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Abstract

During experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis

associated with blood-brain barrier (BBB) disruption, oligodendrocyte precursor cells

(OPCs) overexpress proteoglycan nerve/glial antigen 2 (NG2), proliferate, and make con-

tacts with the microvessel wall. To explore whether OPCs may actually be recruited within

the neurovascular unit (NVU), de facto intervening in its cellular and molecular composition,

we quantified by immunoconfocal morphometry the presence of OPCs in contact with brain

microvessels, during postnatal cerebral cortex vascularization at postnatal day 6, in wild-

type (WT) and NG2 knock-out (NG2KO) mice, and in the cortex of adult naïve and EAE-

affected WT and NG2KO mice. As observed in WT mice during postnatal development, a

higher number of juxtavascular and perivascular OPCs was revealed in adult WT mice dur-

ing EAE compared to adult naïve WT mice. In EAE-affected mice, OPCs were mostly asso-

ciated with microvessels that showed altered claudin-5 and occludin tight junction (TJ)

staining patterns and barrier leakage. In contrast, EAE-affected NG2KO mice, which did not

show any significant increase in vessel-associated OPCs, seemed to retain better pre-

served TJs and BBB integrity. As expected, absence of NG2, in both OPCs and pericytes,

led to a reduced content of vessel basal lamina molecules, laminin, collagen VI, and colla-

gen IV. In addition, analysis of the major ligand/receptor systems known to promote OPC

proliferation and migration indicated that vascular endothelial growth factor A (VEGF-A),

platelet-derived growth factor-AA (PDGF-AA), and the transforming growth factor-β (TGF-

β) were the molecules most likely involved in proliferation and recruitment of vascular OPCs

during EAE. These results were confirmed by real time-PCR that showed Fgf2, Pdgfa and

Tgfb expression on isolated cerebral cortex microvessels and by dual RNAscope-immuno-

histochemistry/in situ hybridization (IHC/ISH), which detected Vegfa and Vegfr2 transcripts
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on cerebral cortex sections. Overall, this study suggests that vascular OPCs, in virtue of

their developmental arrangement and response to neuroinflammation and growth factors,

could be integrated among the classical NVU cell components. Moreover, the synchronized

activation of vascular OPCs and pericytes during both BBB development and dysfunction,

points to NG2 as a key regulator of vascular interactions.

Introduction

Oligodendrocyte precursor cells (OPCs) are proliferating elements of the oligodendroglia lineage

that remain in the adult brain at the end of oligodendrogenesis as a unique type of potentially

self-renewing glia and generate oligodendrocytes throughout life [1, 2]. Similarly to what occurs

during central nervous system (CNS) development, in adult CNS, OPCs express high levels of

nerve/glial antigen 2 (NG2) chondroitin sulfate proteoglycan 4 constitutively, and are often indi-

cated as NG2-glia, the two terms being interchangeable in the literature [3]. OPCs/NG2-glia are

the fourth glial type in adult CNS, making up 5–8% of the total glia in grey and white matter,

where these cells develop functional relations at synapses and Ranvier’s nodes [4, 5]. After myelin

damage due to white matter traumatic injury or neuroinflammation, OPCs/NG2-glia reload a

proliferative phenotype and differentiate, becoming a potential source for replacement of degen-

erating oligodendrocytes [6–9]. As described previously in cerebral cortex of mice affected with

experimental autoimmune encephalomyelitis (EAE), OPCs proliferate during EAE and are pres-

ent in close vicinity to damaged blood-brain barrier (BBB) microvessels [10]. The same model of

EAE repeated in NG2 knock-out mice leads to a milder disease characterized by a less inflamma-

tory profile of pathogenic Th1 lymphocytes, reduced inflammatory infiltrate, and preserved BBB

function [11]. Overall, these data suggest that if vascular OPCs are actually members of the neu-

rovascular unit (NVU), they could be involved in the alteration of BBB function during neuroin-

flammation, and NG2 could interact with endothelial cells engaging the tight junctions (TJs) in

the disease response. This idea is supported by recent data on OPC/vessel mutual relationships

[12, 13] and by growing evidence of the importance of NG2 proteoglycan molecular interactions

and biological functions [14, 15]. During neurohistogenesis, OPCs migrate along brain micro-

vessels according to their tissue fate map [12], and are involved in vessel sprouting, as well as in

the establishment of a proper brain vascular network [13]. The structure of NG2, as a type 1 inte-

gral membrane glycoprotein, enables it to work in a cis modality as a self-sensor/transducer,

which interacts through the cytoplasmic PDZ (PSD-95, DISC-large, ZO-1)-binding domain with

scaffolding proteins to control cell migration, but also as a non-self-regulator through trans inter-

actions with the accompanying cells established by its extracellular domain [16, 17]. NG2 trans
activity has been extensively studied in the vascular system, where the proteoglycan, expressed by

immature pericytes, influences endothelial cell adhesion, spreading and migration [16]. In this

study, we used immunoconfocal morphometry and TJ protein immunohistochemistry to quan-

tify vascular OPCs/NG2-glia (hereinafter referred to as OPCs) and investigate whether a vascular

contingent of NG2-bearing OPCs may contribute to TJ organization in the cerebral cortex of

developing and adult naïve wild-type (WT) and NG2 knock-out (NG2KO) mice, as well as after

EAE induction in WT and NG2KO mice. The expression of the growth factors revealed by

immunohistochemistry was also analysed by real time-PCR on isolated cortex microvessels and

by dual RNAscope immunohistochemistry/in situ hybridization (IHC/ISH) on cortex section

from EAE-affected WT mice. The results demonstrate that OPCs are a dynamic, integral cell

component of the developing and adult NVU, and support the hypothesis of NG2 as the mole-

cule involved in TJ regulation during BBB development and dysfunction.

OPCs in neurovascular unit
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Materials and methods

Mice

Wild-type (WT) C57Bl/6J mice were purchased from Harlan (Bresso, Italy). The NG2KO

mice were obtained, monitored regularly for the insertion leading to NG2 gene disruption,

and maintained as described in detail previously [11]. All applicable international, national,

and/or institutional guidelines for the care and use of animals were followed (Italian Law

Decree 4 March 2014, n. 26, legislative transposition of Directive 2010/63/EU of the European

Parliament and of the Council of 22 September 2010 on the protection of animals used for sci-

entific purposes). The research protocol was approved by the Ethics Committee for Animal

Experimentation of the University of Genoa, Italy.

EAE induction

Chronic EAE was induced by active immunization with myelin oligodendrocyte glycoprotein

peptide spanning amino acids 35–55 in female WT and NG2KO mice (8 weeks of age, weigh-

ing 18.5 ± 1.5 g) and mice were monitored for clinical manifestations as described in detail

previously [18]. Mice were sacrificed by gradual-fill CO2 exposure at P76 and P96, i.e. 20 and

40 days post-immunization (dpi), respectively. A score of 4 or a 25% weight loss is considered

to be a humane endpoint and our animal ethical policy in these cases is euthanasia. However,

the protocol followed in this study for EAE induction rarely, if ever, reaches a score of 4 in our

hands. Actual induction of EAE by subcutaneous immunization in the flanks does not result

in pain or specific discomfort or distress for the mice. There are no obvious manifestations of

pain in mice affected with EAE, which, despite hind-limb paralysis at the highest score toler-

ated, are still active. Pain cannot be excluded, however, as neuropathic pain is reported by 60–

70% of patients with multiple sclerosis. Nevertheless, the use of anti-inflammatory and analge-

sic agents is not recommended in EAE as it modulates the disease course and immunological

status of the mice.

Immunohistochemistry

WT and NG2KO mice at postnatal day 6 (P6), and adult naïve and EAE-affected WT and

NG2KO mice at 20 and 40 dpi, were transcardially perfused with 100–150 ml of 2% parafor-

maldehyde (PFA) and 0.2% glutaraldehyde PBS solution, under deep anaesthesia (ketamine/

xylazine cocktail, 90 mg and 4.5 mg/kg, respectively) by intraperitoneal injection. Whole

brains were removed and post-fixed by immersion in the same fixative at 4˚C for 4 h, washed

in PBS overnight at 4˚C, and stored in 0.02% PFA in PBS at 4˚C. Using a vibrating microtome

(Leica Microsystem), serial sagittal sections (30/35-μm thick) evenly spaced at 200 μm inter-

vals, were cut from each hemisphere to allow the analysis of the entire antero-posterior exten-

sion of the cerebral cortex. The sections, in a range of 60 to 120 sections/hemisphere, were

stored in a multiwell archive as free-floating sections in PBS at 4˚C. The archived sections

were submitted to immunostaining to ascertain the presence of demyelinating lesions, and the

adjacent sections were then utilized for confocal morphometry (see for details [6]). Briefly,

after permeabilization (0.5% Triton X-100 in PBS), free-floating sections were incubated with

single or combined primary antibodies, overnight at 4˚C, and with appropriate secondary anti-

bodies (Table 1), for 45 min at RT, and then counterstained with TO-PRO-3 diluted 1:10k in

PBS (Invitrogen). Finally, the sections were collected on Vectabond treated slides (Vector) and

coverslipped with Vectashield (Vector). Negative controls were prepared by omitting the pri-

mary antibodies and mismatching the secondary antibodies. Sections were examined under

Leica TCS SP5 confocal laser scanning microscope (Leica Microsystems) using a sequential

OPCs in neurovascular unit
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scan procedure. Confocal images were taken at 0.35 μm intervals through the z-, x-, and y-axes

of the section, with 40x and 63x oil lenses.

FITC-dextran experiments

A solution of heparin (100 Units/kg) containing Fluorescein isothiocyanate–dextran 70-kDa

(5 mg/ml; FITC-dextran 70, Sigma-Aldrich), as a fluorescent probe to evaluate BBB-endothe-

lial cell permeability, was injected into the tail vein of adult naïve, WT (n = 5) and NG2KO

(n = 5) mice, and EAE-affected mice, WT (n = 5) and NG2KO (n = 5). Four minutes after the

end of the injection, the mice were anesthetized, and brains were collected and fixed in 2%

paraformaldehyde and 0.2% glutaraldehyde in PBS solution. 30/35-μm-thick sections were

Table 1. List of primary and secondary antibodies (Abs) used in immunohistochemistry and immunoconfocal morphometry.

Primary Abs Host IgG Concentration

(μg/μl)

Supplier Catalogue No

CD45 Rat IgG2 1 Novus Biological NB110-93609

Iba1 Gt IgG 5 Abcam ab5076

NG2 RbIgG 5.5 Millipore AB5320

GFAP Mo IgG1 6,7 V.B. Novocastra NCL-GFAP-GA5

CD31 Rb IgG 0.6 Abcam ab28364

PDGFRα Rat IgG2ak 7.1 Millipore CBL1366

PDGFRβ Mo IgG2a 1.0 Calbiochem GR23L

CD13 FITC Rat IgG 10.0 BD Pharmigen 558744

Claudin-5 Mo IgG1 16,6 Thermo Fisher 18–7364 4C3C2

Occludin Rb IgG 5.0 Thermo Fisher 71–1500

Laminin Rb IgG 3.3 Sigma L9393

Collagen type VI Rb IgG 10.0 Abcam ab6588

Collagen type IV Rb IgG 12.5 Acris R1041

VEGF-A Rb IgG 1,4 Immunological Science AB90040

VEGFR2 Rb IgG NA NovusBiologicals NB100-627

FGF2 Rb IgG 11.1 Santa Cruz Biotecnology sc-79

FGFR1 Rb IgG 0.7 Santa Cruz Biotecnology sc-121

PDGF-AA Rb IgG 25.0 Abcam ab125268

TGF-β Mo IgG1 2.5 Chemicon MAB1032

Secondary Abs and reagents Concentration (μg/μl) Supplier Catalogue No

Goat anti mouse IgG1 Alexa 568 6.6 ThermoFisher A21124

Goat anti mouse IgG1 Alexa 633 6.6 Invitrogen A21126

Goat anti rat Alexa 555 2.5 Invitrogen A21434

Donkey anti goat Alexa 568 6.6 Invitrogen A11057

Goat anti mouse IgG2a Alexa 633 6.6 ThermoFisher A21136

Goat anti-rabbit Alexa 488 6.6 Invitrogen A11070

Goat anti mouse IgG1Alexa 488 6.6 Invitrogen A11001

Goat anti mouse IgG2a Alexa 488 6.6 ThermoFisher A21131

Goat anti-rabbit Alexa 568 6.6 Invitrogen A11011

Biotinylated goat-anti rabbit 3.75 Vector BA-1000

Streptavidin-Alexa 488 6.6 Invitrogen S-11223

Streptavidin-Alexa 555 6.6 Invitrogen S-21381

NA not available

https://doi.org/10.1371/journal.pone.0213508.t001
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immunolabelled with antibody anti-PDGFRα (Table 1), as described above, counterstained

with TO-PRO-3 and analyzed by confocal laser microscopy.

Laser confocal microscopy morphometry

Quantitative assessment was carried out on 4 sections per brain from WT (n = 4) and NG2KO

(n = 4) mice at P6, and from EAE-affected WT (at 20 dpi, n = 5, clinical score ranging from 2.5

to 3.5; at 40 dpi, n = 5, clinical score ranging from 2.5 to 3.0) and NG2KO mice (at 20 dpi,

n = 5, clinical score ranging from 1.5 to 3.0; at 40 dpi, n = 5, clinical score ranging from 1.5 to

2.0; for mean clinical scores see ref.11) and adult age-matched naïve WT (n = 5) and NG2KO

(n = 5) mice, by computer-aided morphometric analysis using the Leica Confocal Multicolor

Package (Leica Microsystems) and ImageJ (NIH) software. The microvessels included in the

morphometric analysis ranged from capillaries (4–6 μm in diameter) to small arterioles and

venules (10–20 μm in diameter). The numbers of capillary sprouting points, pericytes, and

OPCs were interactively counted (Cell counter ImageJ) and the laminin area fraction and

thickness were measured on serial 0.35 μm optical sections across 30–35 μm-thick projected

Z-stack images of randomly chosen fields (10 fields, total area = 150000 μm2 each) from nearly

identical regions of cerebral cortex (4 sections/brain). NG2+ or PDGFRα+ OPCs were catego-

rized as: perivascular (PV), with the cell body in contact with the vessel wall; juxtavascular

(JV), with cell processes in contact with the vessel wall; parenchymal (Pa), when virtually unas-

sociated with vessels (Fig 1A–1C). The accurate identification of OPCs in each of the described

categories, JV, PV, and Pa, primarily depended on the examination of single optical planes of

confocal z-stacks at intervals of 0.35 μm. The ’reference vascular volume’ for each vessel

included the surrounding tissue at a radiate distance of 15 μm from the vessel wall. The ratio-

nale for this parameter was the distance range calculated for the JV OPCs (14.67 ± 4.91 μm on

188 measurements of the minimal distance between the nuclear region of NG2+ and

PDGFRα+ JV OPC and the contact point of its process and the nearest vessel wall). The vascu-

lar volume and the corresponding value were modified only to include the JV OPC, whose

processes extend beyond the reference distance range. The density of OPCs was normalized to

Fig 1. A subpopulation of NG2+ OPCs resides on microvessels. a-c The processes of NG2+juxtavascularOPCs (JV, arrows) are in contact with the vessel wall (V). A In

particular, there is a JV OPC process crossing a GFAP+endfoot through a small hole (arrowhead). B Two NG2+ perivascular OPCs (PV; arrows) apposed on the abluminal

side of microvessels (V) with their bodies and processes projecting around the vessel wall and in the surrounding neuropil. c A representative parenchymal OPC (Pa,

arrowhead) virtually unassociated with vessels because none of its processes reaches vessel wall (V) in this image stack (20 μm-thick) is together with two JV OPCs (JV,

arrows). Scale bars, 30 μm.

https://doi.org/10.1371/journal.pone.0213508.g001
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the same cumulative vessel length (CVL = multiple of 100 μm of vessel length), excluding ves-

sels with a diameter>30 μm. The density of doublet OPCs, regarded as a sign of OPC prolifer-

ation, was normalized to either CVL (100 μm) or volume (106 μm3). NG2+ or PDGFRβ+ or

CD13+ pericytes were recognized as vessel-embracing cells, counted, and the data reported as

percentage or density (number of pericytes/CVL). We used laminin staining to detect modifi-

cations of vessel basal lamina. The laminin area fraction was measured on threshold images as

number of positive pixels on total pixel number. Laminin thickness was measured at three

points for each transverse-oriented vessel profile on single confocal optical planes. After treat-

ment of mice with the permeability marker FITC-dextran 70 kDa, leaky BBB-microvessels

were localized by fluorescent dextran extravasation and interactively counted.

Isolation of cerebral cortex vessels and real time-PCR

Brains removed from naïve WT (n = 6) and EAE-affected WT (n = 6) mice, and stored in 0.02%

PFA in PBS at 4˚C (see Immunohistochemistry section), were washed two times in PBS for 2 min

each and cerebral cortices were dissected under a stereomicroscope. The cortices from each

experimental group were then dissociated using the Adult Brain Dissociation Kit (130-107-644,

Miltenyi Biotec, Germany), optimized to obtain isolated microvessels. Briefly, small amounts of

cortex (<100 mg) were put in MACS C Tubes (130-093-237, Miltenyi Biotec) containing Enzyme

mix 1 and Enzyme mix 2. Tightly closed C Tubes were attached upside down onto the sleeve of

the gentleMACS OctoDissociator with Heaters. Samples were dissociated applying the protocol

37C_ABDK_02 optimized for vessel isolation. Then tubes were centrifuged at 2000g for 2 min

and the samples were filtered on MACS SmartStrainers 30 μm (130-098-458, Miltenyi Biotec).

Filtrates were centrifuged at 2000g for 10 min at +4˚C and pelleted blood vessels were resus-

pended in PBS in multiwell plates and stored at 4˚C until confocal immunofluorescence or real

time-PCR analysis. The whole pellet samples were processes for immunohistochemistry (see

Immunohistochemistry section) with the following Abs: anti-CD31 alone and anti-CD31 com-

bined with anti GFAP (Table 1) overnight at 4˚C, detected by appropriate fluorophore-conju-

gated secondary antibodies for 45 min at RT, and then counterstained with TO-PRO-3 diluted

1:10k in PBS (Invitrogen). Finally, the pellet samples were transferred on Vectabond treated slides

using a glass pipette and coverslipped with ProLong Diamond Antifade Mountant (Thermo

Fischer Scientific, Cat No P36961). Sections were examined under Leica TCS SP5 confocal laser

scanning microscope (Leica Microsystems) using a sequential scan procedure.

For real time-PCR, total RNA was extracted from cerebral cortex isolated microvessels,

using commercially available RecoverAll Total Nucleic Acid isolation kit (Ambion, Life Tech-

nologies, Inc., Austin, TX, USA), skipping the step of deparaffinization. RNA integrity was ver-

ified by OD260/OD280 nm measurement (absorption ratio >1.95), and 1 μg was reverse-

transcribed using iScript cDNA Synthesis Kit (Bio-Rad Laboratories, Hercules, CA, USA)

according to the manufacturer’s instructions. For the detection of Fgf2, Pdgfa and Tgfb expres-

sion, cDNA was amplified with iTaq Universal SYBR Green Supermix (Bio-Rad Laboratories,

Cat No 172–5124) and with specific Bio-Rad Prime PCR (Bio-Rad Laboratories: Fgf2, qMmu-

CID0015817; Pdgfa, qMmuCID0022342; TGF-β, qMmuCID0017320), using the Chromo4

real time-PCR Detection System (Bio-Rad Laboratories). Samples were normalized to mouse

β-Actin gene expression (qMmuCED0027505; Bio-Rad Laboratories). All the experiments

were performed in duplicate with polymerase activation for 30 sec at 95˚C, cDNA denatur-

ation for 15 sec at 95˚C, annealing and extension for 30 sec at 60˚C for 35 cycles. The melting

curve analysis was performed at 65˚-95˚C intervals with 0.5˚C temperature increases per read-

ing step. The fold-change values were calculated with the comparative Ct method (2-ΔΔCt).

Results are given as mean±SD.

OPCs in neurovascular unit
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Dual RNAscope-immunohistochemistry/in situ hybridization (IHC/ISH)

Brain sections from EAE-affected mice (n = 2) were collected from the multiwell archive of

sections (see Immunohistochemistry section) and washed four times in PBS for 10 min each.

After adhesion on polylysine slides (Menzel-Glaser, Braunschweig, Germany) by drying for

10min at RT, the sections were incubated with anti-GFAP, anti-CD31, or anti-PDFGRα pri-

mary antibodies (listed in Table 1) overnight at 4˚C, detected by Alexa 488-conjugated second-

ary antibodies for 45 min at RT, and subsequently processed for RNAscope Technology

(Advanced Cell Diagnostic, ACD, Inc.; Hayward, CA, USA) as follows: the sections were

washed three times in PBS for 10 min each, incubated in Pretreatment 1 (H2O2) for 60 min at

RT and then rinsed four times in PBS for 1min each. The sections were dried for 1 hour at RT,

then incubated in Pretreatment 2 target retrieval reagent (pre-treatment kit Cat. No 322330,

ACD) for 7 min at 99–104˚C, washed in H2O for 1min twice and then dried for 10 min at RT.

The slides were dipped in 100% ethanol (EtOH) and air-dried and the sections demarcated by

a hydrophobic fence using a ImmEdge Hydrophobic Barrier Pen (ACD, Cat. No 310018). The

hydrophobic barrier was allowed to completely dry for 1 hour at RT. Then, the sections were

incubated in Pretreatment 3 (ACD, protease, pretreatment kit Cat. No 322330) for 15min at

40˚C in the EZ Hybridization oven (ACD, Cat. No 310012) using the humidity control tray

and slide rack (ACD, Cat. No 310014) and washed four times in H2O for 1 min each. After-

wards, the sections were incubated with Vegfa (ACD, Cat. No 436961) or Vegfr2 probes

(ACD, Cat. No 414811) (4 drops/section) for 2 hours at 40˚C and then washed two times in 1x

wash buffer (ACD Cat. No 310091) for 2 min each. The following amplification (Amp) and

detection steps were performed using the RNAscope 2.5 HD Reagent Kit-RED (ACD, Cat No

322350) according to the following incubation steps: Amp1 for 30 min at 40˚C, Amp2 for 15

min at 40˚C, Amp3 for 30 min at 40˚C, Amp4 for 15min at 40˚C, Amp5 for 30 min at RT in

HybEZ humidity control tray and slide rack (ACD) to maintain humidity, Amp6 for 15 min at

RT. After each incubation step, the sections were washed twice in wash buffer for 2 min. The

ISH signal was detected by incubating the slides in a mixture of Fast-Red-A solution and Fast-

Red-B solution at a 1:60 ratio for 10 min at RT. The slides were washed in H2O twice for 2

min, counterstained with Sytox Green (diluted 1:5k in PBS for 10 min; Thermo Fisher Scien-

tific), and the sections were coverslipped with ProLong Diamond Antifade Mountant (Thermo

Fischer Scientific, Cat No P36961). Sections were examined under Leica TCS SP5 confocal

laser scanning microscope (Leica Microsystems) using a sequential scan procedure to detect

the fluorescence signal of both Alexa 488-secondary Abs and Fast-Red-A-probes.

Statistical analysis

All data, expressed as mean value ± SD (standard deviation), were statistically analyzed using

Student’s t-test, one-way ANOVA and the Bonferroni post-test (GraphPad Prism, GraphPad

Software, Inc.). Raw, numeric data utilized for statistical analysis are shown in Supporting

information (S1 Excel file). For real-time PCR analysis, the statistics were performed with two-

way ANOVA analysis and Bonferroni post-hoc tests to compare replicates using GraphPad

Prism 5.01. P<0.05 was considered as the limit for statistical significance.

Results

An in-depth analysis of vascular NG2-expressing cells by immunoconfocal

morphometry

The antibodies utilized for morphometric analysis (Table 1) included: NG2 and platelet-

derived growth factor receptor α (PDGFRα), as markers of OPCs; CD13, an aminopeptidase

OPCs in neurovascular unit
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constitutively expressed by mature pericytes; NG2 and platelet-derived growth factor receptor β
(PDGFRβ) as markers for activated pericytes; CD45 and Iba1 for revealing monocytes/macro-

phages, which in pathological contexts could transiently express NG2 [19–21]. NG2+ mono-

cytes/macrophages, associated with cortex microvessels, were rarely seen and, therefore, they

were excluded by a morphometric evaluation (S1A–S1F Fig). OPCs immunolocalized by both

NG2 and PDGFRα, were classified according to their position with regard to the vessel wall, as

perivascular (PV), when the cell body was in contact with the vessel wall and juxtavascular (JV),

when only the cell processes contacted the vessels; OPCs scattered in the cortex, and virtually

not associated with the vessel wall, were classified as parenchymal (Pa) OPCs (Fig 1A–1C).

Because quantitative evaluation of cell-vessel contacts could be impaired by technical reasons,

our morphometric analysis relied on high resolution confocal microscopy applied to vibra-

tome-cut sections (about 30–35 μm thick), to ensure a well-preserved tissue structure and orga-

nization. Each vascular field, recognized on the whole sagittal prospect of cerebral cortex, was

recorded as single optical planes at intervals of 0.35 μm and as stacks of xy planes on the z-axis

(Fig 2A–2D), xz planes through the y axis, and yz planes through the x axis (Fig 2E and 2F). To

make possible a comparative analysis, of the selected morphometric parameters between WT

and NG2KO mice, morphometry was firstly applied to NG2/PDGFRα and NG2/PDGFRβ

Fig 2. PDGFRα/CD31-based confocal morphometry identifies vessel-associated OPCs. a-d Representative confocal images (stacks of xy planes on the z-axis; projection

images) of cerebral cortex sections double-immunolabelled for CD31, a marker for endothelial cells, and PDGFRα, used to identify and count juxtavascular (JV),

perivascular (PV), and parenchymal (Pa) OPCs. e, f Representative xy single planes and their respective xz (bottom) and yz (right) planes, used to disclose single OPC/

endothelial cell contacts (arrowheads). g, h Bar charts show the ratio between JV OPC and Pa OPC volumetric density (g) and the ratio between PV OPC and Pa OPC

volumetric density (h); both the parameters demonstrate a significant increase of JV and PV OPCs in EAE WT mice at 20 dpi; no significant differences are observed in

the JV OPC density between naïve and EAE NG2KO mice. Data for both panels g and h are presented as mean ± SD; �p< 0.05, §p< 0.01, #p< 0.001. n = 5. EAE-affected

WT mice (at 20 dpi:clinical score range = 2.0–3.5, mean number of counted JV OPCs 270 per mouse. At 40 dpi: clinical score range = 2.0–3.0 mean number of counted JV

OPCs = 230 per mouse), EAE-affected NG2KO mice (at 20 dpi: clinical score range = 1.5–2.5 mean number of counted JV OPCs = 108 per mouse. At 40 dpi: clinical score

range = 1.0–2.0 mean number of counted JV OPCs = 203 per mouse). Nuclear counterstaining with TO-PRO-3. Scale bars, a-d 50 μm and e, f 10 μm.

https://doi.org/10.1371/journal.pone.0213508.g002
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stained sections from naïve and EAE-affected mice. The results showed, for each of the tested

pairs of molecules, an excellent overlapping of the immunostaining, thus validating their reli-

ability as alternative morphometry markers and confirming previous studies that unequivocally

identify the same glial population with NG2 and PDGFRα [22, 23] and pericytes in an activated

status with NG2 and PDGFRβ [3].

PDGFRα/CD31-based confocal morphometry identifies vessel-associated

OPCs

Based on this preparatory work, double-staining for PDGFRα and CD31 was carried out on

cerebral cortex sections from WT and NG2KO mice at postnatal day 6 (P6), and from adult

naïve and EAE-affected WT and NG2KO mice (n = 5 per group), at 20 and 40 days post-

immunization (dpi), in view of the different behaviour of OPCs during the disease course [6]

(Table 2 and Fig 2A–2H). When density of JV and PV OPCs was measured according to CVL

(cumulative vessel length), which corresponds to multiples of 100 μm of vessel length, the

highest values in healthy mice were obtained in WT mice at P6 (JV = 0.89±0.22 and PV = 0.10

±0.06; Table 2). In adult naïve WT mice, JV and PV OPCs diminished to a level (JV = 0.47

±0.13 and PV = 0.02±0.01) that established the baseline of vascular OPCs in the adult normal

brain (Table 2 and Fig 2A). In NG2KO mice at P6 and in adulthood, these values were both

significantly reduced (P6 mice, JV = 0.48±0.21 and PV = 0.05±0.06; adult mice, JV = 0.31±0.08

and PV = 0.005±0.003; Table 2 and Fig 2B). The proliferative response of OPCs to EAE-associ-

ated neuroinflammation we observed in the cerebral cortex of WT mice [6], was reflected by

the increase of both JV and PV OPCs at 20 dpi (JV = 0.79±0.14 and PV = 0.23±0.11), a value

that decreased at 40 dpi, when the vascular density of OPCs reverted to the baseline values

(JV = 0.59±0.13 and PV = 0.05±0.07; Table 2 and Fig 2C). The density values of OPC per CVL

obtained in EAE-affected NG2KO mice, at both 20 and 40 dpi, although increased, did not sig-

nificantly change compared to naïve WT and NG2KO mice (Table 2 and Fig 2D). The relative

proportion of each OPC subset, expressed as a percentage of total OPC number, revealed a

prevalence of JV OPCs over both PV and Pa OPCs in EAE WT mice (Table 2). This datum

Table 2. Density of JV, PV, and Pa OPCs at P61 and adulthood2.

3Linear density 4Percentage of OPC subsets

JV PV JV PV Pa

P6 WT 0.89±0.22� 0.10±0.06 25.71±4.13� 4.54±1.22 70.38±3.17

P6 NG2KO 0.48±0.21 0.05±0.01 19.21±1.02 3.10±0.66 79.51±9.01

Naïve WT 0.47±0.13 0.02±0.01 10.09±10.82 0.78±0.51 81.25±7.89

Naïve NG2KO 0.31±0.08� 0.005±0.003 27.3±4.67 0.06±0.04 71.93±2.22

EAE WT 20dpi 0.79±0.14# 0.23±0.11# 49.9±8.16# 7.84±3.62§ 45.63±6.82#

EAE WT 40dpi 0.59±0.13 0.05±0.07 52.0±2.83# 0.90±0.14 46.01±2.83#

EAE NG2KO 20dpi 0.50±0.14 0.05±0.04 29.05±15.22 4.44±4.07 68.56±14.62

EAE NG2KO 40dpi 0.61±0.16 0.03±0.07 27.35±13.37 2.34±2.70 73.56±10.59

1Unpaired t-test (P6 mice, n = 4) and
2Anova and Bonferroni tests (Adult mice, n = 5):

�p<0.05;
§p<0.01;
#p<0.001;
3OPC number/CVL (multiple of 100 μm of vessel length); mean ± SD;
4Number of each subset of OPCs over the total number of OPCs (PV + JV + Pa)�100; mean ± SD.

https://doi.org/10.1371/journal.pone.0213508.t002
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was confirmed by quantification of ratios of JV OPC/Pa OPC volumetric density and PV

OPC/Pa OPC volumetric density, that were both significantly increased in EAE WT mice (Fig

2G and 2H). As a mitotically active population, reacting rapidly to CNS damage, OPCs have

unique proliferation profile, identified by symmetrical pairs of BrdU+/NG2+ cells that remain

close to one another (doublet OPCs) over a period of 10 days and account for approximately

70% of the BrdU+cells detected after a short pulse of BrdU [5, 15, 24]. As a hallmark of OPC

proliferation, doublet OPCs were morphometrically counted to find out the mitotically active

proportion of OPCs in both the vascular and parenchymal subsets (Table 3). Vascular doublet

(JV+PV) density, calculated according to cell number per CVL and per perivascular volume

(cortex volume unit equal to 1 mm3) parameters, was compared with Pa doublet OPC density

(Table 3 and Fig 3A and 3B). The results showed a peak in vascular doublet linear and volume

densities in EAE-affected WT mice at 20 dpi (Table 3 and Fig 3B). When compared with all

the other groups, this was similar only to the density obtained in P6 WT mice (Table 3), while

both values were diminished in NG2KO mice at P6, and in both naïve and EAE-affected adult-

hood (Table 3 and Fig 3B).

NG2/CD13- and NG2/PDGFRβ-based morphometry detects activated

pericytes in EAE

Unlike CD45+/Iba1+ monocytes/macrophages, excluded by the NG2-based morphometry

because only rarely seen to co-express NG2 (S1A–S1F Fig), immature pericytes express NG2

and PDGFRβ during development, in their re-activated states in pathological conditions

[25–27], and as a baseline level in healthy adult mice (Fig 4A–4D and 4M). The rate of their re-

activation in EAE-affected WT mice, measured on NG2/CD13 immunolabelled sections, dem-

onstrated a significant increment of NG2+ pericytes in EAE-affected WT mice at 20 dpi (Fig

4E–4K and 4M). NG2/CD13 labelling, analysed on projection images (z-stacks) (Fig 4A, 4E,

4F, 4I and 4J) and single optical planes of the z axis (Fig 4C, 4G and 4K), immunolocalized the

NG2 signal, in both naïve WT and EAE WT, to the pericyte cell body (Fig 4A, 4C, 4E–4K; see

also S1 Movie, sequence of single optical planes from the z-stack in Fig 4I). In addition, the

Table 3. Density of JV+PV doublet OPCs and Pa doublet OPCs at P61 and adulthood2.

3JV+PV linear density 4JV+PV volume density 5Pa volume density

P6 WT 0.12±0.01# 1.51±0.16� 0.36±0.51

P6 NG2KO 0.03±0.02 0.85±0.44 0.13±0.17

Naïve WT 0.04±0.02 0.75±0.52 0.18±0.08

Naïve NG2KO 0.02±0.02 0.49±0.27 0.12±0.04

EAE WT 20dpi 0.11±0.03§ 1.40±0.14# 0.3±0.05

EAE WT 40dpi 0.02±0.01 0.41±0.03 0.33±0.07

EAE NG2KO 20dpi 0.03±0.04 0.36±0.18 0.18±0.1

EAE NG2KO 40dpi 0.06±0.06 0.39±0.21 0.27±0.17

1Unpaired t-test (P6 mice, n = 4 for each group) and
2Anova and Bonferroni tests (Adult mice, n = 5 for each group):

�p<0.05;
§p<0.01;
#p<0.001.
3JV+PV doublet OPC number/CVL (multiple of 100 μm of vessel length) (mean ± SD);
4JV+PV doublet OPC number/106 μm3 of perivascular tissue (mean ± SD);
5Pa doublet OPC number/106 μm3 of extravascular tissue (mean ± SD).

https://doi.org/10.1371/journal.pone.0213508.t003
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Fig 3. Increase in doublet OPCs in EAE suggests the proliferation of vascular OPCs. a Representative confocal

image from an EAE-affected WT mouse (clinical score = 2.5) of multiple immunostaining for NG2, PDGFRα and

PDGFRβ shows doublet OPCs (D-OPC) reactive for NG2 and PDGFRα, which also contact the microvessel wall

revealed by PDGFRβ+pericytes (V), together with NG2+/PDGFRα+processes of OPCs (OPC). Zoomed insets (3x)

show details of the vessel-contacting D-OPC (right zoom), a parenchymal D-OPC (left lower zoom), and a

parenchymal OPC (left upper zoom). b The bar chart shows that the total value of JV and PV D-OPCs, quantified by

confocal morphometry on brain sections immunolabelled with anti-PDGFRα antibody, increases in EAE-affected WT

mice at 20 dpi compared with all the other experimental groups. Data are presented as mean ± SD cell number/106

μm3; n = 5; �p<0.05, §p< 0.01, #p<0.001. EAE WT mice (at 20 dpi: clinical score range = 2.0–3.5, mean number of

counted JV doublet OPCs = 25 per mouse. At 40 dpi: clinical score range = 2.0–3.0, mean number of counted JV

OPCs in neurovascular unit
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value of the ratio between the number of NG2+ and PDGFRβ+ pericytes, calculated for both

naïve WT and EAE-affected WT mice, showed similar values, thus supporting the correspon-

dence of the two markers for revealing activated pericytes (Fig 4D, 4H, 4L and 4N). The

mutual contribution to the vessel wall of pericytes in their activated form (NG2+/PDGFRβ+)

and of JV and PV OPCs (PDGFRα+) was then evaluated by measuring the linear density on

PDGFRβ- and PDGFRα-stained sections (Fig 5). The direct comparison of density values cal-

culated for vascular OPCs and activated pericytes showed a significant increase in both cell

types in EAE-affected WT mice at 20 dpi compared to naïve WT, naïve NG2KO, and EAE-

affected NG2KO mice (Fig 5). A significant increase in PDGFRβ+ pericytes in naïve NG2KO

compared to naïve WT mice was also observed (Fig 5).

Endothelial tight junctions and barrier tightness are maintained in EAE-

affected NG2KOmice

The possible role of NG2 on the BBB function was investigated through immunolocalization

of junctional BBB proteins, claudin-5 and occludin, in cerebral cortex microvessels of WT and

NG2KO P6 mice, and adult naïve and EAE-affected mice, both WT and NG2KO (Figs 6A–6L

and S2). In P6 WT mice, both claudin-5and occludin immunostaining revealed an adult-like,

regular, linear and continuous staining pattern, with some areas of occludin punctate staining

(Figs 6A and 4B). In P6 NG2KO, TJ staining for both claudin-5 and occludin showed thinner

linear tracts and smaller punctate areas (Figs 6C and 6D and S3A and S3A’). At this early

developmental stage, while the evidence of adult-like TJs indicated the presence of stable

microvessels, the presence of vessel sprouts implied an ongoing process of cortex vasculariza-

tion, which in rodent brain proceeds until 2–3 weeks after birth, with a peak in the first postna-

tal week [28]. Accordingly, in P6 WT mice, there was marked, diffuse claudin-5 staining of

vessel sprouts (S3A–S3D Fig), which, in contrast, were hardly detectable in P6 NG2KO mice

(S3E and S3F Fig), and appeared reduced in number (sprouting points per CVL = 52±19.35%

less in P6 NG2KO vs P6 WT mice; p = 0.0238; n = 4). In adult naïve WT mice, claudin-5 and

occludin displayed a typical, linear and regular junctional pattern (Figs 6E and 6F and S2B and

S2B’), different from those revealed in adult naïve NG2KO mice that were characterized by a

claudin-5 chain-like staining formed by fluorescent alternate large spots and thin tracts (Figs

6G and S2C and S2C’) and by occludin ribbons of irregular widths (Fig 6H). In EAE-affected

WT mice, claudin-5 and occludin revealed a punctate and interrupted junctional staining pat-

tern and completely unstained vessel tracts (Fig 6I and 6J). What looked like a dismantled

junctional architecture in EAE WT mice was not recognizable in EAE NG2KO mice, which

instead, showed wide uninterrupted, linear patterns (Fig 6K and 6L). A detailed observation of

the junctional areas, immunostained for occludin, revealed a ‘perforated ribbon’ aspect (Fig

6L). The experiments carried out with FITC-dextran were consistent with these observations

(Fig 7A–7D). In fact, FITC-dextran appeared restricted to the lumen of cortex microvessels in

naïve WT and NG2KO mice (Fig 7A and 7B), whereas it formed a fluorescent perivascular

halo in EAE-affected WT mice (20 dpi) that was absent in EAENG2KO mice (20 dpi) (Fig 7C

and 7D) [11]. The highest number of leaky microvessels was measured in the cerebral cortex

of EAE-affected WT mice (Table 4), which also revealed, by combined FITC-dextran/

PDGFRα-based morphometry (Fig 7C), the highest density per CVL of vascular OPCs(JV

+ PV) associated with leaky vessels (Table 4) and the highest percentage of JV OPCs per leaky

doublet OPCs = 12 per mouse), EAE NG2KO (at 20 dpi: clinical score range = 1.5–2.5, mean number of counted JV

doublet OPCs = 8 per mouse. At 40 dpi: clinical score range = 1.0–2.0, mean number of counted JV doublet OPCs = 16

per mouse). Nuclear counterstaining with TO-PRO-3. Scale bar, 50 μm.

https://doi.org/10.1371/journal.pone.0213508.g003
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Fig 4. CD13/NG2-based morphometry detects activated pericytes in EAE. Representative confocal images of

cerebral cortex sections double-immunolabelled for CD13 and NG2 (a-c, e-k) and for PDGFRβ and NG2 (d, h, l) to

identify and quantify NG2+ activated pericytes in naïve (a-d) and EAE-affected (e-l) WT mice. A high number of

hypertrophic, JV OPCs, which overexpress NG2 together with numerous CD13+/NG2+ activated pericytes are

recognizable in cortical layers from 2 to 6 in EAE-affected (e-j), compared with naïve (a, b) WT mice. High

magnification of single optical planes on ‘z’ axis (_z24 and _z04, _z21 in naïve and EAE-affected WT mice,

respectively) localizes NG2 molecules on the plasma membrane around the cell nucleus, where the proteoglycan in

part co-localizes with CD13 (c, g, k). PDGFRβ+/NG2+ pericytes are recognizible in cortical microvessels, NG2

molecules preferentially localize in cell bodies, whereas PDGFRβ in pericyte processes (d, h, l). m The bar chart shows

a significant increase of activated pericytes in EAE-affected WT mice at 20 dpi, measured as the percentage of NG2+

pericytes over the total number of CD13+ pericytes ($p = 0.005; n = 4; unpaired Student’s t-test). n The percentageof

OPCs in neurovascular unit
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vessels over the total number of JV OPCs (Fig 7E). No significant difference was observed

between naïve NG2KO and EAE-affected NG2KO mice (Fig 7E).

NG2KO mice show reduced laminin and collagens VI and IV in the vessel

basal lamina

The analysis of the cerebral cortex microvessels in adult WT and NG2KO mice was extended

to vessel basal lamina (VBL) molecules, which are well known NG2 ligands, laminin and colla-

gen VI, or are tightly linked to a ligand, such as occurs with the collagen VI/collagen IV molec-

ular binomial. When compared with naïve WT, both naive NG2KO and EAE-affected

NG2KO mice showed markedly reduced staining for laminin and collagen VI, as well as colla-

gen IV (Fig 8A–8I; see also S3E and S3F Fig). The laminin reduction was quantified by mea-

suring the percentage of laminin-positive pixels on the total pixel number (‘area fraction’

expressed as mean ± SD) and evaluating the laminin VBL thickness (Fig 8J–8L). Compared

NG2+ pericytes over the total number of PDGFRβ+ pericytes is similar in naïve and EAE-affected WT mice (p = 0.78;

n = 4; unpaired Student’s t-test). EAE-affected WT mice (at 20 dpi: clinical score range = 2.0–3.5, mean number of

counted PDGFRβ+ pericytes = 729 per mouse), EAE-affected NG2KO (at 20 dpi: clinical score range = 1.5–2.5, mean

number of counted PDGFRβ+ pericytes = 459 per mouse). Nuclear counterstaining with TO-PRO-3. Scale bars, a-l

15 μm.

https://doi.org/10.1371/journal.pone.0213508.g004

Fig 5. Comparison between the mean linear density of PDGFRβ+ pericytes and PDGFRα+ JV and PV OPCs. The PDGFRβ+

pericytes linear density (checkerboard pattern) and the PDGFRα+ JV and PV OPC linear density (smooth pattern), reported as number

of identified cells on cumulative vessel length (multiple of 100 μm), are presented as mean ± SD. Direct comparison of linear density

values calculated for pericytes and OPCs in WT, NG2KO, EAE-affected WT(20 dpi) and EAE-affected NG2KO (20 dpi) shows a

consensual, significant increase at EAE WT (20 dpi). �p< 0.05, #p< 0.0001. n = 5. EAE-affected WT mice (at 20 dpi: clinical score

range = 2.0–3.5, mean number of counted PDGFRβ+ pericytes = 729 and PDGFRα+JV and PV OPCs = 312 per mouse), EAE-

affectedNG2KO (at 20 dpi: clinical score range = 1.5–2.5, mean number of counted PDGFRβ+ pericytes = 459 and JV and PV

OPCs = 136 per mouse).

https://doi.org/10.1371/journal.pone.0213508.g005
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Fig 6. Endothelial tight junctions are maintained in EAE-affected NG2KO mice. a-l Representative confocal images

of cerebral cortex sections immunolabelled for claudin-5 and occludin. a, b, e, f The cerebral cortex microvessels show

continuous staining patterns for both claudin-5 and occludin in P6 WT and adult naïve WT mice. c, d, g, h Claudin-5

and occludin appear irregularly organized in P6 NG2KO mice, with these modified patterns persisting in adult, naïve

NG2KO mice; note the typical chain-like claudin-5 pattern in (g). i, j In the cortex microvessels of EAE WT mice,

claudin-5 and occludin are lost along junctional tracts, whereas in EAE-affected NG2KO mice TJs proteins staining

appears reinforced (k, l) and occludin acquires a ‘perforated ribbon-like’ configuration, with full and empty tracts.

Nuclear counterstaining with TO-PRO-3. Scale bars, 10 μm.

https://doi.org/10.1371/journal.pone.0213508.g006
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Fig 7. Barrier tightness is maintained in EAE-affected NG2KO mice. a-d Representative confocal images from mice

injected with FITC-Dextran 70 kDa for BBB permeability assessment, then immunolabelled for PDGFRα to show

vessel/OPC association. a, b The exogenous tracer stains the vessel lumen in BBB cerebrocortical microvessels of both

naïve WT and naïve NG2KO mice: note in (a) a transversely cut microvessel with FITC-dextran in the vessel lumen

(arrow) and in (b) a minimal leakage around a small venule (arrows). c, d The deep cerebral cortex microvessels (at the

boundary with the subcortical white matter) of EAE-affected WT mice appear permeable to the exogenous tracer that

forms a fluorescent halo in the surrounding neuropil (c), while little signs of increased permeability are shown by

cortex microvessels in EAE-affected NG2KO mice (d). E The bar chart shows the percentage of JV OPCs associated

with leaky microvessels, a value that is significantly increased in EAE-affected WT mice (20 dpi) compared with naïve

OPCs in neurovascular unit
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with adult naïve WT, the laminin area fraction of naïve NG2KO was reduced by 39.5±5.6%

(p<0.001; n = 5) and laminin thickness by 44.7±2.8% (p<0.001; n = 5).

VEGF-A and VEGFR2 are the candidate pathways in NVU OPC

recruitment

Several canonical signalling pathways, which are known to work within the NVU and could be

involved in the described increase of vascular OPCs resulting from proliferation and/or

induced migration and recruitment, were immunolocalized on cerebral cortex sections from

EAE-affected WT mice. Double and multiple immunolabellings were carried out with growth

factors, VEGF-A (vascular endothelial growth factor A), PDGF-AA (platelet derived growth

factor-AA), FGF2 (fibroblast growth factor-2), and TGF-β (transforming growth factor-β) and

their receptors (Fig 9A–9I). By double staining with VEGF-A and glial fibrillary acidic protein

(GFAP), a marker of astrocytes, VEGF-A was localized at the endfeet of perivascular astrocytes

(Fig 9A), while on VEGF-A/PDGFRα/PDGFRβ labelled sections, PDGFRα+ vascular OPCs

and PDGFRβ+ pericytes were VEGF-A- (Fig 9B). When immunostaining for PDGFRα/

PDGFRβ were combined with that forVEGFR2 (vascular endothelial growth factor receptor

2), VEGFR2 was detected on vascular PDGFRα+ OPC processes (Fig 9C). FGF2 was immuno-

localized on the endothelial lining and did not co-localize with PDGFRα and PDGFRβ on

OPCs and pericytes, respectively (Fig 9D and 9E). Its receptor FGFR1 (fibroblast growth factor

receptor 1) stained endothelial cells and also co-localized with PDGFRβ but not with PDGFRα
(Fig 9F). PDGF-AA/PDGFRα, PDGF-AA/PDGFRβ double immunostainings showed

PDGF-AA-positive endothelial cells (Fig 9G and 9H) and astrocyte-like processes (Fig 9H),

while TGF-β was revealed on the endothelium-pericyte layer, surrounded by PDGFRα+ OPC

processes (Fig 9I). On the same experimental group of mice, transcript expression of the

immunolocalized growth factors (Fgf2, Pdgfa, and Tgfb) were analysed by real time-PCR on

isolated cerebral cortex vessels and by dual RNAscope-immunohistochemistry/in situ hybrid-

ization (IHC/ISH) on cerebral cortex sections (Vegfa/Vegfr2). The protocol used for isolation

of microvessels from fixed cerebral cortices was developed by optimizing the given

WT mice. No significant differences are observed between naïve NG2KO and EAE NG2KO mice (mean ± SD; n = 5;�p
<0.05). FITC-dextran injected EAE WT mice (20 dpi clinical score range: 1.5–2.5, mean number of counted JV OPCs

contacting leaky vessel: 14 per mouse), FITC-dextran injected EAE NG2KO (20 dpi clinical score range: 1.5–2.5, mean

number of counted JV OPCs contacting leaky vessel: 5 per mouse). Nuclear counterstaining with TO-PRO-3. Scale

bars, 50 μm.

https://doi.org/10.1371/journal.pone.0213508.g007

Table 4. JV+PV OPCs associated with non-leaky vs leaky microvessels.

1Number of leaky/total

vessels

2Density of OPCs per non–leaky

vessels

2Density of OPCs per leaky

vessels

Naïve WT 8/449 0.46±0.36 0.81±0.58

Naïve NG2KO 5/504 0.33±0.07 0.35±0.36

EAE WT 20dpi 26/478� 0.36±0.1 0.78±0.15#

EAE NG2KO

20dpi

16/428 0.15±0.17 0.31±0.29

1Anova and Bonferroni tests:

�p<0.05;
2Unpaired t-test:
#p<0.001 (mean ± SD).

https://doi.org/10.1371/journal.pone.0213508.t004
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Fig 8. NG2KO mice show reduced laminin and collagens VI and IV in the vessel basal lamina. a-l Representative confocal images of

cerebral cortex sections immunolabelled for laminin, collagen VI and IV. Compared with naïve WT mice (a, d, g) the staining of the

examined VBL molecular components appears reduced in both naïve and EAE-affected NG2KO mice (b, c, e, f, h, i). j-l The differences

in laminin immunostaining between naïve WT and naïve or EAE-affected NG2KO mice are better seen at a higher magnification, which

also served for confocal morphometry. Nuclear counterstaining with TO-PRO-3. Scale bars, a-i 30 μm and j-l 10 μm.

https://doi.org/10.1371/journal.pone.0213508.g008
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Fig 9. VEGF-A and VEGFR2 as candidate pathway in NVU OPC recruitment. a-i Representative confocal images of cerebral cortex sections from EAE-affected WT

mice, immunolabelled for growth factors and their receptors: VEGF-A and its receptor VEGFR2 (a-c), FGF2 and its receptor FGFR1 (d-f), PDGF-AA/PDGFRα (g, h)

and TGFβ (i), in combination with GFAP, PDGFRα, and PDGFRβ, as cell-specific markers. a VEGF-A co-localizes with GFAP in astrocyte endfeet (arrowheads) on

vessel wall (V). b A typical PDGFRα+ JV OPC (arrow) and PDGFRβ+pericytes (asterisks) do not show VEGF-A reactivity; note VEGF-A+ astrocyte-like endfeet

(arrowheads). c VEGFR2 co-localize with PDGFRα+on a JV OPC (arrowhead). d, e FGF2 is localized on endothelial cells and stains neither PDGFRβ+ pericytes (d) nor

PDGFRα+ OPCs (e). f FGFR1 is localized on endothelial cells but not on pericytes or OPCs. g, h PDGF-AA stains endothelial cells of cortex microvessels surrounded by

PDGFRα+ JV and PV OPCs (g) and by PDGFRβ+ pericytes (h). i The endothelial cells of a cortex microvessel contacted by PDGFRα+ processes (arrows) are

immunoreactive for TGFβ. Nuclear counterstaining with TO-PRO-3. V, vessels. Scale bars, a-d and f-i 30 μm, e 15μm.

https://doi.org/10.1371/journal.pone.0213508.g009
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Dissociation Kit (see M&M section), and it was checked for consistency by phase contrast

microscopy and immunohistochemistry for specific cell markers (Fig 10A–10C, 10G and

10H). Single CD31 and combined CD31/GFAP stainings confirmed the presence of microvas-

cular fragments (containing endothelial cells, perivascular astrocyte endfeet, and possibly peri-

cytes; Fig 10A–10C). Real time-PCR for Fgf2, Pdgfa, and Tgfb mRNA of the filtered pellets

that contained the isolated microvessels (Fig 10G and 10H) show that these transcripts were all

increased in EAE-affected mice compared to naïve WT mice (Fig 10I). In addition, by dual

RNAscope technique, Vegfa and Vegfr2 transcripts were revealed on cerebral cortex sections,

together with the cell-specific markers GFAP, for astrocytes, and PDGFRα, for OPCs at pro-

tein level (Fig 10D–10F). On GFAP-IHC/Vegfa-ISH stained sections, GFAP+ perivascular

astrocyte showed red fluorescent puncta corresponding to Vegfa RNAscope signal (Fig 10D

and 10E); on these sections, the fluorescent Vegfa probe was also seen on nuclei of neuron-like

cells (Fig 10D and 10E). On PDGFRα-IHC/Vegfr2-ISH stained sections, a number of vascular

OPCs and Pa OPCs were revealed by anti-PDGFRα antibody and were marked by the fluores-

cent probe for Vegfr2 mRNA (Fig 10F).

Discussion

As demonstrated by in vivo time-lapse imaging in mouse brain, OPCs are highly motile cells

that actively migrate and extend processes to survey the homeostasis of their own territory in

both physiological and pathological conditions [29]. The basic idea of this study is that such a

dynamic type of glial cells may contribute to nervous tissue development and/or response to

injury [30–32] through their recruitment and active participation to the NVU, and that part of

the biological functions related to OPC/vessel interactions may be mediated by NG2 proteo-

glycan. Interestingly, in the CNS, two cell types primarily express NG2: OPCs, which express

NG2 during development (proper OPCs) and continue to express the proteoglycan in adult-

hood (NG2-glia) [33], and pericytes, which upregulate NG2 expression according to their

developmental (‘immature’ pericytes) and pathological (re-activated pericytes) status, and

downregulate the proteoglycan in adult brain [25, 34].

The quantitative data obtained in this study by immunoconfocal morphometry demonstrated

that OPCs are integral components of the cerebral cortex NVU and that their contribution varies

according to physiological and pathological conditions. The baseline level of NVU’s OPCs

detected in adult, naïve WT mice paralleled the revealed low percentage of NG2+ pericytes, both

possibly reflecting the moderate plasticity displayed by cerebral cortex microvessels throughout

adult life [35]. However, vascular OPCs in WT mice were shown to fluctuate from a peak

observed at P6, which wanes in adulthood, to a new increase during EAE, a time course which

mirrored that of the immature/activated pericytes, and which was not the case for both OPCs and

pericytes in NG2KO mice. In addition, the analysis of vascular OPCs, combined with TJ protein

localization at early stages of postnatal development and in naïve and EAE-affected WT and

NG2KO mice, together with the synchronized activation (NG2 re-expression) of pericytes, indi-

cates NG2 proteoglycan as one of the molecules involved in OPC/pericyte/BBB-endothelial cell

interaction. Literature data suggest that OPCs and pericytes share regulative molecules, which

possibly result in redundant signalling pathways. In fact, as already demonstrated for pericytes

[36], specific genetic ablation of OPCs leads to severely impaired brain vascularization [13], and

while pericytes, in co-culture with endothelial cells, secrete TGF-β promoting BBB formation via
TGF-βR2-ALK5-Smad2/3 pathway [37], OPCs, in co-culture with endothelial cells are able to

support BBB integrity by secreting TGF-β and activating TGF-βR-MEK/ERK signalling pathway

[38]. Interestingly, in double monolayer culture models, NG2 knockdown in pericytes reduces

barrier function [17], whereas in white matter injury, NG2-expressing OPCs were demonstrated
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Fig 10. Expression of growth factors on isolated brain microvessels and cerebral cortex sections. a-c Representative confocal images of cerebral cortex isolated

microvessels from EAE-affected mice, immunolabelled for CD31 (a, b) and for CD31/GFAP (c). a, b CD31 identifies the endothelial cells and appears localized at the

junctional endothelial contacts (b, arrowheads). c GFAP+ astrocyte endfeet are recognizable in the close vicinity of the CD31-stained vessel wall. d-f Representative

confocal images of cerebral cortex of EAE-affected WT mice processed for the detection of GFAP antibody/Vegfa mRNA and PDGFRβ antibody/Vegfr2 mRNA by dual

RNAscope IHC/ISH. d GFAP+ perivascular astrocyte close to the vessel wall (V), and (e) perivascular astrocyte processes on a microvessel (V) show red fluorescent puncta

corresponding to Vegfa ISH signal (arrows); note fluorescent puncta also in nuclei of neuron-like cells (arrowheads); f PDFGRα+ perivascular (PV), juxtavascular (JV) and

OPCs in neurovascular unit
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to degrade TJ-associated ZO-1 [39]. Our previous findings concerning TJ response and BBB func-

tion in the same model of EAE, where the cerebral cortex is affected, showed abnormal TJs and

BBB leakage in diseased cortices [10], and revealed that endothelial TJs perform better in EAE

NG2KO mice, compared with EAE WT mice [11]. In the present study, NG2-null mice at P6

show a modified arrangement of the junctional strands that persist in adult naïve NG2KO mice.

While TJ and BBB alterations observed in EAE WT mice coincide with the highest percentage of

vessel-associated OPCs, in EAE NG2KO mice, which lack vessel OPC increase, TJ staining

appears restored to a continuous and possibly improved pattern. These apparently contradictory

results support the hypothesis of differential NG2 effects in developmental vs adulthood and in

pathological conditions, according to the existence of different NG2 isoforms (glycoforms?) [40]

and/or NG2 distinct phosphorylated forms, which may modify NG2 cell/molecular interactions

[41]. Moreover, it has been recently shown that cleavage, by α- and γ-secretases, leads to four

NG2 fragments that have been associated with different biological functions in the CNS [42]. The

atypical holed ribbon-like profile revealed by occludin in EAE NG2KO mice, further supports this

idea, for which we propose the following interpretation: although upon NG2 ablation, the EAE

NVU microenvironment may mimic the adult healthy-like condition, multiple inflammatory

cues persist in the cerebral cortex of EAE NG2KO mice, and under their effect endothelial cells

assume a morphological complexity with a convoluted profile [27, 43], increased junctional, lateral

contacts, overlapping cell borders and interdigitated finger-like processes [44]. Knowledge of the

biological activity exerted by NG2 in the vascular system, translated to vascular OPCs, can help to

understand the described effect of NG2 expression and of its ablation on endothelial TJ regulation.

NG2 displays limited capability for independent signal transduction, but in addition to its role as

regulator of cell surface domains and growth factor activities [45, 46], NG2 may exert a direct

effect, working in a trans mode by activating β1-integrin signalling on the closely apposed endo-

thelial cells [16, 17, 47]. β1-integrin-mediated anchoring of endothelial cells to VBL molecules is

involved in intercellular signalling, which stabilizes claudin-5 localization in TJ and BBB integrity

[48, 49]. It has been emphasized that BBB properties are not simply ‘switched on’ in developing

brain endothelium, but, rather, continuous signals from cellular and non-cellular components of

the NVU are needed to maintain TJ integrity [50–51]. As an example, the differential β1-integrin-

mediated effects on nascent endothelium vs a fully differentiated BBB may lead to distinct down-

stream signalling events [51]. Moreover, accessory molecules involved in NG2/β1-integrin trans
activity can differentially contribute to TJ regulation according to their broad range of activities in

physiological, as well as pathological, conditions. One of these molecules, galectin-3, characterized

by combined self-association and carbohydrate recognition domains, may form pentamers that

determine integrin clustering [52]. GST-fusion protein pull-down assays demonstrated a direct

interaction between the NG2 D3 ectodomain (the membrane proximal segment) and galectin-3,

with formation of NG2-galectin-3-α3β1 integrin tri-molecular complexes at the pericyte-endothe-

lial interface [16]. Finally, multimerization of cell surface complexes serves as a mechanism for

amplifying integrin-mediated transmembrane signaling [53]. The possibility that this mechanism

can be applied to OPC/endothelial cell interaction, is sustained by immunoelectron microscopy

studies that described direct adhesion of OPCs to cerebral endothelium via vessel basal lamina

[38]. Moreover, binding of NG2 to laminin and collagen VI [48, 54–57] and, indirectly, to colla-

gen IV [58], assists the retention at the cell surface and their dynamic assembly [56]. In this

parenchymal (Pa) OPCs show Vegfr2 ISH signal in the cell body (arrows). g, h Phase contrast microscopy images of the pelleted microvessels. i Real-time PCR analysis of

mRNAs expression of Fgf2, Pdgfa and Tgfb in cerebral cortex of naïve and EAE-affected WT mice. The analysis by real-time PCR shows a significant increase in Fgf2 and

Pdgfa levels in the isolated vessels of cerebral cortex from EAE-affected compared with WT mice. Instead, Tgfb expression shows no statistically significant difference.

Nuclear counterstaining with TO-PRO-3 (a-c) and Sytox Green (d-f). Scale bars, a-f 25 μm and g, h 20 μm.

https://doi.org/10.1371/journal.pone.0213508.g010
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context, the expected significant reduction in laminin and collagens VI and IV observed in

NG2KO mice [58], may participate in determining TJ abnormalities [59, 60] described in P6 and

naïve NG2KO mice. The analysis of the ligand/receptor systems possibly involved in vascular

OPC proliferation and migration/recruitment in EAE-affected WT mice, points out to VEGF-A

and PDGF-AA as the primarily involved factors. In fact, although endothelial-derived FGF2 has

been described as promoting OPC proliferation in vitro [61], mice lacking both FGFR1 and

FGFR2 exhibit normal OPC proliferation and differentiation [62]. The detected expression of

both FGF2 and FGFR1 on the endothelial cells and the increase of the Fgf2 transcript in cortex

microvessels isolated from EAE-affected WT mice seems to confirm the importance of FGF2/

FGFR1 signalling in affecting several endothelial cell functions through an autocrine mode of

action [63, 64], rather than their involvement in OPC proliferation and/or migration. TGF-β,

which is known to contribute to survival of endothelial cells and BBB-microvessel function [65,

66], can work as an indirect mitogen for vascular OPCs. In fact, co-stimulation with pericyte-

derived TGF-β and astrocyte-derived PDGF-AA [67, 68], selectively enhances PDGFRα synthesis

and surface expression, thereby amplifying the proliferative response of OPCs to PDGF-AA [38,

69]. Vascular endothelial growth factor A (VEGF-A) is best known for its essential roles in blood

vessel growth in normal and pathological conditions. However, evidence has emerged that

VEGF-A also exerts direct activities on neurons during EAE [70] and that reactive astrocytes

express VEGF-A in multiple sclerosis [71]. These data together with the documented expression

of VEGFR2 by OPCs [72], confirm the results obtained by IHC and RNAscope IHC/ISH on the

expression of Vegfa by perivascular astrocytes and of Vegfr2 by vascular OPCs, suggesting a direct

cross-talk between these cells within the NVU during EAE.

Overall, this study support the idea that similarly to ’neurovascular niches’, where endothe-

lial cells produce molecular signals that sustain neuronal precursors, ’oligovascular niches’ also

exists, where endothelial cells provide trophic factors to sustain oligodendrocyte precursors

(OPCs/NG2-glia) [61] and where mutual and multiple interactions occur which involve the

NVU cell components, including vascular OPCs. In fact, the described dynamic vascular set-

ting of OPCs in both physiological and perturbed NVU conditions, allows to propose these

cells as a novel NVU component. In addition, the shared expression of NG2 with immature/

activated pericytes suggests that OPCs may exert part of their biological functions within the

NVU possibly through NG2 trans activity and/or by interactions of NG2 with VBL molecules,

and/or by the regulative activity of the proteoglycan on growth factor availability/accessibility

at the cell membrane [73].

Supporting information

S1 Fig. Cerebral cortex monocytes/macrophages and microglia rarely express NG2 proteo-

glycan. a-f Representative confocal images of brain sections from EAE-affected WT mice,

double immunolabelled for NG2/CD45 (a-c) and NG2/Iba1 (d-f) showing that, among mono-

cytes/macrophages of inflammatory infiltrates, rare co-localizations of NG2 and CD45 or Iba1

are appreciable in EAE mice and these NG2+monocytes/macrophages are ovoid cells devoid of

processes (arrows), morphologically different from OPCs and pericytes. Scale bars, 25 μm.

(TIF)

S2 Fig. The staining pattern of endothelial tight junctions is modified in NG2KO. a-c, a’-c’

Comparison of claudin-5 staining patterns between NG2KO mice, both at P6 (a) and in adult-

hood (c), with adult, naïve WT mice (b). a’, b’, c’ The binary black and white format of the

same images shown in (a, b, c) better demonstrates the differences between claudin-5 junc-

tional patterns. Nuclear counterstaining with TO-PRO-3 in (a-c). Scale bars, 10 μm.

(TIF)
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S3 Fig. Claudin-5 expression also reveals vessel sprouts. a-f Representative confocal images

of vessel sprouts double-immunolabelled for claudin-5 and collagen IV. a-d In P6 WT, endo-

thelial stalk and tip cells show a strong, diffuse claudin-5 staining, which also reveals typical

filopodial extensions. e, f In P6 NG2KO mice, sprouting endothelial tip cells show a punctate

claudin-5 staining; note the reduced collagen IV staining between WT (a-d) and NG2KO

sprouts (e, f). Nuclear counterstaining with TO-PRO-3. Scale bars, a-f 10 μm.

(TIF)

S1 Movie. Representative movie file from which image in Fig 4B is derived, showing two

CD13+ (green)/NG2+ (red), activated pericytes of a cerebral cortex microvessel of a naïve

WT mouse. This imaging segment of xy single optical planes through the ’z’ axis shows that

NG2 is mainly restricted to plasma membrane of pericyte bodies, whereas CD13 localizes on

both pericyte bodies and processes.

(AVI)

S1 Excel file. Raw, numeric data of morphometric analyses of OPCs, pericytes, blood ves-

sels, sprouting points, and laminin utilized for calculating statistical significance of differ-

ences among the experimental groups.

(XLSX)
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