recall), 20.4% and 37.0% F-measures. These values are higher
than those that one can get by randomly sampling the same number of mutants. In particular
the PredKillable has 12.3%, 12.2% and 12.1% higher precision, and 0.7%, 1.4% and 2.8% higher
recall values for the 5%, 10% and 20% sets of mutants.

When using PredKillable to predict non killable mutant, the classifier achieves 95.1% 35.0%,
51.2% precision, recall and F-measure when selects the 5% of the mutants. With respect to 10%
and 20% sets of mutants, it achieves 79.1% and 49.3% (precision), 58.6% and 73.2% (recall),
67.3% and 58.9% F-measures. These values are higher than those that one can get by randomly
sampling the same number of mutants. In particular the PredKillable has 81.6%, 65.7% and
35.8% higher precision, and 30.1%, 48.7% and 53.3% higher recall values for the 5%, 10% and
20% sets of mutants.
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Figure 6.8: Receiver Operating Characteristic For Killable Mutants Prediction on Codeflaws

To train our models, approximately 48 CPU hours were required, while to perform the evaluation
(perform mutant selection) it required less than a second. Since training should only happen
once in a while, the training time is considered acceptable. Of course the cost of selecting and
prioritizing mutants is practically negligible.

The Receiver operating characteristic (ROC) shown in Figure 6.8 further illustrates performance
variations of the classifier in terms of true positive and false positive rates when the discrimination
threshold changes: the higher the area under curve (AUC), the better the classifier. Our classifier
achieves an AUC of 88%. These results establish that the code properties that were leveraged as
features for characterizing mutants provide, together, a good discriminative power for assessing
the fault revealing potential of mutants.

6.6.2 Assessment of fault revelation prediction

ML prediction performance Similarly to subsection 6.6.1 we performed a 10-Fold cross-
validation for three different selected sets in order to check the prediction performance of our
classifier. These were the results of applying FaRM and selecting the 5%, 10% and 20% of the top
ranked mutants. The FaRM classifier achieves 5.7% 12.8%, 7.8% precision, recall and F-measure
when selects the 5% of the mutants. With respect to 10% and 20% sets of mutants, it achieves
4.9% and 3.9% (precision), 22.0% and 35.1% (recall), 8.0% and 7.0% F-measures. These values
are higher than those that one can get by randomly sampling the same number of mutants. In
particular FaRM has 3.5%, 2.7% and 1.7% higher precision, and 7.8%, 12.1% and 15.1% higher
recall values for the 5%, 10% and 20% sets of mutants.

The cost of training and evaluation are same as those reported in section 6.6.1.

The Receiver operating characteristic (ROC) shown in Figure 6.9 further illustrates performance
variations of the classifier in terms of true positive and false positive rates when the discrimination
threshold changes: the higher the area under curve (AUC), the better the classifier. Our classifier
achieves an AUC of 62%.

We believe that such a result is encouraging due to the nature of the developer mistakes. As
developers make mistakes in an non-systematic way, for the same problem, some may make
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Figure 6.9: Receiver Operating Characteristic For Fault Revealing Mutants Prediction on Codeflaws
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Figure 6.10: Information Gain distributions of ML features on Codeflaws

mistakes while some others may not, the only thing we can hope for is to form good heuristics,
i.e., identify mutants that maximize the chances to reveal faults. Therefore, it is hard to get
much higher AUC values. Nevertheless, we expect future research to built on and improve our
results by forming better predictors.

Overall, the above results demonstrate that the code properties that were leveraged as features
for characterizing mutants provide, together, a discriminative power to assess the fault revealing
potential of mutants.

Considered features We provide in Figure 6.10 the distribution of information Gain values
for the various features considered in this work. Information gain (IG) measures how much “in-
formation" a feature gives us about the class we want to predict. The IG values are computed
by the supervised learning algorithm during the training process. These data enable the assess-
ment of the potential contribution of every feature to a prediction model. Experimental training
process provides evidence in Figure 6.10 that the suggested features (in bold) contribute signif-
icantly less than several other features that we have designed for FaRM. Interestingly, together
with complexity, the features related to control and data dependencies are the most informative
ones. Here we should note that IG values do not suggest which features to select and which not.
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Actually our results show that we need all the features.

6.6.3 Mutant selection

6.6.3.1 Comparison with Random (RQ3)

Figure 6.11 shows the distribution of the fault revelation of the mutant selection strategies when
selecting the 2%, 5% and 10% of the top ranked mutants. As can be seen from the plot, both
FaRM* and FaRM outperforms both DummyRandom and spreadRandom. Both DummyRan-
dom and spreadRandom outperform PredKillable. When selecting 2% of the mutants the differ-
ence, for both FaRM and FaRM*, of the median values is 22% and 24% for the DummyRandom
and SpreadRandom respectively. This difference is increasing when selecting the 5% of the mu-
tants and goes to 34% and 34% for FaRM and, 24% and 24% for FaRM*. When selecting 10%
of the mutants the difference becomes 20% and 17% for both FaRM and FaRM*. Regarding
PredKillable, the difference with DummyRandom and SpreadRandom at the 2% mutant selection
threshold is 23% and 21% respectively. This difference increase for the 5% to 37% and 37%. For
the 10% threshold is 43% and 46%.

To check whether the differences are statistically significant we performed a Wilcoxon rank-sum
test, which is a non-parametric test that measures whether the values of one sample are higher
than those of the second sample. We adopt a statistically significant level a < 0.05 (note that the
same results apply with the significance level a < 0.01) below of which we consider the differences
as statistically significant. We also computed the Vargha Delaney Â12 effect size value between
the approaches.

The statistical test showed that FaRM and FaRM* outperforms both DummyRandom and
SpreadRandom with statistically significant difference. both DummyRandom and SpreadRan-
dom outperform PredKillable with statistically significant difference. As expected the differences
between DummyRandom and SpreadRandom are not significant. It is noted that all compar-
isons are aligned with respect to the number of mutants that need analysis, which as we already
explained represents the manual effort involved. The Vargha Delaney Â12 value between the
approaches show that for the 2% threshold, FaRM is better than DummyRandom and Spread-
Random in 60% and 63% of the cases respectively. These values are slightly higher for FaRM*
where it is better than DummyRandom and SpreadRandom in 62% and 65% of the cases re-
spectively. DummyRandom and SpreadRandom are respectively better than PredKillable in 84%
and 82% of the cases. For the 5% threshold, FaRM is better than DummyRandom and Spread-
Random in 66% of the cases. FaRM* is better than DummyRandom and SpreadRandom in
64% and 65% of the cases respectively. DummyRandom and SpreadRandom are respectively
better than PredKillable in 88% and 84% of the cases. For the 10% threshold, FaRM is better
than DummyRandom and SpreadRandom in 65% and 63% of the cases respectively. FaRM*
is better than DummyRandom and SpreadRandom in 64% and 61% of the cases respectively.
DummyRandom and SpreadRandom are respectively better than PredKillable in 87% and 85%
of the cases.

Regarding the test execution time of the involved methods, our approach has an advantage but
this is minor. The median difference between FaRM and DummyRandom and SpreadRandom
was 12 and 39 seconds per program respectively. This means that FaRM required 12 and 29
seconds less execution time than the random baselines. While these differences are considered
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Figure 6.11: Fault revelation of the mutant selection strategies on Codeflaws. All three FaRM and
FaRM* sets outperform the random baselines.
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Figure 6.12: Proportion of SDL and E-SELECTIVE mutants among all mutants for Codeflaws subjects.

as minor they demonstrate that FaRM has significantly higher fault revelation ability than the
compared baselines without introducing any major overhead.

Overall, our results suggest that FaRM and FaRM* significantly outperforms the random base-
lines with practically significant differences, i.e., improvements on the ratios of revealed faults
were between 4% to 34%. PredKillable is outperformed by all the approaches.

6.6.3.2 Comparison with SDL & E-Selective (RQ4)

This section aims to compare the fault revelation of our approach with that of the SDL and the
E-Selective mutants sets.

In order to compare our approach with SDL selection, the selection size is set to the number of
SDL mutants. In the Codeflaws subjects, SDL and E-SELECTIVE mutants represent in median
respectively 2% and 38% of all mutant as seen in Figure 6.12.

Our analysis is designed as following. For each subject, the |SDL| top ranked mutants of FaRM
are selected (where |SDL| is the total number of SDL mutants). We also select the |SDL| top
ranked mutants with the random approaches. Then, the fault revelation of each approach’s
selected mutants set is computed for comparison and presented in Figure 6.13. We observe
that FaRM and FaRM* respectively have 30% and 27% higher median fault revelation than
SDL. PredKillable has 25% lower median fault revelation than SDL. We also observe that SDL
has similar fault revelation with the random selections (respectively 3% and 2% lower than
DummyRandom and SpreadRandom).
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Figure 6.13: Fault revelation of FaRM compared with SDL on Codeflaws. FaRM sets outperform the
SDL selection. Approximately 2% (number of SDL mutants) of all the mutants are selected.

We also performed the Wilcoxon rank-sum test as in section 6.6.3. The statistical test showed
that both FaRM and FaRM* outperform SDL, and SDL outperforms PredKillable. The difference
between SDL and DummyRandom and SpreadRandom is not statistical significant. We also
computed the Vargha Delaney Â12 value between the approaches and found that FaRM and
FaRM* are respectively better than SDL in 54% and 55% of the cases. SDL is better than
PredKillable in 79% of the cases.

Similar to the experiment performed above to compare our approach with SDL, we perform
another experiment to compare FaRM with E-Selective selection. The fault revelation results
are presented in Figure 6.14. We observe that for a selection size equal to the number of E-
Selective mutants, all selection approaches except PredKillable and DummyRandom achieve the
highest median fault revelation. Given that E-Selective mutants are roughly 38% of all the
mutants, which is relative large set, we make the comparison with the E-Selective set for smaller
selection size namely 5% and 15% thresholds of the top ranked mutants (w.r.t all mutants).
The E-Selective mutants of the given sizes are randomly selected from the whole E-Selective
mutant set. The fault revelation results are presented in Figures 6.15 and 6.16. We can observe
that FaRM and FaRM* respectively have 31% and 22% higher median fault revelation than E-
Selective for thresholds 5%. For the 15% threshold, both have 9% higher median fault revelation.
PredKillable has 38% and 47% lower median fault revelation than E-Selective for thresholds 5%
and 15% respectively. We also observe that E-Selective has similar fault revelation with the
random selections (respectively 2% and 1% higher than DummyRandom and SpreadRandom for
selection size 5% and respectively 3% and 0% higher than DummyRandom and SpreadRandom
for selection size 15% ).

The Wilcoxon rank-sum statistical test shows that both FaRM and FaRM* outperform E-
Selective, and E-Selective outperforms the PredKillable. The difference between E-Selective and
the random approaches is not statistical significant. We also computed the Vargha Delaney Â12

effect size value between the approaches and found that for the 5% and 15% thresholds, FaRM
is better than E-Selective in 64% and 63% of the cases respectively. FaRM* is better in 62% and
61% of the cases respectively, and PredKillable is worse in 86% and 82% of the cases respectively.
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Figure 6.14: Fault revelation of FaRM compared with E-Selective on Codeflaws. Approximatively 38%
(number of E-Selective mutants) of all the mutants are selected.

FaRM*
FaRM

DummyRand

SpreadRand

PredKillable

E-SELECTIVE
0.0

0.2

0.4

0.6

0.8

1.0

Fa
ul

t R
ev

el
at

io
n 

Ra
te

Figure 6.15: Fault revelation of FaRM compared with E-Selective for selection size 5% of all mutants.
FaRM and FaRM* sets outperform E-Selective selection.
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Figure 6.16: Fault revelation of FaRM compared with E-Selective for selection size 15% of all mutants.
FaRM sets outperform E-Selective selection.

6.6.4 Mutant prioritization

6.6.4.1 Comparison with Random (RQ5)

Selected Mutants Cost Metric.

Figure 6.17 shows the distributions of APFD (Average Percentage of Faults Detected) values
for all faults, using the five approaches under evaluation. While FaRM and FaRM* respectively
yield an APFD median of 98% and 97%, and PredKillable yields an APFD median of 72%,
DummyRandom and SpreadRandom reach median APFD values of 93% and 94% respectively.
These results reveal that the general trend is in favour to our approach. As our approaches FaRM
and FaRM* are better than the random baseline, when the main cost factor (number of mutants
that need analysis) is aligned, we can infer that it is generally better with practically important
differences (of 4%). Note that the highest possible improvement over the random baseline is 6%
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Figure 6.17: APFD measurements considering all mutants for the selected mutants cost metric for
Codeflaws. The FaRM prioritization outperform the random baselines.

(DummyRandom has a median APFD value of 94%). Nonetheless, PredKillable is worse than
the random baseline.

To account for the stochastic nature of the compared methods and increase the confidence on
our results, we further perform a statistical test. Wilcoxon test results yielded p-values much
lower than our significance level for the compared data, i.e., samples of FaRM and DummyRan-
dom, FaRM and SpreadRandom, FaRM* and DummyRandom, FaRM* and SpreadRandom,
PredKillable and DummyRandom, and PredKillable and SpreadRandom respectively. Therefore,
we can definitively conclude that FaRM and FaRM* outperform random mutant selection with
statistically significance while random mutant selection outperform PredKillable. On the other
hand, as expected, the Wilcoxon test revealed that there is no statistical difference between the
performance of DummyRandom and that of SpreadRandom.

When examining mutant selection strategies there are two main parameters that influence the
application cost. These are the killable and equivalent mutants that testers need to analyse.
When analysing a killable mutant our ability to select fault revealing ones is important, while
increasing the chance to get a killable mutant is also important. Therefore, it could be that
our FaRM is better simply because it selects killable mutants and not fault revealing ones. To
account for this factor we removed all non-killable mutants from our sets and recompute our
results. This helped eliminating the influence of non-killable mutants, from both approaches.

Our results show that the performance improvement of FaRM and FaRM* over SpreadRandom
and DummyRandom is also effective when considering only killable mutants (approximated by
our test suites). Figure 6.18 shows the relevant distributions of APFD, which are visibly similar
to the distributions for all mutants (all values are slightly higher when considering only killable
mutants). This result suggest that FaRM and FaRM * are indeed capable of identifying fault
revealing mutants, independent of the equivalent mutants involved.

To provide a general view of the trends, Figure 6.19 illustrates the overall (median) effectiveness of
the mutant prioritization by FaRM, FaRM* and PredKillable in comparison with random strate-
gies. We note that for all percentages of mutants, FaRM and FaRM* outperforms random-based
prioritization while PredKillable is outperformed by the random-based prioritization. Overall,
we observe that the fault revelation benefit of FaRM over the random approaches is above 20%
(maximum difference is 34%) when selecting 2% to 8% of mutants. FaRM reaches a plateau
around 5% of mutants, as the median fault revelation is maximal. This suggests that a hint for
the mutant selection size for FaRM could be 5% of the mutants.

Finally, we examined the differences between the approaches in terms of execution time. Al-
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Figure 6.18: APFD measurements considering only killable mutants for the selected mutants cost metric
on Codeflaws. The FaRM prioritization outperform the random baselines, independent of non-killable
mutants.
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Figure 6.19: Mutant prioritization performance in terms of faults revealed (median case) for the selected
mutants cost metric on CodeFlaws. The x-axis represent the number of considered mutants. The y-axis
represent the ratio of the fault revealed by the strategies.

though we do not explicitly aim at reducing the test execution cost, we expect some benefits
due to our methods’ ability to prioritise the mutants, which results in a reduced execution time
[ZMK13]. Figure 6.20 illustrate, in a box-plot form, the overall execution time differences be-
tween the FaRM and the random baselines with respect to the attained fault revelation, measured
in seconds. Although the differences can be significant in some (rare) cases, the expected (me-
dian values) ones are -58,167 and -29,373 seconds (-16 and -8 hours) for DummyRandom and
SpreadRandom. This result indicates that our approach has also an advantage with respect to
test execution, which sometimes becomes significant.

Conclusively, our results demonstrate that FaRM is indeed effective as it is statistically superior
to random baselines, independent of the equivalent mutants involved. It provides 4% higher
APFD values, which means that when testers analyse mutants (to strengthen their test suites)
they get a 4% improvement on their fault revelation ability. Note that the highest possible
improvement over the random baseline is 6% (DummyRandom has a median APFD value of
94%).

Required Tests Cost Metric.

Figure 6.21 shows the distributions of APFD (Average Percentage of Faults Detected) values for
all faults, using the five approaches under evaluation. While both FaRM and FaRM* yield an
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Figure 6.20: Execution cost of prioritization schemes

APFD median of 81%, and PredKillable yields an APFD median of 76%, DummyRandom and
SpreadRandom reach median APFD values of 77%. These results reveal that the general trend
is in favour to our approach. As our approaches FaRM and FaRM* are better than the random
baseline, when the main cost factor (number of test that need to be designed and executed) is
aligned, we can infer that it is generally better with practically important differences (of 4%).
The PredKillable performs quite similarly to the random baseline.

To account for the stochastic nature of the compared methods and increase the confidence on
our results, we further perform a statistical test. Wilcoxon test results yielded p-values much
lower than our significance level for the compared data, i.e., each of FaRM and FaRM* compared
with each of PredKillable, DummyRandom and SpreadRandom. Therefore, we can definitively
conclude that FaRM and FaRM* outperform random baseline with statistically significance. On
the other hand, the Wilcoxon test revealed that there is no statistical difference between the
performance of PredKillable, DummyRandom and SpreadRandom.
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Figure 6.21: APFD measurements for the required tests cost metric on Codeflaws. The FaRM prioriti-
zation outperform the random baselines.
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Figure 6.22: Required tests prioritization performance in terms of faults revealed (median case) on
CodeFlaws. The x-axis represent the number of considered tests. The y-axis represent the ratio of the
fault revealed by the strategies.

The results of the Vargha Delaney effect size show that FaRM is better than DummyRandom,
SpreadRandom and PredKillable in 58%, 61% and 60% of the cases respectively. FaRM* is
better than DummyRandom, SpreadRandom and PredKillable in 58%, 61% and 59% of the
cases respectively.

To provide a general view of the trends, Figure 6.22 illustrates the overall (median) effective-
ness of the required test prioritization by FaRM, FaRM* and PredKillable in comparison with
random strategies. We note that for all percentages of tests, FaRM and FaRM* outperforms
random-based prioritization while PredKillable is outperformed by the random-based prioritiza-
tion. Overall, we observe that the fault revelation benefit of FaRM over the random approaches
is above 10% (maximum difference is 15%) for the 20% to 45% top ranked tests.

Analysed Mutants Cost Metric.

The analysed mutants cost metric measures the minimum number of mutants that need to be
analysed, including equivalent mutants, following a mutant prioritization approach, before the
fault is revealed. A good mutant prioritization approach will minimize the analysed mutants
cost. Following, we compare the analysed mutants cost metric between our approaches and the
random baselines. The analysed mutants cost metric is calculated for each approach and for
each bug of the benchmark. We compare the approaches statistically with Wilcoxon rank-sum
test and the Vargha Delaney effect size.
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Figure 6.23: APFD measurements considering all mutants. The FaRM prioritization outperform the
defect prediction.

The results show that FaRM, FaRM* and PredKillable are better than DummyRandom and
SpreadRandom with statistical significance displayed by a p-value much lower than the signifi-
cance level. FaRM is better than DummyRandom and SpreadRandom in 57% and 61% of the
cases respectively. The performance difference is higher for FaRM* where it is better than Dum-
myRandom and SpreadRandom in 60% and 64% of the cases respectively. PredKillable is better
than DummyRandom and SpreadRandom in 60% and 65% of the cases respectively.

FaRM* shows a larger improvement than FaRM over the random baseline, but there is no
statistical significance difference between FaRM and FaRM*. Furthermore, FaRM* outperforms
PredKillable with statistical significant difference, and is better in 53% of the cases. There is no
statistical significant difference between FaRM and PredKillable.

Conclusively, our results demonstrate that FaRM and FaRM* are indeed effective as they are
statistically superior to random baselines.

6.6.4.2 Comparison with Defect Prediction (RQ6)

Selected Mutants Cost Metric. Figure 6.23 shows the distributions of APFD (Average Per-
centage of Faults Detected) values for all faults, using the FaRM, FaRM*, PredKillable and the
random approaches. While FaRM yields an APFD median of 98.0%, defect prediction (Defect-
Pred) reach median APFD value of 83.7%. These results reveal that the general trend is in
favour to our approach. As our approach is much better than the defect prediction approach,
when the main cost factor (number of mutants that need analysis) is aligned, we can infer that it
is generally better with practically important differences (of 14%). Even the random approaches
are better than the defect prediction approach. Nevertheless, PredKillable is worse than defect
prediction.

The Wilcoxon test results yielded p-values much lower than our significance level for the samples
of FaRM and DefectPred, and FaRM* and DefectPred. Therefore, we can definitively conclude
that FaRM and FaRM* outperforms defect prediction with statistical significance. On the other
hand, the Wilcoxon test also revealed that there is statistical significant difference between
the performance of DefectPred and dummyRandom, and DefectPred and that of spreadRandom
respectively. Nonetheless, DefectPred outperforms PredKillable with statistical significance. The
Vargha Delaney Â12 effect size value shows that FaRM and FaRM* are better than DefectPred
in 76% of cases. While DummyRandom and SpreadRandom are better than DefectPred in 71%
and 70% of the cases respectively.
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Figure 6.24: Mutant prioritization performance in terms of faults revealed (median case) on CodeFlaws.
The x-axis represent the number of considered mutants. The y-axis represent the ratio of the fault revealed
by the strategies.

To provide a general view of the trends, Figure 6.24 illustrates the overall (median) effectiveness
of the mutant prioritization by FaRM in comparison with the defect prediction approach. We
note that for all percentage of mutants, FaRM outperforms the defect prediction approach. The
performance improvement goes around 40% to 66% of more faults revealed when 2% until 8% of
mutants are executed.

6.6.5 Experiments with large programs (RQ7)

Selected Mutants Cost Metric.

in CoREBench, all APFDs values are much higher than in CodeFlaws, with FaRM, FaRM*,
DummyRandom and SpreadRandom having median APFD value of 99%, and PredKillable a
median APFD value of 94%. The maximum possible improvement is 1% (given that the random
baseline has a median of 99%). This is caused by the large number of redundant mutants
involved. To demonstrate this we check the relation between mutation score and percentage of
considered mutants. Figure 6.27 illustrates the overall (median) mutation score achieved (y-axis)
by the tests killing the percentage of mutants recorded in x-axis. From this graph we can see
that all approaches reach their maximum median mutation score value when considering more
than 30% of the mutants. This implies that the benefits are reduced for every approach that
consider more than 30% of the involved mutants.

Interestingly, both Figure 6.27 and Figure 6.28 demonstrate that FaRM guides the mutant se-
lection towards mutants that do not maximize the mutation score nor the subsuming mutation
score (random mutant selection achieves higher mutation and subsuming mutation scores than
FaRM). Instead the selected mutant maximize fault revelation as demonstrated in Figures 6.25
and 6.26.

Given that a large proportion of the mutants are not killable (Figure 6.27), we present in Fig-
ure 6.29 the sensitivity of the approaches with regard to the equivalent mutants, to see how
they are ranked. We observe that PredKillable does quite well at ranking the killable mutants
first, and FaRM* inherit of such characteristic from FaRM* relatively well. We also observe that
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Figure 6.25: FaRM performance in terms of faults revealed (median case) on CoREBench considering
all mutants. The x-axis represent the number of considered mutants, while the y-axis represent the ratio
of the fault revealed by the strategies.
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Figure 6.26: FaRM performance in terms of faults revealed (median case) on CoREBench considering
only killable mutants. The x-axis represent the number of considered mutants, while the y-axis represent
the ratio of the fault revealed by the strategies.

FaRM tend to keep equivalent mutants away from the top ranks.

To provide a general view of the fault revelation trend, Figures 6.25 and 6.26 illustrate the
overall (median) effectiveness of the mutant prioritization by FaRM in comparison with random
strategies for the ratios of selected mutants from 1% to 10%. We note that for all percentage of
mutants, FaRM outperforms random-based prioritization. The performance improvement goes
from 0% to 10% of more faults revealed when 5% and 2% of mutants are killed. These trends
are similar with those we observe on CodeFlaws, suggesting that FaRM effectively learns the
properties of the important mutants.

Required Tests Cost Metric.
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Figure 6.27: Mutation score (median case) on CoREBench. The x-axis represent the number of con-
sidered mutants, while the y-axis represent the mutation score attained by the strategies.
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Figure 6.28: Subsuming Mutation score (median case) on CoREBench. The x-axis represent the number
of considered mutants, while the y-axis represent the subsuming mutation score attained by the strategies.

Figure 6.30 shows the distributions of APFD (Average Percentage of Faults Detected) values for
all faults, using the five approaches under evaluation. While both FaRM and FaRM* yield an
APFD median of 92%, and PredKillable yields an APFD median of 79%, DummyRandom and
SpreadRandom reach median APFD values of 83% and 81% respectively. These results reveal
that the general trend is in favour to our approach. As our approaches FaRM and FaRM* are
better than the random baseline, when the main cost factor (number of test that need to be de-
signed and executed) is aligned, we can infer that it is generally better with practically important
differences (of 9%). The PredKillable performs slightly worse than the random baseline.

The results of the Vargha Delaney Â12 effect size show that FaRM is better than DummyRandom,
SpreadRandom and PredKillable in 74%, 77% and 86% of the cases respectively. FaRM* is
better than DummyRandom, SpreadRandom and PredKillable in 70%, 74% and 81% of the
cases respectively. PredKillable is worse than the DummyRandom and SpreadRandom in 70%
and 66% of the cases respectively.
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Figure 6.29: Ratio of equivalents (median case) on CoREBench. The x-axis represent the number
of considered mutants, while the y-axis represent the proportion of equivalent mutants selected by the
strategies.
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Figure 6.30: APFD measurements on CoREBench for the required tests cost metric. The FaRM prior-
itization outperform the random baselines.

To provide a general view of the trends, Figure 6.31 illustrates the overall (median) effectiveness of
the required test prioritization by FaRM, FaRM* and PredKillable in comparison with random
strategies. We note that FaRM and FaRM* outperforms random-based prioritization while
PredKillable is outperformed by the random-based prioritization. Overall, we observe that the
fault revelation benefit of FaRM over the random approaches is above 30% (maximum difference
is 70%) for the 5% to 20% top ranked tests.

Analysed Mutants Cost Metric.

The results of the Vargha Delaney Â12 effect size values related to the analysed mutants cost met-
ric show that FaRM and FaRM* are better than DummyRandom and SpreadRandom. FaRM is
better than DummyRandom and SpreadRandom in 58% and 60% of the cases respectively. The
performance difference is higher for FaRM* where it is better than DummyRandom and Spread-
Random in 61% and 63% of the cases respectively. PredKillable is better than DummyRandom
and SpreadRandom in 56% and 58% of the cases respectively.

FaRM* shows a larger improvement than FaRM over the random baseline.

Taken together our results demonstrate that FaRM and FaRM* achieves significant improve-
ments over the random baselines on both CodeFlaws and CoREBench fault sets. Therefore, the
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Figure 6.31: Required tests prioritization performance in terms of faults revealed (median case) on
CoREBench. The x-axis represent the number of considered tests. The y-axis represent the ratio of the
fault revealed by the strategies.

improvements made by FaRM and FaRM* can be considered as important.

6.7 Discussion

6.7.1 Working Assumptions

Our approach uses machine learning to support mutation testing. As such it makes some as-
sumptions that should hold in order to be applicable and effective. First, we assume that there
are sufficient historical data from applications of the same context or previous software releases.
This means that we need to have a diverse and comprehensive set of defects where mutation
testing has been applied. Of course these defects need to belong to the targeted, by the testing
procedure, class of defects. In the absence of sufficient defects, we can relax this requirement by
training on hard-to-kill or subsuming mutants. This can be easily performed, the same way we
train for equivalent mutants, as long as we have a large codebase that is sufficiently tested.

Second, we assume that defect causes are repeated. This is an important assumption as in its
absence machine learning cannot work. We believe that it holds given the evidence provided by
the n-version programming studies [Lev95; KL86] and the empirical observations in the context
of Linux kernel [Pal+11].

Third, we assume that mutants are linked with targeted defects. This assumption comes with
the use of mutation testing. We believe that it holds given the empirical evidence provided in
Chapter 4 which is inline with recent studies [PI18; RWK17; Pap+18; Jus+14]. Finally, we
assume that fault revelation utility can be captured by static features such as the ones used
in this study. We are confident that this assumption holds given the reports of Petrovic and
Ivankovic [PI18] on the utility of the AST features in mutant selection and the evidence we
provide here.

100



CHAPTER 6. SELECTING FAULT REVEALING MUTANTS

6.7.2 Threats to Validity

We acknowledge the following threats that could have affected the validity of our results. One
possible external validity threat lies in the nature of the test subjects we used. Individually, the
majority of programs in comparison experiments are small in size, and may not be representative
of real-world programs. Our mitigation strategy is discussed in the following subsection (section
6.7.3). Moreover, since the properties of the fault revealing mutants reside on the code parts
that are control and data dependent to and from the faults, the cumulative size of relevant code
parts (based on which we get the feature values) should be small. Therefore, for such a study,
the most important characteristics should be the faulty code area and its dependencies. Since
we have a large and diverse set of real faults, we feel that this threat is limited. Future work
should validate our findings and analysis to larger programs.

Another potential threat relates to the mutation operators we used. Although we have considered
a variety of operators, we cannot guarantee that they yield representative mutants. To diminish
this threat we used a large number of operators (816 simple operators across 18 categories)
covering the most frequently used C features. We also included all the operators adopted by the
modern mutation testing tools [Pap+19].

Threats to internal validity lie in the use of recent machine learning algorithms to the detriment
of established and widely used techniques. Nevertheless, these threats are minimized as gradient
boosting is gaining a momentum in the research literature as well as the practice of machine
learning.

Similarly, there might be some issues related to code redundancy, duplicated code, that may
influence our results. We discuss our redundancy mitigation strategy on section 6.7.4.

Another internal validity threat may be due to the features we use. These have not been opti-
mized with any feature selection technique. This is not a big issue in our case as we use gradient
boosting that automatically performs feature selection. To verify this point we trained a Deep
Learning model that also performs feature selection and checked its performance. The result
showed insignificant differences from our method. Additionally, we retrained our classifiers using
the features with information gain greater or equal to 0.02 and got results similar to random,
suggesting that all our features are needed. Future research should seed light on this aspect by
complementing and optimizing our feature set.

Other internal validity threats are due to the way we treated mutants as equivalent. To deal with
this issue, we used KLEE, a state of the art test generation tool and the accompanied test suites.
As the programs we are using are small KLEE should not have a problem at generating effective
test suites. Together these tools kill 87% of all the mutants, demonstrating that our test suites
are indeed strong. Since the 13% of the mutants we treat as equivalent is in line with the results
reported by the literature [Pap+15], we believe that this threat is not important. Unfortunately,
we cannot practically do much more than that, as the problem is undecidable [BA82].

Finally, our assessment metrics may involve some threats to construct validity. Our cost mea-
surement, number of selected, analysed mutants and number of test cases essentially captures the
manual effort involved. Automated tools may reduce this cost and hence influence our measure-
ments. Regarding equivalent mutants, we used a state-of-the-art equivalent mutant detection
technique, TCE [Pap+15], to remove all trivially equivalent mutants before conducting any ex-
periment. Therefore, the remaining equivalent mutants are those that remain undetectable by
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Figure 6.32: Correlations between mutants and faults in three defect datasets. Similar correlations are
observed in all three cases suggesting that Codeflaws provides good indications on the fault revealing ability
of the mutants.

the current standards. Regarding the test generation cost, we acknowledge that while automated
tools manage to generate test inputs, they fail generating test oracles. Therefore, augmenting
the test inputs with test oracles, remains a manual activity, which we approximate by measuring
the number of tests. In our experiments we bypassed the oracle problem by using the ‘correct’
program versions as oracles. An alternative scenario involves the use of automated oracles, but
these are rare in practice and we did not considered them. Overall, we believe that with the
current standards, our cost measurements approximate well the human cost involved.

All in all, we aimed at minimizing any potential threats by using various comparisons scenarios,
clearly evaluating the benefit of the different steps in FaRM, and leveraging frequently used and
established metrics. Additionally, to enable replication and future research we make our data
publicly available4.

6.7.3 Representativeness of test subjects

Most of our results are based on Codeflaws. We used this benchmark because machine learning
requires lots of data and Codeflaws is, currently, the largest benchmark of real faults on C
programs. Also because of its manageable size, we can automatically generate a relatively large
and thorough test pool and apply mutation testing. Still this required 8,009 CPU days of
computations (only for the mutant executions), indicating that we reach the experimentally
achievable limits. Similarly, applying mutation testing on the 45 faults on CoREBench required
454 CPU days of computations.

The obvious differences between the size of the test subjects raise the question of whether our
conclusions hold on other programs and faults. Fortunately, as already discussed our results
on CoREBench have similar trends with those observed on Codeflaws. Training a classifier on
CoREBench yields AUC values around 0.616, which is approximately the same (slightly lower)
than the one we get from Codeflaws. This fact provides confidence that our features do capture
the mutant properties we are seeking for. To further cater for this issue, we also selected the
harder to reveal faults (faults revealed by less than 25% of the tests). This is a quality control
practice, used in fault injection studies, ensures that our faults are not trivial.

4https://mutationtesting.uni.lu/farm
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Figure 6.33: CoREBench results on similar (repeatedIDs) and dissimilar (Non-RepeatedIDs) implemen-
tation. We observe similar trend in both cases suggesting a minor or no influence of code similarity on
FaRM performance.

Additionally, we checked the syntactic distance of the Codeflaws faults and show that it is small
(please refer to Figure 6.7), similarly to the one assumed by mutation testing. This property
together with the subtle faults (faults revealed by less than 25% of the tests) we select make
our fault set compliant with the mutation testing assumptions, i.e., the Competent Programmer
Hypothesis.

Furthermore, we computed and contrasted the correlation between mutants and faults on three
defect benchmarks; CoREBench, Codeflaws and Defects4J dataset [JJE14]. Our aim is to check
whether there are major difference in the relation between the faults and mutants of the three
benchmarks.

Defects4J is a popular defect dataset for Java, with real faults from large open source programs.
To compute the correlations on Defects4J we used the data from the study of Papadakis et
al. [Pap+18], while for CoREBench and Codeflaws we used the data from this chapter. We
computed the Kendall correlations with uncontrolled test suite size between 1% and 15% of
all tests. We make 10,000 random test sets each with size randomly chosen between 1% and
15% of all the tests. Then, we compute the mutation score and the fault revelation of each
test set, and compute the Kendall correlation between the mutation score and fault revelation.
Figure 6.32 shows the correlations for Codeflaws, CoReBEnch and Defects4J. As can be seen,
the correlations are similar in all three cases. Therefore, since the mutants and faults relations
share similar properties on all cases, we believe that our defect set provide good indications on
the fault revealing ability of our approach.

6.7.4 Redundancy between the considered faults

Code redundancy may influence our results. As depicted in Figure 6.6, in Codeflaws the number
of implementations for the same problem is usually higher than one. This introduces a risk
that our evaluation, test defect set, may benefit from the knowledge gained during training, in
case there is another implementation for the same problem in this set. Although such a case is
unlikely as all of our defects are different and form unique program versions, to remove any threat
from such a factor we repeated our experiment by randomly splitting the Codeflaws subjects into
training and test sets in such a way that all implementations of the same problem either appear
in the training set or in the evaluation, but not both. We obtained almost identical results
with the previous experiment, i.e., we get AUC values of 62% and 87% respectively for fault
revelation and equivalence prediction when controlling for the implementations (having always
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different problem implementations on the training and test sets). Another threat related to code
redundancy may have affected our results in CoREBench. Among the 45 CoREBench faults
we consider, only 20 of them are on the same components (13 in Coreutils, 3 in Find, and 4
in Grep). Note that the 13 instances of Coreutils form 3 separated set of 2, 5 and 6 bugs on
the same component. We manually checked these defects and found that they all differ (they
are located in different code parts and the code around the locations modified to fix the defects
differs). Nevertheless, still there is a possibility that code similarities may impact positively or
negatively our classifiers. Although such a case is compatible with our working scenario (we
assume that we have similar historical data), so it is not a problem for our approach, it is still
interesting to check the classifier performance on similar/dissimilar implementations.

To deal with this case, we divided our fault set (CoREBench) into two sets, one with the
faults having similar faulty functions and one with dissimilar ones. To do so, we used the
Deckard [Jia+07] tool, which computes the similarity between code instances (at the AST level).
For each faulty function, the tool compares the vector representation of the sub-trees of small
code snippets and reports similarity scores. Two codes are considered as similar if they have
code parts with high similarity scores on the utilized abstraction, i.e., above 95% [Jia+07].

Having divided the fault sets as similar and dissimilar we then contrast the results they provide.
Overall, we found insignificant differences between the two sets. Figure 6.33 compares the ranking
position of the fault revealing mutants in the order provided by FaRM, when using the following
tool parameters: similarity threshold 95, 4 strides and 50 minimum number of tokens. From
these results we see that there are no significant differences between the two sets, suggesting that
code redundancy does not affect our results.

In order to further reduce the threat related to code redundancy, concerning mutants that appears
on same line of code in the training data and test data, we repeated the experiments by removing
mutants in the test data that could cause this threat. In fact, we removed all the mutants of
the test data for which there exist at least one mutant in the training data, located on the same
component, that have the same features. This procedure led to removing 13% (median case) of
the test data mutants. The evaluation on the remaining mutants (test data after dropping the
“duplicated”) resulted in similar results as not dropping those mutants, i.e., AUC value of 62%.
It is noted that 18% (median case) of the dropped mutants have different fault revelation score
with their “duplicates” in training set. This has the unfortunate effect of confusing the classifier.

6.7.5 Other Attempts

Our study demonstrates how simple machine learning approaches can help improving mutation
testing. Since our goal was to demonstrate the benefits of using such an approach we did not
attempted to manipulate our data in any way (apart from the exclusion of the trivial faults). We
achieve this goal, but still there is room for improvement that future research can exploit. For
instance it is likely that classification results can be improved by pre-processing training data,
e.g., exclude fault types that are problematic (see our study in Chapter 5), excluding fault types
with few instances, excluding versions with low strength test suites, as well as by removing many
other sources of noise.

Data manipulation strategies we attempted during our study were oversampling, the exclusive
use of features with high information gain, the use of a Deep Learning classifier and targeting
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irrelevant mutants (the mutants with lowest fault revealing probability). Oversampling consist of
randomly duplicating the data items of the minority class in order to have a more balanced data
to train the classifier. In this case, we applied oversampling of the minority class for mutants
which is the fault revealing class (they represent approximately 3% of the whole data). We also
attempted to replace the supervised learning algorithm used by our approach by substituting
the decision tree with a deep neural network classifier. We also retrained the classifier to target
irrelevant mutant (mutant not killed by fault revealing tests), the motivation being that the
classifier may perform better to separate irrelevant mutants than fault revealing ones. All these
attempts yielded quite similar or worse results with those we report and thus, we do not detail
them.

In another attempt, we trained our classifier by only using the features that have highest in-
formation gain (those with IG ≥ 0.02 in Figure 6.10) but achieved results similar to random
mutant selection.

6.8 Conclusions

The large number of mutants involved in mutation testing has long been identified as a barrier to
the practical application of the method. Unfortunately, the problem of mutant reduction remains
open, despite significant efforts within the community. To tackle this issue, we introduce a new
perspective of the problem: the fault revelation mutant selection. We claim that valuable mutants
are the ones which are most likely to reveal real faults, and we conjecture that standard machine
learning techniques can help in their selection. In view of this, we have demonstrated that some
simple ‘static’ program features capture the important properties of the fault revealing mutants,
resulting in uncovering significantly more faults (6%-34%) than randomly selected mutants.

Our work forms a first step towards tackling the fault revelation mutant selection with the use
of machine learning. As such, we expect that future research will extend and improve our results
by building more sophisticated techniques, augmenting and optimizing the feature set, by using
different and potentially better classifiers, and by targeting specific fault types. To support such
attempts we make our subjects (programs & tests), feature, kill and fault revelation matrices
publicly available.

The next chapter presents the contributions of this dissertation w.r.t automated test generation
for mutation testing.
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Chapter

7
Killing Stubborn Mutants Via
Symbolic Execution

This chapter introduces SEMu, a Dynamic Symbolic Execution technique that generates test
inputs capable of killing stubborn mutants (killable mutants that remain undetected after a rea-
sonable amount of testing). SEMu aims at mutant propagation (triggering erroneous states to the
program output) by incrementally searching for divergent program behaviours between the original
and the mutant versions. We model the mutant killing problem as a symbolic execution search
within a specific area in the programs’ symbolic tree. In this framework, the search area is defined
and controlled by parameters that allow scalable and cost-effective mutant killing. We integrate
SEMu in KLEE and experimented with Coreutils (a benchmark frequently used in symbolic exe-
cution studies). Our results show that our modelling plays an important role in mutant killing.
Perhaps more importantly, our results also show that SEMu kills 37% and 20% more stubborn
mutants than KLEE and the mutant infection strategy (strategy suggested by previous research)
within a two hour time limit, respectively.
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CHAPTER 7. KILLING STUBBORN MUTANTS VIA SYMBOLIC EXECUTION

7.1 Introduction

Deep testing is often required in order to assess the core logic and the ‘critical’ parts of the
programs under analysis. Unfortunately, performing thorough testing is hard, tedious and time
consuming. As a result testing the most important program parts requires substantial efforts,
skills and experience.

To deal with this issue, mutation testing aims at guiding the design of strong (likely fault reveal-
ing) test cases. The key idea of mutation is to use artificially introduced defects, called mutants,
to identify the weaknesses of test suites (undetected defects form test suite deficiencies) and to
guide test generation (undetected defects form test objectives). Thus, testers can improve their
test suites by designing test cases that take the mutation feedback into account.

Experience with mutation testing has shown that it is relatively easy to detect a large number
of mutants by simply covering them [ADO14; Pap+16; PI18]. Such trivial mutants are not
useful as they fail to provide any particular guidance towards test case design [SZ13]. However,
experience has also shown that there are some few mutants that are relatively hard to detect
(a.k.a. stubborn mutants [YHJ14]) and can provide significant advantages when used as test
objectives [PI18; YHJ14]. Interestingly, as we show in Chapter 4, these mutants form special
corner cases and are linked with fault revelation. The importance of using the stubborn mutants
as test objectives has also been underlined by several industrial studies [Del+18; BH13] including
a large study with Google developers [PI18].

Stubborn mutants are hard to detect mainly due to a) the difficulty of infecting the program
state (causing an erroneous program state when executing the mutation/defective point) and
b) due to the masking effects that prohibit the propagation of erroneous states to the program
output (aka failed error propagation [And+14] or coincidental correctness [Abo+19]). Either
being the case, the issues linked with these mutants form corner cases which are most likely to
escape testing (since stubborn mutants form small semantic deviations) [PI18].

Killing stubborn mutants (designing test cases that reveal undetected mutants) is challenging due
to the variety of the code paths, constraints and data states of the program versions (original
and mutant versions) that need to be differentially analysed. The key challenge here regards
the handling of the failed error propagation (masking effects), which is prevalent in stubborn
mutants. Effective error propagation analysis is still an open problem [Pap+19; Piz+19] as it
involves state comparisons among the mutant and the original program executions that grow
exponentially with the number of the involved paths (from the mutation point to the program
output).

We present SEMu, an approach based on dynamic symbolic execution that generates test inputs
capable of killing stubborn mutants. The particular focus of SEMu is on the effective and scalable
handling of mutant propagation. Our technique executes both the original and mutant program
versions with a single symbolic execution instance, where the mutant executions are “forked”
when reaching the mutation points. The forked execution follows the original one and compares
with it. The comparisons are performed based on the involved symbolic states and related
(propagation) constraints that ensure divergences.

A key issue with both symbolic execution and mutation testing regard their scalability. To
account for this problem, we develop a framework that allows defining the mutant killing problem
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as a search problem within a specific area around the mutation points. This area is defined by
a number of parameters that control the symbolic exploration. We thus, perform a constrained
symbolic exploration, starting from a pre-mutation point (a point in the symbolic tree that is
before the mutation point) and ending at a post-mutation checkpoint (a point after the mutant)
where we differentially compare the symbolic states of the two executions (forked and original)
and generate test inputs.

We assume the existence of program inputs that can reach the areas we are targeting. Based on
these inputs, we infer preconditions (a set of consistent and simplified path conditions), which
we use to constrain the symbolic exploration to only a subset of program paths that are relevant
to the targeted mutants. To further restrict the exploration to a relevant area, we systematically
analyse the symbolic tree up to a relatively small distance from the mutation point (performing
a shallow propagation analysis).

To improve the chances for propagation we also perform a deep exploration of some subtrees.
Overall, by controlling the above parameters we can define strategies with trade-offs between
space (cost) and deepness (effectiveness). Such strategies allow the differential exploration of
promising code areas, while keeping their execution time low.

Many techniques targeting mutation-based test generation have been proposed [Ana+13; Pap+19].
However, most of these techniques focus on generating unit-level test suites from scratch, mainly
by either covering the mutants or by causing an erroneous program state at the mutation point.
However, there is no work leveraging the value of existing tests to perform deep testing by tar-
geting stubborn mutants, which are mostly hard to propagate. Moreover, none of the available
symbolic execution tools aim at generating test inputs for killing mutants.

We integrated SEMu1 into KLEE [CDE08]. We evaluated SEMu on 47 programs from Coreutils,
real-world utility programs written in C, and compare it with the mutant infection strategy,
denoted as infection-only, that was proposed by previous work [Zha+10a; HJL11]. Our results
show that SEMu achieves significantly higher killing rates (approximately +37% and +20%) of
stubborn mutants, for both KLEE (alone) and infection-only strategy, on the majority of the
studied subjects.

In summary, this chapter makes the following contributions:

1. We introduce and implement a symbolic execution technique for generating tests that kill
stubborn mutants. Our technique leverages existing tests in order to perform a deep and
targeted test of specific code areas.

2. We model the mutant killing as a search problem within a specific area (around the muta-
tion point). Such a modelling allows controlling the symbolic execution cost, while at the
same time allows forming cost-effective heuristics.

3. We report empirical results demonstrating that SEMu has a strong mutant killing ability,
which is significantly superior to KLEE and other mutation-based approaches.

1Github link ommitted due to double blind review process. In case of acceptance, the tool will be publicly
available.
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7.2 Context

Our work aims at the automatic test input generation for specific methods/components of the
systems under test. Our working scenario assumes that testers have performed some basic
testing and want to dig into some specific parts of the program. This is a frequent scenario used
to increase confidence on the critical code parts (encode the core program logic) or on parts that
testers feel uncertain. To do so, it is reasonable to use mutation testing by adding tests that
detect the surviving mutants (mutants undetected by the existing test suite) [SZ13; YHJ14].

We consider a mutant as detected (killed) by a test when its execution leads to different observable
output from that on the original program. According to our scenario, the targeted mutants are
those (killable) that survive a reasonable amount of testing. This definition depends on the
amount of the performed testing; strong test suites kill more mutants than weak ones, while
‘adequate’ test suites kill them all [YHJ14; AO08].

To adopt a baseline for basic or ‘reasonable amount of testing’ we augment the developer test
suites with KLEE. This means that the stubborn mutants are those that are killable and survive
the developer and automatically generated test suites. The surviving mutants form the objectives
for our test generation technique.

7.2.1 Symbolic Encoding of Programs

Independently of its language, we define a program as follows.
Definition 7.2.1. A program is a Labeled Transition System (LTS) P = (C, c0 , Cout, V, eval0 , T )

where:

• C is a finite set of control locations;

• c0 ∈ C is the unique entry point (start) of the program;

• Cout ⊂ C is the set of terminal locations of the program;

• V is a finite set of variables;

• eval0 is a predicate capturing the set of possible initial valuations of V ;

• T : C × GC → C is a deterministic transition function where each transition is labeled
with a guarded command of the form [g]f where g is a guard condition and f is a function
updating valuation of variables V (GC is the set of labels).

The LTS modelling a given program defines the set of control paths from c0 to any cout ∈ Cout. A
path is a sequence of n connected transitions πP = 〈(c0, gc0, c1), . . . , (cn−1, gcn−1, cn=out)〉 such
that (ci, gci, ci+1) ∈ T for all i. Any well-terminating execution of the program goes through one
such path. Since we consider deterministic programs, this path is unique and determined by the
initial valuation (i.e. the test input) v0 of the variables V . More precisely, each path πP defines
a path condition φ(πP ) which symbolically encodes all executions going through πP . This path
condition consists of a Boolean formula such that the test with input v0 executes through πP iff
v0 |= φ(πP ). By solving φ(πP ) (e.g. with a constraint solver like Z3 [DB08]), one can obtain an
initial valuation satisfying the path condition, thereby obtaining a test input that goes through
the corresponding program path.
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The execution of the resulting test input is a sequence of n + 1 couples of variable valuations
and locations, noted τ(P,v0) = 〈(v0, c0), . . . , (vn−1, cn−1), (vn=out, cn=out)〉, such that v0 |= eval0
and for all i, vi |= gi and vi+1 = fi(vi). While vout is the valuation of all variables when τ(P,v0)
terminates, the observable result of τ(P,v0) (its output), noted Out(τ(P,v0)), is the subset of vout
restricted only to all observable variables. Since a path π encompasses a set of executions, we
can also represent the set of outputs of those executions into a symbolic formula Out(π).

7.2.2 Symbolic Encoding of Mutants

A mutation alters or deletes a statement of the original program P . Thus, a mutant is defined
as a change in the transitions of P that correspond to that statement (i.e. two transitions for
branching statements; one for the others).
Definition 7.2.2. Let P = (C, c0 , V, eval0 , T ) be an original program. A mutant of P is a
programM = (C, c0 , V, eval0 , T

′) with T ′ = (T\Tm) ∪ T ′m such that:{
Tm ⊆ T ∧ |Tm| > 0

∀(c1, [g′]f ′, c′2) ∈ T ′
m,∃(c1, [g]f, c2) ∈ Tm : ([g′]f ′ 6= [g]f) ∨ (c′2 6= c2)}

It may happen that a program mutation leads to an equivalent mutant (i.e. semantically equiv-
alent to the original program), that is, for any test input t, Out(τ(P,v0)) ≡ Out(τ(M,v0)). All
non-equivalent mutants, however, should be discriminated (i.e. killed) by at least one test in-
put. Thus, there must exist a test input t that satisfies the following three conditions (referred
to as RIP [AO08; DO91; Mor90]): the execution of t on M must (i) reach a mutated tran-
sition, (ii) infect (cause a difference in) the internal program state (i.e. change the variable
valuations or the reached control locations), (iii) propagate this difference up to the program
outputs. One can encode those conditions as the symbolic formula: kill(P,M) , ∃πP , πM :

φ(πP ) ∧ φ(πM ) ∧ (Out(πP ) 6≡ Out(πM )). Any valuation satisfying this formula forms a test
input killing M . For given πP and πM , kill(πP , πM ) , φ(πP ) ∧ φ(πM ) ∧ (Out(πP ) 6≡ Out(πM ))

denotes the formula encoding the test inputs that kills M and go through πP and πM in P and
M , respectively.
Definition 7.2.3. Let P be an original program and M1, . . . ,Mn be a set of mutants of P . Then
the mutant killing problem is the problem of finding, for each mutant Mi:

1. two paths πP and πMi such that kill(πP , πMi) is satisfiable;

2. a test input t satisfying kill(πP , πMi).

7.2.3 Example

Figure 7.1 shows a simple C program. The corresponding C code and transition system are
shown in the left and middle of Figure 7.1, respectively. The transition system does not show the
guarded commands for readability. The right side of Figure 7.1 shows two test inputs and their
corresponding traces (as sequences of control locations of the transition system). The transition
system contains 12 control locations, corresponding to the 12 numbered lines in the program.
The squared nodes of the transition system represent the non-branching control locations and
the circular nodes represent the branching control location. For simplicity, we assume that each
line is atomic. The initial condition eval0 is x ∈ Int where Int is the set of all integers. Two
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int func (int x) {
1.    int n = 0, arr[] = {0,5,0};
2.    if (x >= 0) {
3.        if (x > 3)
4.            x = 3;
5.        while (x > 0) {
6.            if (arr[x-1] == 0) 
7.                n++;
8.            --x; // M1 (x -= 2;)

}
} else {

9.        n = x; // M2 (n = x+1;)
}

10.   if (n) 
11.       n++; 
12.   return n;
}

1 2

34
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Figure 7.1: Example. The rounded control locations represent conditionals (at least 2 possible transition
from them).

mutants M1 and M2 are generated by mutating statements 8 and 9, respectively. M1 results
from changing the statement “−−x” into “x− = 2” andM2 results from changing the statement
“n = x” into “n = x + 1”. The mutants M1 and M2 result from the mutation of the guarded
command of the transitions 8→ 5 and 9→ 10, respectively.

The test execution of t1 reaches M1 but not M2, while t2 reaches M2 but not M1. Test t1 infects
M1 and t2 infects M2. The test execution of t1 on the original program and mutant M1 return
2 and 0, respectively. The mutant M1 is killed by t1 because 2 6= 0. Similarly, the test execution
of t2 on the original program and mutant M2 return 0 and 0, respectively. Test t2 does not kill
mutant M2.

7.3 Symbolic Execution

One can apply symbolic execution to explore the different paths, using a symbolic representation
of the input domain (as opposed to concrete values) and building progressively the path condi-
tions of the explored paths. The symbolic execution starts by setting an initial path condition
to φ = True. At each location, it evaluates (by calling a dedicated solver) the guarded com-
mand of any outgoing transition. If the conjunction of the guard condition and φ is satisfiable
then there exists at least one concrete execution that can go through the current path and the
considered transition. In this case, the symbolic execution reaches the target location and φ is
updated by injecting into it the guarded command of the transition. When multiple transitions
are available, the symbolic execution successively chooses one and pursues the exploration, e.g.
in a breadth-first manner.

As the symbolic execution progresses, it explores additional paths. The explored paths can
together be concisely represented as a tree [Kin76] where each node is an execution state 〈φ, σ〉
made of its path condition φ and symbolic program state σ (itself constituted by the current
control location – program counter value – and the current symbolic valuation of variables).

Still, the tree remains too large to be explored exhaustively. Thus, one typically guides the
symbolic execution to restrict the paths to explore, effectively cutting branches of the tree. Pre-
conditioned symbolic execution attempts to reduce the path exploration space by setting the
initial path condition (at the beginning of the symbolic execution) to a specific condition. This
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precondition restricts the symbolic execution to the subset of paths that are feasible given the
precondition. The idea is to derive the preconditions from pre-existing tests (aka seeds in the
KLEE platform) that reach the particular points of interests. This allows us to provide vital guid-
ance towards reaching the areas that should be explored symbolically, while drastically reducing
the search space. In the rest of this chapter, we refer to a preconditioned symbolic execution that
explores the paths followed by some concrete executions as “seeded symbolic execution”.

Overall, one can make the following steps to generate test inputs for a program P via symbolic
execution:

1. Precondition: specify a logical formula over the program inputs (computed as the dis-
junction of the path conditions of the paths followed by the executions of the seeds) to
prune out the paths that are irrelevant to the analysis.

2. Path exploration: explore a subset of the paths of P , effectively discarding infeasible
paths.

3. Test input generation: for each feasible path πP , solve φ(πP ) to generate a test input t
whose execution τ(P,t) follows πP .

7.4 Killing Mutants

7.4.1 Exhaustive Exploration

A direct way to generate test inputs killing some given mutants (of program P ) is to apply sym-
bolic execution on both P and the mutants, thereby obtaining their respective set of (symbolic)
paths. Then, we can solve kill(πP , πMi) to generate a test input that kills mutant Mi and goes
through πP in P and through πMi in Mi.

Figure 7.2 illustrates the use of symbolic execution to kill mutant M2 of Figure 7.1. We skip
the symbolic execution subtree rooted at control location 3 since the corresponding paths do not
reach mutant M2 and can easily be pruned using static analysis. Also, we do not represent the
symbolic variables arr and x, which are not updated in this example. The symbolic execution on
the original program leads to the paths π1P and π2P such that φ(π1P ) ≡ (x < 0), φ(π2P ) ≡ False,
Out(π1P ) ≡ x+1 and Out(π2P ) ≡ x. The symbolic execution on the mutantM2 leads to the paths
π1M2

and π2M2
such that φ(π1M2

) ≡ (x < −1) and φ(π2M2
) ≡ (x = −1), and Out(π1M2

) ≡ (x + 2)

and Out(π2M2
) ≡ (x+ 1).

The test generation that targets mutant M2 solves the following formulae:

1. kill(π1P , π
1
M2

). Satisfiable: example solution is x = −2.

2. kill(π1P , π
2
M2

). Unsatisfiable: no possible output difference.

3. kill(π2P , π
1
M2

). Unsatisfiable: infeasible path (π2P ).

4. kill(π2P , π
2
M2

). Unsatisfiable: infeasible path (π2P ).

This method effectively generates tests to kill killable mutants. However, it requires a complete
symbolic execution on P and on each mutant Mi. This implies that (i) all the path conditions
and symbolic outputs have to be stored and analysed, and (ii) kill(πP , πMi) has to be solved
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Figure 7.2: Example of Symbolic execution for mutant test generation. After control location 9, the
symbolic execution on the original program contains transition 9 → 10 with n = x while the symbolic
execution of the mutant M2 contains transition 9→ 10 with n = x+ 1.

possibly for each pair of paths (πP , πMi). This leads to large computational cost that makes the
approach impractical.

7.4.2 Conservative Pruning of the Search Space

To reduce the computational costs induced by the exhaustive exploration we apply two safe
optimizations (preserve all opportunities to kill the mutants) that prune the space of program
paths. We take advantage of the fact that mutants are simple syntactic alterations that share a
large portion of their code with the original program.

7.4.2.1 Meta-mutation

Our first optimization stems from the observation that all paths and path prefixes of the original
program P that do not include a mutated statement (i.e. location whose outgoing transitions
have changed in the mutants) also belong to the mutants. Thus, the symbolic execution of
P and that of the mutants may explore a significant number of identical path prefixes. As
seen in Figure 7.2, the symbolic execution is identical for the original and mutant M2 up to
control location 9. Instead of making two separate symbolic executions, SEMu performs a shared
symbolic execution based on a meta-mutant program. A meta-mutant [UOH93; PM10b; PM11]
represents all mutants in a single code. A branching statement (named mutant choice statement)
is inserted at each mutation point and controls, based on the value of a special global variable
(the mutant ID), the execution of the original and mutant programs.

The symbolic execution on the meta-mutant program initialises the mutant ID to an unknown
value and explores a path normally until it encounters a mutant choice statement. Then, the path
is duplicated once for the original program and once for each mutant, with the mutant ID set to
the corresponding value, and each duplicated path is further explored normally. While the effect
of this optimization is limited to the prefixes common to the program and all mutants, it reduces
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the overall cost of exploration at insignificant computation costs and without compromising the
results.

7.4.2.2 Discarding non-infected mutant paths

In practice, many execution paths reach (cover) a mutant but fail to infect the program state
(introducing an erroneous program state). Extending the execution along such paths is a waste of
effort as the mutant will not be killed along those paths. Thus, SEMu terminates anticipatively
the exploration of any path that reaches the mutant but fails to infect the program state.

7.4.3 Heuristic Search

Even with the aforementioned optimizations, the exhaustive exploration procedure remains too
costly due to two factors: the size of the tree to explore and the number of couples of paths
πP and πMi to consider. To speed up the analysis, one can further prune the search space, at
the risk of generating useless test inputs (that kill no mutant) or missing opportunities to kill
mutants (by ignoring relevant paths).

A first family of heuristics reduce the number of paths to explore by selecting and prioritizing
them, at the risk of discarding paths that would lead to killing mutants. A second family stop
exploring a path after k transitions and solve, instead of kill(πP , πMi), the formula

partialKill(πP [..k], πMi [..k]) , φ(πP [..k]) ∧ φ(πMi [..k]) ∧ (σ(πP [..k]) 6= σ(πMi [..k]))

where, for any path π, π[..k] denotes the prefix of π of length k and where σ(π[..k]) is the symbolic
state reached after executing π[..k]. It holds that kill(πP , πMi) ⇒ ∃k : partialKill(πP [..k],
πMi [..k]), since a mutation cannot propagate to the output of the program if it does not infect
the program in the first place. The converse does not hold, though: statements after the mutation
can cancel the effects of an infection, rendering the output unchanged at the end of the execution.
The problem then boils down to selecting an appropriate length k where to stop the exploration,
so as to maximize the chances of finding an infection that propagates up to the observable
outputs.

As illustrated in Figure 7.2, generating a test at k = 3 (control location 10), requires to solve
the constraint partialKill(πP [..3], πM [..3]) ≡ (x < 0 ∧ x 6= x + 1). The constraint solver may
return x = −1 which does not propagate the infection to the output. However, generating a
test at k = 4 (control location 11), using the prefixes of the original path π1P and mutant path
π1M2

, requires to solve the constraint x < 0 ∧ x < −1 ∧ (x 6= x + 1). Any value returned by the
constraint solver kills the mutant.

An ideal method to kill a mutant M would explore only one path πP and one path πM , and
up to the smallest prefix length k where the constraint solver can generate a test that kills M .
However, identifying the right πM and the optimal k is hard, as it requires precisely capturing
the program semantics. To overcome this difficulty, SEMu defines heuristics to prune non-
promising paths on the fly and to control at what point (what prefix length k) to call the
constraint solver. Once candidate path prefixes are identified, SEMu invokes the solver to solve
partialKill(πP [..k], πM [..k]).
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Figure 7.3: Illustration of SEMu cost-control parameters. Subfigure (a) illustrates the Precondition
Length where the green subtree represents the candidate paths constrained by the precondition (the thick
green path prefix is explored using seeded symbolic execution). Subfigure (b) illustrates the Checkpoint
Window (here CW is 2). Subfigure (c) illustrates the Propagation Proportion (here PP is 0.5) and the
Minimum Propagation Depth (here if MPD is 1 the first test is generated, for unterminated paths, from
Checkpoint 1).

7.5 SEMu Cost-Control Heuristics

SEMu consists of parametric heuristics to control the symbolic exploration of promising code
regions. Any configuration of SEMu sets the parameters of the heuristics, which together define
which paths to explore and the test generation process. SEMu also takes as inputs the original
program, the mutants to kill and a set of pre-existing test inputs to drive the seeded symbolic
execution. During the symbolic exploration, SEMu selects which paths to explore and when to
stop the exploration to generate test inputs based on the obtained path prefix.

7.5.1 Pre Mutation Point: Controlling for Reachability

To improve the efficiency of the path exploration, it is important to quickly prune paths that
are infeasible (cannot be executed) or irrelevant (cannot reach the mutants). To achieve this, we
leverage seeded symbolic execution (as implemented in KLEE) where the seeds are pre-existing
tests. We proceed in two steps. First, we explore the paths in seeded mode up to a given
path prefix length (as the number of transitions). Then, we stop following the seeds’ executions
and proceed with a non-seeded symbolic execution. The location of the switching point, on
the explored paths, thus determines where the exploration stops using the precondition. In
particular, if it is set to the entry point of the program then the execution is equivalent to a
full non-seeded symbolic execution. If it is set beyond the output then it is equivalent to a fully
seeded symbolic execution. Formally, let Π denote the complete set of paths of a program P ,
{t1, . . . , tn} be the set of seeds, and l be the chosen seeded symbolic execution length. Then the
set of explored paths resulting from the seeded symbolic execution of length l and with seeds
{t1, . . . , tn} is the largest set Π′ ⊆ Π satisfying π ∈ Π′ ⇒ ∃ti : ti |= φ(π[..l]). We define as
precondition length the number of branching control locations on the path prefix π[..b(π,PL)],
where l = b(π,PL), and b(π,i) is the number of transitions to be traversed, along π, in order to
reach the ith branching control location, for all i.

This heuristics is illustrated in Figure 7.3a where the thick (green) segments represent the portion
of the tree explored by seeded symbolic execution and the subtree below (light green) represents
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the portion explored by non-seeded symbolic execution. The precondition leads to pruning the
leftmost subtree.

Accordingly, the first parameter of SEMu controls the precondition length (PL) at which to stop
the seeded symbolic execution. Instead of demanding a specific length l, the parameter can take
two values reflecting two strategies to define l dynamically: GMD2MS (Global Minimum Dis-
tance to Mutant Statement) and SMD2MS (Specific Minimum Distance to Mutant Statement).
When set to GMD2MS, the precondition length is defined, for all explored paths, as the length
of the smallest path prefix that reaches a mutated statement. When set to SMD2MS, the pre-
condition length PL is defined, individually for each path π, such that b(π,PL) is the length of
the smallest prefix π[..b(π,PL)] of this path that reaches a mutated statement.

7.5.2 Post Mutation Point: Controlling for Propagation

From the mutation point, all paths of the original program are explored. When it comes to a
mutant, however, it happens that path prefixes that cover and infect the program state fail to
propagate the infection to the outputs. These prefixes should be discarded to reduce the search
space. Accordingly, our next set of parameters controls where to check that the propagation
goes on, the number of paths to continue exploring from those checkpoints, and when to stop
the exploration and generate test inputs. Overall, those parameters contribute to reducing the
number of paths explored by the symbolic execution as well as the length k of the path prefixes
from which tests are generated.

7.5.2.1 Checkpoint Location

The first parameter is an integer named the Checkpoint Window (CW) which determines the
location of the checkpoints. Any checkpoint is a program location with branching statements (i.e.
transitions with guarded command [g]f such that g 6= True) that is found after the mutation
point. Then, the checkpoint window defines the number of branching statements (that are
not checkpoints) between the mutation point and the first checkpoint, and between any two
consecutive checkpoints. The effect of this parameter is illustrated in Figure 7.3b. The marked
horizontal lines represent the checkpoints. In this case, the checkpoint window is set to 2, meaning
that there are two branching statements between two checkpoints. At each checkpoint, SEMu
can perform two actions: (1) discard some branches (path suffixes) of the current path prefix (by
ignoring some of the branches) and (2) generate tests based on the current prefix. Whether and
how those two actions are performed is determined according to the following parameters.

7.5.2.2 Path Selection

The parameter Propagating Proportion (PP) specifies the percentage of the branches that are
kept to pursue the exploration, whereas the parameter Propagation Selection Strategy (PSS)
determines the strategy used to select these branches. We implemented two strategies: random
(RND) and Minimum Distance to Output (MDO). The first one simply selects the branches
randomly with a uniform probability. The second one assigns a higher priority to the branches
that can lead to the program output more rapidly (i.e. by executing fewer statements). This
distance is estimated statically based on the control flow and call graphs of the program. The two
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parameters are illustrated in Figure 7.3c, where the crossed subtrees represent branches pruned
at Checkpoint 0.

7.5.2.3 Early Test Generation

Generating test inputs before the end of the symbolic execution (on the path prefixes) allows
us to reduce its computation cost. Being placed after the mutation point, all checkpoints are
potential places where to trigger the test generation. However, generating sooner reduces the
chances of seeing the infection propagate to the program output. To alleviate this risk, we
introduce the parameter Minimum Propagation Depth (MDP), which specifies the number of
checkpoints that the execution must pass through before starting to generate tests. In Figure
7.3c, if MDP is set to 1 then tests are generated from Checkpoint 1 (for the two remaining paths
prefixes). Note that in case MDP is set to 0, tests are generated for the crossed (pruned) path
prefixes at Checkpoint 0.

7.5.3 Controlling the Cost of Constraint Solving

Remember that partialKill requires the state of the original program and the mutant to be dif-
ferent. The subformulae representing the symbolic program states can be large and/or complex,
which may hinder the performance of the invoked constraint solver. To reduce this cost, we devise
a parameter No State Difference (NSD) that determines whether to consider the program state
differences when generating tests. When set to True, partialKill(πP [..k], πM [..k]) is reduced to
φ(πP [..k]) ∧ φ(πM [..k]); however, its solution has lower chances of killing mutant M .

7.5.4 Controlling the Number of Attempts

It is usually sufficient to generate a single test that covers the mutant to kill it. However, the
stubborn mutants that we target may not be killed by the early attempts (applied closer to the
mutation point) and require deeper analysis. Furthermore, a test generated to kill a mutant
may collaterally kill another mutant. For those reasons, generating more than one test for a
given mutant can be beneficial. Doing this, however, comes at higher test generation and test
execution costs. To control this, we devise a parameter Number of Tests Per Mutant (NTPM)
that specifies the number of tests generated for each mutant (i.e. the number of partialKill
formulas solved for each mutant).

7.6 Empirical Evaluation

7.6.1 Research Questions

We first empirically evaluate the ability of SEMu to kill stubborn mutants. This is an essential
question, since there is no point in evaluating SEMu if it cannot kill some of the targeted mutants.

RQ1 What is the ability of SEMu to kill stubborn mutants?
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Figure 7.4: Size of the test subjects.

Since the results of RQ1 indicate a strong killing ability of SEMu, we turn our attention to the
question of whether the killing ability is due to the extended symbolic exploration that is anyway
performed by KLEE. We thus, compare SEMu with KLEE by running KLEE in the seed mode
(using the initial test suite as a seed for KLEE test generation) to generate additional tests. Such
a comparison is also a first natural baseline to compare with. These motivate RQ2:

RQ2 How does SEMu compare with KLEE in terms of killed stubborn mutants?

Perhaps not surprisingly, we found that SEMu outperforms KLEE. This provides evidence that
our dedicated mutation-based approach is indeed suitable for mutation-based test generation.
At the same time though, our results raises further questions on whether the superior killing
ability of SEMu is due to mutant infection (suggested by previous research) or due to mutant
propagation (specific target of SEMu). In case we find that mutant infection is sufficient for
killing stubborn mutants then mutant propagation should be skipped in order to save effort and
resources. To investigate this, we ask:

RQ3 How does SEMu compare with the infection-only strategy in terms of killed stubborn
mutants?

7.6.2 Test Subjects

To answer our research questions, we experimented with the C programs of GNU Coreutils2

(version 8.22). GNU Coreutils is a collection of text, file, and shell utility programs widely used
in unix systems. The whole codebase of Coreutils is made of more than 60,000 lines of C code3.

The repository of Coreutils contains developer tests for the utilities programs which are system
tests written in shell or perl scripts that involve more than 20,000 lines of code3.

Applying mutation analysis on all Coreutils programs requires excessive amount of effort. There-
fore, we randomly sampled 60 programs, based on which we performed our analysis. Unfortu-
nately, in 13 of them mutation analysis took excessive computational time (due to costly test
execution), for which we terminated the analysis. Therefore, we analysed 47 programs. These are:
base64, basename, chcon, chgrp, chmod, chown, chroot, cksum, date, df, dirname, echo, expr,
factor, false, groups, join, link, logname, ls, md5sum, mkdir, mkfifo, mknod, mktemp, nproc,
numfmt, pathchk, printf, pwd, realpath, rmdir, sha256sum, sha512sum, sleep, stdbuf, sum,
sync, tee, touch, truncate, tty, uname, uptime, users, wc, whoami. Figure 7.4 presents the
size of these subjects.

For each subject we selected the 3 functions that were covered by the largest number of developer
tests (from the initial test suite).

2https://www.gnu.org/software/coreutils/
3Measured with cloc (http://cloc.sourceforge.net/)
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7.6.3 Employed Tools

We implemented our approach on top of LLVM4 using the symbolic virtual machine KLEE
[CDE08]. The version of our tool is based on the KLEE revision 74c6155, LLVM 3.4.2. Our
implementation modified (or added) more than 8,000 lines of code on KLEE, which we will make
publicly available. To convert system tests into the format of seeds required by KLEE for the
seeded symbolic execution, we use Shadow [PKC16].

Our tool requires the targeted mutants to be represented in a meta-mutant program (presented
in Section 7.4.2.1), which were produced using the Mart mutant generation tool (Presented in
Chapter 8). Mart mutates a program by applying a set of mutation operators (code transforma-
tions) to the original LLVM bitcode program.

7.6.4 Experimental Setup

7.6.4.1 Selected Mutants

To perform our experiment we need to form our target mutant set. To do so, we employed Mart
by using its default configuration and generated 172,919 mutants. This configuration generates a
comprehensive set of mutants based on a large set of mutation operators, consisting of 816 code
transformations. It is noted that the operator set includes the classical 5 operators [Off+96a]
that are used by most of the todays’ studies and mutation testing tools. Unfortunately, space
constraints prohibit us from detailing the operator set. See Chapter 8, Section 8.1 for further
details.

To identify the stubborn mutant set we started by eliminating trivial equivalent and duplicated
mutants, and form our initial mutant set M1. To do so, we applied Trivial Compiler Equivalence
(TCE) [Pap+15], a technique that statically removes a large number of mutant equivalences.
In our experiment, TCE removed a total number of 102,612 mutants as being equivalent or
duplicated. This gave us 70,307 mutants to be used for our initial mutant set, i.e., M1=70,307.

Then, we constructed our initial test suites TS (composed of the developer test suite augmented
with a simple test generation run of KLEE). To generate these tests with KLEE, we set a test
generation timeout of 24 hours, while using the same configurations presented by the authors of
KLEE [CDE08] (except for larger memory limit and max-instruction-time, set to 9GB and 30s
respectively). This run resulted in 5,161 tests (2,693 developer tests and 2,468 tests generated
by the initial run of KLEE).

We then executed the initial test suites (TS) with the initial mutant set (M1) and identified the
live and killed mutants. The killed mutants were discarded, while the live ones formed our target
mutant set (denoted it as M2), i.e., M2 is the target of SEMu. In our experiment we found that
M2 included 26,278 mutants, which is approximately 37% ofM1. It is noted thatM2 is a superset
of the stubborn mutants as it includes both stubborn and equivalent mutants. Unfortunately,
judging mutant equivalence is undecidable and thus, we cannot remove such mutants before
test generation. Therefore, to preserve realistic settings we are forced to run SEMu on all M2

mutants.

4https://llvm.org/
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To evaluate SEMu effectiveness we need to measure the extent to which it can kill stubborn
mutants. Unfortunately, M2 contains a large proportion of equivalent mutants [SZ13], which
may result in significant underestimations of test effectiveness [Kur+16b]. Additionally, M2 may
contain a large portion of subsumed mutants (mutants killed collaterally by tests designed to
kill other mutants), which may inflate (overestimate) test effectiveness [Pap+16]. Although we
discarded easy-to-kill mutants, it is still likely that a significant amount of ‘noise’ still remains.

To reduce such biases (both under and over estimations) [Kur+16b], there is a need to filter out
the subsumed mutants by forming the subsuming mutant set [Pap+19]. The subsuming mutants
are mainly distinct (in the sense that killing one of them does not alter, increase or decrease, the
chances of killing the others) providing objective estimations of test effectiveness. Unfortunately,
identifying subsuming mutants is undecidable and thus, several mutation testers, e.g., Ammann
et al. [ADO14], Papadakis et al. [Pap+16], Kurtz et al. [Kur+16b] suggested approximating
them through strong test suites. Therefore, to approximate them, we used the combined test
suite that merges all tests generated by KLEE and SEMu across the execution of its 128 different
configurations,

⋃
∀i
TSxi , where x0 is KLEE and xi (i > 0) are the SEMu configurations (refer to

Section 7.6.4.2 for details). This process was applied onM2 and resulted in a set of 529 mutants.
In the rest of this chapter we call the mutants belonging to M3 as reference mutants. We use
M3 for our effectiveness evaluation.

Overall, through our experiments we used two distinct mutant sets, M2 and M3. To preserve
realistic settings, the former is used for test generation, while the later is used for test evaluation
(to reduce bias).

7.6.4.2 SEMu Configuration

To specify relevant values for our modelling parameters we performed ad-hoc exploratory analysis
on some small program functions. Based on this analysis we specify 2 relevant values for each of
the 7 parameters (defined in Section 7.5). These values provided us the basis for constructing a
set of configurations (parameter combinations) to experiment with. In particular the values we
used are the following: Precondition Length: GMD2MS and SMD2MS, Checkpoint Window: 0
and 3, Propagating Proportion: 0 and 0.25, Propagating Selection Strategy: RND and MDO,
Minimum Propagation Depth: 0 and 2, No State Difference: True and False, Number of Tests
Per Mutant: 1 and 5.

We then experiment with them in order to select the SEMu configuration and form our approach.
It is noted that different values and combinations form different strategies. Examining them is
a non-trivial task since the number of configurations is exponentially increased, i.e., 27 = 128

and mutant execution takes considerable amount of time. In our study, the total test generation
of the various configurations and KLEE took roughly 276 CPU days, while the execution of the
mutants took approximately 1,400 CPU days.

To identify and select the most prominent configuration, we executed our framework on all test
subjects under all configurations xi where i ∈ [1, 128]. We restrict the symbolic execution time
to 2 hours. We then randomly split the set of test subjects into 5 buckets of equal size (each one
containing 20% of the test subjects). Then, we pick 4 buckets (80% of the test subjects) and
select the best configuration by computing the ratio of killed reference mutants. We assess the
generalization of this configuration on the left out bucket (5th bucket that includes 20% of the test
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subjects). To reduce the influence of random effects, we repeated this process 5 times by leaving
every bucket out for evaluation. At the end we selected the median performing configuration
(performance on the bucket that had been left out). It is noted that such a cross validation
process is commonly used in order to select stable and potentially generalizable configurations.

Based on the above procedure we selected the SEMu configuration: PL = GMD2MS, CW =

0, PP = 0.25, PSS = RND, MPD = 2, NSS = False, NTPM = 5.

7.6.5 Experimental Settings and Procedure

To perform our experiment we set, on KLEE, the following (main) settings (which are similar
to the default parameters of KLEE): a) we set a memory usage threshold of 8 GB, (a threshold
never reached by any of the studied methods), b) we set the search strategy on Breadth-First
Search (BFS), which is commonly used in patch testing studies [PKC16] and c) we set a 2 hours
time limit for each subject.

It is noted that our current implementation supports only BFS. We believe that such a strategy
fits well with our purpose as it is important that the mutants and original program paths are
explored in a lock step in order to enable state comparison at the same depth. The time budget
of 2 hours was adopted because it is frequently used in test generation studies, e.g., [PKC16], and
forms a time budget that is neither too big nor too small. It is noted that since SEMu performs
a deeper analysis than the other methods, adopting a higher time limit would probably lead to
an improved performance, compared to the other methods. Of course reducing this limit could
lead to reduced performance.

We then evaluated the generated test suites by computing the ratio of reference mutants that
they kill. Unfortunately, in 11 among the 47 test subjects we considered, none of the evaluated
techniques managed to kill any mutant. This means that for these 11 subjects we approximate
having 0 stubborn mutants and thus, we discarded those programs. Therefore, the following
results regard the 36 programs for which we could kill at least one stubborn mutant.

To answer RQ1 we compute and report the ratio of the reference mutants killed, i.e., M3 set, by
SEMu when it targets the 26,278 surviving mutants, i.e., M2 set.

To answer RQs 2 and 3 we compute and contrast the ratio of the reference mutants killed
by KLEE (executed in "seeding" mode), the infection-only strategy (a strategy suggested by
previous research [Zha+10a; HJL11]) and SEMu (for fair comparison, we used the initial test
suite as seeds for the three approaches). We also report and contrast the number of mutant-killing
tests that were generated. Since the generated tests may include large numbers of redundant
tests, i.e., a test is redundant with respect to a set of tests when it does not kill any unique
mutant compared to the mutants killed by the other tests in the set [Pap+19], we compare the
sizes of non-redundant test sets, which we call mutant-killing test sets. The size of these sets
represents the raw number of end objectives that were successfully met by the techniques [AO08;
Pap+19].

To compute the mutant-killing test sets we used a greedy heuristic. This heuristic incrementally
selects the tests that kill the maximum number of mutants that were not killed by the previously
selected tests.
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7.6.6 Threats to Validity

All in all we targeted 133 functions from 47 programs from Coreutils. This level of evidence
sufficiently demonstrates the potential of our approach, but should not be considered as a general
assertion of its test effectiveness.

We generated tests at the system level, relying on the developers’ tests suites. We believe that
this is the major advantage of our approach because this way we focus on stubborn mutants that
encode system level corner cases that are hard to reveal. Another benefit of doing so is that at
this level we can reduce false alarms, experienced at unit level (feasible behaviors at unit but
infeasible at system level), [GFZ12]. Unfortunately though, this could mean that our results do
not necessarily extend to unit level.

Another issue may be due to the tools and frameworks we used. Potential defects and limitations
of these tools could influence our observations. To reduce this threat we used established tools,
i.e., KLEE and Mart, that have been used by many empirical studies. To reduce this threat
further we also performed manual checks and intend to make our tool publicly available.

In our evaluation we used the subsuming stubborn mutants in order to cater for any bias caused
by trivial mutants [Pap+16]. While this practice follows the recommendations made by the
mutation testing literature [Pap+19], the subsuming set of mutants is a subject to the combined
reference test suite, which might not be representative to the input domain. Nevertheless, any
issue caused by the above approximations could only reduce the mutant killed ratios and not the
superiority of our method. Additional (future) experimentations will increase the generalizability
of our conclusions.

The comparison between the studied methods (infection-only) was based on a time limit that
did not include any actual mutant test execution time. This means that when reaching the time
limit, we cannot know how successful (at mutant killing) the generated tests were. Additionally,
we cannot perform test selection (eliminate ineffective tests) as this would require expensive
mutant executions. While, it is likely that a tester would like to execute the mutants in order
to perform test selection, leaving mutant execution out allows a fair comparison basis between
the studied methods since mutant execution varies between the methods and heavily depends
on test execution optimizations used [Pap+19]. Nevertheless, it is unlikely that including the
mutant execution would change our results since SEMu generates less tests than the baselines
(because it makes a deeper analysis than the baselines).

7.7 Empirical Results

7.7.1 Killing ability of SEMu

To evaluate the effectiveness of SEMu we run it for 2 hours per subject program and collect the
generated test inputs. We then execute these inputs with the reference mutants and determine
the killed ones. Interestingly SEMu kills a large portion of the reference mutants. The median
percentage of killed mutants is 37.3%, indicating a strong killing ability. To kill these mutants
SEMu generated 153 mutant-killing test inputs (each test kills at least one mutant that is not
killed by any other test).
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Figure 7.5: Comparing the stubborn mutant killing ability of SEMu, KLEE and the infection-only.

7.7.2 Comparing SEMu with KLEE

Figure 7.5 records the proportion of the killed reference mutants by SEMu, seeded mode of KLEE
and infection-only (investigated in RQ3). It is noted that the boxes include the proportions of
killed mutants among the different test subjects we use. From these results we can observe that
SEMu has a median value of 37.3% while KLEE has a median of 0.0%.

To further validate the difference we use the Wilcoxon statistical test (paired version) to check
whether the differences are significant. The statistical test gives a p-value of 0.006 suggesting
that the two samples’ values are indeed significantly different. As statistical significance does
not provide any information related to the volume of the difference, we also compute the Vargha
Delaney effect size (Â12 value) that quantifies the frequency the observed difference. The results
give a Â12 of 0.736, which indicates that SEMu is superior to KLEE in 73.6% of the cases.

Figure 7.6 depicts the differences and overlap between the reference mutants killed by SEMu
and KLEE, per studied subject. From this figure, we can observe that the number of programs
with overlapping killed mutant is very small indicating that the two methods differ significantly.
We also observe that SEMu performs best in the majority of the cases. Interestingly, a non
negligible number of mutants are killed by KLEE only. These cases fall within a small number of
test subjects. We investigated these cases and found that the differences were big either because
there was only one reference mutant, which was killed by KLEE alone, or because of the large
number of surviving mutants that force SEMu perform a shallow search. Unfortunately, SEMu
spends much time trying to kill every targeted mutant and thus, when a large number of them
is involved, the 2 hours time limit we set is not sufficient to effectively kill them.

To better demonstrate the effectiveness differences of the methods we also record the number of
the mutant killing test inputs (each test kills at least one mutant that is not killed by any other
test). We found that SEMu generated 153 mutant-killing test inputs, while KLEE generated
only 62.

7.7.3 Comparing SEMu with infection-only

A first comparison between SEMu and infection-only can be made based on the data from
Figure 7.5. According to these data SEMu has a median value of 37.3% while infection-only
has a median of 17.2%. Interestingly, this shows a big difference in favour of our approach. To
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Figure 7.6: Comparing the mutant killing ability of SEMu and KLEE in per program basis.
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Figure 7.7: Comparing the mutant killing ability of SEMu and infection-only in per program basis.

further validate this finding, we performed a Wilcoxon statistical test and got a p-value of 0.04
suggesting that the two samples’ values are statistically significant (at the commonly adopted
5% confidence level). Like in RQ2 we also computed the Vargha Delaney effect size Â12 and
found that SEMu yields higher killing rates than infection-only in 61% of the cases.

To demonstrate the differences we also present our results in a per test subject basis. Figure 7.7
shows the differences and overlap between the killed reference mutants. From these results we
observe a large overlap between the mutants killed by both approaches, with SEMu being able
to kill more mutants for most of the cases. We also observe that in 5 of the cases infection-only
performed better than SEMu, while SEMu performed better in 13.

Similarly, to the previous RQs we compare the strategies by counting the number of the mutant
killing test inputs that were generated by the strategies. Interestingly, we found that SEMu
generated 87% more mutant killing test inputs than the "infection-only" one (153 vs. 82 inputs)
, indicating the usefulness of our framework.
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7.8 Conclusion

This chapter introduced SEMu, a method that generates test inputs for killing stubborn mutants.
SEMu relies on a form of shared differential symbolic execution that incrementally searches
a small but ‘promising’ code region around the mutation point in order to reveal divergent
behaviours. This allows the fast and effective generation of test inputs that thoroughly exercise
the targeted program corner cases. We have empirically evaluated SEMu on Coreutils and
demonstrated that it can kill approximately 37% of the involved stubborn mutants within a two
hour time budget.

In the next chapter we present the mutant generation tool built to support the work presented in
this dissertaion. We also present an automated testing framework that integrates the mutation
cost reduction techniques (FaRM and SEMu), presented in this dissertaion, into the software
testing process.
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Chapter

8
Built Tools And Frameworks

This Chapter presents the tools and frameworks built as support to the techniques and studies
presented in this dissertation. These tools provide a boost to mutation testing by providing re-
searchers with material to extend the techniques presented in this dissertation and build new
techniques, and to practitioners ready made tools that can be used.

This chapter is partly based on the work published in the following paper:

• Thierry Titcheu Chekam, Mike Papadakis, and Yves Le Traon. 2019. Mart: A Mu-
tant Generation Tool for LLVM. In Proceedings of the 27th ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE ’19), August 26–30, 2019, Tallinn, Estonia.
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8.1 Mart: A Mutant Generation tool for LLVM Bitcode

This section presents Mart, a mutant generation tool that implements many mutation operators
and many features in order to support mutation testing techniques. Mart also implements the
mutant reduction technique (FaRM) presented in Chapter 6.

8.1.1 Overview

Mart generates mutants for LLVM bitcode [LA04] (high-level languages such as C and C++
are compiled to LLVM intermediate representation for optimization and analysis). Generating
mutants at the bitcode level may lead to inconsistency with source code mutation (due to loss
of structural information during compilation). Nevertheless, the major advantage of generat-
ing mutants at the LLVM bitcode level is the ability to generate mutants for multiple high-
level programming languages with the same tool. Two LLVM bitcode mutation tools, namely
MuLL [DP18] and SRCIROR [HS18], have been developed recently but they currently support
only few mutation operators and provides limited flexibility of mutation operators configuration
during mutant generation. MuLL implements Arithmetic Operator Replacement, Condition
Negation, Function Call Deletion and Replacement with Constant, Scalar Value Replacement.
SRCIROR implements Arithmetic Operator Replacement, Logical Connector Replacement, Re-
lational Operator Replacement and Integer Constant Replacement operators. None of those tools
mutate pointers.

Mart mutant generation tool provides:

• A rich set of mutation operators (fine-grained operators [JKA17]), including operators that
simulate high-level programming language’s complex expressions (such as left increment).
• An in-memory implementation of Trivial Compiler equivalence (TCE) [Pap+15] to elimi-

nate equivalent and duplicate mutants.
• A simple description language for mutation operators configuration. The language enables

users to apply a mutation operator based on the class of the operands of the mutated code’s
operation.
• Generation of separated mutant bitcode files, meta-mutants bitcode file (useful for some

mutant execution techniques [Wan+17]), weak mutation instrumented bitcode file and,
mutant coverage instrumented bitcode file.

Mart has been used to generate mutants for studies in Chapters 5, 6 and 7. For the study in
Chapter 6, Mart generated 4,778,157 mutant and detected 2,173,508 equivalent and duplicate
mutants.

8.1.2 Mart Mutants Generation

Mart generates mutants for LLVM bitcode programs. Mart takes as input an LLVM bitcode file
and optionally mutation configuration files to automatically generate mutated LLVM bitcode
files.

An overview of the process implemented by Mart, to generate mutants, is represented in Fig-
ure 8.1. Initially, the input LLVM bitcode file is pre-processed (re-formatted to ease mutant
instrumentation) and then instrumented by transforming the code using mutation operators

130



CHAPTER 8. BUILT TOOLS AND FRAMEWORKS

LLVM 
bitcode file

Pre-processing

Preprocessed 
file

Mutation 
Instrumentation

Pre-TCE Meta-
mutants file

In-memory 
TCE

Post-TCE Meta-
mutants file

mutant files
Generation

Weak mutation
Instrumentation

Mutant 
coverage

Instrumentation

Mutant filesMutant filesMutant files Weak 
Mutation file

Mutant 
Coverage file

Mutants 
Information

Configurations

Figure 8.1: LLVM bitcode mutation process of Mart. The rounded edges rectangles with double border
lines represent LLVM bitcode files. The square edge rectangles represent the steps of the mutation process.
Each step is implemented by a component of Mart.

(the instrumentation can be constrained using mutation configurations). The instrumentation
results in a meta-mutants program that encodes all mutants in a single module. The Meta-
mutants module is then further processed by eliminating equivalent and duplicate mutants using
an in-memory implementation of the Trivial Compiler Equivalence (TCE) [Pap+15]. Equivalent
mutants are mutants that are semantically equivalent to the original program while duplicate
mutants are mutants that are semantically equivalent to other mutants. The TCE elimination
results in another meta-mutants module where equivalent and duplicate mutants, detectable by
TCE, are removed. Information about mutants, such as mutant type, etc, are also exported. Fi-
nally, the post-TCE meta-mutants module is used to generate separated mutants files for different
mutants, weak mutation instrumented module (to measure mutants infection) and mutant cov-
erage module (to measure mutants reachability). The generated mutant files and instrumented
files can be input to third-parties testing frameworks to be executed with test suites or improve
the test suites. We recommend to use Muteria, presented in Section 8.2 testing framework for
test execution.

In the following sub-sections, we present details about the implementation of components of
Mart.

8.1.2.1 Preprocessing

The input LLVM bitcode file loaded as LLVM Module is transformed to enable the instrumen-
tation with mutation operators. In this phase, the phi nodes of LLVM intermediate language
are removed by applying a customized reg2mem function (which replaces registers by local vari-
ables). Phi nodes enable LLVM registers to be assigned and used in different basic blocks. This
feature hinders Mart instrumentation as the instrumentation changes a single basic block at the
time. The pre-processing step replaces registers with local variables for phi nodes by declaring,
for each phi node register, a local variable which is assigned the register’s value at the register
writing basic block and, the variable is loaded and the value used in the register reading basic
block instead of the register.

8.1.2.2 Mutation Instrumentation

The mutation instrumentation of Mart consists of applying the defined mutation operators on
compatible code locations. In this step, a configuration of the set of mutation operators to apply

131



8.1. MART: A MUTANT GENERATION TOOL FOR LLVM BITCODE

as well as a configuration of the code locations to apply those mutation operators can be used
to constrain the mutation.

A) Mutation Operators Representation
In order to support the mutation of complex operators of source code (e.g. recognizing C language
arithmetic left increment (++i) or pointer de-reference followed by right decrement (*p–) on the
LLVM bitcode level), we define abstractions of mutant operators.
Definition 8.1.1. We define as code fragment any piece of code that can be expressed as a func-
tion. Regarding a mutation, a fragment is the minimal piece of LLVM code that is syntactically
changed by the mutation. This code may input LLVM registers or constant values and return
some value into another register.
Definition 8.1.2. A fragments f’ is compatible with another fragment f if and only if f can be
replaced by f’ without breaking the code’s syntax.

Mart represents each mutation operator as a pair of fragments (f, f ′), where f ′ is compatible
with f . To apply the operator (f, f ′) at a location l of a program P , the fragment f is matched
then, if found, it is replaced by the fragment f ′. the resulting program M after replacing f by
f ′ at l on P is a mutant of P . Figure 8.2-(b) illustrate an example of a mutation as executed by
Mart.

Implementing New Mutation Operators. Given that fragments need to be matched and/or
replaced, Mart provides an interface to implement fragments where matching and replacing
functions need to be implemented. Implementing a new operator requires to implement the
fragments’ interfaces. The matching function inputs a list of LLVM bitcode instructions, checks
whether the fragment is matched or not and, returns the fragment input addresses and output
register address. The replacing function input the list of matched fragment ’s inputs and the list
of bitcode instructions to mutate then, replace the code instructions to mutate.

ADD(V1,@2) -->   type1.1, SUB(@2, 5); type1.2, ASSIGN(V1,@2);
A -->   type2.1, CONSTVAL(0);  type2.2, DELSTMT;

r=x+(y*2);

1
2

type1.1

x

ADD

y 2

MUL

r

x

SUB

y 2

r

5

MUL

r=(y*2)-5;

Original Mutant 1.1

fragment

LLVM bitcode operator

(b) (c)

(a)

MutantsOriginal

r = (y*2) – 5;

r = x = (y*2);

r = x + (y*2);

p = &x;

p = null;

;

Figure 8.2: Example of bitcode mutation by Mart. Sub-figure (a) is an example of a mutation operators
configuration description in a simple description language. Sub-figure (b) illustrates an example of code
mutation; the second fragment in the original code is replaced by a mutant fragment. Sub-figure (c)
presents an example of the mutation using the configuration of (a).
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Table 8.1: Mutant Types

Mutated Code Original Fragment Group Mutant Fragment Group

STATEMENT

ANY STMT TRAPSTMT

ANY STMT DELSTMT

CALL STATEMENT SHUFFLEARGS

SWITCH STATEMENT SHUFFLECASESDESTS

SWITCH STATEMENT REMOVECASES

EXPRESSION

SCALAR.ATOM SCALAR.UNARY

SCALAR.ATOM SCALAR.BINARY

SCALAR.UNARY SCALAR.UNARY

SCALAR.BINARY SCALAR.UNARY

SCALAR.BINARY SCALAR.BINARY

SCALAR.BINARY TRAPSTMT

SCALAR.BINARY DELSTMT

POINTER.ATOM POINTER.UNARY

POINTER.UNARY POINTER.UNARY

POINTER.BINARY POINTER.UNARY

POINTER.BINARY POINTER.BINARY

DEREFERENCE.BINARY DEREFERENCE.UNARY

DEREFERENCE.BINARY DEREFERENCE.BINARY

B) Currently Supported Mutation Operators
Currently, Mart implements 18 operator groups (pairs of "compatible" fragment groups). The 18
operator groups are designed to match a large number of elements of program syntax (additional
operator groups can be implemented). There are 68 fragments implemented and the default
mutation configuration is made of 816 operators (pair of fragments), including variations due
to operand classes. These include all those that are supported by modern mutation testing
tools [Off+96a]. The 18 operator groups are recorded in Table 8.1. "Original fragment group"
refers to the matched fragment and "mutant fragment group" refers to the replacing fragment.

The fragment groups are defined as following (p refers to pointer values and s refers to scalar
values):

• ANY STMT refers to matching any type of statement (only original fragment).
• TRAPSTMT refers to a trap, which cause the program to abort its execution (only mutant

fragment).
• DELSTMT refers to the empty statement, thus, replacing by this is equivalent to deleting

the original statement (only mutant fragment).
• CALL STATEMENT refers to a function call.
• SWITCH STATEMENT refers to a C language like switch statement.
• SHUFFLEARGS refers to the same function call as the original, with arguments of same

type swapped (e.g. g(a, b) → g(b, a)). This can only be a mutant fragment and, requires
the original fragment to be a function call.

• SHUFFLECASESDEST refers to the same switch statement as the original, with the
basic blocks of the cases swapped (e.g. {case a : B1; case b : B2; default : B3; } →
{case a : B2; case b : B1; default : B3; }). This can only be used as mutant fragment and,
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requires the orignal fragment to be a switch statement.
• REMOVECASES refers to the same switch statement as the original, with some cases

deleted (the corresponding values will lead to execute the default basic block) (e.g. {case a :

B1; case b : B2; default : B3; } → {case a : B2; default : B3; }). This can only be used
as mutant fragment and, requires the orignal fragment to be a switch statement.

• SCALAR.ATOM refers to any non pointer type variable or constant (only original frag-
ment).

• POINTER.ATOM refers to any pointer type variable or constant (only original fragment).
• SCALAR.UNARY refers to any non pointer unary arithmetic or logical operation (e.g.

abs(s), −s, !s, s+ + ...).
• POINTER.UNARY refers to any pointer unary arithmetic operation (e.g. p+ +, −− p

...).
• SCALAR.BINARY refers to any non pointer binary arithmetic, relational or logical op-

eration (e.g. s1 + s2, s1&&s2, s1 >> s2, s1 <= s2 ...).
• POINTER.BINARY refers to any pointer binary arithmetic or relational operation (e.g.

p+ s, p1 > p2 ...).
• DEREFERENCE.UNARY refers to any combination of pointer dereference and scalar

unary arithmetic operation, or combination of pointer unary operation and pointer deref-
erence (e.g. (∗p)−−, ∗(p−−) ...).

• DEREFERENCE.BINARY refers to any combination of pointer dereference and scalar
binary arithmetic operation, or combination of pointer binary operation and pointer deref-
erence (e.g. (∗p) + s, ∗(p+ s) ...).

C) Instrumentation process
Mart mutation instrumentation visits the Control Flow Graph (CFG) of the module under mu-
tation and for each statement (represented by a group of instructions that are data-dependent
w.r.t. registers) l, create mutated versions l′1, .., l′k. A branching instruction is then inserted, to
select, based on the value of a special global variable called "Mutant ID selector", the statement
to execute between l, l′1, .., l′k. The resulting module is a meta-mutants module where, the module
can represent a specific mutant by just setting the value of the "Mutant ID selector" variable to
its ID.

Constrained Mutation. The instrumentation process is subject to possible configuration.
Users can restrict the corresponding source code’s source files and functions to mutate by speci-
fying the values in a JSON file that is used during mutation instrumentation. The operators to
apply can also be specified in a file where each line is a key-value with the key the matching pat-
tern and value the list or replacing patterns (This makes a simple mutation operator description
language). Each pattern is made of the fragment name and the list of its indexed arguments’
classes. The arguments classes are constant (C), scalar variable (V), address (A), pointer variable
(P) and any expression (@). The set of argument classes in the replacing pattern is a subset
of those from the matching pattern (except for constants). The mutation operator description
language diagram is depicted in Figure 8.3. The mutation operation configuration file can easily
be created automatically with a script available with the tool. Figure 8.2 shows an example of a
mutant operator description configuration where 4 mutation operators are defined (2 operators
for matching the sum of a variable and any expression and, 2 for matching an address).
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Figure 8.3: Mutant operators description language syntax diagram

8.1.2.3 In-Memory Equivalent and Duplicate Mutants Elimination

Mart eliminates equivalent and duplicate mutants by applying Trivial Compiler Equivalence
(TCE) [Pap+15], on the mutated functions, in-memory. Our implementation of TCE applies
LLVM optimizations, for each mutant, to the mutated function and uses a customized version
of llvm-diff1 tool to check for the difference between the optimized functions of the mutants and
the original program’s.

8.1.2.4 Final Mutated Files Generation

After TCE equivalent and duplicate mutants have been eliminated from the meta-mutants mod-
ule, separated mutants files are generated by dumping the mutants functions used during TCE
(which are also linked with the un-mutated function to make complete mutant bitcode). weak
mutation and mutants coverage instrumented bitcode modules are generated by replacing, in
the meta-mutants module, each mutant’s code by label (function call that writes, into a file, the
mutant ID of the mutants whose label is covered during test execution). A mutant coverage label
is covered by any test that reaches it (the mutant location). A weak mutation label is covered
by any tests that infect the mutant.

8.1.3 Implementation and Usage

Mart is implemented as a static analysis tool for LLVM bitcode (Mart loads the input LLVM
bitcode file as an LLVM module and manipulates the module using the LLVM API). Currently,
Mart has been tested for LLVM versions 3.4, 3.7, 3.8 and 3.9, and on Ubuntu (Linux) operating
system.

1https://llvm.org/docs/CommandGuide/llvm-diff.html
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Mart can be used to mutate programs written in any language compilable into LLVM bitcode
(compile complex C/C++ projects with wllvm2). The users are required to compile the code
with debug information enabled in order to keep the information about source code location for
mutants information. If no debug information is found in the program to mutate, the mutants
information will not contain the source code locations information of the mutants.

Mart can be used through the command lines interface (CLI) or through its application program-
ming interface API. Users of Mart can provide mutation configuration files (mutants operators
and mutation scope), decide whether to apply in-memory TCE, decide whether to output weak
mutation bitcode file, mutant coverage bitcode file and separated mutant files. See the tool
weblink to get started.

8.2 Muteria: An Extensible and Flexible Multi-Criteria Software
Analysis Framework

This section presents Muteria, a framework that aims to support experimentation in research to
improve the practicality of mutation testing.

8.2.1 Overview

A Test Adequacy Criteria (TAC) based software analysis process, as depicted in figure 8.4 (more
details in section 8.2.2) involves using TACs to evaluate and improve the test suites. Several
phases (steps) of the software analysis process optimize the execution (represented with dashed
lines in the figure 8.4). Many tools and techniques have been developed to help software de-
velopers analyse and test their software [Off11; SWF10; CDE08]. These tools and techniques
are used to increase the fault detection, give guarantee of the software correctness and reduce
the cost of software analysis through automation of the process [Off11]. Nevertheless, with the
proliferation of programming languages, TACs and software analysis tools, developers need to
exert supplementary effort to learn to use newly-developed tools, and integrate them into their
test environment. Furthermore, researchers exert much effort to implement and evaluate their
developed techniques and often, a great deal of engineering effort is required in order to integrate
their implementation with other tools.

Muteria framework is built in response to those challenges. Muteria provides a collection of
simplified drivers interfaces for integration of software analysis tools (implementing different
aspects of the TAC-based software analysis process). Tools are integrated into Muteria through
drivers that implement interface functions to enable Muteria to call the tools (these drivers can
be made publicly available with the corresponding tools).

The Muteria framework provides:

• The Flexibility to add support for new TACs and programming languages.
• An Interface to implement drivers to integrate new tools.
• A controller that handles the integration of the tools.
• A Reporter that computes metrics and display results.

2https://github.com/travitch/whole-program-llvm
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8.2.2 Background and Motivation

8.2.2.1 Software Analysis Process

Figure 8.4 presents an overview of a test adequacy criteria (TAC) based software analysis process,
adapted from the “Two mutation processes” presented by Offut [Off11] (This is a detailed version
of the Figure 1.1 presented in Chapter 1). During the process, tests that are either manually
or automatically generated, are executed (after possible selection/prioritization) on the program
under Analysis (PUT) to check for failures due to potential faults (in presence of faults, the
process is interrupted, the user repairs the program and restarts the process). The test suites
are evaluated using TACs’ coverage and improved to maximize TACs’ coverage. The TACs’
test objectives are generated by instrumenting the PUT. For faster execution, the TACs’ test
objectives of interest may be selected (for instance, a random number of mutants are selected
based on mutation operators in the case of mutation testing [PI18] or, most likely to be faulty
statements are selected in case of statement coverage). The tests are executed (with possible
optimization such as optimizing strong mutation using weak mutation [KMK13]) on the TACs’
instrumented programs and the coverage values are computed. The computed TACs’ coverage
values are reported to the user who, based on the values, may generate more tests to increase
the coverages.

There are two variants of the process: in process 1, the targeted TACs coverage is reached before
the PUT is checked for correctness while in process 2, the PUT is checked for correctness before
the TACs’ coverage is measured.

Each phase of the preceding process has been subject to research leading to development of new
techniques and tools. Nonetheless, researchers exert a great deal of engineering effort to build
prototypes of their techniques which, often, are not easy to use due to the engineering effort
needed in order to integrate them into the software analysis process. Moreover, the experimental
evaluations of the developed techniques require that scripts are implemented to integrate the
prototypes with other existing tools.

8.2.2.2 Why A New Framework?

The reasons behind Muteria are to provide the following.

A laboratory framework for TAC-based software analysis research that allows re-
searchers to implement and evaluate their techniques with little effort.

Simplify the development of TAC-based software analysis tools by providing out-of-
the-box integration with other existing tools.

Ease the use of TAC-based software analysis techniques through rich user interfaces
and configuration.

8.2.3 Muteria Framework Overview

We believe that a well designed software analysis framework should be easy to use, provide
good user interfaces and be easy to modify for different uses. Muteria framework implements
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Figure 8.4: Test Adequacy Criteria (TAC) based software analysis process (adapted from Offut’s “Two
mutation processes” [Off11]). The Process 1 is adapted from the “Traditional process” and Process 2 from
the “Post-Mothra Process”

the different phases of the TAC-based software analysis process, depicted in figure 8.4, with
extensible interfaces. Muteria uses a modular approach [Par72] for the implementation of its
functionalities.

8.2.3.1 Design Goals

In this section, we present the main features of Muteria that support its design.

1. Extensible. The modular design of Muteria framework separates the phases of the TAC-
based software analysis process into different components. Within each component, multi-
ple tools that implement the corresponding phases can be integrated into the framework.
Integrating a new tool into Muteria simply requires to extend the corresponding compo-
nent’s tool driver interface. Such a design enables the development of drivers for new tools
on a specific component, independently to the tools used in other components.

2. Configurable. Muteria provides a wide space of configurations that allow the users to
have deep control over the execution of the framework. The framework allows the users
to configure the execution of the software analysis process by specifying the test adequacy
criteria to use during the analysis, whether to reuse preceding execution data or not (useful
for example for regression testing), the level of concurrency and, which metrics to report and
how to report them. The underlying test generation tools, test adequacy criteria tools and
test execution optimization techniques can also be configured collectively or individually
(tool specific configuration).
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3. Multi Programming Language Support. Muteria framework separately support multiple
programming language by integrating the testing tools of the same programming language.
For instance, using the framework on a C language programs allows only the use of tools
supporting C programs. Therefore, the framework’s extension tools are grouped by pro-
gramming languages.

8.2.3.2 User Interaction

Muteria framework provide 2 main forms of user interaction.

4. Application Programming Interface. Users can integrate Muteria into other frameworks
through its application programing interface (API). Moreover, Muteria’s components can
be used as libraries to build different frameworks.

5. Command Lines. As most frameworks, Muteria provide a rich command lines interface
(CLI), allowing users to execute the framework from terminals.

8.2.3.3 Architecture

Figure 8.5 presents an overview of the architecture of Muteria framework. The core of the
framework is made of the following components:

• Controller. This component organize the tasks to be executed, based on the configuration,
and calls the relevant components for each of the executions. It implements the integration
between the tools implementing different phases of the software analysis process.

• Code Manager. This component manages the code repository of the PUT. It also provides
functions to build code (convert from one code representation to another).

• Test Cases Manager. This component provides an abstraction of test generation and test
execution to the framework. Multiple test generation and test execution tools can be
integrated through drivers on this component. A test execution tool handles specific test
formats (e.g. JUnit tests) whose test can be generated by multiple test generation tools.
Manually written tests are also managed by this component and are executed by the tool
whose test format they follow. This component provides a high level functions to generate
and to execute tests. These functions are mapped to the underlying tools through the tools
drivers.

• TAC Manager. Similar to the Test Cases Manager, this component provides an abstraction
of each implemented TAC’s instrumentation tool. Multiple TACs tools can be integrated
through drivers on this component. Each tool may implement support for multiple TACs.
This component provides functions to instrument the PUT for the given TACs and to
execute a test set against the instrumented programs (by calling the Test Case Manager).

• Test Execution Optimizer. This component provides functions to select and prioritize tests
cases (e.g. for regression testing). Test execution optimizing techniques implementations
can be integrated into this component. This component’s object is passed to the Test Case
Manager during test execution to enable implementing dynamic optimizations based on
previous test executions.
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Figure 8.5: Architecture of Muteria framework. The components with black rectangle provide interfaces
for corresponding tools to connect to the framework. The controller enable the integration. All components
are accessible by the users through the framework API.

• Test Generation Guidance. This component implements functions to select, during the test
generation process, "important" TACs’ test objectives to focus on (e.g. select likely fault
revealing statements or mutants (Chapter 6 and use them to guide automated test case
generation to reveal potential faults). Test generation guidance techniques implementations
can be integrated into this component.

• TAC Execution Optimizer. This component provides functions to select and/or prioritize
TACs’ test objectives for execution (e.g. using weak mutation to improve execution time of
strong mutation [KMK13]). This is useful, for instance, for strong mutation in regression
testing, where the optimizer could statically select the mutants likely to be relevant to the
area of interest in the program under test. TACs execution optimizer implementations can
be integrated into this component.

• Reporters. This component provides functions to compute useful metrics (such as code
coverage, mutants subsumption and execution time) and present to the user. It computes
the metrics and store into data files and/or render into HTML files or terminal. When
using the API, the reports data are returned through the API.

8.2.3.4 Implementation

The Muteria framework is implemented in Python programming language. The extension tools’
drivers are also implemented in Python programming language.The integrity of the code repos-
itory of the PUT is ensured using git3 (some TACs, e.g. mutation, may modify source files).
There have been many challenges in the development of the framework, and the greatest were the
modularization of the framework and design of tool driver interfaces. The Muteria framework is
publicly available4 open source. Installation is done by running pip install muteria.

3https://gitpython.readthedocs.io/en/stable/
4https://github.com/muteria/muteria
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Table 8.2: Muteria in Practice: Some drivers sizes (Python LOC)

Language Tool Type Tool Name Driver Size (LOC)

Python Statement/branch Coverage Coverage.py 333
C/C++ Statement, Branch, Function Coverage GNU Gcov 327
C/C++ Mutant Coverage and Strong/Weak Mutation Mart 330
C/C++ Test generation KLEE 198

Table 8.3: Muteria in Practice: Some User Configurations

Language Analysis # Config. Vars.

Python Measure unit tests Statement/branch Coverage 8
C/C++ Measure system tests and generated tests Statement, Branch,

Function Coverage and weak, strong mutation scores
16

Figure 8.6: report of software analysis with Muteria.

8.2.4 Case Study

We implemented a set of drivers for several C programming language software analysis tools,
namely: Mart mutant generation tool (Section 8.1), KLEE [CDE08] test generation tool, GNU
Gcov code coverage measurement tool. We also implemented drivers for Python code coverage
measurement tool Coverage.py5. Table 8.2 summarizes the implementation sizes of the drivers.

We also present in Table 8.3 the number of configuration that the user needs to provide to make
an analysis on a software using the selected tools.

The sample reported coverage information for the execution of Muteria on a sample C program
is shown in Figure 8.6.

5https://github.com/nedbat/coveragepy
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8.2.5 Related Tools

Many frameworks have been designed and developed to support TAC-based software analysis.
Most of those frameworks either focus on specific programing languages, specific TAC or support
specific test runners. Moreover, very often, there is no straightforward approach to integrate
those with other tools. Stryker6 is an open-source mutation analysis framework that supports
several programming languages (currently three) and enable integration with multiple test run-
ners. Nevertheless, currently, Stryker neither provide support for adding test adequacy criteria
nor support integration with various mutation tools or test generation tools. Similarly, LittleDar-
win [PMD17] provides extensibility and many feature related to mutation analysis, however, it is
restricted to Java programs. Open Code Coverage Framework (OCCF) [SWF10] is a framework
that aim to simplify the development of code coverage measurement in multiple programming
languages. OCCF does not provide mechanisms to integrate such coverage measurement tools
with other types of tools such as test generation tools. OCCF is orthogonal with Muteria and can
be used alongside Muteria by developping Muteria drivers for the tools developed with OCCF.
The Mothra mutation framework [Off11] was built with the goal to be expandable and adaptable.
In fact, Mothra tool-set was designed to be like a laboratory for future research [Off11], which is
also an important philosophy for Muteria. Nevertheless, Mothra was designed for Fortran pro-
grams and for mutation TAC. Muteria learned from Mothra and generalized to support different
TACs and programming languages.

8.3 Summary

This chapter presented the tools and frameworks built in the work presented in this dissertation.
the details about the motivation and the implementation of the tools is presented. These tool
are publicly available open source.

6https://stryker-mutator.io/
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9.1. SUMMARY

9.1 Summary

In this dissertation, we presented studies, techniques, and tools that contribute to enabling the
practical use of mutation testing and support mutation testing research. We focus on mutation
testing because mutation has been shown in previous research to be a good test adequacy criterion
for software testing. The contributions of this dissertation can be grouped into 3 parts: 1) An
empirical study that evaluates and compares mutation test adequacy criterion with other widely
used test adequacy criteria on real-world software and real-world setting. 2) A mutant reduction
technique that improves the scalability of mutation testing. 3) An automated test generation
technique for mutation testing. The tools and datasets resulting from the work presented in this
dissertation are made publicly available.

Regarding the first part, our objectives were to provide empirical evidence about the superiority
of mutation over other widely used code-based test adequacy criteria, provide guidance on how to
use coverage metrics to maximize fault revelation in practice, and evaluate a critical assumption
made by researchers when conducting experiments in software testing. We thus conducted an
empirical study, based on real-world software and real faults, where we studied the validity of the
"Clean Program Assumption", which is an assumption that the coverage of a software testing
criterion on a "clean" program (not having a certain fault) can generalize to its faulty (having
the fault) counterpart and vice-versa. We found that the assumption does not always hold. We
also studied the relationship between four popular software testing criteria (statement coverage,
branch coverage, weak mutation, and strong mutation) and their fault revelation. We found
that fault revelation is observed only beyond a certain threshold of coverage for the four studied
criteria, and there is a relation between fault revelation and coverage value only for strong
mutation. Therefore, a software tester needs to target very high coverage, beyond a certain
threshold, before having the guarantee of finding potential faults.

Regarding the second part, our objectives were to reduce the number of mutants and focus on
valuable mutants. We thus analysed different types of mutants, i.e., hard to kill, subsuming, hard
to propagate and fault revealing, and demonstrated that the class of fault revealing mutants is
unique and differs from the other mutant sets. Motivated by such findings (that it is possible to
target a specific (small) set of mutants that maximize testing effectiveness), we designed FaRM,
a supervised machine learning approach that select and prioritize mutants in order to reduce
the number of analyzed mutants and therefore, the cost of mutation testing. FaRM significantly
improves the efficiency and accuracy of mutation testing and relies on machine learning in order
to identify and select fault revealing mutants, i.e., mutants that can only be killed by test cases
that also reveal faults. The idea is that testers can focus only on the good mutants (fault revealing
ones), which are few and reveal most of the faults in the systems under analysis. FaRM has been
evaluated with empirical data and has been found to be significantly more effective than the
random mutant selection.

As a final part, we presented SEMu, a scalable technique that employs symbolic execution to
generate test cases for mutation testing in an efficient and automated manner. The technique
targets mutants that escape traditional testing (killable mutants that are not killed by existing
test suites). Killing these mutants is important for thorough testing of software components. We
conducted an evaluation of our technique on real-world software and the results show that SEMu
can successfully generate test to kill mutants and significantly improve the subsuming mutation
score over KLEE and the state of the art techniques.
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CHAPTER 9. CONCLUSION

9.2 Future Research Directions

Following are potential future research directions that are in line with this dissertation.

• Test adequacy criteria evaluation. The empirical study that is presented in Chap-
ter 4 evaluates the fault revelation of mutation and the most widely-used code-based test
adequacy criteria. Nevertheless, data flow-based test adequacy criteria such as All-Uses
coverage (see Table 3.1) were found to be useful in testing, thus, future work will consider
comparing mutation with data-flow based test adequacy criteria on real-faults. Regarding
the clean program assumption, this dissertation pointed out several studies that make the
assumption, and it is worthwhile to evaluate the effect of the clean program assumption on
those studies. Furthermore, the study in Chapter 4 shows that this assumption does not
hold in the case of real faults and thus, leaves the case of artificial faults open for future
research.

• Mutation testing mutants reduction. The mutant reduction approach (FaRM) pro-
posed in this dissertation is an initial step toward using machine learning to tackle the
mutant reduction problem. However, FaRM does not involve features engineering thus,
future work will apply feature selection and design additional mutant features that could
improve the effectiveness of FaRM. Additionally, based on the nature of the mutant reduc-
tion problem, our approach can benefit from the use of active (machine) learning where,
the trained binary classifier model used to predict useful mutants can be improved based on
users feedback on previous prediction. Another future work consists in specializing FaRM
to specific fault classes (e.g. incorrect condition or null pointer dereference). This would
reduce the noise caused by the proliferation of faults classes, thus, obtain a higher accuracy
of prediction (as presented in Chapter 5).

Given the evolutionary nature of software, it is intuitive to learn to rank fault revealing
mutants on previous version of a software to predict the fault revealing mutants on new
versions. The study presented in Chapter 6 considers a scenario where the binary classifier
is trained on software that are different than the test software. future work will evaluate
FaRM in a regression testing scenario (where the model is trained only on previous versions
of a system to predict fault revealing mutants on the new version). Another similar future
work in regression testing setting is to build, similarly to FaRM, a machine learning based
mutant reduction to predict the minimal set of mutants that is relevant to the version
commits’ change (such mutants are useful to generate regression test).

• Automated test generation for mutation testing. The test generation approach
(SEMu) presented in Chapter 7 defines a set of parameters whose values are not tailored
to the program under analysis. Therefore, the user needs to manually decide about the
right values for each specific program or use the statistical best configuration presented in
Chapter 7 (however, there are corner cases where the statistical best configuration would
not perform well). Future work will extend our technique to leverage static analysis and
adapt the cost control heuristic parameters to the program under analysis. Another future
work will improve the strategies that are used to approximate the required propagation
depth for test generation for each path, as well as the strategies used to quickly prune out
the paths that are irrelevant to killing a mutant.
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