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Summary
Transitions between cellular states are involved in all kind of biological events: cells dif-

ferentiate during development, assume different phenotypes because of experimental or

pathological conditions, and change their identity during cellular reprogramming. The possibil-

ity to induce specific cellular transitions represents a great opportunity for disease treatment

and regenerative medicine. Cellular states are maintained by gene regulatory networks,

and the manipulation of their master regulators can trigger cellular transitions. Modulating

signal transduction is a convenient way to obtain such transitions avoiding transfer of genetic

material, with substantial benefit in terms of clinical safety. While multiple methods separately

consider gene regulatory networks for cellular transitions, and the role of signalling pathways

in biological processes, no approach so far integrates the two regulatory layers in order to

identify signalling perturbations that can induce desired cellular transitions.

This thesis presents methods for the prediction of signalling molecules or pathways that

regulate the gene regulatory network (GRN) of a given cellular state and induce its transition

to the desired state. The overall approach consists in the integration of signalling pathways

and GRNs to model how signalling cues act on the transcription factors (TFs) that sit at

the interface between the two regulatory layers, and cause changes in the gene expression

program. To this end, gene expression data was used to estimate the probability of signalling

molecules to activate and inhibit interface TFs, combined with in silico perturbations of the

Boolean GRN underlying the desired cellular conversion.

This approach was systematically applied to the prediction of signalling molecules and

pathways involved in cellular transitions, with particular focus on reprogramming and differen-

tiation cases. The predictions obtained consistently recapitulated experimental perturbations

and literature knowledge. Additionally, the methods proposed outperformed available tools

for the prediction of both signalling molecules and pathways.

To show the applicability of this approach to disease treatment in an animal model,

signalling perturbations were predicted for the reversal of cirrhotic liver state to healthy in rat.
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Experimental results confirmed that the activation of the angiopoietins receptor Tie2 produced

favorable changes in the gene expression of TFs that play an important role in cirrhosis.

Finally, this approach was applied to the analysis of limb regeneration upon amputation in the

salamander Ambystoma mexicanum. Using time series gene expression data, predictions

were generated to retrieve the signals activated and inhibited along the regeneration process.

Literature evidence connected predicted pathways and proteins to specific regeneration

stages, clarifying their relation to wound healing, blastema formation and differentiation.
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1 Introduction
The Greek philosopher Heraclitus has been quoted as saying “change is the only constant

in life”. At the cellular level, this is certainly true: transitions between different states during

development bring the embryo to form a complete organism, with specialized cells, tissues and

organs. Changes in cellular state are also required to adapt to new conditions and response

to external stimuli, and are detrimental when associated with pathologic conditions. The

ability of inducing specific cellular transitions is a fundamental tool for disease treatment and

regenerative medicine. Cellular states are modelled as gene expression profiles determined

by gene regulatory networks. These models have been used for the selection of transcriptional

cellular determinants before, but their manipulation raises safety concerns for therapeutic use.

On the other hand, chemical compounds, small molecules and growth factors can trigger

cellular transitions by acting on the signalling network. Signalling has so far been studied in

isolation from the gene regulatory network that determines a cell’s state, but their integration

needs to be achieved in order to computationally select signalling perturbations that can

induce desired cellular transitions.

In this chapter, cellular transitions are described and their relevance is delineated in Sec-

tion 1.1. The use of gene regulatory networks as models for cellular states will be introduced

(Section 1.2). The role of signalling in relation to cellular state, and the computational tools

available for its analysis are presented in Section 1.3. Finally, an introduction is given for the

animal models used in this thesis, which are used to get insight into disease and regeneration

(Section 1.4).

1.1 Cellular transitions for disease treatment and regenerative

medicine

A cellular transition, also referred to as cellular conversion, is here defined as the shift of a

cell from an initial state, to a desired cellular state. Depending on the nature of the difference

3



CHAPTER 1. INTRODUCTION

between the initial and final state, the transitions can be classified into two broad categories:

cell state transitions and cell fate transitions.

Cell fate transitions concern changes in cellular identity, including differentiation, trans-

differentiation and reprogramming. Following the seminal work of (Takahashi and Yamanaka

2006), the induction of cell fate transitions has found many applications in multiple areas

of biomedical research. On one hand, the possibility of deriving cells that are difficult to

obtain from patients in the lab has revolutionized the field of disease modelling by overcoming

the limitations associated with animal disease models, allowing the study of monogenic,

chromosomal and complex disorders (Avior, Sagi, and Benvenisty 2016). Examples of cell

types obtained in vitro for disease modelling are neurons (Chang et al. 2018; Hong Li et al.

2018), cardiomyocytes (Brandão et al. 2017) and hepatocyte-like cells (Parafati et al. 2018).

On the other hand, the induction of cell fate transitions has a potential application in

regenerative medicine, which has the objective of restoring the functionality of tissues or

organs by the replacement of damaged cells with induced cells, present in situ or transplanted.

Extensive effort has been put towards in vivo reprogramming to obtain hepatocytes (Song

et al. 2016), β-cells (Q. Zhou et al. 2008), cardiomyocytes (Qian et al. 2012), and others, as

reviewed in (Srivastava and DeWitt 2016). The transplantation of cells and tissues obtained

in vitro is already used in therapy, for example for the treatment of epidermolysis bullosa

(Hirsch et al. 2017), or ADA-SCID, a rare immunodeficiency syndrome (Kuo and Kohn 2016).

In both disease modelling and regenerative medicine, the experimental challenge is

to induce cells to change their identity in a controlled manner. This can be obtained by

inducing a pluripotent state first and then deriving more differentiated cells from it, as in the

case of induced pluripotent stem cells (iPSCs) stimulation and differentiation, or by direct

transdifferentiation of the initial cells to the desired type (J. Xu, Du, and Deng 2015).

Cell state transitions can be defined as the phenotypic conversion within a same cell

type, such as transitions between healthy and disease states, between treatment with small

molecules or growth factors and control state, or between different cell culture conditions.

The interest in inducing these transitions is manifold. The insurgence of a disease can

4



CHAPTER 1. INTRODUCTION

be considered at the cellular level as a cell state transition, as cellular identity might be

unaffected, but gene expression, signalling activity, metabolic state, and function can be

compromised. In this sense, a successful cure is one that induces the transition between

the disease and healthy cellular state. In other cases, cellular transitions are a consequence

of experiments performed to clarify the effect of perturbations on the cellular state. For

instance, the development of therapeutic drugs can be extremely expensive, so the initial

assessment of a compound activity and toxicity is often relying on cell-based assays, which

compare the initial and the treated cellular state to assess the effects of chemical compounds

(Michelini et al. 2010; O’Brien et al. 2006). Similarly, cellular transitions are also induced

when performing experiments in order to understand drugs mechanism of action, and in

general to study the mechanism of cellular biological processes. The discovery of new drugs

for a disease or the proteins involved in a particular phenotype can therefore be reframed as

the identification of factors that can trigger a desired cellular conversion.

Overall, the induction of desired cellular transitions is of clinical interest, as it allows to

revert diseased cells to normal counterparts, or to derive desired cells and organs for cell

replacement therapies. Computational methods can be instrumental to the application of

cellular transitions in therapy by reducing the cost and time required for the experimental

discovery of the factors that are able to trigger the desired transition.

1.2 Gene regulatory network models for cellular transitions

Conrad Waddington introduced in 1957 the intuitive representation of cellular differentiation

as a ball moving in an “epigenetic landscape”, an inclined and rugged surface with multiple

valleys and stable points (Waddington 1957). Stem and progenitor cells descend following

valleys towards a more differentiated cell type, and on the way encounter forking points,

which represent metastable cellular states that are forced to adopt one of few possible

states by undergoing transcriptional changes. The topography of the “epigenetic landscape”

is thus defined by the coordinated expression of genes emerging from the interaction of

transcriptional regulators, termed gene regulatory network.

5
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1.2.1 Gene regulatory networks as underlying programs defining cellular

states

The differences in gene expression observed between two cellular states might span thou-

sands of genes, but each gene expression program (and thus the cell state) is maintained

by a gene regulatory network (GRN) containing only several genes. GRNs are used as

models that represent the transcriptional interactions occurring among genes in a particular

cellular state. While the potential interactions between transcriptional regulators and their

gene targets are encoded in the genomic sequence, the interactions taking place in any

specific cellular condition are determined by the expression of the regulators (S. Huang 2012)

(Figure 1.1).

Figure 1.1: The interactions between transcriptional regulators are defined from the genomic sequence,
as is the DNA sequence that defines if a transcriptional regulator can bind the regulatory region and
modulate the expression of other genes. However in different cellular conditions, each regulator can
be expressed or not because of external factors, resulting in different portions of the overall GRN
being active. Figure from (S. Huang 2012).

There are multiple modelling formalisms used to represent gene regulatory networks.

Boolean modelling was first introduced by Kauffman in the 1970s and is one of the most

6
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widely used approaches. Transcriptional regulators activity was shown to follow a sigmoid or

“switch” function, which can be approximated with a step function resulting in two discrete

states (H.-C. Chen et al. 2004). Consistently with this observation, in the Boolean framework

genes can take one of two states (active or inactive), and their state is defined through logic

functions by the state of their regulators (Glass and Stuart A. Kauffman 1973; S. Kauffman

1969). Gene expression profiles can be reduced to vectors of Boolean gene states, which

are used to represent cellular states. Among all possible Boolean states there are some that

are stable, meaning that if no perturbation intervenes on the GRN, the states of each gene

remain constant with updates of the network state. These stable states in the network state

space are called attractors. Kauffman suggested that each stable cellular state or cell type

can be associated with an attractor (Stuart A Kauffman 1993), so that cellular transitions

correspond to shifts between network attractors (S. Huang 1999). Boolean modelling allows

to capture coarse-grained properties of large GRNs, while also simplifying the construction of

models from gene expression data (S. Huang 1999). For example, the Boolean modelling

formalism allows to represent experimentally observed phenotypes and predict the outcome

of novel perturbations. The manual reconstruction of Boolean models connecting signalling

and transcriptional regulators allowed to clarify the role of specific proteins in the context

of Th cell differentiation (Naldi et al. 2010), terminal differentiation of B cells (Méndez and

Mendoza 2016), and mesoderm specification in Drosophila (Mbodj et al. 2016). Boolean

GRN models recovered known phenotypes during the differentiation of myeloid progenitors

(Krumsiek et al. 2011) and correctly predicted the outcome of perturbations applied to mouse

embryonic stem cells (H. Xu et al. 2014) and to the hematopoietic system (Moignard et al.

2015).

1.2.2 GRN models for cellular transitions

The conversion of fibroblasts to myoblasts by over-expression of the transcription factor (TF)

Myod (Davis, Weintraub, and A B Lassar 1987), and the induction of pluripotent stem cells

from fibroblasts with the activation of only four TFs (Takahashi and Yamanaka 2006), opened

the way to the manipulation of TF expression for the purpose of inducing cellular conversions,
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which has become the most widely used strategy for lineage reprogramming and generation

of pluripotent cells. A number of computational methods exists for identifying the TFs that can

trigger cellular reprogramming or differentiation using gene expression data. Given a GRN, it

is possible to identify its master regulators and shortlist TFs that can trigger changes in the

GRN state, resulting in cellular transitions. Multiple features are used in order to identify such

master regulators (Hartmann, Ravichandran, and Sol 2019), among which:

• Gene expression of the TFs in the GRN

• Network topology and network motifs, such as positive circuits and strongly connected

components, which play an important role in shaping the GRN attractor space

• GRN attractor states that can be reached with in silico perturbations of GRN components

and their combinations

Effective computational methods usually combine these features for the prediction of TFs

triggering cellular transitions. For example, in SeesawPred the normalized ratio difference

(Okawa et al. 2016) used to prioritize TFs that show significant change in daughter cells

compared to progenitors is combined with the identification of strongly connected components

(Hartmann, Okawa, et al. 2018, see Appendix). CellNet compares the gene expression of a

query dataset to the reference expression of genes in cell/tissue specific GRNs, and indicates

which genes would bring the query closer to the reference by topological measures (Cahan

et al. 2014). Mogrify selects TFs that are differentially expressed and jointly regulate all other

differentially expressed genes, therefore taking into account the topology of the GRN in its

prediction (Rackham et al. 2016). In (Lang et al. 2014), the authors use an attractor-based

landscape model to calculate the “predictivity” of TFs for a given cellular state, which is then

combined with their expression. Additionally, other computational methods exist that do not

consider GRNs but identify transcription factors that are uniquely expressed in the desired

cell type, which are to be activated in order to induce the corresponding cellular transition

(D’Alessio et al. 2015).
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1.2.3 Induction of cellular transitions with chemical compounds

The expression of master regulators is normally manipulated with the introduction in the cells

of exogenous DNA coding for the TF protein required. Multiple vectors and strategies exist

in order to obtain efficient and reliable expression of the desired proteins. Despite these

efforts, in general these approaches raise clinical safety concerns related to the integration

of exogenous DNA in the cellular genome, which can lead to insertional mutagenesis and

tumour formation (Ben-David and Benvenisty 2011; Okita, Ichisaka, and Yamanaka 2007).

Alternative DNA delivery systems that do not require integration, using both viral and non-viral

vehicles, have recently been developed (Hardee et al. 2017; Makhija et al. 2018; Uludag,

Ubeda, and Ansari 2019). However, these techniques still show very limited efficiency and

are therefore unsuitable for clinical application (Haridhasapavalan et al. 2019).

Small molecules and chemical compounds are routinely used to alter the cells environ-

ment, in order to reproduce in vitro pathological conditions, or study the cellular response to

drugs and other stimuli. In recent years, their use for cell reprogramming and differentiation

has emerged as a promising strategy for in vitro and in vivo applications (Federation, Bradner,

and Meissner 2014; Heng Li and Homer 2010; Qin, Zhao, and Fu 2017) because they provide

a valid strategy for cost-effective, transient, controllable induction of cellular transitions (De

et al. 2017; J. Xu, Du, and Deng 2015; Pesaresi, Sebastian-Perez, and Cosma 2019). Thus,

the use of chemical compounds is preferable for the generation of cells in clinical applications

(Takeda et al. 2018) (Figure 1.2).

The combinations of compounds, small molecules and growth factors that trigger cellular

transitions are defined through phenotype- and target-based screenings. Phenotype-based

screenings consist in performing multiple assays in order to identify molecules that can

induce the desired phenotype, without requiring a priori knowledge of the cellular transition

considered. On the other hand, target-based screenings use such information to restrict the

analysis to regulators of pathways involved in the cellular transition (De et al. 2017). Thus, the

identification of chemical factors and small molecules inducing cellular transitions is usually

lengthy, expensive and labour intensive (Cao et al. 2016; Y. Tang and Cheng 2017). The
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Figure 1.2: Schematic depiction of the derivation of cells of interest from patient fibroblasts by
either transdifferentiation or reprogramming to induced pluripotent stem cells (iPSCs) followed by
differentiation. The limitations observed in the use of iPSCs and corresponding advantages of
transdifferentiation are mentioned. Figure from (Takeda et al. 2018).

development of computational methods for the prediction of non-transcriptional perturbations

that induce cellular transitions is therefore desirable.

1.3 Signalling network models

Small molecules and chemical compounds induce cell fate transitions mainly by acting either

on signalling pathways, on the cellular metabolism, or by altering the status of the chromatin,

therefore modifying the gene expression program of the cells. Signalling events play a

major role in cellular transitions. During development, the concerted action of combinations

of signalling pathways over time dictates the formation of tissues and organs (Basson

2012; Perrimon, Pitsouli, and Shilo 2012). Multiple signalling pathways are also involved

in maintaining tissue homeostasis (Biteau, Hochmuth, and Jasper 2011). In pathological
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conditions, the deregulation of signalling pathways induces inflammation, immune response,

and disease specific phenotypes.

The signalling network consists of proteins and small molecules that can interact activating

and inhibiting each other, resulting in the transmission of external cues to the nucleus, where

the signals are integrated and the cellular response is defined. While signal transduction

is a probabilistic process that has low probability of emerging over a background of unspe-

cific protein-protein interactions, multiple strategies are used to ensure robust and correct

transmission of signals, such as compartmentalization, multimerisation, and integration of

multiple signals (Ladbury and Arold 2012). Among all signal transduction paths, there are

some stereotypical ones that have been well described and act as functional units, that were

termed canonical signalling pathways. The concept of canonical signalling has with time been

put in discussion, as more and more evidence is found that alternative signal transduction

paths exist and play important roles in many cellular contexts (Meyerovich et al. 2016; Ohta

et al. 2016; Regan et al. 2017; Voloshanenko et al. 2018). However, canonical pathways

still represent functional entities useful for the interpretation of high-throughput experiments

such as gene expression analysis, proteomics or phosphoproteomics data, where significant

differences between two conditions might be present for thousands of genes or proteins,

and pathway enrichment analysis methods are applied to identify which are the biological

functions associated with them.

Despite their central role in the regulation of all kinds of biological processes, the dynam-

ics of signalling events remain difficult to study experimentally because signalling pathways

involve many different types of interactions among proteins (M. J. Lee and Yaffe 2016):

phosphorylation and other post-transcriptional modifications, complex formation, compart-

mentalization, transport. Phosphorylation is the main strategy used for signal transduction in

many canonical pathways (Ardito et al. 2017) and results primarily in transcriptional regulation

(Needham et al. 2019). Phosphorylation can happen on different amino acids of a protein

(phosphosites) controlling the activity state of the protein by inducing changes in protein 3D

structure, cellular surface charge, binding to protein partners (M. J. Lee and Yaffe 2016).

However, current phosphoproteomics techniques do not allow an absolute, proteome-wide
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quantification of phosphorylation events (Needham et al. 2019). In fact, in any given phos-

phoproteomics experiment only 40 to 60% of the phosphosites existing across the proteome

are captured (Invergo and Beltrao 2018; Vlastaridis et al. 2017). Additionally, only 3% of all

human identified phosphosites have known functional role (Needham et al. 2019).

Given the limitations and the constraints that characterize phosphoproteomics experi-

ments, many studies have used gene expression data to get insights into signalling events.

The numerous attempts to assess the level of agreement between transcriptomics, proteomics

and phosphoproteomics data reached discordant conclusions, with some studies finding

moderate correlation, while others only reported qualitative similarities among the measure-

ments (Gnad, Wallin, et al. 2016; Kandasamy et al. 2016; Olsen et al. 2010; Pines et al.

2011; Richter et al. 2015; Rotival et al. 2015; Blevins et al. 2019). Overall, transcription rates,

protein abundance and phosphorylation of protein residues cannot generally be considered

equivalent or informative of each other. On the other hand, cellular response to signalling

perturbations has been shown to change across cellular populations according to their state,

and in particular to the abundance of specific signalling proteins, prior to perturbation (Niepel

et al. 2017; Strasen et al. 2018).

1.3.1 Use of gene expression in signalling analysis

Multiple computational approaches exist that aim at explaining how the transition between

two gene expression profiles is associated with signalling events: either in the context of drug

profiling, where the methods are used to predict drugs mechanism of action, or in diseases, an

approach particularly useful to identify dysregulated signalling pathways in cancer. Two broad

classes of computational methods exist, namely GRN-free and GRN-based approaches.

GRN-free methods map gene expression data on signalling pathways in order to define

whether they are activated or inhibited, and focus mostly on differentially expressed genes

(DEGs). GRN-based methods, on the other hand, consider also transcriptional regulation

interactions in their analysis and in particular try to explain expression changes in groups of

genes with their upstream signalling regulators.

Starting with Connectivity Map (Lamb et al. 2006), a number of methods for the identifica-
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tion of cellular perturbations have been developed. These methods (Lamb 2007; Parikh et al.

2010; Schubert et al. 2018) compare the signature of a query perturbation with a database

of gene expression signatures, obtained perturbing the signalling network in a controlled

manner (with drugs and chemical compounds, signalling pathways inhibitors and activators,

overexpression or knock-down of signalling proteins), and select candidate perturbations

based on the similarity of signatures. Their predictions are limited to the perturbations present

in their corresponding databases and rely on signatures from a limited set of cell types or

lines.

Another class of GRN-free methods is represented by pathway enrichment approaches

that use transcriptomics data to infer which signalling pathways are associated with different

cellular conditions. They comprise methods based on over-representation of DEGs in

signalling pathways (Sartor, Leikauf, and Medvedovic 2009; Subramanian, Tamayo, et al.

2005), and approaches taking into account pathway topology or cross-talk (Dutta, Wallqvist,

and Reifman 2012; Massa, Chiogna, and Romualdi 2010; Naderi Yeganeh and Mostafavi

2017; Tarca et al. 2009). Such methods have been successfully applied to the understanding

of multiple diseases, with a particular focus on cancer (Dutta, Wallqvist, and Reifman 2012;

Sebastian-Leon et al. 2014). Additionally, they were used to study differentiation trajectories

and reconstruct the role of signalling pathways during development (Dutkowski and Ideker

2011). Because canonical pathways are highly variable depending on the database used

(Kirouac et al. 2012; Türei, Korcsmáros, and Saez-Rodriguez 2016) and subject to extensive

crosstalk (Schaefer et al. 2009), a different class of methods tries to address this problem by

predicting sets of proteins corresponding to functional units, termed sub-pathways (Amadoz

et al. 2015; Han et al. 2015; Haynes et al. 2013; Hidalgo et al. 2017; Martini et al. 2013). It is

important to notice that pathways are not predictive of the transcriptional state of their targets

(Housden and Perrimon 2014), therefore these methods give limited insight on the effects of

signalling events on the GRN.

Efforts towards the integration of the GRN in the modelling framework have been limited to

far. Various studies have presented manually-curated integrated models for individual systems.

For example in (Peng et al. 2010) the signalling activity of IKK proteins on NF-κB is captured
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using both transcriptional activity and signalling activity predictions resulting from manually

curated models. (Zañudo and Albert 2015) presents a method to identify reprogramming

factors in manually curated Boolean models containing both signalling and transcriptional

interactions. In (Mbodj et al. 2016) a Drosophila development model built manually is iteratively

refined to match literature knowledge and experimental data. Finally, Yachie-Kinoshita et al.

2018 generated a manually curated Boolean network model for pluripotent stem cells where

pathways are represented as single nodes that can act on effector TFs and regulate the GRN.

Available general GRN-based methods use ordinary differential equations (ODEs) to model

the expression level of each gene as a function of the expression of its regulators. Signalling

molecules that are involved in the perturbation response are selected based on the fact that

their expression alone cannot explain the expression of the genes they regulate (Balwierz

et al. 2014; Cotton et al. 2015; Noh, Shoemaker, and Gunawan 2018; Osmanbeyoglu et al.

2014). These approaches need to extract parameters from a large amount of expression

data experiments, i.e. the same cell type treated with multiple compounds or other type of

perturbations. This limits their applicability to only a few well studied cell types.

Gene expression data is also used routinely to discover drugs mechanism of action (MoA),

identifying their targets and downstream effectors. There are different modelling approaches

used for this purpose, and these methods might make use of signalling networks, or be

network-free. DeMAND (Woo et al. 2015) is considered the state of the art method for the

identification of signalling proteins that are involved in the gene expression response to drug

treatment. It considers both signalling and transcriptional networks, in the form of regulons.

Regulons are in this case bipartite networks where each protein is connected to the genes

that it regulates at the level of transcription, signalling or complex formation. A signalling

protein is predicted as drug MoA if the expression of the genes that it regulates is significantly

perturbed by the drug treatment. Methods for the inference of causal signalling networks

that can explain how signalling events result in gene expression changes follow a similar

strategy. In particular, methods have been developed to reconstruct the path followed by

signal transduction from the site of perturbation to transcription factors in order to identify

drug mode of action (Melas et al. 2015) or signalling rewiring caused by genetic mutations
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in cancer (Y.-A. Kim, Wuchty, and Przytycka 2011; Paull et al. 2013). The output of these

methods are signalling sub-networks that connect the perturbation site to the genes showing

de-regulated expression. While these methods reconstruct signalling networks that are

specific for the perturbation applied, being it a ligand or a drug, they only consider superficially

how signalling triggers changes in gene expression, because they do not consider the gene

expression changes obtained indirectly through the interplay of TFs in the GRN.

1.4 Application to animal models of disease and regeneration

1.4.1 Liver cirrhosis

Liver cirrhosis is the fourth most common cause of death in central Europe and causes

more than one million deaths per year worldwide (Tsochatzis, Bosch, and Burroughs 2014).

It is defined as an advanced stage of liver fibrosis caused by chronic inflammatory injury

of the liver tissues, which might be caused by hepatitis B or C, alcohol abuse or non-

alcoholic liver diseases (Schuppan and Afdhal 2008). Inflammation induces portal and

perivascular fibroblasts and quiescent stellate cells (HSCs) to transdifferentiate and activate

into myofibroblasts. These cells are normally associated with wound healing: they deposit

collagen to strengthen the extracellular matrix and contract the edges of the wound. Generally

when the injury subsides, myofibroblasts undergo apoptosis and the fibrosis is resolved (Scott

L Friedman 2008; Hinz et al. 2007). This does not occur in chronic inflammation conditions

and myofibroblasts continue to proliferate, synthetize excess collagen, and limit the activity

of interstitial metalloproteinases (MMPs) that could degrade the type I collagen prevalent in

fibrotic liver (Scott L Friedman 2008; Schuppan and Afdhal 2008) (Figure 1.3).

In cirrhosis, hepatic angiogenesis is closely associated with the fibrotic process. The liver

wound healing process is characterized by the expression of proteins and growth factors that

have pro-fibrotic and pro-angiogenetic role such as PDGF, VEGF, FGF and TGF-β1, and

proteins involved in the remodelling of the extra-cellular matrix (ECM), such as β-catenin,

ephrins, integrins and other adhesion molecules (Fernández et al. 2009). Deregulated

angiogenesis causes the distortion of hepatic vasculature resulting in increased hepatic
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Figure 1.3: Figure from (Schuppan and Afdhal 2008) showing how chronic inflammation causes
accumulation of myofibroblasts, which produce excessive amounts of collagen and inhibit metallopro-
teinases (MMPs) resulting in liver fibrosis.

vascular resistance and portal hypertension, with consequent failure of the hepatic functions.

The hypoxic conditions induced by portal fibrosis further induce neo-angiogenesis through

the activation of hypoxia-inducible factors (Elpek 2015).

The recommended treatment of cirrhosis depends on its clinical stage, but current thera-

pies aim at avoiding the progression of the disease to advanced stages, when liver transplant

is the only available treatment (Tsochatzis, Bosch, and Burroughs 2014). Some therapeutic

strategies have been tested in order to control new blood vessel formation and promote

the regression of portal hypertension (Fernández et al. 2009). Additionally, sorafenib and

sunitinib proved effective anti-angiogenic factors in experimental models, also showing anti-

fibrotic effects (Mejias et al. 2009; Tugues et al. 2007). Thus, therapies acting against both

angiogenesis and fibrosis should be considered. Inhibition of VEGF activity however has

been associated previously with negative effects (H. X. Chen and Cleck 2009), and new

therapeutic strategies are needed. Classically, rats have been used as animal model for

cirrhosis, as their response to fibrotic stimuli is more robust as compared to wild-type mice
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(Bissell 2011). Carbon tetrachloride (CCl4) is a hepatic toxin widely used to induce liver

injury. Upon repeated insult, the rat liver develops progressive fibrosis and finally cirrhosis

(Y. Liu et al. 2013), showing great similarity with human liver cirrhosis. Additionally, the fibrotic

process is reversed upon withdrawal of the toxin, allowing to study fibrosis reversibility (Y. Liu

et al. 2013).

1.4.2 Axolotl limb regeneration

Regeneration is defined as the reactivation of developmental processes outside the devel-

opment stages in order to restore missing tissues or organs. Humans have very limited

regenerative capabilities, and liver is the only organ showing large scale regeneration, albeit

compensatory: the cells present in the liver proliferate to compensate the missing liver lobes,

but they maintain their differentiated state (Abu Rmilah et al. 2019). True regeneration occurs

in humans only at the distal portion of the digits (DOUGLAS 1972). Conversely, some animals

have higher regeneration potential and undergo epimorphic regeneration: the differentiated

structures present at the injury site de-differentiate, giving rise to a structure called blastema,

and differentiate again in the completely re-established body part. Examples of animals with

regenerative capabilities include planarians (Reddien and Alvarado 2004), zebrafish (Gem-

berling et al. 2013), echinoderms (Ben Khadra et al. 2017), and amphibians. In particular,

urodeles (newts and salamanders) show regeneration of limbs (Stocum 2017) and other

parts of their bodies, such as spinal cord (Chernoff et al. 2003), skin (Yokoyama et al. 2018),

retina (Mitashov 1996), and heart (Garcia-Gonzalez and Morrison 2014).

The neotenic salamander Ambystoma mexicanum is a classical model of regeneration

that can regrow limbs, tail, heart, liver, among others (Stocum and Cameron 2011). The limb

regeneration process upon amputation consists of 3 main phases: wound healing, blastema

formation, and limb re-development (Figure 1.4). These phases are common to all vertebrate

appendage regeneration (Miller, Johnson, and Whited 2019), and require multiple cellular

transitions.
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1 2 6543

Figure 1.4: A) Following amputation the wound epithelium seals the wound site (1), followed by
blastema formation (2) and proliferation (3). Blastema cells differentiate (4), tissues are patterned and
continue to grow (5) until a perfect copy of the original limb is obtained (6). B) Cell type composition
of the regenerating stump in the initial phases of the regeneration (inset corresponding to the area
selected in A). Adapted from (C. McCusker, Bryant, and David M. Gardiner 2015).

Wound healing The initial healing phase is common to every kind of injury, and is shared

by other animals too. It consists in the formation of the wound epithelium, which covers

the affected area within hours from the injury, and derives from keratinocytes (C. McCusker,

Bryant, and David M. Gardiner 2015; Stocum and Cameron 2011). This epithelium is

histologically different from mature epidermis. It lacks of a collagen basal lamina, and can

thus interact with other cells present in the stump. During this initial phase, migration of

fibroblasts to the wound site can be observed, alongside their active proliferation (Endo,

Bryant, and David M. Gardiner 2004). The initial proliferative response, observed also in

myotubes and neural stem cells, has been associated with the release of MARCKS-like

protein by the wound epithelium (Sugiura et al. 2016).

Blastema establishment When nerves are present at the injury site, the wound epithelium

thickens and its interaction with the mesenchymal cells is impeded, interfering with scar-

free healing and pushing the process towards regeneration (Makanae, Hirata, et al. 2013).

This regeneration-specific structure is called apical epithelium cap (AEC) and is a structure
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essential for regeneration (Thornton 1957). The signalling molecules used by nerves and

AEC are still to be completely characterized, but their interplay stimulates fibroblasts migration

to the injury site and dedifferentiation in blastema cells, which then proliferate and accumulate

in situ, while keratinocytes become non-proliferative and then dedifferentiate (C. McCusker,

Bryant, and David M. Gardiner 2015). Fibroblast growth factors (FGF) signalling has been

proven to regulate fibroblasts dedifferentiation (Makanae, Hirata, et al. 2013), while Msx1

seems to be involved in myotube-to-myoblast conversion (Antos and Tanaka 2010), but many

other factors are potentially involved. For example, both the absence of nerves and the

inhibition of macrophage signalling can impede regeneration (C. McCusker, Bryant, and

David M. Gardiner 2015).

It was shown that dermal fibroblasts, cartilage and bone, Schwann cells, and muscle cells

all contribute to blastema and regeneration. The blastema itself is thus a heterogeneous ag-

gregation of proliferating dedifferentiated cells from these tissues, together with mesenchymal

stem cells (Kragl and Tanaka 2009). Cells from different progenitors are localized in different

subregions in the blastema, and have different differentiating potential (Kragl and Tanaka

2009; Eugen Nacu et al. 2013).

Limb re-development Once the blastema is established, a new limb with the same di-

mension and functionality of the amputated one is formed. In order to do that, genes are

expressed in a pattern that is very similar to that responsible for the limb bud development at

the embryo stage (Knapp et al. 2013). Lineage tracing studies have demonstrated that most

cell types present in the blastema are programmed to differentiate to the same cell type they

are derived from: epithelial cells, muscle cells, nerves, and Schwann cells de-differentiate

during blastema formation, and differentiate again during the formation of the regenerated

limb (Kragl and Tanaka 2009). However, for cells of the connective tissues (lateral plate

mesoderm origin) the same is not true, and any of them can arise from a common progenitor

in the blastema (Gerber et al. 2018). These progenitor cells express Prrx1, a gene that

is expressed in the developing limb bud mesenchyme (Nohno et al. 1993) and is used as

blastema connective tissue progenitor marker gene (Satoh, Makanae, et al. 2011).
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For a correct patterning of the new limb, positional information brought by cells not

implicated in the blastema but surrounding it, is necessary (Endo, Bryant, and David M.

Gardiner 2004). In particular, it is necessary to have enough positional diversity for the

blastema cells to proliferate and give rise to the missing part, gaining more positional identity

going from basal to distal positions (C. McCusker, Bryant, and David M. Gardiner 2015).

Some signalling pathways involved in the process of patterning have been identified, with

retinoic acid inducing cells proximalization by the induction of the proximal determinant genes

Meis1 and Meis2, and FGF inhibiting the action of retinoic acid signalling (Mercader et al.

2000).

Intensive research has gone in clarifying the mechanisms involved in each regeneration

step. Nonetheless, many questions remain open or lack detailed understanding. Among

them, there are two main themes. First of all, the signals secreted by nerves are still not

completely characterized, and their role in multiple aspects of the induction, proliferation

and differentiation of blastema cells is still incompletely understood (Farkas and James R.

Monaghan 2017). Secondly, it has become evident in recent years that the immune system

response after amputation is a major determinant in the differences observed between

regenerating animals, which undergo scar-less healing and subsequent regeneration, and

non-regenerating animals (James W. Godwin and N. Rosenthal 2014; James W Godwin,

Pinto, and N. A. Rosenthal 2013). In this regard, reactive oxygen species (ROS) have

been observed to induce the activation of cell death pathways required for the regeneration.

However, mechanisms to counteract excessive ROS-induced cellular stress are expected to

be in place, in order to protect blastema cells from dying. How a balance between the two

requirements is achieved is still an open question (Love et al. 2013; Tseng et al. 2007; Wang

et al. 2015; F. Zhang, R. Liu, and J. Zheng 2016). Additionally, the adaptive immune system

has been shown to clean up the amputation site in the initial phases, but its role in later

stages of the regeneration is still undefined (James W Godwin, Pinto, and N. A. Rosenthal

2013).
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1.5 Summary

In summary, the ability to induce controlled cellular transitions is important in the context

of disease modelling and treatment, and is necessary for the application of regenerative

medicine to pathological conditions. Additionally, as cellular conversions are involved in

complex processes such as the case of regeneration, it grants the possibility to understand

and reproduce such biological mechanisms.

While computational models for the prediction of transcriptional determinants of cellular

states exist, no such method is available to date for the prediction of signalling determinants.

Acting on the signalling network with chemical compounds, small molecules or growth factors

is particularly interesting because their use is more suited for therapeutical applications and

is safer compared to TF-based experimental strategies. The role of the signalling network

on cellular state is so far analysed independently of the GRN that determines such state.

Thus, this thesis focuses on integrating the signalling and transcriptional regulatory layer in

an ensemble approach for the induction of cellular transitions.
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2 Aims and scope of thesis
The controlled induction of cellular transitions is of interest for disease treatment, regenerative

medicine, and disease modelling. Recently, the possibility of inducing such transitions by

acting on the signalling network garnered more attention, but computational methods for

directing the identification of efficient protocols are needed to ease the temporal and financial

burden of experimental trial-and-error discovery. This thesis proposes predictive methods

that use gene expression data to predict signalling perturbations that can induce cellular

transitions.

The aims of this work are:

• Devise a general approach for the integration of the signalling and transcriptional

regulatory networks, in order to model the effect of signalling molecules and pathways

on GRNs. The two regulatory layers will be modelled separately to take into account

their specificities, and then integrated at the level of interface TFs, which are TFs that

are regulated by signalling and regulate the GRN. The shift between cellular states will

be represented by a transition-specific GRN, while signalling events will be modelled

following a probabilistic approach, in order to account for the inherent stochastic nature

of signal transduction and the uncertainty associated with use of gene expression data

as a measure of signalling activity.

• Develop predictive methods for cellular transitions. Prioritize signalling molecules

according to their potential for inducing the desired changes in the GRN, giving particular

importance to the specificity of their action. Additionally, the predicted molecules will

be associated with signalling pathways to facilitate the interpretation of results in the

context of novel cellular transitions.

• Systematically evaluate the methods on large numbers of datasets and consistently

compare predictions with literature knowledge to assess their relevance to the cel-

lular transitions analysed. The performance of the methods presented will also be
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benchmarked against available tools for the prediction of both signalling molecules and

pathways.

• Apply the methods developed to the analysis of animal models of disease and regener-

ation. Firstly, this integrative approach will be applied to the reversal of a pathological

condition such as cirrhosis, verifying that the candidate signalling perturbations act

on the GRN in predicted ways. Then, it will be used to identify signalling events in-

volved in salamander limb regeneration, a complex phenomenon which requires cellular

transitions at multiple stages.

2.1 Originality

The work presented in this thesis aims at identifying any signalling perturbations that can

induce the transition between an initial and desired cellular state by triggering a shift in the

gene expression program of the cells. This makes this work conceptually different from

previous studies that aim at describing which signalling pathways or molecules are involved

in the observed cellular response to stimuli.

The effective integration of signal transduction and transcriptional regulation allows to

model the action of signalling pathways on an underlying GRN. This goal is achieved by

combining available approaches for GRN and signalling pathways analysis in a new frame-

work, where the signalling and transcriptional regulatory mechanisms are brought together

and integrated at the level of interface TFs, thus permitting the selection of the most suitable

perturbations for the induction of a desired cellular transition.

From the methodological point of view, while computational methods that consider either

GRN or signalling network models are available, the number of approaches trying to integrate

the two regulatory levels is limited. These attempts fall under two main categories: either they

rely on a vast number of data samples, or on manual curation of the integrated networks in

order to accurately capture the effect of signalling cues on gene expression, as described in

Section 1.2.2. The approach presented here, on the contrary, has limited data requirements

and uses widely available transcriptomics data to ensure general applicability and flexibility.
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3 Materials and Methods
The main product of this thesis is an approach for the prediction of signalling perturbations

that can induce cellular conversions. Signalling pathways are used to transmit information

from the outside of a cell to the inside in order for the cell to respond to it. Signal transduction

takes place by the interaction of proteins and their exchange of information in the form

of phosphorylation and other covalent modifications, formation of complexes, modulation

of protein localization and stability (M. J. Lee and Yaffe 2016). The signal finally reaches

transcription factors activating or inhibiting them, and therefore exerting control on the cellular

gene expression program.

The proposed framework consists of two regulatory layers: the GRN reflecting the

interplay of TFs involved in the cellular transition regulating each other’s expression, and

the signalling network containing all interactions used for canonical signal transduction. The

GRN is modelled as a Boolean network; the signalling network is modelled by a probabilistic

approach. The difference in modelling approaches is necessary because of the different

levels of uncertainty associated with the use of gene expression data in order to capture

different cellular processes. mRNA abundance has been successfully used to represent

transcriptional activity (H.-C. Chen et al. 2004), and in particular it is widely accepted that a

Boolean representation of TFs activity is able to capture the overall state of large regulatory

networks (S. Huang 1999). The use of mRNA abundance as a proxy for protein signalling

activity however is less straightforward, as gene expression is only weakly correlated with

protein abundance (Pines et al. 2011), and this is in turn not linearly correlated with signalling

activity (Richter et al. 2015). Additional uncertainty is present in signal transduction modelling

because of its stochastic nature, as the physical interaction of the correct proteins in the

cytoplasm against a background of unspecific protein-protein interactions defines successful

transduction (Ladbury and Arold 2012).

The two network models communicate through a layer of TFs that are directly regulated by

canonical signalling pathways, and can regulate other TFs in the GRN. These TFs are here
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termed interface TFs, and represent the point where any signal coming from the exterior of

the cell is de-coded and exerts its action on the cell, by affecting its gene expression program.

3.1 Prediction of signalling molecules for cellular transition

In order to predict which signalling perturbations are able to trigger a desired cellular transition,

a method is developed that identifies which interface TFs can best induce the GRN changes

required for the cellular transition desired, and independently estimates the effect of signalling

molecules on the interface TFs. This two pieces of information are then combined to prioritize

signalling molecules (including plasma membrane receptors, intermediate signalling proteins,

small molecules used in canonical pathways) that specifically act on the most effective

interface TFs, limiting un-specific effects. This first predictive method is called INCanTeSIMO

(Integrated Network approach for Cellular Transitions through SIgnalling MOlecules).

INCanTeSIMO requires gene expression profiles of the initial and desired states, without

relying on a high number of replicates or time-series measurements. It is also independent

from other type of data, such as protein abundance or phosphoproteomics data. This

allows its application to any cellular conversion, including ones that have not been achieved

experimentally.
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Figure 3.1: Overview of the method for the prediction of signalling molecules inducing cellular
transitions. (A) The Boolean GRN containing TFs changing their state during the cellular transition is
connected to interface TFs. All combinations of up to four interface TFs are assigned a fixed state
and the effect of these perturbations on the initial state is assessed. Combinations having the top
three flipping scores (including ties) are selected as the best performing combinations (BPCs). The
frequency of each interface TF state (activated +, inhibited –) across the BPCs is used to calculate the
probability distribution Q of each TF state of causing GRN state changes. (B) The gene expression
probability of each protein is mapped onto the signalling network and defines the signalling interactions
probability. The most probably expressed paths (MPPs) connecting each signalling molecule X to each
interface TF are selected. MPPs probability and sign are used to estimate the probability distribution P
of successfully activating or inhibiting the interface TFs by activating or inhibiting X. Correlation-based
and length-based probabilities are calculated for each couple of signalling molecule and interface
TF (see Methods). (C) The probability distributions Q and P are compared using Jensen-Shannon
divergence (JSD). Perturbations of each signalling molecule are ranked according to this measure.
The best ranking that each molecule perturbation obtains across the correlation-based and length-
based rankings is used as its overall rank. Finally, molecule perturbations ranking in the first fraction
of the final ranking are selected as candidates for the cellular transition.

The method comprises three steps. Initially, the expression state of TFs is Booleanized

and used to represent their activity. TFs showing differential activity in the initial and desired

cellular state are connected by transcriptional interactions from previous knowledge, giving

a transition-specific Boolean GRN.The two cellular states are modelled as separate point

state attractors of the same Boolean network. In this framework, experimental induction of

the cellular conversion corresponds to the induction of the transition from the initial to the final

state attractor, which must be achieved by regulating the state of interface TFs. To select the

most effective interface TFs for this scope, exhaustive perturbations are performed in silico

(Figure 3.1 A).

Independently, the effect of activating or inhibiting each molecule of the signalling network

on the downstream interface TFs is estimated. The minimal condition for signalling interactions

to occur is the presence of the proteins involved in the interaction. The protein availability

can be estimated from gene expression data, as previously done by other methods (Efroni,

Schaefer, and Buetow 2007; Sebastian-Leon et al. 2014). The probability of signal to travel

from a signalling molecule to interface TFs is the probability of all the molecules in the path

connecting them to be present at the same time. In particular, we assume that the signal will
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travel along the most probable path available (Figure 3.1 B). Additional assumptions are:

a) genes correlated in gene expression are more likely working together as a signalling

functional unit (R. Huang, Wallqvist, and Covell 2006), thus the probability of their

interaction is higher;

b) the length of the path influences its probability, because the longer a signalling path,

the more chances of off-target interactions (cross-talk) taking place.

These criteria are taken into account in calculating the probability of the most probable

path connecting a signalling molecule to its downstream targets, while the sign of the effect is

given by the sign of the interactions present in the path (Figure 3.1 B).

Finally, for each signalling molecule the Jensen-Shannon divergence is calculated be-

tween the probability of acting on interface TFs and the likelihood of the interface TFs to

induce the required GRN state (Figure 3.1 C). Signalling molecules are ranked according to

the divergence, which privileges signalling molecules acting specifically on effective interface

TFs compared to molecules with unspecific effects.

3.1.1 Gene expression state and probability

All the datasets analyzed in this thesis contain gene expression data obtained by microarray.

For microarray generated on popular platforms, it is possible to apply frozen normalization

approaches and estimate the expression probability using a background distribution (a strat-

egy here referred to as frmaBool). Raw .CEL files were normalized with frozen-RMA (R

package fRMA (Matthew N. McCall, Bolstad, and Rafael A. Irizarry 2010)) and assigned an

expression state using Gene Expression Barcode (Matthew N McCall, Jaffee, et al. 2014;

Matthew N McCall, Uppal, et al. 2011). The barcode approach assumes that normalized and

log-transformed expression values subject to all possible conditions, cell types, tissues and

other biological variables, follow a distribution specific for each probeset in a microarray. This

distribution is approximated as a mixture model of a Gaussian distribution modelling values

corresponding to non-expression, and a uniform distribution corresponding to expression

(Matthew N McCall, Uppal, et al. 2011). The assumption of expressed values following a
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uniform distribution was developed in the analysis of cancer samples, where disruption of

regulation causes the expression values to vary across wide ranges without necessarily in-

forming a biological phenotype (Parmigiani et al. 2002). In this work, the aim is to differentiate

between expression values that correspond to cross-hybridization, and values that represent

real mRNA presence, so the shape of the expressed distribution was kept as simple as

possible. The uniform distribution was considered as it does not require parameters and

is defined as spanning form the mean value of the non-expressed distribution to the value

15, which is the maximum value obtained after fRMA normalization. The non-expressed

distribution for each probeset in each microarray platform, on the other hand, is supported by

two kinds of evidence:

a) S. cerevisiae mRNA: the intensity observed when non-specific transcripts hybridize

with the probes is considered as a measure of the cross-hybridization, and therefore

belongs to the non-expressed distribution (Matthew N McCall, Uppal, et al. 2011).

b) negative controls: it is assumed that each gene will be expressed only in a fraction of

the conditions in which its expression is measured (e.g. only in some tissues or cell

types), so its overall distributions will present multiple modes, and the lowest intensity

mode is expected to correspond to lack of expression (Zilliox and Rafael A Irizarry

2007).

For each gene, the probeset with highest variance was selected. TFs were assigned

Boolean state 1 (expressed) if their assigned value had probability lower than 0.05 of belong-

ing to the non-expressed distribution N(µ, σ), and state 0 otherwise. The values µ and σ

are made available as R Bioconductor packages for microarray platforms Affymetrix Human

Genome U133A, Affymetrix Human Genome U133 Plus 2.0, Affymetrix Human Genome

U133A 2.0, Affymetrix Human Gene 1.0 ST Array, Affymetrix Mouse Gene 1.0 ST Array and

Affymetrix Mouse Genome 430 2.0 Array (Matthew N McCall, Jaffee, et al. 2014).

In this work, an expression probability value was calculated for each gene based on its

29



CHAPTER 3. MATERIALS AND METHODS

most variable probeset x, as follows:

p(x) =
1
2fe(x)

1
2fe(x) + 1

2fn(x)

where fe is the probability density function (pdf) of x in the uniform distribution U(σ, 15),

and fn is the pdf of x inN(µ, σ). Each gene was assigned the maximum expression probability

obtained across all replicates of the initial cellular state.

Intuitively, this formulation assigns expression probability 0 to any expression value ≤ µ,

which is the most frequent non-expressed value, and probability 1 to any value that does not

belong to the non-expressed distribution, independently of the actual value. This agrees with

the idea of not assuming that gene expression levels correspond to protein abundance levels,

a correlation that has been proven non trivial (Edfors et al. 2016; Washburn et al. 2003).

To generalize the previous method to other microarray platforms and potentially RNA-seq

data, colleagues in the Computational Biology group developed a background-independent

approach to calculate expression probability, termed geneDE. Among the differentially ex-

pressed genes (DEGs) between two cellular states, some genes can be expected to pass

from the expressed to the non-expressed state, or vice versa. Therefore, the minimum values

and maximum values observed for each DEG were collected in two separate distributions.

These empirical expressed and not-expressed distributions were then used to calculate the

expression probability according to the formula:

p(x) =
1
2fmax(x)

1
2fmax(x) + 1

2(1− fmin(x))

where fmax(x) is the empirical cumulative density function (ecdf) of x in the maximum

values distribution and fmin(x) is the ecdf of x in the minimum values distribution. Because

some DEGs undergo a change in their expression levels but do not change their state, the

two distributions overlap. The intersection point between the two distributions is used as a

threshold to assign Boolean state: the TFs with average expression value across replicates

lower than the threshold were assigned Boolean state 0, and 1 otherwise.
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3.1.2 GRN reconstruction

TFs that were assigned opposite Boolean state in the initial and final gene expression profile

were assumed to have differential activity in the two states. They were used as seed for

the GRN representing the transition between the two phenotypes. Transcriptional regulatory

interactions among human TFs and other transcriptional regulators as defined in Animal

TFDB 2.0 (L. Zhang, Ng, and S. Li 2015) were collected from MetaCore from Clarivate

Analytics in March 2017. They correspond to interactions labelled with the mechanisms

“Transcriptional regulation”, “Influence on Expression” and “Regulation”; their effect was

“Activation”, “Inhibition” or “Unspecified”.

The literature-supported interactions among the selected TFs were collected in an initial

network, which was then optimized using a previously developed method (Crespo et al. 2013).

Briefly, this algorithm assumes that the cellular states are represented by separate point

attractors in the Boolean network state space. A genetic algorithm that randomly removes

interactions and assigns signs to interactions with unspecified effect is used to make the

attractors state of the network compatible with the gene expression profiles. The simulation of

the network state follows a synchronous update scheme, where all nodes of the network are

updated at each simulation step. The update of each node follows a majority rule, meaning

that the state of the node at the following step is defined by the summation of all active

inhibitions and activations that it receives. The fitness of the resulting network is assessed

by the similarity of the point attractors obtained with the initial and final Booleanized gene

expression state.

A network solution was chosen randomly among the ones that maintain the more edges

and have the least mismatches between simulated data (attractors) and experimental data

(Booleanized gene expression data). Datasets where the resulting GRN contained less than

10 connected TFs were excluded from the study, because they were usually associated with

perturbations not targeting signalling molecules.
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3.1.3 Likelihood of interface TFs to induce the required gene expression

changes

Signalling cues exert an effect on the GRN by controlling the activity of TFs that belong to

signalling pathways and therefore act as signalling effectors. Because signal transduction

is a fast process, acting in a matter of seconds (Kanshin et al. 2015), but the production of

TF protein from the DNA requires dozens of minutes (Shamir et al. 2016), we consider as

available signalling effectors only TFs that are already expressed in the initial cellular state.

In the same vein, the signal will travel along paths composed of proteins already present in

the cell when the cue is applied. Therefore, interface TFs are here defined as TFs that are

expressed at the initial time point, belong to canonical pathways which are expressed (there

is a path composed of expressed genes connecting the TF to any 0-indegree node of the

pathway), and can regulate TFs present in the GRN (GRN-TFs).

Interface TFs are the only way in which signalling cues can act on the GRN in this model,

and their likelihood of inducing the desired changes in the GRN depends on their activity state

and on the GRN itself. Usually, the expression of an interface TFs does not imply it is also

active, as interface TFs are directly regulated by signalling pathways. Only when an interface

TF was initially expressed, but is not expressed in the desired cellular state, we assume that

its expression was associated with activity. In this case, the interface TF is part of the GRN,

and the only perturbation that can be applied to it is inhibition. For all other interface TFs,

both activation and inhibition are in principle possible.

To estimate the effect of each interface TF state on the GRN, in silico simulations were

performed, starting from the initial cell Boolean state. The state of interface TFs singularly

or in combinations of up to four was fixed, and the state of the GRN updated synchronously

following a majority logic rule, until convergence to a fixed-point attractor state. The pertur-

bations were ranked by flipping score, which was defined as the number of GRN-TFs that

assume the final cell Boolean state after simulation. Datasets for which the best flipping score

did not represent the 40% of the GRN-TFs were discarded from further analysis.

In order to prioritize signalling molecules that induce the most effective GRN perturbations,
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combinations of interface TFs not showing any synergistic effects, meaning that the GRN-

TFs they affected were the same as the ones affected by the separate components of the

combination, were discarded. In this way, the scoring of signalling molecules favors more

specific candidates, because the molecules are required to act on few effective interface TFs.

The combinations of interface TFs obtaining the three best flipping scores, including ties,

were selected (best performing combinations, BPCs).

3.1.4 Most probable paths calculation

75 canonical signalling pathways were selected from MetaCore in July 2017, and merged

together in a single signalling network. All interactions reported in MetaCore are the result

expert manual curation of full text papers from literature. The nodes present in the network

represent signalling entities (single proteins or functional complexes), and the interactions

are directed and signed when possible. Edges corresponding to “Technical” or “Unspecified”

effect, and “Technical”, “Transcriptional Regulation”, “Influence on Expression”, “Catalysis”

and “Transport” mechanisms were removed. Further manual curation was also applied to in-

teractions involving TFs known to act as complexes but represented in MetaCore as separate

functional nodes. Edges that were associated with literature not supporting specifically the

direct interaction between a TF and a second molecule were removed (Tables in Appendix

7.1 and 7.2). The final signalling network contained 2496 nodes and 6876 edges. Half of the

nodes belong to more than one pathway, showing the high frequency of cross-talk events

taking place (Figure 3.2).
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Figure 3.2: Overview on the number of canonical pathways to which each signalling molecules belong.
50% of the molecules only belong to one pathway, but others belong to dozens of them.

Signal transduction along any path requires the presence of the proteins that form it,

which is itself dependent on the expression of the corresponding genes. Therefore, the

paths followed by signalling cascades are assumed to depend on the availability of the

corresponding proteins, and the overall effect of a signalling molecule on interface TFs is

approximated by the most probably expressed path (MPP) connecting them. Only directed

paths were considered, meaning that all the interactions follow the same direction, from

molecule to interface TF.

The probability of a path between signalling molecule x and interface TF y is defined as

the probability of all the components of the path being expressed, therefore it is the product

of the expression probability of each of the genes in the path. The probability of the MPP

Mx,y is defined as:

Mx,y = p (MPPx→y) = max p(x→ · · · → y)

where p(x→ · · · → y) = Πjp(j) and p(j) is the expression probability of the intermediate

signalling molecule j in the path connecting x to y.
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Two variations of this approach were considered:

• The longer the path connecting two nodes in the network, the higher is chances that

unspecific or non functional interactions occur. Therefore, the probability of a path was

corrected by its length (measured by the number of interactions l present in the path) by

multiplying it by a factor e(−l) (Jaeger et al. 2014), so that the longer the path, the lower

its probability. The resulting probability was re-normalized across all interface TFs.

• Independently, co-expression has been observed among members of the same func-

tional modules (R. Huang, Wallqvist, and Covell 2006). Assuming that genes with the

same functional properties have common transcriptional regulation, the probability of

interactions between genes that are co-expressed across CMap datasets (absolute

Pearson correlation >0.7 and sign of the correlation matching the sign of the interaction)

was increased. MPPs were calculated using these modified probabilities.

These two corrections were applied independently to the MPP discovery (see Supple-

mentary Information and Figure S4). The distribution of the relative probability with which the

same signalling molecule x acts on all interface TFs (P x) was obtained by:

Px,y =
Mx,y∑

i∈interfaceTFsMx,i

Finally, the sign of each MPP is calculated as:

signx,y =
∏

e=edges∈MPP

sign(e)

If the sign is positive, activating (inhibiting) x results in the activation (inhibition) of TF y

with probability P(x, y). If the sign is negative, activating (inhibiting) of x results in inhibition

(activation) of y with the same probability. Because the MPPs are obtained separately with

correlation-corrected and length-corrected probabilities, two P x and signs exist for each

molecule x.
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3.1.5 Ranking of signalling molecule perturbations

The probability of each signalling molecule to reach each interface TFs is compared to the

likelihood of the interface TFs to induce the desired changes in the GRN state. A high

frequency of a specific activated or inhibited interface TFs among the BPCs suggests that it

consistently alters the state of the GRN, thus for each Boolean state of each interface TF

(TFs-state pair s), the frequency Fs in all BPCs was calculated as:

Fs =
ks
k

where k is the total number of BPCs and ks is the number of combinations where s is

present. The frequencies were normalized across all TF-state pairs, resulting in the probability

distribution Q:

Q =
Fi∑
i∈F Fi

This distribution is compared to the probability of each signalling molecule to act on the

interface TFs P x by Jensen-Shannon divergence:

JSD (Px‖Q) =
1

2
D (Px‖M) +

1

2
D(Q‖M)

where M = 1
2 (Px +Q) and D(X‖Y ) =

∑
iX(i) log X(i)

Y (i) (Kullback-Leibler divergence). Both

the activation and inhibition of each signalling molecule are considered. Their divergence

score differ because they have opposite effects on the downstream interface TFs and thus

different effectiveness in changing the GRN state. If for example, the activation of molecule

x activates TF y, which is frequently present in BPCs, the divergence score will be low.

Inhibition of x, however, inhibits TF y, which might not be present in the BPCs. Thus, the

probability of reaching TF y is the same, but the resulting ranking is different for the two

perturbations applied to molecule x.

The signalling molecules were sorted by their divergence, where lower divergence corre-
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sponds to better ranking, and assigned rank R(x):

R(x) = min rankv∈Px(x, v)

where rank(x, v) is the rank obtained by the molecule x in the variant v of the MPP calculation,

using either correlation- or length- corrected probabilities.

Different cut-offs, defined as fractions of the maximum R value present in the final ranking,

were considered (from 1 to 10%). Signalling molecules whose rank was lower than the

cutoff were selected as candidates for the induction of the cellular transition considered. The

prediction was considered successful if at least one of direct targets of the experimental

perturbation was selected among the candidates, similar to (K. Chen and Keaney 2012). The

optimal cut-off was selected as the one having maximum improvement compared to random

chance of success across the datasets from CMap. This was calculated as the probability of

selecting at least one perturbation target in a randomly chosen list of the same size, by using

one-sided hypergeometric test.

3.1.6 Functional measures

The list of candidate signalling molecules was tested for functional and topological features.

First, the enrichment in Gene Ontology (GO) biological process terms was calculated for

both candidate and non-candidate signalling molecules with the use of R package gProfilerR.

The GO terms associated to the targets of the experimental perturbations were collected,

and their overlap with enriched terms in the candidate and non-candidate molecules list was

calculated across datasets. The distributions obtained were compared by one-sided Wilcoxon

test (p-value <.05).

The distance of candidate signalling molecules from the direct targets of experimental per-

turbations was calculated along the signalling network, taking into account the directionality of

the interactions. Each candidate was assigned an out-distance and an in-distance, depending

if the perturbation targets were reached by following edges downstream or upstream. The

smallest of the two distances was then selected, and the average distance of each candidate
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to all reachable perturbation targets was calculated. The average distance from perturbation

targets was calculated in the same way for non-candidate molecules. The distributions of

average distances for candidate and non-candidate signalling molecules were compared by

Wilcoxon test with 100’000 Monte Carlo replicates (p-value <.05).

3.2 Prediction of signalling pathways for cellular transitions

In the case of novel systems or transitions, interpretation of the list of single molecule candi-

dates can be complicated. As development, differentiation and other biological processes are

driven by the concerted action of signalling pathways, one could argue that the prediction

of canonical pathways is particularly relevant for these applications. The majority of the

existing pathways analysis methods look at differential activity state between two cellular

contexts, while only very few search for pathways that mediate the transition between these

contexts (Y.-A. Kim, Wuchty, and Przytycka 2011; Melas et al. 2015; Paull et al. 2013). These

methods aim at finding the most suitable network to connect a causal set of genes, such as

disease or mutated genes and known drug targets, to a target set, composed of DEGs. The

limited available information on the paths effectively used means that the evaluation of these

methods is done by comparison of the causal networks obtained with canonical pathways.

We therefore extended our method from the prediction of single signalling molecules, to the

prediction of the activation or inhibition of canonical pathways that can drive cellular transition.

This extension is here termed INCAnTeSIMO path.

3.2.1 Pathways prediction

For each signalling pathway present in the signalling network, the inhibitors of the pathway

were identified as the nodes that have both incoming and outgoing inhibitory interactions.

This is because in the canonical pathways considered inhibitors are associated with their

own inhibitors, so that the overall outcome of the pathway is activatory. Then, two separate

signalling gene sets were prepared for each pathway: one activatory set with all active

effectors of the pathway and the inhibition of its inhibitors; and one inhibitory set containing
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the inhibition of its effectors and the activation of its inhibitors.

As the candidates were ranked according to their specificity in inducing the desired GRN

perturbations, it is not expected that all signalling molecules belonging to a pathway perform

equally. However, if molecules that are particularly influential in a pathway are predicted, the

whole pathway can be expected to induce similar effects on the GRN and therefore induce

the same cellular transitions. Network centrality measures express how important particular

nodes in a graph are to its connectivity, and multiple definitions are used (Newman 2010).

Here, the signalling gene sets were tested for significance in the list of candidate signalling

molecules according to the concept of source/sink centrality (Naderi Yeganeh and Mostafavi

2019). Source/sink centrality is a topological property of network nodes that depends on the

number of directed paths inside a signalling pathway that are incoming and outgoing of each

node, and the length of such paths. It is calculated by (Naderi Yeganeh and Mostafavi 2019):

CSSC(v) = Csource(v) + βCsink(v) =
∑

wj :vu-walk of G

α|wj | + β
∑

wj :uv-walk of G

α|wj |

where v is the node in the pathway graph G considered, u is any other node in G, wj is an

incoming or outgoing path connecting v to u and |wj | is its length, α is a dampening factor

that decreases the contribution of longer paths to the overall measure (here α=0.1), and

β indicates the relative importance of the source and sink components (here β=1) in the

centrality score. CSSC(v) represents the importance of the node v as sender or receiver of

information in the pathway considered.

In the original implementation, an enrichment score is obtained by calculating the ag-

gregated importance of DEGs, and a statistical significance is assigned using a bootstrap

sampling approach. Here, the aggregated importance of signalling molecule candidates

obtained from INCAnTeSIMO U is calculated by:

Agg(U) =
∏
ui∈U

CSSC(ui)

The probability of observing a higher aggregate score for a randomly selected subset of
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G is used as the p-value for each pathway.

3.3 Comparison with existing methods

The methods proposed here were compared with computational approaches developed

previously to predict signalling molecules or pathways related to the differences between two

cellular states. None of them was specifically developed to identify signalling perturbations

to induce the conversion between an initial and final cellular state. CMap (Subramanian,

Narayan, et al. 2017) and DeMAND (Woo et al. 2015) are intended for the prediction of

perturbations on single signalling molecules, while pathway enrichment methods considered

were over-representation analysis, GSEA (Subramanian, Tamayo, et al. 2005), SPIA (Tarca

et al. 2009) and CADIA (Naderi Yeganeh and Mostafavi 2019).

3.3.1 Single molecule prediction

Initially, differential expression analysis was compared with INCAnTeSIMO. Differential gene

expression between the initial and final expression profiles was calculated with the R package

limma. Genes showing absolute log fold change (lfc) > log2(1.5) and having Benjamini-

Hochberg (BH)-adjusted p-value <.05 were considered differentially expressed. If replicates

were not present, the lfc cut-off alone was applied. Signalling molecules were ranked

according to decreasing absolute lfc values to generate their ranking by differential expression.

Connectivity map (CMap) (Subramanian, Narayan, et al. 2017) allows to query a gene

expression signature against a database composed of chemical and genetic perturbations

applied to different cellular types. It uses the ranking of genes according to log fold change

to match known perturbation profiles to the query, which are then returned as predictions.

DEGs were selected (BH-adjusted value<.05 or absolute lfc > log2(1.5) if replicates were

missing). DEGs were sorted separately for up- or down-regulation by decreasing absolute lfc,

and up to 150 genes for each class were submitted to the Batch query functionality of CMap

L1000 query (Subramanian, Narayan, et al. 2017)), using the option sig fastgutc tool. CMap

perturbations were considered correct if any of the direct experimental perturbation, its direct
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targets, or alternative drugs acting on the same targets were assigned a connectivity score

(tau)>90 in the summary results across all cell lines. Datasets with less than 10 DEGs or

raising errors during submission were discarded.

DeMAND (Woo et al. 2015) is a method for predicting genes associated with the mode of

action of a drug or compound. It scores each gene based on how significantly the expression

of its targets is dysregulated following the application of a drug. It relies on context-specific

regulatory networks representing both direct and indirect transcriptional regulation. Given its

requirements for numerous replicates, DeMAND could not be applied to datasets used to

evaluate the proposed method, so the opposite strategy was followed. The method presented

here was applied to the GEO13 datasets present in the original DeMAND study (Woo et al.

2015). Only Affymetrix datasets were considered, using either the barcode strategy presented

in Section 3.1.3, or the MAS5.0 detection call approach described later in Section 3.4. Genes

assigned FDR≤.1 were considered predicted. Successful predictions were defined as the

ones that recover perturbation direct targets as determined from STITCH, DrugBank and the

original study.

3.3.2 Pathway prediction methods

Pathway enrichment in DEGs tests if the genes associated to a particular pathway are

over-represented in the list of DEGs. Gene set enrichment analysis (GSEA) (Subramanian,

Tamayo, et al. 2005) calculates a pathway-level score by considering not only if DEGs belong

to a pathway, but also their log fold change. Therefore, it tests if the genes belonging to a

pathway are enriched in the ordered list of DEGs, either at the lowest lfc (meaning among

the down-regulated genes), or in the highest lfc values (meaning they are up-regulated).

MetaCore pathway enrichment was calculated by one-sided hypergeometric test (BH-adjusted

p-value<.05). Pathway enrichment and GSEA were applied to the signed signalling gene

sets corresponding to MetaCore signalling pathways defined in Section 3.2.1 using the R

package clusterProfiler (Yu et al. 2012).

SPIA (Tarca et al. 2009) analysis combines classical enrichment analysis with expression

changes that are propagated across the topology of KEGG pathways. DEGs were selected
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(BH-adjusted value<.05 or absolute lfc>log2(1.5) if replicates were missing). KEGG signalling

pathways were scored using R package SPIA. If any of the significant pathways contained

direct targets of the perturbation, the prediction was considered successful. Datasets where

no DEGs were found were discarded.

Causal disturbance analysis (CADIA) (Naderi Yeganeh and Mostafavi 2019) considers

not only the topology of KEGG pathways, but also the directionality of interactions. In it,

the concept of source/sink centrality is combined with classic pathway over-representation

analysis (ORA) to derive a pathway enrichment score based on DEGs. The R package

CADIA was used to calculate a causal disturbance score (cadia) for each pathway, using

parameters α=0.1 and β=1. Pathways with cadia≤0.05 were considered as candidate

pathways. Pathways enriched in aggregate importance of the DEGs were also selected

(PSSC ≤ 0.05), and are referred to as SSC DEG.

INCAnTeSIMO path was compared also with alternative approaches using INCAnTeSIMO

candidate molecules to predict signalling pathways, namely CADIA and over-representation

analysis (ORA) on MetaCore pathways. Regarding ORA, each signalling gene set was tested

for enrichment in the single molecule candidates against a background composed of all the

signalling molecules connected to the GRN. Then, the gene sets was tested for enrichment

in the single molecule candidates against a background composed of all the molecules in

the complete signalling network. The two backgrounds can vary significantly depending on

the GRN, so this ensures that the over-represented signalling gene sets are as a whole able

to act on the GRN, and their components can induce the desired cell fate conversion. Both

tests were performed using one-sided Fisher exact test with FDR correction, and gene sets

enriched for both tests (FDR≤0.05) were retained. In CADIA, the original method proposed

in (Naderi Yeganeh and Mostafavi 2019) was adapted to use candidate molecules instead of

DEGs and predict signed MetaCore pathways instead of KEGG pathways (cadia score≤0.05).
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3.4 Application to a cirrhotic animal model

Expression data for healthy liver of male Wistar rats was extracted from GEO dataset

GSE71201. Cirrhosis was induced in 10 male Wistar rats by exposure to inhalation of CCl4,

as previously described (Tsuchida and Scott L. Friedman 2017) and in accordance to the

criteria of the investigation and ethics committee of the Hospital Clı́nic Universitari and the

University of Barcelona. Five cirrhotic rats were treated with 10 mg/kg of CVX-060 (Pfizer,

Inc., New York, NY, USA) diluted in 500 µl of saline solution and injected intravenously via the

tail vein, once a week for 4 weeks. Gene expression of CCl4 and CCl4+CVX-060 -treated

livers was obtained with microarray (Affymetrix GeneChip Rat Genome 230.2 Array). These

experimental procedures were performed by collaborators at the Hospital Clı́nic in Barcelona.

Two replicates for each treatment were kept after quality control and PCA visualization.

For the prediction of signalling molecules, gene expression data of the cirrhotic and

healthy liver was used. Gene expression probability was assigned to each gene according to

1− p, p being the p-value obtained from Affimetrix MAS5.0 detection call (Affymetrix 2002).

If the expression probability ≥0.94 (corresponding to a “marginal” or “present” call from

MAS5.0), the gene was considered expressed, and not-expressed otherwise.

The predicted GRN state after CVX-060 treatment was obtained by selecting all interface

TFs activated or inhibited by the activation of Tie2 with probability higher than zero, according

to the calculation of the MPPs. The BPCs containing only combinations of such interface TFs

were selected, and the GRN-TFs that change their state in response to them are expected to

change upon CVX-060 application. The GRN state predicted after the inhibition of Ang2 was

obtained in the same way.

3.5 Application to an animal regeneration model

This section presents methods specific for the application of the method to the prediction of

pathways involved at each time step of a limb regeneration time series in the salamander

Ambystoma mexicanum. The following procedures were performed by collaborators at the
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Research institute of Molecular Pathology (IMP), at the Center for regenerative Therapies

Dresden, and in the Computational Biology research group at LCSB.

3.5.1 Experimental procedures

Time-course includes time points: 0, 1, 3, 5, 7, 10 and 14 days following upper-arm amputation.

Tissue between 0.5 mm behind the amputation plane and the tip of the blastema was collected.

Connective tissue progenitors were specifically and irreversibly labeled during the limb bud

development via Cre-induced recombination of a reporter construct. Connective tissue

specificity is achieved by the Prrx1 –limb specific enhancer that controls the expression of

the Cre recombinase in the transgenic axolotls. Upon Cre activation using drug Tamoxifen,

a DNA-cassette is removed from the reporter-transgene allowing the expression of the

red fluorescent protein Cherry. Cherry+ cells were selected using fluorescence-activated

cell sorting. RNA was extracted and reverse transcribed. The resulting cDNA was then

transcribed into labeled complementary RNA (cRNA) which was hybridized to custom Agilent

2x400K oligonucleotide microarrays.

3.5.2 Data processing

Probes showing low gene expression correlation across replicates were excluded from further

analysis. When multiple probes were mapping to the same gene, the mean of the highly

correlated probes (Pearson correlation >.8) was assigned to the gene. Differential expression

analysis was performed with the R package limma for each couple of consecutive time points

(i.e. D1 vs. D0, D3 vs D1, etc.), and genes were considered differentially expressed with

absolute log fold change higher than log2(1.5) and p-value corrected for false discovery

rate (Benjamini and Hochberg 1995) lower than 0.05. The Boolean state and expression

probability was calculated at each time point with the geneDE approach described in Section

3.1.3.
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3.5.3 GRN reconstruction

An initial GRN for axolotl was inferred from the microarray data using five different GRN

inference tools: CLR (Faith et al. 2007), TIGRESS (Haury et al. 2012), PLSNET (Guo et al.

2016), GENIE3 (Huynh-Thu et al. 2010) and Pearson’s correlation coefficient. The inference

was performed for TFs differentially expressed and changing their Boolean state at any time

interval. All tools were used with default parameters. The results of the different methods were

combined by keeping interactions that were ranked among the best 10% of all interactions,

by at least four of the five used tools. The sign of the interaction was assigned according to

the results of Pearson’s correlation: if the correlation is negative, the interaction is deemed

inhibitory, otherwise activatory. For each time interval, a subnetwork was extracted containing

only TFs that are DE and changing their Boolean state in that time interval. Each subnetwork

was optimized as mentioned in Section 3.1.2, resulting in GRNs specific for each time step of

the regeneration time course. In order to confirm that TFs relevant to the biological processes

involved in regenerations are captured during the GRN inference process, enrichment in

Gene Ontology terms related to Biological Processes was tested. The R package topGO

(Alexa, Rahnenfuhrer, and Lengauer 2006) was applied using algorithm “weight01” and

Fisher test statistics.

3.6 Databases

3.6.1 Perturbation targets

The protein targets for drugs and small molecules used in the experiments were obtained

from STITCH ((Szklarczyk et al. 2016), v5.0, accessed in October 2017, with experimental

evidence confidence >0.4). The effect of the perturbations on their targets (activation,

inhibition, or unknown effect) was extracted from DrugBank ((Wishart et al. 2018), accessed

in October 2017) and MetaCore from Clarivate Analytics.
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3.6.2 Pathway targets

The experimental perturbations collected were rarely directed to the perturbation of complete

canonical pathways. Therefore, the pathways that should be recapitulated by predictions

were not defined beforehand. To do so, the pathways that contained at least 25% of the direct

perturbation targets were selected. Additionally, if any of the direct targets only belong to one

canonical pathway, that was also retained as positive pathway. This procedure was applied to

both Metacore pathways, as defined in 3.2.1 and to KEGG pathways.

3.6.3 Datasets

Datasets where gene expression data was measured by microarray before and after the appli-

cation of a signalling perturbation were collected across different databases. In particular, all

datasets present in Connectivity Map (build 02, (Lamb et al. 2006)) generated on the platform

Affymetrix Human Genome U133A 2.0 Array were considered. Then, manually selected

experiments where a single perturbation was applied were collected from ArrayExpress

and Gene Expression Omnibus. All experiments whose perturbation targeted molecules

absent from the signalling network or disconnected from interface TFs were removed, as

well as chemically undefined perturbations (culturing with other cell types, ROS and other

cellular stressors, use of serum, etc.). The analysis was then restricted to datasets where the

perturbation applied targeted up to 30 signalling molecules present in the signalling network,

in order to test the methodology developed on well-characterized signalling perturbations

and avoid obtaining correct predictions by chance. In particular, experiments related to

cell differentiation and reprogramming of non-cancerous cell types were used to test the

prediction of both signalling molecules and pathways to induce cellular transitions (Table in

Appendix 7.3).

3.6.4 Phosphoproteomics datasets

Phosphoproteomics experiments where a single perturbation was applied to the cells were

collected. They were paired with gene expression datasets with closely matching initial
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Table 3.1: Phosphoproteomics datasets considered. The log fold change used in the original study
to define differentially phosphorylated (DP) proteins is reported (DP lfc). The number of interface
TFs that are connected to the GRN (selected) and DP is reported for comparison with the number
of selected or DP interface TFs. The enrichment of the selected interface TFs in DP proteins was
calculated by one-sided Fisher test.

Dataset Cell
type

Perturbation DP lfc sel.
DP
iTFs

sel.
iTFs

DP
iTFs

p-value

D’Souza et
al. 2014

HaCaT TGF-β 1 18 59 51 2.36E-04

Sharma et
al. 2014

HeLa EGF 1 19 30 139 3.24E-03

Wilkes
et al. 2015

MCF7 EGFR inhibition
[EGFR2]

1 16 60 52 4.13E-03

Gnad, Doll,
et al. 2016

HCT116 MAPK inhibition
[GDC0973 (1µM)]

log2(3) 3 29 15 1.08E-01

Rudolph et
al. 2016

MCF7 EGF 2.38 1 27 2 1.43E-01

Wierer et
al. 2013

MCF7 estradiol log2(1.5) 0 57 3 1.00E+00

conditions and perturbation applied. When possible, the same cell type was perturbed with

the same chemical compound in both phosphoproteomics and transcriptomics datasets,

and the delay before measurements was comparable. Otherwise, a delay of up to 48 hours

was considered. Closely related cell lines and equivalent perturbations (acting on the same

protein targets) were accepted. The list of differentially phosphorylated (DP) proteins were

obtained directly from the original phosphoproteomics studies, when available, or extracted

by repeating the analysis as described by the authors (Table 3.1). Each protein was assigned

the highest log fold change observed for any of its phosphosites.

3.6.5 Availability

The methods were implemented as a Snakemake pipeline (Koster and Rahmann

2012), consisting of Matlab and R scripts, and was made available at https://git-

r3lab.uni.lu/gaia.zaffaroni/INCanTeSIMO. Microarray data generated in the context of the

application to cirrhosis is available in Gene Expression Omnibus under accession number
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GSE122822. The analysis of all datasets was performed on the UL HPC platform (Varrette

et al. 2014).
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4 Results
In this chapter, the performance of INCanTeSIMO and INCanTeSIMO path is assessed across

numerous datasets obtained from different sources. Additionally, their predictions in examples

of cellular differentiation and reprogramming are compared with literature knowledge. Finally,

they were applied to the analysis of animal models of disease and regeneration.

4.1 Comparison of MPPs with phosphoproteomics data

Protein regulation in signalling pathways takes many forms (M. J. Lee and Yaffe 2016),

but phosphorylation takes a prominent role as the primary mechanism used to transmit

signal in the cytoplasm. For this reason, phosphoproteomics experiments are used to infer

protein activity in response to signalling cues (Invergo and Beltrao 2018). Proteins showing

significant changes in their phosphorylation state are expected to play an active role in

the transmission of the signal, so that signalling paths responding to a stimulus show an

enrichment in differentially phosphorylated (DP) proteins compared to paths that are not

involved. Under this assumption, the most probably expressed paths (MPPs) identified with

INCanTeSIMO were tested for enrichment in phosphorylation changes.

Previously published experiments, measuring gene expression and phosphoproteomics

data before and after a specific perturbation was applied, were collected (Table 3.1). For

each of them, the direct perturbation targets were defined from databases, and the interface

TFs available were identified as described in the Methods section 3.6. The interface TFs

selected were significantly enriched in DP TFs, when the number of DP TFs was high (Table

3.1). The MPPs between each target and interface TF pairs were computed using both the

correlation- and length-corrected probability as defined previously.

Signalling proteins can contain multiple phosphosites, which are amino acids that can be

modified by the addition of a phosphate group. Phosphorylation of each site might or not have

a functional role, by modifying the way the protein can interact with its partners (M. J. Lee

49



CHAPTER 4. RESULTS

and Yaffe 2016). At the moment, the annotation of functional sites is available for a limited

number of proteins, while for the vast majority of proteins this information is still not available

(Invergo and Beltrao 2018). Thus, any significant change in the phosphorylation of a site was

assumed to be functional, and a protein was considered DP if any of its phosphosite resulted

DP in the original publications (Table 3.1).

The frequency of DP proteins in each MPP was compared to up to 100 randomly selected

simple paths connecting the same source and target signalling nodes (corresponding to

perturbation target and interface TF, t-test with p-value < 0.05) (Figure 4.1A). Overall the

majority of the MPPs for each dataset had more DP proteins than other possible paths, for

both methods used to define MPPs (Figure 4.1B), even if some particular target-interface TF

combination was connected by paths that did not contain any phosphorylated protein (Figure

4.1C).
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Figure 4.1: Enrichment of MPPs in differentially phosphorylated (DP) proteins. (A) MPPs are defined
by both correlation-based and length-based probabilities from the perturbation targets to all interface
TFs. For both methods, the fraction of DP proteins in each MPP connecting each target-interface
TF pair is compared by t-test to the number of DP proteins in up to 100 randomly selected simple
paths connecting the same pair. (B) Average fraction of MPPs significantly enriched in DP proteins
compared to alternative simple paths, per dataset (P-value < 0.05). (C) Breakdown of the results for
each perturbation target. Orange: number of interface TFs for which the fraction of DP proteins in the
MPP is significantly higher than in other simple paths. Light-blue: interface TFs reached with MPPs
that show no significant difference in DP enrichment; grey: interface TFs that are connected to the
perturbation target with paths (both MPPs and alternative paths) that do not contain DP proteins. The
same results (panels B and C) were obtained with both correlation-based and length-based MPPs.

These results show that using MPPs to represent the signal transduction from signalling

molecules to interface TFs is in agreement with observed phosphorylation patterns. This

suggests that MPPs can be used as approximation of paths used for signal transduction.

4.2 GRN perturbation results

In general, a limited number of TFs was observed to change their Boolean state between the

initial and final cellular state, so the size of the GRNs representing the cellular conversion

was moderate (on average 24 TFs, Figure 4.2A). The number of interface TFs selected for

each dataset was highly variable, ranging between 12 and 151 and averaging 39 TFs. The

best perturbation in each dataset was able to change the Boolean state of 71% of the GRN

TFs on average.
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Figure 4.2: Effect of the in silico perturbations of combinations of interface TFs on the state of the
GRN. (A) The percentage of GRN-TFs that change their state in the best combination overall is
represented. (B) The performance of interface TF combinations that obtain the first, second and third
flipping scores, compared to the average flipping score obtained with all the combinations tested,
represented by distance measured in number of standard deviations from the average. The black line
represents 2 standard deviations from the average.

The best performing combinations (BPCs) were selected by considering the combinations

obtaining the best three flipping scores. This corresponds to combinations that are overall

more than 2 standard deviations away from the average flipping scores obtained in each

dataset (Figure 4.2B).

4.2.1 Effect of the number of targets on the effect of interface TFs on the GRN

state

The influence of the number of targets of an interface TFs on its frequency among the BPCs

was analysed. There was a general tendency of interface TFs with more targets to be present

among the BPCs in more datasets (Figure 4.3). However, no single interface TF was present

in the BPCs of all datasets, and even interface TFs with more than 100 targets were present

in the BPCs of as low as 10-20% of all datasets.
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Figure 4.3: Effect of the number of transcriptional GRN-TFs that are targets of each interface TF
(x-axis) on the frequency of an interface TF state among the BPCs of multiple datasets (y-axis). 538
interface TF states are present across the 228 datasets considered.

This result is not surprising. The expression of the interface TFs in the initial cellular state

and the expression state of the cell in general influence the set of interface TFs considered.

Additionally, each cellular transition is assigned a different GRN, containing a distinct set of

differentially expressed TFs. Therefore, the same interface TF will have different targets in

each dataset, and different effectiveness in changing the state of the corresponding GRN. As

a result, the presence of an interface TF among the BPCs cannot be estimated a priori.
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4.2.2 Synergy among interface TFs

Before selecting the BPCs, combinations of interface TFs that did not show any synergistic

effect were discarded. The rationale behind this choice is to limit the number of interface

TFs that the ideal signalling molecule should act on, in order to prioritize specific GRN

perturbations. In fact, small molecules or drugs with a limited number of targets are generally

preferred to compounds that have unspecific effects on cells. Selecting BPCs that showed

some synergistic effect, the number of interface TFs to perturb was reduced (Figure 4.4),

while the GRN state changes they are predicted to induce was maximised.
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Figure 4.4: Effect of filtering for synergistic effect on the number of interface TFs in the BPCs. The
fraction of interface TFs connected to the GRN that are present in the BPCs is shown for each dataset.
BPCs are selected by a) considering all combinations with the three best flipping scores (“unfiltered”,
blue); b) by considering the combinations with synergistic activity of the involved TFs, so that the
combination is affecting the state of more GRN-TFs that the sum of its components (“filtered”, red).
Apart from two cases, the filtered BPCs contain an equal or lower fraction of interface TFs compared
to the unfiltered BPCs.

The success rate of INCanTeSIMO in predicting direct targets of the experimentally applied
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perturbation was 61% when ranking signalling molecules by their probability of activating

the interface TFs present in synergistic BPCs. In order to test if this filtering had a positive

influence on the overall method performance, the success rate was calculated when all BPCs,

without filtering for synergistic combinations, were considered. The performance obtained

was 56%. The difference bewteen the two was not large, but nonetheless showed that

predictions improved when only synergistic combinations of interface TFs were considered.

It must be noticed that focusing on synergistic combinations did not result in selecting

“rare” interface TFs, defined as TFs that are present in less than 1% of the BPCs of a certain

cellular transition. In fact, BPCs composed of only rare TFs represented only 0.006% of

the BPCs across all datasets. This indicated that BPCs are composed mostly of ”common”

interface TFs, while it hardly happened that a specific combination of otherwise non-effective

interface TFs resulted in large GRN state changes. Enumerating all combinations of interface

TF states is unfeasible, but this pattern was assumed to exist in higher order combinations

too, so that almost exclusively ”common” TFs would be present in BPCs. Thus, the frequency

of interface TF across BPCs was used as a measure for its effectiveness in changing the

GRN state as desired, independently from the perturbation size considered.

4.3 Overall performance in the prediction of signalling

molecules for cellular transitions

INCanTeSIMO was applied to single drug perturbations applied to cell lines, obtained from

CMap and ArrayExpress. After quality controls, 228 datasets (193 from CMap, 35 from Array-

Express), corresponding to cellular transitions, were analysised. The signalling molecules

were ranked by calculating the Jensen-Shannon divergence between their probability of

acting on interface TFs, and the likelihood of interface TFs to induce the desired GRN state

transitions (see Materials and Methods). For each dataset, 1400-1500 signalling molecules

were tested for both their activation or inhibition, for a total of around 3000 potential signalling

perturbations. The ranking prioritized molecules that reach with high probability and specificity

interface TFs that performed well in the in silico perturbations of the GRN.
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Initially, the ranking obtained with INCanTeSIMO was compared with simple differential

expression analysis: genes were sorted by decreasing absolute lfc, an increasing part of

the ranking was selected and the datasets for which perturbation targets were found in the

selection were counted. Ranking by differential expression did not prioritize perturbation

targets, which were only found after a big portion of the ranking was selected (Figure 4.5A).

The ranking generated by INCanTeSIMO performed better: to select at least one correct

perturbation target in 50% of the datasets, 920 molecules should be selected according to

differential gene expression, and 236 are necessary with INCanTeSIMO. This result confirms

that differential expression is not informative on the role of genes in signal transduction, and

therefore the use of more complex approaches is required to extract meaningful predictions

from gene expression data.

The success rate of a method predicting signalling molecules for cellular transitions was

defined as the fraction of datasets for which a correct prediction was obtained. As each

cellular transition was obtained experimentally to generate the data analysed, a prediction

was considered correct if at least one of the known targets of the experimental perturbation

appeared in the top ranked molecules. At different ranking cut-offs, INCanTeSIMO success

rate was better than the expected by random selection of the same number of molecules

(Figure 4.5B). Cut-off=0.06 was used for following analyses because the gain of performance

of INCanTeSIMO compared to random selection was maximum, with successful predictions

in 139 out of 228 datasets (61%)(Complete table in Appendix 7.3). At this cut-off, the method

correctly predicted perturbation targets in 115/193 CMap examples (60%, versus random

success rate of 40%), 6/10 datasets for non-cancer cell lines selected from ArrayExpress,

5/6 datasets with matched phosphoproteomics data, and 13/19 cell type transitions datasets

(discussed below).
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Figure 4.5: Overall performance of INCanTeSIMO in predicting direct perturbation targets. (A) Fraction
of datasets with at least one perturbation target correctly predicted, across increasing selection of
ranked molecules. The proteins were ranked either by INCanTeSIMO, or by differential expression
analysis (log fold change). (B) Variation of success rate and number of selected signalling molecules,
at different ranking cut-offs. Circles=INCanTeSIMO success rate, X=success rate for random selection
of the same number of molecules. Horizontal error bars: 5th and 95th percentile of selection size. To
the same fraction of ranking selected correspond variable set sizes because of ties in the ranking. The
selection of 6% of the ranking gives the best improvement compared to random performance. Only
CMap datasets where used to define this cut-off.

4.3.1 Factors influencing the performance

The probability of finding at least a direct perturbation target among the candidate molecules

depends on their number. Therefore, datasets were divided in classes according to the num-

ber of targets that the applied perturbation (compound or protein) has across the databases

used (see Methods section 3.6.1). The performance of INCanTeSIMO was assessed in each

of the classes obtained by comparing the observed success rate to the frequency at which a

target is expected to be selected by random selections of the same size (Figure 4.6). The

method was significantly better than random in datasets with 1 to 10 known perturbation

targets (p-value=1.27e-04 for datasets with 1-5 targets, and 9.40e-06 for 6-10). These

datasets represent the 74% of all tested datasets and also correspond to the most interesting
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application cases, as the use of target-specific drugs or proteins is preferred for the controlled

induction of cellular transitions.
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Figure 4.6: Prediction of signalling molecules compared to expectation, according to the number of
known perturbation targets. The datasets were divided in classes according to the number of direct
perturbation targets, and the expected success rate was calculated for each dataset depending on
the number of targets and the number of candidates selected by INCanTeSIMO (light blue dots). The
fraction of datasets in each class where INCanTeSIMO predicted correctly at least one perturbation
target is depicted with short red bars. The overall success rate of INCanTeSIMO (red dotted line, 61%)
and the overall expected success rate (blue dotted line, 39%) are reported.

The number of DEGs between in initial and final cellular states was significantly higher for

datasets in which INCanTeSIMO obtained correct predictions (Figure 4.7, p-value=5.032e-06).

This result suggests that the method is particularly suited for cellular transitions that require

extensive gene expression changes, not only for the TFs in the GRN, but also of the genes

that they regulate. In other words, the bigger the differences between the initial and final gene

expression state, the more likely it is that perturbations of the GRN via signalling perturbations

can effectively induce the transition. On the contrary, when only limited differences are present

between the initial and desired gene expression profile, acting on the GRN might not be the

most effective strategy, and punctual regulation of the expression of single genes might be
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more indicated.
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Figure 4.7: Success of the signalling molecule predictions with respect to the difference between initial
and final cellular states. In datasets where INCanTeSIMO obtained successful predictions, the number
of differentially expressed genes between the two gene expression profiles was significantly higher
than in the datasets where the predictions were not correct (one-sided Mann-Whitney test, p-value =
5.032e-06).

The vast majority of the perturbation-target pairs present in the analysed datasets do

not have a defined sign (Figure 4.8). For the 18% of the pairs that do have signs, the

perturbation plays predominantly an inhibitory role on its targets (69%). Among the predictions

obtained with INCanTeSIMO there was no bias in the sign of the candidate molecules, but

the predominance of inhibitors among the perturbations was correctly reflected in the higher

percentage of inhibitory molecules correctly predicted (69%). Nonetheless, errors in the

predicted sign might occur in the predictions. This can be explained by the fact that multiple

equally probable paths with opposite signs might exists between two nodes in the signalling

network, but only one MPP is selected as representative of the effect of a signalling molecule

on an interface TFs, thus determining the selection of the activation or inhibition of the same
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Figure 4.8: Effect of experimental perturbations on their protein targets. The vast majority of the drug-
target pairs present in the datasets analysed and contained in the signalling network (“perturbation
targets”) is unsigned across multiple databases. Of the known interactions (“signed targets”), 69% are
inhibitory. In the predictions obtained with INCanTeSIMO (“predicted molecules”), there is balance
between activations and inhibitions, and the correct predictions show the same fraction of inhibitions
as observed across all known interactions.

The effect of signalling molecules on the interface TFs are calculated using both length-

based and correlation-based interaction probabilities. The two measures are moderately

predictive taken separately: both of them predict around 43% of the datasets correctly at

cut-off=0.06. The combination of the rankings obtained with the two strategies however

resulted in a limited number of ties and better predictions overall. The influence of the

two approaches on the predictions is similar: among the datasets associated with correct

predictions mentioned previously (61% of the total 228 datasets), 37% would be correctly
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predicted with any of the two probability strategies, 31% require length-based probabilities,

and the remaining 31% stems from correlation-based probabilities. Thus, there is not a single

strategy that is best for the inference of signal transduction paths, as it seems that both

co-expression of the proteins that need to interact, and the number of interactions overall,

play a role in the choice of signal transduction paths used.

4.3.2 Functional and topological properties of candidate molecules

Apart from the perturbations experimentally tested, the perturbation of other signalling

molecules might trigger the desired cellular transitions. For example, molecules that are

involved in the regulation of the same biological processes as the experimental perturbation,

or molecules that are positioned in their vicinity in the signalling network. Therefore, the

sets of predicted candidate signalling molecules were tested for their relatedness to direct

perturbation targets in terms of functional annotation and distance from the experimental

targets.

Functional analysis was performed by Gene Ontology (GO) analysis. The biological

process terms associated with direct perturbation targets were defined as ”target terms”.

Separately, the GO terms enriched among the candidate signalling molecules were collected,

as well as the terms enriched among non-candidate molecules. The presence of target terms

among the two sets of enriched terms was considered. Target terms were overrepresented

more frequently among the candidate signalling molecules than among the non-candidate

ones (one-sided Wilcoxon test, p-value<2.2e-16, Figure 4.9A). Thus, candidate molecules

were involved in the same biological processes as the direct perturbation targets more than

signalling molecules discarded by INCanTeSIMO.
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Figure 4.9: Functional and topological properties of candidate molecules. (A) Percentage of functional
terms mapping to the perturbation targets also enriched in the signalling molecules selected as
candidates by INCanTeSIMO, or the molecules not selected. The candidates have significant higher
portion of enriched functional terms shared with the perturbation targets. (B) The average distance of
the selected molecules and non-selected molecules from the direct perturbation targets show that
candidates predicted by INCanTeSIMO are located significantly closer to the true perturbation than
non predicted molecules.

To study where candidate signalling molecules were located in the signalling network, the

distance from each molecule in the network to the perturbation target was defined as the

minimum number of interactions with same direction required to connect two nodes. The

average distance of candidate molecules and non-candidate molecules from the perturbation

targets showed significant difference (one-sided Wilcoxon test, p-value<2.2e-16, Figure

4.9B). For the majority of the datasets, the distances were significantly shorter for candidate

molecules (74% of datasets), longer in 2% of the cases, and comparable in the remaining

24%. This result indicates that candidate molecules are not distributed randomly on the

signalling network, but are gathered in the region where the experimental perturbation exerts

its function.

In summary, the candidate molecules selected by the proposed method are involved in the
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same biological processes and pathways as perturbation targets more than non-candidate

molecules and DEGs. Their placing in the network is also not casual but shows similarity

to perturbation targets. These results suggest that perturbation of candidate signalling

molecules, even if not yet experimentally tested, are likely to induce the desired cellular

conversion in the same way that known perturbations do.

4.4 Performance in the prediction of signalling pathways for cel-

lular transitions

To better interpret the prediction of signalling molecules obtained with INCanTeSIMO, a

method for the prediction of canonical pathways, INCanTeSIMO path, was developed. Be-

cause candidates are selected by INCanTeSIMO based on their specific activity on the

interface TFs, it is expected that only some members of a pathway will be predicted, while

others acting with less specificity will not be prioritized. Therefore, over-representation of

the members of a pathway among the candidates is not necessary for a pathway to be

relevant to the desired cellular transition. Instead, the pathways were ranked according to

their enrichment in causal disturbance, calculated according to source/sink centrality (see

Methods section 3.2.1). Briefly, this method selects pathways based on the fact that highly

influential nodes in their signal transduction are predicted as candidates by INCanTeSIMO.

To evaluate the performance of INCanTeSIMO path, positive pathways were determined

for each dataset from the direct targets of the experimental perturbation. In particular,

MetaCore signalling pathways that contain at least 25% of the direct perturbation targets

were collected. Additionally, perturbation targets that only belong to one pathway were

selected, and such pathways were added to the positive ones (see Methods section 3.2.1).

The activation and inhibition of a pathway were considered separately. Finally, 166 datasets

among the 228 analysed had at least one positive MetaCore pathway, with a median of 3

positive pathways per dataset.

INCanTeSIMO path correctly predicted positive pathways in 58% of the cellular transitions

(p.value≤0.05), compared to an expected success rate of 47% for the random selection of
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the same number of pathways. The probability of selecting at least one positive pathway by

chance is affected by the number of positive pathways, therefore the datasets were classified

according to the number of positive pathways, and the probability of random success in each

class was compared to the performance obtained by INCanTeSIMO path (Figure 4.10). The

method was better than random selection for datasets with 2 to 4 positive pathways (p-values

3.7e-2, 5.4e-2, 5.2e-2), which represent 65% of all datasets, and comparable to random

selection in the other cases.
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Figure 4.10: Performance of INCanTeSIMO path in relation to the number of positive pathways.The
datasets were divided in classes according to the number of positive pathways present, and the
expected success rate was calculated for each dataset depending on the number of pathways and the
number of candidates selected by INCanTeSIMO path (light blue dots). The fraction of datasets in
each class where INCanTeSIMO predicted correctly at least one of the positive pathways is depicted
with short red bars. The overall success rate of INCanTeSIMO (red dotted line, 58%) and the overall
expected success rate (blue dotted line, 47%) are reported.
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4.5 Comparison to other methods

No method exists to date similar to this work in terms of application or modelling strategy. The

approach presented was therefore compared to computational tools that are widely used to

analyse signalling events using gene expression data. As mentioned in the Methods section

3.3, they are methods that predict both signalling molecules (Connectivity Map, DeMAND)

and entire pathways (SPIA, GSEA, CADIA).

4.5.1 Comparison to single molecule prediction tools

The performance obtained with INCanTeSIMO was compared to Connectivity Map and

DeMAND. These two methods use DEGs but otherwise follow quite different strategies for

the prediction of potential perturbations. Connectivity Map takes advantage of an extensive

database of gene expression signatures generated by known perturbations, and searches

for similarities with the query expression profile. DeMAND, on the other hand, calculates the

enrichment of deregulated genes among the targets of each potential perturbation, defined

by a context-specific regulatory network.

Connectivity Map was applied to all 228 datasets. Both INCanTeSIMO and Connectivity

Map had a success rate of 61% on the datasets associated with a prediction (Figure 4.11A),

however in some datasets there were not enough DEGs for Connectivity Map to give a

result, so predictions were available in 144 datasets only. The majority of the datasets

analysed are already present in the compendium of gene expression signatures used for

Connectivity Map for generating predictions. A closer look at the cell fate transition cases,

which were obtained from independent data sources, revealed that Connectivity Map correctly

predicted perturbations in only 25% of the cases, while INCanTeSIMO succeeded in 75%

of them (Figure 4.11B). Thus, Connectivity Map could not be successfully applied to novel

cellular transitions. INCanTeSIMO on the contrary showed consistent performance across

the different types of datasets.
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Figure 4.11: Performance of INCanTeSIMO compared to Connectivity Map. (A) Number and proportion
of datasets in which INCanTeSIMO and Connectivity Map correctly predict at least one of the known
perturbation targets. INCanTeSIMO generated predictions for all 228 datasets, while Connectivity Map
failed to analyse 84 datasets. (A) Number and proportion of cell fate transitions in which INCanTeSIMO
and Connectivity Map obtained correct predictions. These datasets are a subset of the 228 analysed
overall.

DeMAND (Woo et al. 2015), which is one of the few GRN-based tools available, could not

be compared with INCanTeSIMO in the same manner, because of its requirement for at least

six gene expression data replicates per condition. Therefore, INCanTeSIMO was applied to

eight datasets used for DeMAND’s benchmarking and compatible with our method. Across

these drug-induced cellular transitions, both INCanTeSIMO and DeMAND correctly predicted

perturbation targets in six datasets (Figure 4.12). The fact that INCanTeSIMO obtained a

comparable performance to a method which requires substantially more data, while also

indicating if the candidate molecules should be activated or inhibited (correct sign predicted

in 5/6 datasets), suggests that it is a flexible method suitable for a wide range of applications.
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Figure 4.12: Performance of INCanTeSIMO and DeMAND on the eight compound perturbation
datasets that could be analysed with both methods. Both tools predicted direct perturbation targets for
6 datasets and were not successful in predicting targets of (S)-equol and thapsigargin.

4.5.2 Comparison to pathway prediction tools

The performance of INCanTeSIMO path in predicting signalling pathways for the induction of

cellular transitions was compared to existing approaches that analyse differential pathway

activity by focusing on DEGs. There exist three main classes of methods: over-representation

analysis (ORA), functional class scoring (FCS), and topological analysis (Khatri, Sirota, and

Butte 2012). Here representative methods for each classes were selected: enrichment by

hypergeometric test (ORA), gene set enrichment analysis (GSEA) (FCS), and the methods

SPIA and CADIA, which combine ORA and topological measures (see Methods for a brief

description of each method). Causal network inference methods were not applied to this

analysis because they consider reduced sets of pathways or TFs (Catlett et al. 2013; Parikh

et al. 2010), or have limited applications, as in the case of cancer-specific methods (Y.-A.
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Kim, Wuchty, and Przytycka 2011; Paull et al. 2013) and tools assuming that the signalling

perturbation is known (Melas et al. 2015).

As mentioned in the Methods section 3.2.1, the “positive” pathways for each dataset were

determined from the direct perturbation targets. SPIA and CADIA by default predict KEGG

pathways, while all other methods can be adapted to predict MetaCore canonical pathways,

so both MetaCore and KEGG positive pathways were determined for each dataset. The

166 datasets that had both KEGG and MetaCore positive pathways were considered for

assessment of pathway analysis: each dataset was assigned up to 66 MetaCore positive

pathways (median 3), and up to 77 KEGG positive pathways (median 5).

The performance of each method was quantified as the number of datasets in which at

least one positive pathway was predicted as significant according to the method-specific

significance cut-off. However, not all methods generated predictions for each dataset, as

reported in Figure 4.13A. In fact, methods that use DEGs as input for the prediction failed to

predict pathways in a major portion of the datasets (from 41% for SPIA to 73% for CADIA).

This was due to the quantity of DEGs present in each dataset, which varied greatly but was

generally low (0 to 5855, median 96.5). In comparison, the number of candidate signalling

molecules generated by INCanTeSIMO was fairly high and stable (196 to 476 candidates in

each dataset, median 304.5), allowing the methods that used them as input data to calculate

pathway enrichments in all datasets. The only method that obtained correct predictions in

more than 50% of the datasets was INCanTeSIMO path (Figure 4.13A). However, this result

was dependent on the number of pathways predicted by each method, which was higher for

INCanTeSIMO path than all other methods (Figure 4.13B). To evaluate the goodness of the

ranking obtained with each method, the number of pathways that needed to be selected from

the ranking in order to pick positive pathways was calculated across all 166 datasets with all

the tested methods (Figure 4.14A).
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Figure 4.13: Overview of the results for pathway prediction methods. (A) Performance of the methods
for pathway prediction. A prediction is considered correct if at least one of the positive pathways is
predicted, and incorrect otherwise. Cases where there was no prediction are reported as missing.
The red dotted line represents 50% of all datasets (in total 166). (B) Number of pathways predicted by
each method, according to the significance level recommended in each method.

The results clearly showed that using the signalling candidates obtained from INCan-

TeSIMO resulted in a better ranking of canonical pathways. The selection of the best 19

pathways according to INCanTeSIMO path was sufficient to obtain correct predictions in half

of the datasets (”candidates SSC”), applying pathway enrichment to the candidate molecules

(”candidates enrichment”) required 25.5 pathways to obtain successful predictions in 50% of

the datasets, and applying CADIA on MetaCore pathways using the candidate molecules

(”candidates CADIA”) required 24 pathways for the same result. This performance was con-

sistently better than the methods based on DEGs (Figure 4.14A, the ranking were significantly

different according to Kolmogorov-Smirnov test, p.value<1e-13 for all DEG-based methods).

In fact, 60.5 pathways were required using SPIA, 140 in pathway enrichment, while for CADIA

and GSEA even considering all KEGG or MetaCore pathways respectively was not sufficient

to obtain correct predictions in 50% of the datasets.
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Figure 4.14: Overview of the results for pathway prediction methods. (A) Fraction of datasets where at
least one positive pathway is correctly predicted for each of the pathway prediction methods. Candidate
SSC corresponds to the ranking used in INCanTeSIMO path (source/sink centrality enrichment across
the candidate molecules obtained from INCanTeSIMO). Because some tools did not return any
prediction in some datasets, considering all ranked pathways does not allow to reach success rate
=1. (B) Correlation between the rankings obtained with the different methods using INCanTeSIMO
candidate molecules as input for the prediction of pathways. SSC corresponds to the approach
implemented in INCanTeSIMO path. The rankings obtained with enrichment or CADIA are highly
concordant, while SSC obtains rankings that are quite different from both.

Therefore, INCanTeSIMO path predicted more signalling pathways, but also ranked them

more correctly, thus obtaining a better performance compared to DEG-based methods. The

performance at increasing number of selected pathways of INCanTeSIMO path was compa-

rable with the one obtained by calculating pathway enrichment or CADIA enrichment using

the candidate molecules (Kolmogorov-Smirnov test, p.value=0.11 in both cases). However,

INCanTeSIMO path required slightly less pathways to be selected in order to obtain a suc-

cessful prediction in 50% of the datasets, and was therefore the best method among the
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tested. Additionally, the ranking of predicted pathways was different between INCanTeS-

IMO path and the other candidate-based methods, and similar between pathway enrichment

and CADIA (Figure 4.14B), proving that the similar performance of INCanTeSIMO path to the

other candidate-based methods was not generated by the similarity of the methods overall.

In fact, the definition of positive pathways based on the number of perturbation targets they

contain, gives an advantage to pathway enrichment methods, and particularly enrichment in

candidate molecules (assuming they are direct perturbation targets). The fact that INCan-

TeSIMO path performed better than these methods proved that source/sink centrality is an

effective alternative metric for the prediction of signalling pathways that can control the GRN

state.

In summary, the prediction of pathways inducing cellular transitions is a complex problem

in which no method could achieve high performance. Using the candidates obtained from

INCanTeSIMO resulted in better predictions compared to DEG-based methods, while also

suggesting the activation or inhibition of signalling pathways. INCanTeSIMO path is the only

method taking into account explicitly the importance of specific molecules in the context of

signal transduction in signalling pathways combined with the causal role of signalling on

GRNs, instead of an over-representation criterion. It showed the best success rate among all

methods and the best ranking overall, suggesting that the integrative approach followed is

the suitable for modelling the interplay between cell signalling and GRNs in the context of

cellular transitions.

4.6 Cell fate transition examples

The ability to induce the transition between different cell types opens the door to advances in

regenerative medicine, as it could be used to replace damaged tissues and organs, both ex

and in vivo. INCanTeSIMO was applied to datasets where single growth factors or chemical

compounds induced changes in cellular identity. Compared to other datasets, here the GRNs

associated to the cellular conversion were larger (on average 38 vs 23 GRN TFs), and the

method achieved a better performance. Direct targets of the experimental perturbation were
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found among the candidate signalling molecules in 75% of all datasets (Table 4.1).

4.6.1 Differentiation

Nine differentiation cases were considered. Human mesenchymal stromal cells differen-

tiate into chondrocyte when treated with either BMP2 or TGF-β3 (Mrugala et al. 2009).

INCanTeSIMO predicted the activation of BMP receptor 2 and TGFBR3 when applied to the

BMP2-treated gene expression data, and the activation and inhibition of other members of

the TGF-β protein superfamily, which plays a key role in chondrocyte differentiation, when

analysing TGF-β3-treated gene expression.

INCanTeSIMO also correctly predicted targets for the differentiation of hematopoietic

stem/progenitor cells to erythroid and megakaryocytic precursors (Zini et al. 2012), for

the terminal differentiation of neonatal keratinocytes (Q. T. Tran et al. 2012), and for the

induction of hepatoblasts differentiation towards hepatocyte-like cells (Ogawa et al. 2013).

The differentiation of myeloid-derived suppressor cells into M2-like macrophages (Wang et al.

2015) and of intestinal stem cells into secretive progenitor cells (T.-H. Kim et al. 2014) were

also correctly associated with experimentally perturbed signalling molecules.

4.6.2 Cell activation and maintenance

Among the cellular conversions considered there were cases of specification of a new cellular

fate. The activation of pre-adipocytes to primed adipocytes was correctly associated with

the activation of DAX1, a nuclear receptor for steroid hormones (Tomlinson et al. 2010).

The specification of mesenchymal stem cells towards the subendothelial murate cell fate is

activated by TGF-β1 treatment and impeded by bFGF (Sacchetti et al. 2007). In accordance

with these observations, our method predicted bFGF targets and regulators as involved in

both processes.

Table 4.1: Signalling molecules predicted in cell fate transitions
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Maintenance of cell identity sometime also requires supplementing the culture medium

with growth factors or compounds. Maintenance of hESC-T3 is achieved with standardized

protocols (MEF feeder or feeder-free) or in conditioned medium with the addition of activin A

(Tsai et al. 2010). Comparing the latter with established protocols, INCanTeSIMO correctly

predicted the activation and inhibition of multiple activin receptors.

4.6.3 Transdifferentiation

The transdifferentiation of mouse embryonic fibroblasts into astrocytes is obtained experimen-

tally with SB-431542 (Tian et al. 2016), an inhibitor of the TGF- β type I receptor kinase activity

(Laping 2002). Correctly, it was predicted that the inhibition of TGF-β1 would induce this

cellular transition. Additionally, INCanTeSIMO was tested on two cases of transdifferentiation

that were obtained with the combination of multiple chemical compounds.

The direct conversion of mouse embryonic fibroblasts to cardiomyocytes can be induced

with the minimal combination of four distinct compounds (CHIR99021, RepSox, Forskolin, and

valproic acid). INCanTeSIMO only predicted a direct target of RepSox, but further inspection

into the candidate signalling molecules revealed the activation of Axin, which is a target of

both GSK3, which is inhibited by CHIR99021, and of G-protein alpha-s, a target of Forskolin.

On the other hand, no direct or indirect target of valproic acid were among the candidates.

Human dermal fibroblasts are converted in mesenchymal stem cells with the minimal

combination of SP600125, SB202190 and Go6983 (Lai et al. 2017). In this context, INCan-

TeSIMO correctly predicted three targets of SP600125 (the inhibition of p38, JAK3 and MSK1)

and two SB202190 targets (the inhibition of p38 in its α and β forms). Regarding Go6983,

our method predicted the activation, instead of the inhibition, of protein kinases C.

In summary, signalling molecule perturbations inducing cell fate conversions were con-

sistently captured by INCanTeSIMO. Notably, the method was able to predict alternative

perturbations for the same conversion, as in the case of mesenchymal stromal cells dif-

ferentiated into chondrocytes, and mutually exclusive perturbations, with the prediction of

activation or inhibition of bFGF signalling molecules to induce or inhibit the specification

of subendothelial murate cell fate in mesenchymal cells. This suggests that among the
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predicted candidates are recapitulated both experimentally known perturbations, but also

other biologically relevant ways of inducing the same cellular conversion.

4.6.4 Pathway-level predictions

As mentioned previously, in order to assess the performance of INCanTeSIMO path the

positive pathways for each dataset were determined from the direct perturbation targets,

and the method could correctly predict them in 58% of the datasets. In order to confirm the

overall good quality of the predictions, literature evidence was collected that could clarify if

pathways that are not related to the experimentally applied perturbation, but are predicted by

INCanTeSIMO path, could induce the cellular transitions studied. In general, the pathways

predicted were previously implicated in the cellular conversion analysed, as shown in Table

4.2. A few examples are discussed here:

• While not containing targets of the experimental perturbation, the inhibition of NOTCH

signalling pathway was reported previously to improve the differentiation of hMSCs

to chondrocytes (Sun et al. 2018). Other correct predictions for this transition include

the activation of ossification (Su et al. 2018), response to hypoxia (Kanichai et al.

2008; Koay and Athanasiou 2008) and androgen receptor (S.-s. C. Huang et al. 2013)

pathways.

• The differentiation of dermomyotome into myotome has been previously associated

with the activation of insulin (Pirskanen, Kiefer, and Hauschka 2000) and inhibition of

BMP signalling (Reshef, Maroto, and A. B. Lassar 1998), which contain the targets

for the perturbation experimentally tested (CHIR99021). Among our predictions, also

ERK5 signalling (Carter et al. 2009; Delfini et al. 2009) and the inhibition of TGF-β

signals (J. Zhou and Sears 2018) have were supported by literature evidence.

Table 4.2: Top pathways predicted by INCanTeSIMO path for cell fate transitions
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Type Transition Perturbation Bool # pathways 
predicted Predicted pathway Sign Rank

Contains 
perturbation 

targets
Literature

IL-2 + 1 no

T cell receptor + 2 no

MIF - 3 no 10.1016/j.stemcr.2016.07.003

ossification + 18 yes 10.3390/ijms19082343

response to hypoxia + 1 no [1] 10.1016/j.joca.2008.04.007; [2]  
10.1002/jcp.21446

synaptogenesis + 2 no

NOTCH - 3 no 10.1038/s12276-018-0151-9

Androgen receptor cross-talk + 13 yes 10.1016/j.scr.2013.06.001

ERK5 + 1 no [1] 10.1016/j.ydbio.2009.05.544; [2] 
10.1242/jcs.045757

neurogenesis - 2 no

antigen presentation + 3.5 no

TGFb - 3.5 no 10.1002/dvdy.24681

insulin + 5 yes 10.1006/dbio.2000.9784 

BMP in cardiac development - 14 yes 10.1101/gad.12.3.290

Innate inflammatory response - 1 no

IL-10 + 2.5 no 10.1189/jlb.3A0414-210R

JAK/STAT + 2.5 no 10.3389/fimmu.2018.00608

response to RNA viral infection - 4 no

Th cell differentiation + 10 yes 10.3389/fimmu.2019.00219

Skeletal muscle development + 1 no

Wnt + 2 no 10.1073/pnas.0509703103

TGFb + 3 no 10.18632/oncotarget.10561

Phagosome in antigen presentation - 1 no 10.1155/2017/7970385

phagocytosis - 2 no

death receptors + 3.5 no

response to RNA viral infection - 3.5 no

EMT + 9 yes 10.15252/embj.201591517

Phagosome in antigen presentation - 1 no 10.1155/2017/7970385

Neutrophil activation - 2 no

phagocytosis - 3.5 no 10.1007/s00427-012-0422-8

D hMSC -> chondrocytes TGF-beta 3 frmaBool 15

D hMSC -> chondrocytes BMP2 frmaBool 19

D

mMDSC (Myeloid-derived 
suppressor cells)-> 
tumoricidal M1-like 

macrophages

R848 geneDE 19

D dermomyotome -> 
myotome CHIR99021 geneDE 18

D Intestinal stem cells (ISC) -
> enterocyte progenitors Atoh1 inhibition geneDE 19

D
mMDSC-

>immunosuppressive M2-
like macrophage

PAM3 geneDE 10

D ISC -> secretive 
progenitors dibenzazepine geneDE 9



amphoterin + 3.5 no

death receptors + 2.5 no 10.1002/jcp.25967

neurogenesis - 2.5 no

NK cell cytotoxicity - 2.5 no

T cell receptor - 1 no

protein C + 2 no 10.4331/wjbc.v5.i2.169

NK cell cytotoxicity - 3 no 14760888

ossification - 1 no

MIF + 2 no

antigen presentation + 3 no

insulin - 1 no

IFN-gamma + 2 no 10.3389/fimmu.2015.00539

antigen presentation + 3 no 10.1016/j.stemcr.2018.09.015

angiogenesis - 15 yes 10.1074/jbc.M109.006551

MIF + 2 no

Phagosome in antigen presentation - 2 no 10.1002/stem.406

amphoterin + 2 no

neuropeptides - 3 no

NOTCH - 3 no

Neuromuscular junction - 3 no

B cell receptor - 3 no

IL-2 + 3 no

ossification - 2 no 10.1038/cdd.2015.168

response to RNA viral infection + 2 no 10.1210/en.2009-1140

neurogenesis + 2 no

MIF - 10 yes 10.1038/emm.2015.26

Neutrophil activation + 15 yes

Th cell differentiation - 16 yes 10.4049/jimmunol.1001269

Neutrophil activation - 18 yes

D HSPC -> erythroid and 
megakaryocytic precursors valproic acid frmaBool 24

   

D hepatoblasts -> hepatocyte-
like cells cAMP frmaBool 19

D NHEK -> terminally 
differentiated keratinocytes

density-induced 
differentation + 

EGF
frmaBool 11

A MSC -> non-HME cells bFGF frmaBool 38

T MEFs (Mouse Embryonic 
Fibroblasts)->Astrocytes SB-431542 geneDE 23

A pre-adipocytes -> primed 
pre-adipocytes dexamethasone frmaBool 28

A MSC -> subendothelial 
mural cell fate TGFb frmaBool 35
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• Myeloid derived suppressors cells (MDSCs) can differentiate towards M1- or M2-

like macrophages. INCanTeSIMO path correctly predicted that IL-10 and JAK/STAT

signalling are involved in M1 differentiation (Bayik, Tross, and Klinman 2018; Beury et al.

2014) and it associated TGF-β and Wnt pathways to M2-like differentiation (Pukrop

et al. 2006; F. Zhang, R. Liu, and J. Zheng 2016).

Overall, many of the pathways predicted, though not associated with the experimental

perturbations, could be involved in the cellular transitions studied. These results show that

INCanTeSIMO path is able to predict pathways involved in cellular transitions independently

of how the transition was induced in the experiments that generated the gene expression

data used for the prediction.

4.7 Applications to animal models of disease and regeneration

The methods presented here were applied to the prediction of signalling molecules and

pathways involved in the transition from a pathological to a healthy state in a rat model of

cirrhosis, obtained with the treatment with CCl4. Secondly, the molecules and pathways

involved in the regeneration of amputated salamander limbs were identified by applying the

present methods to time series gene expression data.

4.7.1 Reversion of cirrhotic state in rat liver

Currently liver transplantation is the only effective therapy available for cirrhotic patients,

and new therapeutic strategies are urgently needed, also in the prospect of avoiding further

advancing of the disease towards hepatocellular carcinoma (HCC). Wistar rats treated with

CCl4 represent a classical disease model for cirrhosis. Gene expression data from cirrhotic

and healthy rat liver was used to predict which signalling perturbations could induce the shift

between diseased and healthy tissue state (Figure 4.7.1A).
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Figure 4.15: Prediction of signalling perturbations for the reversal of the cirrhotic phenotype in rat liver.
A) Overview of the approach followed: liver gene expression data of cirrhotic rats were generated
by collaborators, and used as the initial cellular state. Gene expression data for the desired healthy
state was obtained from GEO. Once the activation of Tie2 was predicted by INCanTeSIMO, cirrhotic
rats were treated with its agonist CVX-060, gene expression data was generated from treated liver
and compared with the healthy state. B) The state of the TFs in the GRN in the cirrhotic, healthy and
CVX-060 treated samples. The ideal perturbation state refers to the state that the GRN TFs can reach
if any of the BPCs is applied. The predicted CVX-060 treated state is the state the GRN-TFs can
have if the BPCs composed only of interface TF states induced by the activation of Tie2, according to
INCanTeSIMO (using correlation-based MPPs). Green background shows when a state is matching
the desired healthy state. C) Interface TFs present in the BPCs and their relative probability of inducing
the desired changes on the GRN. +: the activation of the interface TFs has desired effect on the GRN;
–: its inhibition is effective. The two states are not mutually exclusive, as seen in c-Rel (NF-kB subunit).

Gene expression of whole cirrhotic livers was quantified with microarray experiments,

and compared with healthy liver data obtained from public databases (see Materials and

Methods section 3.4). The GRN model representing the cellular transition between cirrhotic

and healthy state (disease GRN) consisted of 26 TFs (Figure 4.7.1B), and 106 interface

TFs were available for perturbation. After exhaustive in silico perturbation, the BPCs were

predicted to affect the state of 19 GRN-TFs (Figure 4.7.1B), and were composed of 10

interface TFs (Figure 4.7.1C).

Signalling molecules were ranked using INCanTeSIMO. Among the candidate molecules

many proteins are known to be involved in different aspects of cirrhosis, or other liver diseases

such as fibrosis, fatty liver disease and HCC. As mentioned in the Introduction (1.4.1), fibrosis,

inflammation and blood vessel structure are fundamental biological processes involved in the

development of liver cirrhosis.

Among the predictions obtained, there was the inhibition of proteins associated with

fibrosis (e.g. CHIP, AP-1, CBP, MDM2) and matrix metallopeptidases responsible for matrix

remodelling, and the activation of ESR2 which is known for its antifibrogenic role (B. Zhang

et al. 2018). Additionally, multiple innate immune response proteins, including interleukins,

were correctly predicted (W.-C. Zhou 2014). Among the canonical pathways, BMP signalling

was predicted as inhibited by INCanTeSIMO path. Different BMP proteins act differently on

hepatic stellate cells (HSCs), BMP2 and BMP4 in particular potentiate their transdifferentiation

and have a profibrogenic effect (Herrera, Addante, and Sánchez 2017).
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Nitric oxide and NADPH signalling are also predicted as inhibited, in accordance to the

role of oxidative stress in HSC activation and proliferation (Adachi et al. 2005; Iwakiri and

M. Y. Kim 2015)(Table 4.3).

Members of angiopoietins signalling, which is a key pathway in blood vessel normalization,

are also present among the predictions. Signalling through Angiopoietin 1 (Ang1)-Tie2 is

known to stabilize blood vessels, while Angiopoietin 2 (Ang2) acts as a context-dependent

antagonist of Ang1, decreasing its effect and giving rise to immature blood vessels (Fagiani

and Christofori 2013). Higher expression and activity of Ang2 has been associated with

cirrhotic conditions. In agreement with this characteristics, INCanTeSIMO predicted the

activation of Angiopoiein 1 and 4, the inhibition of Angiopoietin 2 and 3, and the activation of

Tie2 (ranking 24th among all signalling molecules) (Table in Appendix 7.4).

The activation of Tie2 is predicted to induce activation of interface TFs SP1 and ETS1,

and the inhibition of GCR, STAT5A and B, ESR1, and PU.1 (Figure 4.16), resulting in a

GRN state that matches partially the healthy liver state (Figure 4.7.1B). This prediction was

validated by treating cirrhotic rats with CVX-060, a specific inhibitor of Ang2 which improves

Tie2 activity, and generating gene expression data for the whole liver. The GRN-TFs EBF1,

EGR3, PRDM1, RARG, RUNX3, SP7, and TP63 were observed to change their expression

state to match the healthy counterpart (Figure 4.7.1B). Literature evidence confirmed that

many of these TFs are indeed involved in liver cirrhosis and blood vessel stabilization.
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GRHL1

REST

FGF2 PRDM1 NR0B1 NEUROG1
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VDR SALL4TP63 RARGEBF1 FOSL2 PBX1RUNX3 RXRA
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p38alpha (MAPK14)
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Figure 4.16: Integrated signalling and gene regulatory network for cirrhosis. The application of
CVX-060 specifically activates Tie2, which in turn activates (blue circles) or inhibits (red circles)
interface TFs following the MPPs depicted. The interface TFs act on the disease-vs-healthy GRN
(disease GRN). In the GRN, white TFs are common between this GRN and the treated-to-healthy
GRN (treatment GRN), and yellow TFs are specific for the disease GRN. Association of the TFs with
the regulation of angiogenesis is represented with a green border.
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EGR3 is a pro-inflammatory factor that can stimulate fibrosis when overexpressed, and

whose suppression has been shown to attenuate TGF-β signalling and consequently fibroge-

nesis (Fang et al. 2013). It also plays an essential role in VEGF signalling in angiogenesis

(D. Liu, D. Ghosh, and Lin 2008). Runx3 is expressed in embryonic liver and regulates fetal

hematopoiesis (Bruijn and Dzierzak 2017). Its inhibitions causes organogenesis defects in

mice, and excessive intrahepatic angiogenesis (J.-M. Lee et al. 2013). SP7 and TP63 have

been implicated in VEG-mediated angiogenesis (Farhang Ghahremani, Goossens, and Haigh

2013; W. Tang et al. 2012). Retinoic acid signalling through RARG was shown to reverse

hepatic stellate cell activation and fibrosis (Panebianco et al. 2017). PRDM1 and EBF1 do

not have a reported function in angiogenesis or cirrhosis to date, but have been connected

to other liver diseases: PRDM1 expression has recently been implicated with HCC (N. Li

et al. 2019), and EBF1 was observed to be differentially methylated in nonalcoholic fatty liver

disease cirrhosis (Gerhard et al. 2018). They could therefore represent novel therapeutic

targets.

To further consolidate the results obtained, a second GRN representing the transition

between the treated and healthy states was built (treatment GRN). It contained 30 GRN

TFs, of which 14 in common with the disease-to-healthy GRN (disease GRN). The 12 TFs

unique to the disease GRN were localized in network-specific modules, that contained

TFs implicated in vascular growth, including EGR3, RUNX3, SP7 and TP63 discussed

above (Figure 4.16). Modules that were shared between the two GRNs did not contain TFs

associated to angiogenesis, confirming that by activating Tie2 the expression state of TFs

regulating angiogenic processes was reverted to its healthy counterpart.

A previous functional study showed that inhibition of Ang2 and activation of Tie2 signalling

through CVX-060 treatment are beneficial to the stability of intrahepatic blood vessels and

cause a reduction of liver inflammatory infiltrate, overall improving the fibrotic condition in

cirrhotic rats (Pauta et al. 2015). The current analysis complements these previous results by

providing insights in the gene expression changes occurring during the treatment.

Still, activation of Tie2 does not completely revert the disease phenotype, suggesting that

multiple facets of the disease should be targeted together to induce a complete return to
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healthy expression profile and cellular state. For this, a combination of different candidate

molecules might be considered. For example, inhibition of endothelin ranks 17th among the

predictions (Table in Appendix 7.4). Endothelin-1 overexpression has been associated with

the pathological activation of HSCs, which are one of the main cells responsible for collagen

expression in the liver, and is also connected to exacerbated vasoconstriction leading to

intrahepatic vascular dysfunction (Tsuchida and Scott L. Friedman 2017).

4.7.2 Salamander limb regeneration

The approach developed here was applied to the prediction of signalling molecules and

pathways that drive the regeneration process in salamander limbs. In particular, the anal-

ysis considered the initial stages of the regeneration up to 14 days post amputation (dpa),

comprising the response to amputation, formation of the wound epithelium and subsequently

of the blastema. Gene expression data of cells from the mesenchymal lineage, expressing

Prrx1, was collected at amputation, 1, 3, 5, 7, 10, and 14 dpa.

A regeneration-specific GRN was built around the TFs that change their state between

any two consecutive time points during the time course, and then interval-specific GRNs

were extracted from it. GO enrichment showed that in each GRN there were TFs implicated

in the regulation of processes related to signalling, cellular differentiation and embryonic

development in agreement with expectations (Table in Appendix 7.5). For each of these

intervals, the signalling molecules able to induce the GRN to change from its initial to the final

state were predicted (see Methods section 3.5). The analysis of the interval between day 3

and day 5 did not identify interface TFs perturbations able to change the state of the GRN

substantially (>40% of the GRN-TFs) and this interval was therefore discarded.

Overall, the predictions revealed signalling molecules and pathways related to wound

healing up to 3 dpa, followed by cellular migration and de-differentiation around 5-7 dpa, and

finally cellular proliferation and re-differentiation (Table 4.4).

86



CHAPTER 4. RESULTS

Table 4.4: Selected signalling molecules and pathways predicted for the different stages of salamander
limb regeneration.

Signalling entity Time inter-

vals

Role Literature evidence

NADPH and ROS sig-

nalling (both signs)

0-1d Cellular activation and proliferation (Al Haj Baddar, Chithrala, and Voss

2019)

HDAC2 inhibition 0-1d Wound healing (Taylor and Beck 2012)

Phagocytosis 0-1d, 10-

14d

Wound healing (James W Godwin, Pinto, and N. A.

Rosenthal 2013)

HHs, Smoothened 0-1d, 7-14d Cellular proliferation and migration (B. Singh et al. 2015; B. N. Singh et al.

2012)

Wnt pathway 0-3d Wound healing (D. Zhang et al. 2009)

p38/JNK 0-3d, 7-14d Wound healing, EMT (Sader et al. 2019)

Bcl-2 0-3d,10-14d apoptosis (Bucan et al. 2018)

FGF receptors 0-10d Fibroblasts de-differentiation,

blastema formation

(Makanae, Mitogawa, and Satoh

2014)

ERK/MEK 0-14d blastema formation, blastema differ-

entiation

(Owlarn et al. 2017; Suzuki et al.

2007; Tasaki et al. 2011; Maximina H

Yun, Phillip B Gates, and Jeremy P

Brockes 2014)

PI3K/AKT 0-14d blastema formation (Suzuki et al. 2007)

GDF5 0-1d, 7-14d Blastema formation (Makanae, Hirata, et al. 2013)

Retinoic acid receptors 1-3d, 5-7d Apical epidermal cap, skeletal pattern-

ing and differentiation

(J. R. Monaghan et al. 2012; Nguyen

et al. 2017)

C/EBPβ 1-3d, 7-10d macrophage functionality (James W Godwin, Pinto, and N. A.

Rosenthal 2013; Ruffell et al. 2009)

Neuregulin 1 1-3d Blastema formation (Farkas, Freitas, et al. 2016)

p53 inhibition 1-7d Blastema formation (M. H. Yun, P. B. Gates, and J. P.

Brockes 2013)

ErbB2-3 5-7d, 10-

14d

cellular migration (Rojas-Muñoz et al. 2009)
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Table 4.4: Selected signalling molecules and pathways predicted for the different stages of salamander
limb regeneration.

Signalling entity Time inter-

vals

Role Literature evidence

Thrombin 5-7d Cell cycle re-entry (Imokawa and Jeremy P Brockes

2003; Maximina H Yun, Phillip B

Gates, and Jeremy P Brockes 2014)

FGF8 5-7d Cellular proliferation (Eugeniu Nacu et al. 2016)

MMPs 7-10d Blastema induction (Satoh, Makanae, et al. 2011)

BMPR1B 7-10d Chondrocyte differentiation (Kotzsch et al. 2009)

TNF-α 10-14d Blastema induction (Nguyen-Chi et al. 2017)

p53 7-14d Blastema differentiation (M. H. Yun, P. B. Gates, and J. P.

Brockes 2013)

In the initial time point (0 to 1 dpa), the predicted candidates include signals that have

been specifically associated with the initial steps of regeneration: p38/JNK signalling, which

has a central role in wound closure and EMT (Sader et al. 2019), ERK/MEK and PI3K/AKT

signalling, which are involved in the initiation of regeneration and blastema formation in X.

laevis and planarians (Owlarn et al. 2017; Suzuki et al. 2007; Tasaki et al. 2011). Bcl-2 is

among the predictions, in agreement with the reported importance of Bcl-2 family proteins

in the regulation of apoptosis in the initial phases of limb regeneration (Bucan et al. 2018).

The activation of Wnt signalling, which is generally associated with enhanced would healing

(D. Zhang et al. 2009), was also predicted.

Between 1 and 3 dpa, INCanTeSIMO predicted the activation of C/EBPβ, which has been

shown to play a fundamental role in regeneration by regulating macrophage functionality

(James W Godwin, Pinto, and N. A. Rosenthal 2013; Ruffell et al. 2009). The predicted

inhibition of NK cell cytotoxicity and T cell receptor signalling agree with the hypothesis that

inhibiting the lysis of progenitor populations might be necessary for successful regeneration

in salamander (James W. Godwin and N. Rosenthal 2014).

Following 5 dpa, the activation of ErbB proteins and Src/FAK signalling is predicted, in
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accordance with their role in cellular migration during vertebrate regeneration (Makanae

and Satoh 2012; Rojas-Muñoz et al. 2009). Additionally, the predicted activation of the

kallikrein-kinin signalling pathway, which includes coagulation factors and thrombin, is cor-

rectly associated to the initiation of the regenerative process (Imokawa and Jeremy P Brockes

2003).

At the next time step, between 7 and 10 dpa, there is the prediction of multiple matrix

metalloproteinases (MMP-2, 9, 13, 14). Importantly, they have been implicated with blastema

induction and regulation of Prrx1 expression in A. mexicanum (Satoh, Makanae, et al. 2011).

Multiple proteins belonging to the hedgehog pathway (Hedgehog, Smoothened, PKA, GLI3)

are predicted at this stage, in concordance with the observation that HH signalling is not

necessary for the dedifferentiation of mature cells, but is required for their proliferation and

migration (B. Singh et al. 2015; B. N. Singh et al. 2012). Insulin signalling has also been

associated with this stage (Stocum and Cameron 2011).

In the limb bud stage (10 to 14 dpa), TNF-α and the downstream NF-κB signalling are

predicted. TNF-α has been previously shown to play a primary role in the activation of

blastema cells in zebrafish (Nguyen-Chi et al. 2017). ERK signalling is predicted also at this

stage, in accordance with its activity in inducing blastema cells differentiation observed in

planarians (Tasaki et al. 2011).

Limb regeneration is a process that strongly depends on combination of signalling inputs

received by the blastema cells. Previous studies indicate that there is no single signal

responsible for the establishment of the regenerative program, but is the right combination of

different factors that leads to such biologic process. The guidance role is mainly associated

with dermis and peripheral nerves (Endo, Bryant, and David M. Gardiner 2004; Satoh, David

M. Gardiner, et al. 2007).

Dermis The apical epithelial cap (AEC), the most distal region of the wound epidermis, was

shown to regulate the blastema growth by expressing several growth factors that stimulate

cellular migration, proliferation, and changes in gene expression profiles. Among these factors

are the retinoic acid and fibroblasts growth factors (FGFs) and Wnt signalling molecules.
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FGFs are known to have a role in dedifferentiation of fibroblasts and in blastema formation,

but they are not sufficient to induce limb patterning (Makanae, Mitogawa, and Satoh 2014).

BMP2, BMP7 and growth and differentiation factor 5 (GDF5) work in coordination with FGFs

to induce the formation of blastema-like structures, by attracting fibroblasts to the wound site

(Makanae, Hirata, et al. 2013; Makanae, Mitogawa, and Satoh 2014). Retinoic acid, on the

other hand, plays a multifunctional role both in AEC (J. R. Monaghan et al. 2012) and in limb

patterning (Catherine D McCusker and David M Gardiner 2014). Wnt signalling is involved

in wound healing and positional information in the regenerating limb (S. Ghosh et al. 2008;

D. Zhang et al. 2009).

Nerves While the development of embryonic limbs is nerve-independent, regeneration in

adult salamanders depends on the innervation of the amputated limb. Limb denervation limits

blastema cells proliferation, an effect mediated by the interaction of the wound epithelium with

the regenerating nerve. The presence of nerves is necessary for scar-free wound healing, but

a higher nerve signalling is necessary (and sufficient) for blastema formation (C. McCusker,

Bryant, and David M. Gardiner 2015). Regenerating axons are thought to produce factors that

play a key role in cell proliferation. A number of factors have been identified that are present

in blastema cells, can rescue the regeneration in denervated limbs, and whose inhibition

hinders regeneration. They are anterior gradient protein (AG) (Kumar and Jeremy P. Brockes

2012), BMP2, BMP7, FGF2 and FGF8 (Makanae, Mitogawa, and Satoh 2014), Neuregulin 1

(Farkas, Freitas, et al. 2016), and transferrin (Mescher et al. 1997). Combinations of these

factors have been shown to effectively substitute the effect of innervation on the regenerative

process. Treatment of skin wounds with BMP7, FGF2 and FGF8 induces blastema formation

(Makanae, Mitogawa, and Satoh 2014), and the addition of FGF2, FGF8, and BMP2, followed

by RA treatment, is able to mimic the signalling cues brought to limb wounds by nerve

and positional identity, inducing the regeneration of complete limbs (Vieira and Catherine D.

McCusker 2019).

With the exception of AG protein and transferrin, not present in the signalling network

considered, these factors associated with both dermis and nerves signalling were consistently
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recovered during the analysis: Wnt and retinoic acid signalling were selected at initial time

points, Neuregulin 1 was identified between day 1 and 3, while FGF and BMP signals were

predicted for later stages.

Multiple other predictions could be confirmed by literature review. Both the activation

and inhibition of the NADPH and ROS signalling pathway were selected at 0 to 1 dpa,

supporting the idea that ROS are necessary for inducing regeneration, but at the same time

some counteracting processes might be in action in order to protect the progenitor cells

from excessive cellular stress (Miller, Johnson, and Whited 2019). Finally, as with immune

response, phagocytosis was predicted as activated initially, then inhibited at 5-7 dpa, and

activated again after day 10. Together with he activation of C/EBPβ at two different time

points, these results suggest that immune response mechanisms might play multiple roles

along the regenerative process.
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Figure 4.17: Signalling pathways predicted by INCanTeSIMO for each time interval along the regener-
ative process. Complete pathway names are in the Appendix 7.1.
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In summary, INCanTeSIMO and INCanTeSIMO path predictions could identify known

pathways and proteins involved in the initial stages of salamander limb regeneration. Regard-

ing signalling pathways, canonical pathways involved in signal transduction were predicted

all along the regeneration process, and multiple pathways involved in development were

predicted starting from the fifth day post amputation 4.17. In some cases, candidate proteins

had been associated with regeneration in other animal models such as newts, zebrafish or

planarians. For other proteins, it was observed that changes in their gene expression or

protein abundance occur at specific regeneration stages, but their functional role has to be

determined yet. These proteins constitute novel candidates for experimental validation in A.

mexicanum. As it is well established that some of the signals involved in the regenerative

process are not secreted by the analysed blastema cells (Prrx1+), an additional refinement

of the candidates for experimental validation could consist in identifying the molecules ex-

pressed by specific surrounding cell types, such as macrophages, neurons or epidermal cells

of the AEC.
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5 Discussion and perspectives
Signalling pathways exert their functions by transmitting stimuli and inducing cellular re-

sponses to them. In particular, cell signalling can regulate the cellular gene expression

program by modulating the activity of transcription factors. The regulatory activity of signalling

on GRNs can be harnessed in order to trigger the shift between cellular states for the purpose

of disease treatment or regenerative medicine.

Disease treatment in general involves the use of drugs that control the activity of specific

proteins or small molecules, improving cellular functionality. Often, drugs targets are in-

volved in signal transduction and their identification relies on the identification of differentially

expressed pathways or of upstream regulators of genes that show differential expression.

Regenerative medicine consists of multiple approaches for the restoration of functional tissues

and organs. Thanks to a combination of technological advances and improved understanding

of cellular fates determination, it is now possible to obtain almost any cell type for transplan-

tation from easily accessible cells, such as fibroblasts (J. Xu, Du, and Deng 2015). The

possibility of inducing cellular transitions with small molecules overcomes the safety risks

connected to DNA delivery methods and promises to be less expensive, non immunogenic,

and easily optimized (Pesaresi, Sebastian-Perez, and Cosma 2019).

The issue of identifying which chemical compounds can induce the intended cellular

transitions has been so far addressed by leveraging knowledge on the desired cellular

type and signalling pathways related to it, or by screening chemical compounds for the

desired effect (De et al. 2017). Both strategies are inefficient, and thus the development

of computational methods for the selection of signalling targets is desirable. The approach

presented here is a first attempt at addressing this issue in a systematic way.

Available methods for the prediction of drivers of cellular conversions predict transcription

factors that are involved in the cellular identity desired or play a key role in the gene expression

program of the initial or desired cell type (Cahan et al. 2014; D’Alessio et al. 2015; Rackham

et al. 2016; Okawa et al. 2016). On the other hand, computational methods using gene
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expression data that focus on signalling either pinpoint signalling pathways that are activated

or inhibited by a perturbation (being it a compound, or a disease condition), or identify the

specific molecules targeted by such perturbations (mode of action proteins in the case of

drugs, or disease-specific genes), without considering the regulatory role of signalling on

gene expression.

Thus, the primary contribution of this thesis is the introduction of a generally applicable

approach to predict which signalling perturbations can induce the transition between an initial

and a desired cellular gene expression state. Compared to existing tools, this approach

might predict the target of an experimentally applied perturbation, but aims more generally at

identifying any signalling perturbation that could induce the same shift in gene expression

program. In other words, its purpose is not to describe how cells respond to stimuli, but to

find which signalling stimuli could induce them to reach a desired state.

5.1 Integration of signalling and transcriptional networks

The framework used in this work differs from existing approaches by explicitly modelling the

interaction between signalling networks and GRN. The two regulatory layers are represented

using different formalisms, reflecting the inherent differences in terms of mechanism of action,

time-scale, and uncertainty associated with gene expression data.

The gene expression regulation was represented using a Boolean network model. The

GRN consists of the TFs that change their expression Boolean state between the initial and

desired cellular states, with the aim of capturing the cellular shift required for the desired

cellular transition. The inference of the correct GRN topology for each cellular transition

takes advantage of transcriptional interactions manually curated from literature (Crespo et al.

2013). This general strategy is suitable for any cellular transition because it contextualizes the

network of potential transcriptional interactions to the gene expression profile of the initial and

target cellular states, without requiring large amounts of data, manual curation, or parameter

estimation.

Gene expression levels have been used previously as measures of signalling activity,
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in methods that differ from the approach proposed here in terms of aims and integration

with transcriptional regulation. For instance, in PATHiWAYS (Sebastian-Leon et al. 2014),

signalling pathways were integrated with cellular functions such as cell cycle, growth, prolif-

eration, survival or apoptosis, and differential activation of pathways estimated from gene

expression data was used to interpret disease mechanisms.

Because the aim of this work is to induce transitions between stable cellular states, it can

be assumed that the proteins present in the initial stable state are actively expressed and not

inherited from previous cellular states, so their gene expression should be detectable. Thus,

the probability of a gene being expressed in the initial cellular state was used to define which

signalling proteins might be exploited for signal transduction, resulting in the definition of most

probably expressed signalling paths (MPPs). The inferred MPPs were consistently supported

by phosphorylation state changes in cellular transitions where phosphoproteomics data was

available. This result, although limited to six examples, indicated that it is reasonable to

use gene expression data to analyse signalling events, in the absence of perturbation or

phosphoproteomics data.

5.1.1 Prediction of signalling molecules for cellular transitions

At the interface between the signalling and GRN models, lie TFs that are regulated by

signalling pathways and regulate the expression of other genes, among which the TFs

present in the GRN. This is where the integration between the two regulatory layers takes

place. In INCanTeSIMO, the perturbations of interface TFs that best cause a shift from the

initial to desired GRN states are selected, and the initial signalling state is used to define which

signalling molecules are most likely to induce them following MPPs. Therefore, signalling

molecules are ranked according to their probability of inducing the desired GRN state. This is

in contrast to other GRN-based approaches such as DeMAND (Woo et al. 2015) that only

take into account the topology of the GRN, without considering collective changes in TF

expression induced by signalling cues. Specificity of action guides the selection of signalling

molecules: molecules that act on few effective interface TFs are preferred to others that have

an indiscriminate action.
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Small molecules and chemical compounds are increasingly used to induce cellular transi-

tions, however their mechanism of action remains in large part poorly understood, with 60%

of existing approved drugs not having annotated targets and only half of all known drug-target

pairs associated with inhibiting or activating effect (Sawada et al. 2018). For this reason,

this work did not focus on identifying chemical compounds or small molecules, and instead

INCanTeSIMO was developed with the objective of considering each signalling molecule in

the network as equally capable of inducing the desired cellular transitions.

In the light of this incomplete knowledge, the success rate obtained by INCanTeSIMO in

predicting direct targets of experimental perturbations (61%) is satisfactory. Furthermore, the

method outperformed other available approaches, such as Connectivity Map and DeMAND. In

comparison to Connectivity Map, the main advantage of INCanTeSIMO is the independence

from pre-collected gene expression signatures, which severely affected Connectivity Map’s

performance in the analysis of novel cellular transitions. With regards to DeMAND, INCan-

TeSIMO obtained comparable performance while requiring significantly less data samples,

and it also specifies if the predicted molecules should be activated or inhibited. Thus, the

approach followed here offers the best balance between the amount of data required as input

and the performance and type of predictions obtained.

5.1.2 Pathway perturbations for cellular transitions

Given that for many signalling molecules there might be no activators and inhibitors reported,

it is beneficial to also predict signalling pathways triggering cellular conversions. In particular,

as chemical inhibitors and activators for specific members of each pathway are well known

(Lis, Kuzawińska, and Bałkowiec-Iskra 2014; Moreira, Fernandes, and Ramos 2007; Tamm et

al. 2000; F. H. Tran and J. J. Zheng 2017), it is useful to predict pathways with the expectation

that any perturbation applied to them will induce the cellular conversion required. Numerous

pathways prediction tools exist, which aim at identifying signalling pathways involved in

disease, cellular response to stimuli, cellular conversions etc. However, the majority of

these approaches select pathways based on their gene expression differences between

two compared conditions. This leads to uncertainty as to whether the observed expression
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change is the outcome or the driver of a switch in gene regulatory program.

INCanTeSIMO path identifies pathways by calculating the aggregate source/sink centrality

of INCanTeSIMO candidate molecules, under the assumption that if molecules that are central

to a pathway are able to induce the cellular conversion required, the other components of the

pathway can exert the same effect. Source/sink centrality (Naderi Yeganeh and Mostafavi

2019) measures the importance of molecules in a pathway based on how often they are

used as the initial or final point in directed signal transduction paths. Thus, the pathway score

used in INCanTeSIMO path is not a measure of over-representation of the components of

a signalling pathway in a set of significant genes, as in enrichment-based tools, but takes

into account the role of the candidate molecules in the pathway, according to its topology

and directionality. INCanTeSIMO path showed better performance than other methods

based on differential expression inputs or enrichment measures, and its predictions could be

systematically confirmed by literature review.

One important caveat in predicting signalling pathways is their loose definition: canonical

signalling pathways are highly variable depending on the database used (Kirouac et al. 2012;

Türei, Korcsmáros, and Saez-Rodriguez 2016) and subject to extensive crosstalk (Schaefer

et al. 2009). Thus, the prediction of some pathways according to source/sink centrality might

present artefacts if candidate molecules are shared between multiple signalling pathways,

and results could change according to the pathway database used. The predictions obtained

should be interpreted taking into account which candidate molecules caused the prediction of

a particular pathway.

5.2 Advantages of this approach

As mentioned previously, the use of manually curated transcriptional interactions for the

inference of GRN allows to analyse cellular transitions for which few single expression profiles

are available per cellular state. Depending on the type of data, which defines which approach

for gene expression Booleanization and probability estimation can be applied, as low as one

sample per state is sufficient for obtaining predictions. Additionally, as only the initial signalling
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state is considered (by estimating the probability of expression of signalling molecules in

the initial cellular state), cellular transitions that have not yet been obtained in vitro can be

analysed too, by comparing primary cell states. Thus, this approach is extremely flexible and

generally applicable to any kind of biological process where cellular transitions are involved.

In the same vein, and unlike ad hoc models for specific cell types, no prior biological

knowledge on the cellular transition desired is required as input. This was most evident in

the application of INCanTeSIMO to a liver cirrhosis model in rat, resulting in the prediction of

many signalling molecules associated with the disease, and among them the activation of

Tie2, a receptor for angiopoietins involved in the stabilization of blood vessels (Fagiani and

Christofori 2013). The GRN TFs expected to change upon Tie2 activation were identified via

simulations, and literature review revealed their involvement in angiogenesis. Experimental

observations confirmed that some of these TFs shifted towards their healthy expression state

upon treatment with an agonist of Tie2, which has previously been shown to improve blood

vessels stability (Pauta et al. 2015). Therefore, while INCanTeSIMO only required the disease

and healthy gene expression profiles as input, it was able to identify signalling molecules

and corresponding TFs related to the same specific biological process, also involved in the

disease, and whose perturbation improved the pathological state.

Overall, novel predictions obtained with INCanTeSIMO and INCanTeSIMO path were

regularly related both to experimentally validated perturbations and to the cellular transi-

tion considered. Importantly, the methods correctly predicted signalling targets for cellular

differentiation and reprogramming, which represent a key aspect of regenerative medicine.

Similarly the predictions obtained for the initial steps of limb regeneration in the salamander

A. mexicanum consistently recapitulated existing knowledge and previous observations, cap-

turing the signalling cues that are known to come from dermis, nerves and other cells and

act on the Prrx1-expressing connective tissue cells. In summary, the integration of signalling

network and GRN, by explicitly modelling the regulatory activity of signalling on transcription,

allowed capturing consistently signalling molecules and pathways that can trigger the cellular

transition desired.
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5.3 Limitations

The current implementation is computationally intensive. For this reason, combinations of

only up to 4 interface TFs could be exhaustively perturbed in silico. Although there are hardly

any synergistic effects among low-efficiency TFs in the combination of this size inducing

significant change of the GRN state, it cannot be discarded that this might happen in higher

order combinations. Other computationally intensive tasks include the calculation of the most

probable paths connecting each signalling molecule to all interface TFs.

This approach cannot be applied to the analysis of very similar cellular states, or in

general cellular conversions that show changes in gene expression for TFs that are not

interacting among them to form a connected GRN of reasonable size (at least 10 TFs).

From the biological point of view, the inference of small, disconnected GRNs suggests that

the differences between initial and desired cellular states cannot be recapitulated by the

propagation of a signalling perturbation across a GRN model. Rather, the differences in

gene expression might be caused indirectly by perturbations which act at the level of other

biological processes (e.g. metabolic pathways), and result in gene expression changes

by affecting isolated TFs and their regulation of non-TF targets. With the same principle,

datasets where no perturbation of the interface TFs can induce changes in at least 40% of

the GRN TFs cannot be reliably analysed with this approach.

5.3.1 Issues with validation

A major issue in testing computational methods is the validation of obtained predictions. In

this case, the methods were applied to known cellular transitions associated with a specific

single signalling perturbation, being it a growth factor, chemical compound or small molecule

applied to the cells. As mentioned previously, the majority of drugs approved for clinical use

do not have known targets (Sawada et al. 2018), which also suggests that even drugs with

associated targets might have unknown targets. Among the known and unknown targets,

it is unclear which ones are drivers of the cellular response observed. Therefore, only

perturbations with at least one known target were considered, and a successful prediction
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was defined as the selection of at least one signalling molecule or pathway directly targeted

by the perturbation.

Another source of uncertainty is the fact that multiple alternative perturbations might

induce the same cellular conversion. As first step into considering this possibility, the similarity

of predicted perturbations to the experimentally tested ones was assessed. This analysis

showed that there are functional and topological similarities among the predictions and the

experimentally applied perturbations. However, unrelated perturbations might also induce the

same cellular state, either because they share the same downstream effectors, or because

they can act on different parts of the GRN that regulate each other resulting in the same GRN

state. This became evident in the pathway analysis of cell fate transitions: through literature

review, the potential of inducing the cellular transition was confirmed extensively for pathways

not affected by the experimental perturbation.

The increasing number of signalling perturbations able to induce cellular transitions will

allow to validate more extensively candidate pathways or molecules predicted by compu-

tational methods, but ultimately there is a need for large-scale screenings of perturbations

that can induce cellular transitions in healthy cell types, expanding from the cancer cell line

perturbation repositories currently available (Xiao et al. 2015; Subramanian, Narayan, et al.

2017).

5.3.2 Applicability to different data types

The expression state and probability play a central role in the analysis, as both the GRN

and the signalling network are contextualized to the cellular transitions using them. Their

estimation should therefore be performed as accurately as possible. All gene expression data

used in this work was obtained by microarray. For specific microarray platforms, the datasets

available in public repositories are so abundant that reliable estimation of the expression

values range is possible for each gene separately (Matthew N. McCall, Bolstad, and Rafael A.

Irizarry 2010)(frmaBool strategy). For datasets generated using Affymetrix chips, the MAS5.0

algorithm can estimate if a gene is expressed above background noise levels. However, to

obtain a general approach for Booleanization, a data-driven strategy was devised (geneDE).
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While the geneDE Booleanization approach cannot account for different dynamic ex-

pression ranges among genes and requires replicates for each cellular state, it relies on

well established differential expression analysis pipelines and is extremely flexible. This

strategy can readily be applied to RNA sequencing (RNA-seq) data. An alternative and more

precise approach would be to use large databases of RNA-seq experiments, homogeneously

pre-processed, to define gene-specific expression distributions. Multiple such databases

already exist for human, mouse and rat (Lachmann et al. 2018; Söllner et al. 2017). A strategy

similar to the one used in RefBool (Jung et al. 2017) could be applied to determine if genes

are expressed or not and to calculate the probability of expression for each gene, allowing

the use of INCanTeSIMO on RNA-seq data.

5.4 Outlook

5.4.1 Heterogeneity in the cellular response to signals

Cell-to-cell differences in the response to the same stimulus are ubiquitous and caused

by pre-existing differences among cells (Selimkhanov et al. 2014; Toettcher, Weiner, and

Lim 2013). These differences can be explained with the existence of clusters of different

cellular functional states (subpopulations) (Snijder et al. 2009), which are observed in both

signalling dynamics and gene expression patterns (Lane et al. 2017). The existence of

different subpopulations implies that the same signalling stimulus might induce the cellular

conversion desired only in portions of the cells, resulting in low conversion efficiency.

Using single cell RNA sequencing data, it is possible to identify sub-populations of cells

with different functional state. This in turn could be used to define which specific signalling

cues are required by each of them in order to induce the desired cellular transition, resulting

in overall higher conversion efficiency.

The approach presented here could be adapted to use the gene expression patterns

of each subpopulation separately. The expression of a gene across the cells in a subpop-

ulation could help define if it is expressed or not, and its probability of expression. Then, a

subpopulation-specific GRN could be reconstructed with the use of GRN inference methods
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developed for bulk (Faith et al. 2007; Huynh-Thu et al. 2010; Margolin et al. 2006) or single

cell data (Aibar et al. 2017; Chan, Stumpf, and Babtie 2017). Finally, the paths most likely

connecting signalling molecules and interface TFs could be identified, integrating in the

calculation the gene expression correlation of the proteins involved in the paths in each

subpopulation. This would result in different interface TFs and signalling paths available for

signal transduction in each subpopulation, and thus in specialized predictions.

5.4.2 Relation with other mechanisms regulating gene expression

Cellular conversions can be induced also by acting on the cells metabolism or epigenetic

landscape. The methods presented are not suitable in their current form for the discovery of

this type of interventions, as metabolic or epigenetic regulation are not taken into account.

However, they could be integrated in the current modelling framework.

Metabolism can regulate gene expression by exerting direct and indirect control on chro-

matin (Hong Li et al. 2018). Additionally, the energetic balance of the cells can influence

gene expression, and the induction of glycolysis or autophagy was shown to improve repro-

gramming of cells to iPSCs in combination with TFs (T. Chen et al. 2011; Zhu et al. 2010).

Thus, the metabolic regulation of the GRN can be represented as mediated by the signalling

pathways sensing the metabolic state of the cells, such as AMPK (Burkewitz, Y. Zhang, and

Mair 2014), mTOR (Kennedy and Lamming 2016), autophagy and hypoxia pathways, and

could be improved by modelling of chromatin role on gene expression.

Recently, the development of CRISPR/Cas9 systems for epigenetic modification have

simplified and made accessible targeted epigenetic editing (Jeffries 2018). Remaining

challenges for this approach are the delivery of the machinery necessary for these systems

inside the cells, and the possibility of regulating multiple target genes at the same time.

The cell epigenetic landscape can also be regulated by modulating the activity of DNA

methyltransferases or histone-modifying enzymes like acetyltransferases, deacetylases, and

methyltransferases with chemical compounds. This strategy was already used in disease

treatment (Wouters and Delwel 2016) and cellular reprogramming (E. Li and Davidson 2009;

Shi et al. 2008; K. A. Tran et al. 2015). Further advancements in the understanding of pioneer
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transcription factors, which are able to bind the DNA and exert their function even when the

chromatin is not accessible (Iwafuchi-Doi and Zaret 2014), might in the future lead to the

development of general methods for the prediction of combinations of TFs and chemical

compounds that can trigger desired cellular conversions.

Epigenetic editing (via targeted systems, pioneer factors or enzymes modulation) might

be included in the scope of the present method by including in the GRN model the epigenetic

state of the TFs. Provided the availability of epigenetic data such as DNA methylation, histone

acetylation or methylation, the epigenetic profile of the initial and desired cellular state could

be delineated and compared. In particular, considering the accessibility and activity state

of the regulatory regions of the TFs in the GRN, it would be possible to predict if changes

to these properties are needed to obtain the desired gene expression profile, and which

compounds or TFs are suitable for the purpose of inducing them.

5.4.3 Prediction of signal combinations

An important limitation of the methods at present is that they only estimate the effect of single

candidate molecules or pathways, whereas combinations of them normally reach higher

cellular conversion efficiency (Cao et al. 2016; Kunisada et al. 2012). Indeed, established

experimental protocols for the induction of cellular conversions often consist of multiple

molecules applied in cocktails (Lai et al. 2017).

An initial attempt to predict combinations of molecules according to their addictive activity

on interface TFs proved unsuccessful. This suggests that in reality, a key point for prediction

of combinations will be understanding the interplay of different signal transduction paths.

Signalling pathways are not isolated components, but are embedded in a signalling network

where protein-protein interactions are free to occur and are stochastic events (Ladbury and

Arold 2012), giving rise to extensive cross-talk opportunities.

A strategy that takes into account such cross-talk at the level of signalling network is

necessary. Different molecules might use the same path to act on common downstream

molecules, reinforcing the activation or inhibition of the interface TFs downstream, or might

be redundant. Furthermore, different signalling molecules might have a synergistic effect and
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induce the activation or inhibition of interface TFs in ways that are not deducible from their

individual effects (Housden and Perrimon 2014).

In order to extend the current approach to account for signalling cross-talk, it would be

necessary to consider not only the probability and sign of the most probably expressed paths

between signalling molecules and interface TFs, but also the intermediate molecules used in

such paths. To discriminate between redundant, additive and synergistic effects, however,

extensive knowledge on the logic rules governing the activation or inhibition of signalling

molecules is required. While this knowledge might be available for canonical signalling paths,

non-canonical signal transduction has been shown repeatedly to be a prominent regulator of

gene expression (Meyerovich et al. 2016; Ohta et al. 2016; Regan et al. 2017; Voloshanenko

et al. 2018) and is not as thoroughly documented so far. A possible alternative might be to

define general logic rules governing classes of molecules, for example based on their mode

of action or protein super-family.

5.5 Conclusion

The ability to induce transitions between cellular states is necessary for disease modelling

and regenerative medicine. Cellular states are recapitulated by gene expression patterns,

which are maintained by GRNs. In turn, changes in GRN state are reflected in differences in

cellular functionality and possibly cellular identity. Not only transcriptional regulators, but also

signalling events can regulate the state of the GRN by modulating the activity of interface

TFs. The use of chemical compounds and small molecules targeting signalling pathways in

order to induce cellular transitions is gaining more attention because of its advantages in

terms of reproducibility, controllability, and safety compared to other strategies. However, the

discovery of compounds for cellular transitions still relies on screenings or guidance from

existing knowledge, and would benefit from predictive computational methods.

At present, existing computational methods focus separately on GRN or signalling net-

works. A number of tools exist for the prediction of instructive transcriptional factors that

can induce cellular transitions. Additionally, methods that focus on the signalling network to
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describe how changes in gene expression affect signal transduction are also available. A

reduced number of methods consider the action of signalling cues on their downstream TFs,

but only manually curated and ad hoc models exist that integrate signalling and transcriptional

networks. The aim of this work was to develop a general approach to analyse the effect

that signalling cues have on the GRN by using gene expression data. In conclusion, the

significant points of this thesis are:

• Gene expression probability can reasonably approximate signal transduction. Transcrip-

tomics and phosphoproteomics data show at best a moderate correlation. However,

the expression of proteins that constitute a signalling path is the first condition for

signal transduction to happen along such path. It was observed that the most probably

expressed paths connecting perturbation targets and interface TFs tend to show sig-

nificantly more phosphorylation changes as compared to other paths, suggesting that

paths preferentially used for signal transduction can be inferred using gene expression

data.

• Integration of regulatory layers can be obtained with gene expression data. The pro-

posed approach consisted in the integration of two distinct models for the transcriptional

and signalling regulatory layers. The stochasticity of signal transduction and its effect

on the interface TFs were taken into account by the use of a probabilistic approximation

of signal transduction, and the role of interface TFs in determining the state of the GRN

was estimated by in silico perturbations of a Boolean network model.

• Signalling perturbations for cellular transitions can be consistently predicted with this

approach. The prediction of candidate molecules is based on the specificity with which

signalling molecules are predicted to activate and inhibit the interface TFs that regulate

the GRN state, calculated by Jensen-Shannon’s divergence. The results obtained

showed better performance compared to other methods in recovering experimental

perturbations, and functional and topological characteristics shared with targets of

such perturbations. Signalling pathways were predicted by calculating the aggregate

importance of candidate molecules, expressed in terms of source/sink centrality, in
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each pathway. Again, the performance obtained was superior to previously published

methods. Candidate molecules and pathways are associated with a sign, to further

guide the design of experiments for the induction of the desired cell state shift.

• Previous knowledge was consistently recapitulated in the predictions. Extensive liter-

ature review confirmed that the molecules and pathways predicted for the induction

of multiple and diverse cellular transitions. The approach was applied to multiple ex-

amples of cellular differentiation and reprogramming, but also the reversal of disease

phenotypes and to limb regeneration in animal models, confirming its general scope

and general applicability.

• The effect of signalling on the GRN was validated experimentally. The application of this

method to the prediction of signalling molecules for the treatment of cirrhosis resulted

in the selection of CVX-060, an agonist of the receptor Tie2. As predicted, it induced

changes in the expression of GRN TFs involved in cirrhotic processes.

In conclusion, the methods presented here represent a useful addition to the existing

computational tools for cellular conversions. They are generally applicable tools that can

direct the identification of signalling molecules and pathways for the induction of desired

cellular transitions, such as the induction of cellular differentiation or reprogramming and the

reversal of pathological phenotypes, without needing biological knowledge of the cellular

conversion studied to be given as input. The potential applications of this approach include

disease treatment and regenerative medicine.
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Zañudo, Jorge G T and Réka Albert (2015). “Cell Fate Reprogramming by Control of Intracellular Network

Dynamics”. In: PLoS Computational Biology 11.4, pp. 1–24. arXiv: 1408.5628.

Zhang, Bin et al. (Mar. 2018). “Estrogen receptor β selective agonist ameliorates liver cirrhosis in rats by inhibiting

the activation and proliferation of hepatic stellate cells”. In: Journal of Gastroenterology and Hepatology 33.3,

pp. 747–755.

Zhang, D.L. et al. (Jan. 2009). “Effect of Wnt signaling pathway on wound healing”. In: Biochemical and Biophysical

Research Communications 378.2, pp. 149–151.

Zhang, Fan, Runsheng Liu, and Jie Zheng (2016). “Sig2GRN : a software tool linking signaling pathway with gene

regulatory network for dynamic simulation”. In: BMC Systems Biology 10.Suppl 4.

Zhang, Lu, Yen Kaow Ng, and ShuaiCheng Li (Nov. 2015). “Reconstructing directed gene regulatory network

by only gene expression data”. English. In: 2015 IEEE International Conference on Bioinformatics and

Biomedicine (BIBM). IEEE, pp. 163–170.

Zhou, Jia and Renee L Sears (May 2018). “Bioinformatics Approaches to Stem Cell Research”. In: Current

Pharmacology Reports.

Zhou, Qiao et al. (Oct. 2008). “In vivo reprogramming of adult pancreatic exocrine cells to β-cells”. In: Nature

455.7213, pp. 627–632.

Zhou, Wen-Ce (2014). “Pathogenesis of liver cirrhosis”. In: World Journal of Gastroenterology 20.23, p. 7312.

Zhu, Saiyong et al. (Dec. 2010). “Reprogramming of Human Primary Somatic Cells by OCT4 and Chemical

Compounds”. In: Cell Stem Cell 7.6, pp. 651–655.

Zilliox, Michael J and Rafael A Irizarry (Nov. 2007). “A gene expression bar code for microarray data”. In: Nature

Methods 4.11, pp. 911–913.

Zini, Roberta et al. (Dec. 2012). “Valproic acid triggers erythro/megakaryocyte lineage decision through induction

of GFI1B and MLLT3 expression.” In: Experimental hematology 40.12, 1043–1054.e6.

124

https://arxiv.org/abs/1705.11170
https://arxiv.org/abs/1408.5628


7 Appendices

Table 7.1: Canonical pathways present in MetaCore from Clarivate Analytics included in the signalling
network.

Class Pathway Short name

Signal transduction Androgen receptor nuclear signaling ARnuc

Signal transduction Androgen receptor signaling cross-talk ARcross

Signal Transduction BMP and GDF signaling BMP

Signal Transduction Cholecystokinin signaling cholecystokinin

Signal transduction CREM pathway CREM

Signal transduction ERBB-family signaling ERBB

Signal transduction ESR1-membrane pathway ESR1membr

Signal transduction ESR1-nuclear pathway ESR1nucl

Signal transduction ESR2 pathway ESR2

Signal transduction Insulin signaling insulin

Signal transduction Leptin signaling leptin

Signal transduction Neuropeptide signaling pathways neuropeptides

Signal transduction Nitric oxide signaling NO

Signal transduction NOTCH signaling NOTCH

Signal transduction Oxytocin signaling oxytocin

Signal Transduction TGF-beta, GDF and Activin signaling TGFb

Signal transduction WNT signaling Wnt

Inflammation Amphoterin signaling amphoterin

Inflammation Complement system compl

Inflammation Histamine signaling histamine

Inflammation IFN-gamma signaling IFN

Inflammation IgE signaling IgE

Inflammation IL-10 anti-inflammatory response IL10

Inflammation IL-12,15,18 signaling IL12

Inflammation IL-13 signaling pathway IL13
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Inflammation IL-2 signaling IL2

Inflammation IL-4 signaling IL4

Inflammation IL-6 signaling IL6

Inflammation Inflammasome inflammasome

Inflammation Innate inflammatory response innate

Inflammation Interferon signaling interferon

Inflammation Jak-STAT Pathway JAKSTAT

Inflammation Kallikrein-kinin system kallikrein

Inflammation MIF signaling MIF

Inflammation Neutrophil activation neutrophil

Inflammation NK cell cytotoxicity NK

Inflammation Protein C signaling proteinC

Inflammation TREM1 signaling TREM1

Response to hypoxia and ox-

idative stress

hypoxia

Immune response Antigen presentation antigen

Immune response BCR pathway BCR

Immune response IL-5 signalling IL5

Immune response Innate immune response to RNA viral infection RNAviral

Immune response Phagocytosis phagocytosis

Immune response Phagosome in antigen presentation phagosome

Immune response T helper cell differentiation Th

Immune response TCR signaling TCR

Immune response Th17-derived cytokines Th17

Apoptosis Anti-Apoptosis mediated by external signals by Estrogen apop-estrogen

Apoptosis Anti-Apoptosis mediated by external signals via MAPK

and JAK/STAT

apop-MAPK

Apoptosis Anti-apoptosis mediated by external signals via NF-kB apop-NFkB

Apoptosis Anti-Apoptosis mediated by external signals via

PI3K/AKT

apop-PI3K

Apoptosis Apoptosis stimulation by external signals apop-external

Apoptosis Death Domain receptors & caspases in apoptosis death
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Apoptosis Endoplasmic reticulum stress pathway ERstress

Development Blood vessel morphogenesis bloodVessel

Development Regulation of angiogenesis angiogenesis

Development Cartilage development cartilage

Development Hedgehog signaling HH

Development Regulation of telomere length telomere

Development Regulation of epithelial-to-mesenchymal transition EMT

Development Keratinocyte differentiation keratinocyte

Development Melanocyte development and pigmentation melanocyte

Cardiac development BMP-TGF beta signaling cardiac-BMP

Cardiac development FGF-ErbB signaling cardiac-FGF

Cardiac development Role of NADPH oxidase and ROS cardiac-NADPH

Cardiac development Wnt-beta-catenin, Notch, VEGF, IP3 and integrin signal-

ing

cardiac-Wnt

Development Hemopoiesis, Erythropoietin pathway hemopoiesis

Development Skeletal muscle development muscle

Development ERK5 in cell proliferation and neuronal survival ERK5

Development Neurogenesis in general neurogenesis

Development Neurogenesis-Axonal guidance axonal

Development Neurogenesis-Synaptogenesis synaptogenesis

Development Neuromuscular junction neuromuscular

Development Ossification and bone remodeling ossification
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Table 7.2: Signalling interactions manually removed from the signalling network after literature review

from to Effect Mechanism
ADAM17 ErbB4 = ErbB4(CTF) Activation Cleavage
gamma-Secretase complex ErbB4(CTF) = ErbB4(ICD) Activation Cleavage
AKT(PKB) SMAD7 Inhibition Binding
TGF-beta receptor type I SMAD7 Activation Binding
SNAIL1 ID1 Activation Binding
SMAD4 BRG1 Activation Binding
ESR1 (nuclear) PPAR-gamma Inhibition Binding
PPAR-gamma STAT3 Inhibition Binding
SMAD3 MYOG Inhibition Binding
PKC-alpha PPAR-alpha Inhibition Phosphorylation
SMAD4 HNF4-alpha Activation Binding
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Table 7.3: List of datasets analysed bu INCanTeSIMO. Type is either cm = datasets extracted from
ConnectivityMap build 02 (Lamb et al. 2006), ae = datasets manually extracted from ArrayExpress
corresponding to cell state transitions, pp = datasets for which phosphoproteomics data was available,
or cf = datasets corresponding to cell fate transitions. Subfix is the internal subfix used for analysis. t =
time after perturbation (h). NP = number of direct perturbation targets present in the signalling network.
BR = ranking obtained by the best of them, NS = number of signalling molecules selected at 6% of the
maximum rank (number of candidate molecules), success = correct prediction of any perturbation
target among the selected candidates (T=true,F=false), NC = number of correctly predicted direct
perturbation targets.

Type GEO id perturbation t cell type array platform NP BR NS successNC

cm valproic acid 6 MCF7 HG-U133A 12 685 299 F 0

cm alpha-estradiol 6 MCF7 HG-U133A 40 20 308 T 1

cm tamoxifen 6 MCF7 HG-U133A 41 13 272 T 6

cm dexverapamil 6 MCF7 HG-U133A 8 316 233 F 0

cm sulindac 6 MCF7 HG-U133A 13 282 252 F 0

cm tacrolimus 6 MCF7 HG-U133A 20 25 320 T 1

cm rofecoxib 6 MCF7 HG-U133A 7 9 350 T 1

cm celecoxib 6 MCF7 HG-U133A 4 74 299 T 1

cm SC-58125 6 MCF7 HG-U133A 3 268 293 F 0

cm tanespimycin 6 MCF7 HG-U133A 18 84 317 T 2

cm rofecoxib 6 MCF7 HG-U133A 7 159 254 T 1

cm indometacin 6 MCF7 HG-U133A 50 115 257 T 2

cm prednisolone 6 MCF7 HG-U133A 37 88 305 T 1

cm thalidomide 6 MCF7 HG-U133A 9 151 278 T 1

cm genistein 6 MCF7 HG-U133A 22 43 387 T 1

cm genistein 6 MCF7 HG-U133A 22 10 267 T 3

cm fludrocortisone 6 MCF7 HG-U133A 2 158 257 T 1

cm NU-1025 6 MCF7 HG-U133A 7 129 281 T 1

cm acetylsalicylic acid 6 MCF7 HG-U133A 34 195 196 F 0

cm LY-294002 6 MCF7 HG-U133A 22 13 253 T 5

cm sirolimus 6 MCF7 HG-U133A 19 110 300 T 1

cm LY-294002 6 MCF7 HG-U133A 22 38 311 T 5

cm trichostatin A 6 MCF7 HG-U133A 18 23 236 T 3

cm trichostatin A 6 MCF7 HG-U133A 18 86 287 T 1
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cm diclofenac 6 MCF7 HG-U133A 18 284 294 F 0

cm nifedipine 6 MCF7 HG-U133A 6 123 293 T 1

cm felodipine 6 MCF7 HG-U133A 5 318 273 F 0

cm valproic acid 6 MCF7 HG-U133A 12 6 292 T 1

cm valproic acid 6 MCF7 HG-U133A 12 39 356 T 1

cm valproic acid 6 MCF7 HG-U133A 12 79 275 T 1

cm LY-294002 6 HL60 HG-U133A 22 2 312 T 2

cm sirolimus 6 HL60 HG-U133A 19 32 301 T 2

cm fulvestrant 6 MCF7 HG-U133A 7 198 356 F 0

cm rosiglitazone 6 HL60 HG-U133A 15 330 280 F 0

cm troglitazone 6 HL60 HG-U133A 6 143 288 T 1

cm raloxifene 6 ssMCF7 HG-U133A 39 86 295 T 1

cm tamoxifen 6 MCF7 HG-U133A 41 136 330 T 1

cm tanespimycin 6 MCF7 HG-U133A 18 114 274 T 2

cm genistein 6 MCF7 HG-U133A 22 84 293 T 1

cm raloxifene 6 HL60 HG-U133A 39 163 357 T 1

cm wortmannin 6 HL60 HG-U133A 28 320 371 F 0

cm sirolimus 6 ssMCF7 HG-U133A 19 67 402 T 2

cm alpha-estradiol 6 ssMCF7 HG-U133A 40 27 262 T 1

cm wortmannin 6 ssMCF7 HG-U133A 28 44 292 T 3

cm valproic acid 6 HL60 HG-U133A 12 99 343 T 1

cm nordihydroguaiaretic

acid

6 ssMCF7 HG-U133A 3 866 298 F 0

cm thioridazine 6 MCF7 HG-U133A 26 130 268 T 1

cm haloperidol 6 MCF7 HG-U133A 36 69 333 T 5

cm tanespimycin 6 MCF7 HG-U133A 18 6 328 T 2

cm LY-294002 6 PC3 HG-U133A 22 36 283 T 3

cm rosiglitazone 6 PC3 HG-U133A 15 49 374 T 1

cm troglitazone 6 PC3 HG-U133A 6 142 390 T 1

cm tanespimycin 6 PC3 HG-U133A 18 1 336 T 1
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cm arachidonic acid 6 MCF7 HG-U133A 10 1 228 T 2

cm oligomycin 6 MCF7 HG-U133A 2 1137 327 F 0

cm arachidonic acid 6 MCF7 HG-U133A 10 120 225 T 1

cm trichostatin A 6 PC3 HG-U133A 18 6 240 T 1

cm monorden 6 PC3 HG-U133A 12 27 239 T 1

cm tanespimycin 6 PC3 HG-U133A 18 2 282 T 3

cm indometacin 6 PC3 HG-U133A 50 3 350 T 5

cm prochlorperazine 6 MCF7 HG-U133A 19 7 238 T 3

cm valproic acid 6 PC3 HG-U133A 12 44 294 T 1

cm LY-294002 6 PC3 HG-U133A 22 77 268 T 1

cm troglitazone 6 PC3 HG-U133A 6 13 269 T 1

cm monorden 6 PC3 HG-U133A 12 34 210 T 3

cm fluphenazine 6 MCF7 HG-U133A 21 13 314 T 2

cm iloprost 6 SKMEL5 HG-U133A 9 62 261 T 1

cm LY-294002 6 SKMEL5 HG-U133A 22 149 476 T 1

cm SC-58125 6 SKMEL5 HG-U133A 3 313 237 F 0

cm tanespimycin 6 ssMCF7 HG-U133A 18 113 288 T 1

cm nordihydroguaiaretic

acid

6 ssMCF7 HG-U133A 3 153 322 T 1

cm geldanamycin 6 MCF7 HG-U133A 7 163 264 F 0

cm resveratrol 6 MCF7 HG-U133A 49 56 288 T 6

cm thalidomide 6 MCF7 HG-U133A 9 125 279 T 1

cm NU-1025 6 MCF7 HG-U133A 7 82 253 T 1

cm geldanamycin 6 MCF7 HG-U133A 7 44 357 T 2

cm pentamidine 6 MCF7 HG-U133A 4 843 279 F 0

cm resveratrol 6 PC3 HG-U133A 49 85 230 T 2

cm alpha-estradiol 6 PC3 HG-U133A 40 172 250 F 0

cm genistein 6 PC3 HG-U133A 22 152 240 F 0

cm fulvestrant 6 PC3 HG-U133A 7 127 395 T 2

cm alpha-estradiol 6 MCF7 HG-U133A 40 3 270 T 2
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cm colforsin 6 HL60 HG-U133A 30 203 204 F 0

cm naltrexone 6 HL60 HG-U133A 4 1245 358 F 0

cm astemizole 6 HL60 HG-U133A 13 191 306 F 0

cm gallamine triethio-

dide

6 HL60 HG-U133A 9 429 345 F 0

cm nomifensine 6 HL60 HG-U133A 6 229 296 F 0

cm nalbuphine 6 HL60 HG-U133A 6 1844 298 F 0

cm spironolactone 6 HL60 HG-U133A 4 444 356 F 0

cm terfenadine 6 HL60 HG-U133A 5 134 297 T 1

cm mianserin 6 HL60 HG-U133A 24 244 287 F 0

cm pirenzepine 6 HL60 HG-U133A 7 269 342 F 0

cm thioproperazine 6 HL60 HG-U133A 8 1335 307 F 0

cm pindolol 6 HL60 HG-U133A 6 586 335 F 0

cm trichostatin A 6 HL60 HG-U133A 18 94 323 T 1

cm thalidomide 6 HL60 HG-U133A 9 843 306 F 0

cm tiratricol 6 HL60 HG-U133A 38 158 350 T 1

cm tranylcypromine 6 HL60 HG-U133A 2 Inf 304 F 0

cm flufenamic acid 6 HL60 HG-U133A 10 23 329 T 2

cm trichostatin A 6 HL60 HG-U133A 18 106 285 T 4

cm xylometazoline 6 HL60 HG-U133A 10 436 330 F 0

cm nimesulide 6 HL60 HG-U133A 5 525 310 F 0

cm oxymetazoline 6 HL60 HG-U133A 14 356 293 F 0

cm tolfenamic acid 6 HL60 HG-U133A 2 736 303 F 0

cm labetalol 6 HL60 HG-U133A 15 24 263 T 1

cm oxybutynin 6 HL60 HG-U133A 6 21 347 T 1

cm clonidine 6 HL60 HG-U133A 9 507 252 F 0

cm cinnarizine 6 HL60 HG-U133A 14 157 370 T 2

cm spiperone 6 HL60 HG-U133A 18 151 358 T 1

cm trichostatin A 6 HL60 HG-U133A 18 235 316 F 0

cm pimozide 6 HL60 HG-U133A 22 311 353 F 0
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cm mepacrine 6 HL60 HG-U133A 3 808 315 F 0

cm clomipramine 6 HL60 HG-U133A 20 325 308 F 0

cm mifepristone 6 HL60 HG-U133A 37 218 271 F 0

cm alprenolol 6 HL60 HG-U133A 14 4 316 T 1

cm fluphenazine 6 HL60 HG-U133A 21 144 338 T 1

cm ketotifen 6 HL60 HG-U133A 5 62 337 T 1

cm methapyrilene 6 HL60 HG-U133A 5 48 354 T 2

cm dobutamine 6 HL60 HG-U133A 16 36 311 T 3

cm betamethasone 6 HL60 HG-U133A 39 54 301 T 1

cm ketanserin 6 HL60 HG-U133A 12 8 365 T 2

cm zidovudine 6 HL60 HG-U133A 11 11 366 T 1

cm desipramine 6 HL60 HG-U133A 18 437 302 F 0

cm hemicholinium 6 HL60 HG-U133A 4 507 280 F 0

cm phenylpropanolamine 6 HL60 HG-U133A 8 461 284 F 0

cm metergoline 6 HL60 HG-U133A 20 42 297 T 1

cm clenbuterol 6 HL60 HG-U133A 10 219 299 F 0

cm maprotiline 6 HL60 HG-U133A 13 73 370 T 2

cm dosulepin 6 HL60 HG-U133A 6 732 271 F 0

cm resveratrol 6 HL60 HG-U133A 49 15 283 T 3

cm budesonide 6 HL60 HG-U133A 7 82 318 T 1

cm chloroquine 6 HL60 HG-U133A 4 731 278 F 0

cm bromperidol 6 HL60 HG-U133A 5 179 326 T 1

cm etamivan 6 HL60 HG-U133A 8 38 358 T 2

cm cyclizine 6 HL60 HG-U133A 5 245 295 F 0

cm trichostatin A 6 HL60 HG-U133A 18 7 288 T 5

cm tubocurarine chlo-

ride

6 HL60 HG-U133A 28 121 301 T 1

cm dihydroergocristine 6 HL60 HG-U133A 20 1198 306 F 0

cm papaverine 6 HL60 HG-U133A 9 389 324 F 0

cm tetrahydroalstonine 6 HL60 HG-U133A 4 913 343 F 0
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cm harmine 6 HL60 HG-U133A 16 7 278 T 1

cm cytisine 6 HL60 HG-U133A 26 287 362 F 0

cm atropine 6 HL60 HG-U133A 17 30 307 T 2

cm physostigmine 6 HL60 HG-U133A 11 1637 257 F 0

cm berberine 6 HL60 HG-U133A 11 488 317 F 0

cm trichostatin A 6 HL60 HG-U133A 18 65 333 T 4

cm quipazine 6 HL60 HG-U133A 35 472 253 F 0

cm sulfathiazole 6 PC3 HG-U133A 2 1053 303 F 0

cm amiloride 6 PC3 HG-U133A 5 250 366 F 0

cm trichostatin A 6 PC3 HG-U133A 18 153 343 T 1

cm levodopa 6 PC3 HG-U133A 3 649 271 F 0

cm thioridazine 6 PC3 HG-U133A 30 92 330 T 7

cm captopril 6 PC3 HG-U133A 17 210 344 F 0

cm diflunisal 6 PC3 HG-U133A 1 Inf 416 F 0

cm lidocaine 6 PC3 HG-U133A 16 1 256 T 2

cm naloxone 6 PC3 HG-U133A 13 300 289 F 0

cm bromocriptine 6 PC3 HG-U133A 12 41 252 T 4

cm amoxapine 6 PC3 HG-U133A 12 17 219 T 2

cm dipyridamole 6 PC3 HG-U133A 3 504 314 F 0

cm edrophonium chlo-

ride

6 PC3 HG-U133A 2 740 329 F 0

cm cyproheptadine 6 PC3 HG-U133A 21 41 293 T 2

cm ciprofloxacin 6 PC3 HG-U133A 14 53 286 T 2

cm famotidine 6 PC3 HG-U133A 2 46 313 T 1

cm loperamide 6 PC3 HG-U133A 28 266 286 F 0

cm trichostatin A 6 PC3 HG-U133A 18 65 284 T 5

cm danazol 6 PC3 HG-U133A 9 50 350 T 1

cm perphenazine 6 PC3 HG-U133A 19 8 353 T 3

cm paclitaxel 6 PC3 HG-U133A 9 1118 332 F 0

cm lisuride 6 PC3 HG-U133A 25 57 220 T 1
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cm sulfathiazole 6 HL60 HG-U133A 2 2127 304 F 0

cm sulpiride 6 HL60 HG-U133A 5 614 279 F 0

cm amiloride 6 HL60 HG-U133A 5 297 319 F 0

cm pyrimethamine 6 HL60 HG-U133A 4 777 329 F 0

cm dicycloverine 6 HL60 HG-U133A 6 106 323 T 1

cm thioridazine 6 HL60 HG-U133A 30 90 353 T 1

cm captopril 6 HL60 HG-U133A 17 2 318 T 1

cm diflunisal 6 HL60 HG-U133A 1 Inf 339 F 0

cm apomorphine 6 HL60 HG-U133A 16 29 342 T 1

cm naloxone 6 HL60 HG-U133A 13 321 283 F 0

cm bromocriptine 6 HL60 HG-U133A 12 17 247 T 1

cm amoxapine 6 HL60 HG-U133A 12 233 279 F 0

cm loxapine 6 HL60 HG-U133A 24 267 320 F 0

cm dipyridamole 6 HL60 HG-U133A 3 803 308 F 0

cm edrophonium chlo-

ride

6 HL60 HG-U133A 2 906 335 F 0

cm ciprofloxacin 6 HL60 HG-U133A 14 308 342 F 0

cm famotidine 6 HL60 HG-U133A 2 64 381 T 1

cm loperamide 6 HL60 HG-U133A 28 493 346 F 0

cm trichostatin A 6 HL60 HG-U133A 18 118 324 T 3

cm haloperidol 6 HL60 HG-U133A 36 61 262 T 3

cm perphenazine 6 HL60 HG-U133A 19 182 287 F 0

cm methotrexate 6 HL60 HG-U133A 2 42 266 T 1

cm paclitaxel 6 HL60 HG-U133A 9 1215 278 F 0

cm lisuride 6 HL60 HG-U133A 25 30 264 T 4

ae GSE10778 VEGF 1 HUVEC HG-U133A 7 268 272 F 0

ae GSE10778 EGF 1 HUVEC HG-U133A 11 356 311 F 0

ae GSE11367 IL-17 6 VSMC HG-U133 Plus 2 1 47 401 T 1

ae GSE14419 ZymosanA 3 macrophage HG-U133A 2 2 171 292 T 1
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ae GSE30242 mometasone

furoate

6 lung fibroblast HG-U133A 3 83 273 T 1

ae GSE35830 TGF-B3 10 Ect1 ectocervical ep-

ithelial cell

HG-U133 Plus 2 6 2 408 T 2

ae GSE27313 Wnt3a 6 MSC HG-U133 Plus 2 4 118 282 T 1

ae GSE16450 IFN-a 6 BE(2)-C HG-U133 Plus 2 2 97 243 T 1

ae GSE41683 dexamethasone 24 preadipocytes HuGene-1 0-st 4 785 339 F 0

ae GSE32217 EGF 48 keratinocyte HuGene-1 0-st 11 425 262 F 0

pp GSE6462 EGF 6 MCF7 HG-U133A 2 11 91 357 T 2

pp GSE6783 EGF 8 HeLa HG-U133A 11 142 325 T 2

pp GSE11710 TGF-B 6 HaCaT HG-U133 Plus 2 15 72 308 T 1

pp GSE18232 cobimetinib 48 HCT116 HG-U133A 2 1214 289 F 0

pp GSE11506 estradiol 3 MCF7 HG-U133 Plus 2 7 78 331 T 1

pp GSE6521 PD-168393 1 MCF7 HG-U133 Plus 2 3 130 334 T 1

cf GSE10315 BMP2 24 MSC HG-U133 Plus 2 19 10 396 T 5

cf GSE10315 BMP2 504 MSC HG-U133 Plus 2 19 374 306 F 0

cf GSE10315 TGF-B3 24 MSC HG-U133 Plus 2 6 38 402 T 1

cf GSE10315 TGF-B3 504 MSC HG-U133 Plus 2 6 21 345 T 1

cf GSE31283 valproic acid 48 HSC HG-U133A 12 5 227 T 2

cf GSE19393 dexamethasone 48 preadipocytes HG-U133 Plus 2 4 93 356 T 1

cf GSE19393 dexamethasone 48 preadipocytes HG-U133 Plus 2 4 255 362 F 0

cf GSE6460 FGF2 168 MSC HG-U133 Plus 2 12 25 322 T 2

cf GSE6460 TGF-B 168 MSC HG-U133 Plus 2 15 171 259 T 1

cf GSE32217 EGF 48 keratinocyte HuGene-1 0-st 11 1 252 T 2

cf GSE39157 cAMP - hepatoblast HuGene-1 0-st 10 143 272 T 1

cf GSE16910 activin A - hES-T3 HG-U133 Plus 2 10 86 422 T 1

cf GSE16910 activin A - hES-T3 HG-U133 Plus 2 10 15 354 T 3

cf GSE57032 R848 168 mMDSC OpArray Human

35K

2 2358 311 F 0

cf GSE57032 PAM3 168 mMDSC OpArray Human

35K

3 78 329 T 1
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cf GSE51398 inhibition of Atoh - ISC Mouse430A 2 9 529 370 F 0

cf GSE51398 dibenzazepine - ISC Mouse430A 2 10 56 359 T 1

cf GSE98147 CHIR99021 - dermomyotome HuGene-1 0-st 2 641 306 F 0

cf GSE69924 SB-431542 576 MEF Mouse430 2 4 1421 372 F 0
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Table 7.4: Signalling molecules predicted for the reversal of the cirrhotic state in rat liver. The molecules
obtaining rank up to 50 across correlation-based and length-based predictions are reported.

Signalling molecule Rank Gene symbols Receptor

NFYA 1 NFYA

ESR2 1 ESR2 yes

ADA3-like protein 1 TADA3

AHR 1 AHR yes

MMP-26 inh 1 MMP26

CHIP inh 1 STUB1

c-Jun/c-Fos inh 6 FOS;JUN

CBP inh 7 CREBBP

IFN-alpha inh 7 IFNA1;IFNA10;IFNA13;IFNA14;IFNA16;

IFNA17;IFNA2;IFNA21;IFNA4;

IFNA5;IFNA6;IFNA7;IFNA8

CIITA 8 CIITA

p90Rsk 8 RPS6KA1;RPS6KA2;RPS6KA3

NALP12 8 NLRP12

Somatotropin inh 9 GH1

MDM2 inh 10 MDM2

IRF1 inh 10 IRF1

Pitx2 inh 11 PITX2

SAP inh 11 SH2D1A

CD86 12 CD86 yes

CTLA-4 12 CTLA4

IL-2R beta chain inh 12 IL2RB yes

AP1G1 inh 12 AP1G1

AP-1 beta subunit inh 12 AP1B1

AP complex 2 medium (mu)

chain inh

12 AP2M1

AP1M1 inh 12 AP1M1

Beta-adaptin 2 inh 12 AP2B1
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IFN-beta inh 13 IFNB1

p53 14 TP53

Prolactin inh 15 PRL

SDF-1 inh 16 CXCL12

Endothelin-1 inh 17 EDN1

ECE2 inh 17 ECE2

p70 S6 kinase2 19 RPS6KB2

IRS-1 inh 19 IRS1 yes

MMP-2 inh 19 MMP2

TIMP1 20 TIMP1

ClO(’-) intracellular inh 21

TIRAP (Mal) inh 21 TIRAP yes

Androgen receptor 22 AR yes

ADAR1 22 ADAR

double-stranded RNA inh 22

GHR inh 23 GHR yes

TIE2 24 TEK yes

L-Carnitine cytoplasm 24

Glucocorticoids intracellular 24

Angiopoietin 3 inh 24 ANGPTL1

VEGF-A 26 VEGFA

MMP-19 26 MMP19

PTP-1B 26 PTPN1 yes

NPX1 26 NPTX1

Matrilysin (MMP-7) 26 MMP7

IGFBP7/8 inh 26 CTGF;IGFBP7

Pleiotrophin (OSF1) inh 26 PTN

Thrombopoietin inh 27 THPO

C/EBPbeta inh 30 CEBPB

IL-22RA2 31 IL22RA2 yes
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IL-22 inh 31 IL22

Angiopoietin 1 32 ANGPT1

Angiopoietin 4 32 ANGPT4

Angiopoietin 2 inh 32 ANGPT2

C1q 33 C1QA;C1QB;C1QC

Calreticulin inh 33 CALR

N-Acetyl-D-glucosamine intracel-

lular inh

33

MBL2 inh 33 MBL2

D-Mannose extracellular re-

gion inh

33

C4BP alpha inh 33 C4BPA

C1qRp inh 33 CD93 yes

PKC-beta 35 PRKCB

ACES 35 ACHE

COLQ 35 COLQ

Adenosine A2a receptor inh 38 ADORA2A yes

p120GAP 39 RASA1

GM-CSF receptor inh 40 CSF2RA;CSF2RB yes

c-MPL inh 40 MPL yes

FGF1 inh 40 FGF1

Heparin extracellular region inh 40

IL-3 receptor inh 40 CSF2RB;IL3RA yes

M-CSF receptor inh 43 CSF1R yes

IL-3 inh 43 IL3

IFN-kappa inh 44 IFNK

IFN-alpha/beta receptor inh 44 IFNAR1;IFNAR2 yes

IFN-omega inh 44 IFNW1

CSF1 inh 44 CSF1

ICAM3 45 ICAM3
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GATA-4 46 GATA4

IL-15 inh 47 IL15

IMP extracellular region inh 47

Detralfate extracellular region inh 47

JAB1 inh 48 COPS5

CISH 49 CISH

ULBP2 inh 49 ULBP2

RAET1G inh 49 RAET1G

ICOS-L inh 49 ICOSLG;LOC102723996

RAET1E inh 49 RAET1E

Prolactin receptor inh 50 PRLR yes

Lactogen inh 50 CSH2
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