THE p-WEAK GRADIENT DEPENDS ON p

SIMONE DI MARINO AND GARETH SPEIGHT

ABSTRACT. Given a > 0, we construct a weighted Lebesgue measure on R"
for which the family of non constant curves has p-modulus zero for p < 1+ «
but the weight is a Muckenhoupt A, weight for p > 1 4+ «. In particular, the
p-weak gradient is trivial for small p but non trivial for large p. This answers
an open question posed by several authors. We also give a full description of
the p-weak gradient for any locally finite Borel measure on R.

1. INTRODUCTION

Generalizations of Sobolev spaces to metric measure spaces is an important area
of recent research [18], [15]. There are several different characterizations of classical
Sobolev spaces that can be generalized to metric measure spaces; some, but not all,
of these choices give rise to equivalent spaces.

Typically, when defining a Sobolev space W'P(X,d, m) on a metric measure
space, a p-weak gradient |V f|,,, of a Sobolev function f: X — R is identified.
In [21] a p-weak gradient was defined as a minimal p-upper gradient (based on
inequality in the Fundamental Theorem of Calculus along p-almost every curve,
see Definition 2) while in [3] a p-weak gradient was defined by using relaxations
of the slope in L”. Remarkably, despite the fact that relaxation of slope does not
explicitly involve curves, these definitions were shown to be equivalent in [3].

The p-weak gradient agrees with the absolute value of the gradient for the clas-
sical case and, more generally, with the slope for Lipschitz functions defined on
complete doubling metric measure spaces satisfying a weak p-Poincaré inequality.
In the case of a general metric measure space the weak gradient is more subtle;
an example suggested by P. Koskela shows that |V f|,, , € LY(X,m) with ¢ > p
does not imply that |V fl,, 4 exists as a function in LY(X,m) [3]. Further, it was
not clear whether, for a function in WHP(X,d, m) N W14(X, d, m) with p # ¢, the
p-weak gradient and g-weak gradient agree (open problems 2.49, 2.53 [4], [1], [3]).

We answer this question with the following theorem; we show that (even for
a relatively nice measure on R™) the p-weak gradient may be trivial for small p
but non trivial for large p. We denote the p-modulus on absolutely continuous
curves in a metric measure space (X, d, m) by Mod,, ,,, (see Definition 1) and write
Rt = [0, 00).

Theorem 1. Letn € N and a > 0. Then there exists a Borel function w: R™ — RT
such that the measure p := wL™ is doubling and:

o For p < 1+ a we have Mod,, ,(T'.) = 0 where T is the family of non
constant absolutely continuous curves in R™. This implies that the p-weak
gradient on (R™, |- |, u) is identically zero for every function.

o Forp > 1+ « the function w is a Muckenhoupt A,-weight. This implies
that a weak p-Poincaré inequality holds; it follows that the p-weak gradient
on (R™,|-|, ) agrees with the slope for Lipschitz functions.

The simple structure of curves in R gives rise to a simple description of the p-
weak gradient with respect to each measure. In Theorem 2 we show that, for any
1
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locally finite Borel measure on R and p > 1, the corresponding p-weak gradient of
a Lipschitz function f: R — R is, at almost every point, equal to either zero or
|f'(z)|. Roughly, the points where the p-weak gradient is non zero are those points
which have a neighborhood that, when considered as a set containing a single curve,
has positive p-modulus.

We now give some definitions and describe how the facts about weak gradients
in Theorem 1 follow from the assertions about the measure. If (X,d) is a metric
space then a curve in X is simply a continuous map ~v: I — X where I C Ris a
closed interval; we denote the end points of a curve v by a, and b,. In this paper
we consider only absolutely continuous curves; a curve v: I — X is absolutely
continuous if there exists g: I — R Lebesgue integrable such that

Mw@xv@»f;/"gv>dr

whenever s,t € I with s < t. If v is absolutely continuous then there is a minimal
function g with this property, called metric speed, which we denote by |¥]. If
f: X — R is Borel then we may define

Lf=£7ﬂ%@Mﬂ@d&

The p-modulus gives a way to measure the size of a family of curves in a metric
measure space [14]. We consider only metric measure spaces (X, d, m) for which
(X, d) is complete and separable with m a o-finite Borel measure on X.

Definition 1. Let (X,d,m) be a metric measure space and p > 1. The p-modulus
Mod,, ,n, is an outer measure on the space of absolutely continuous curves in X
defined by
Mod,, ,,,(T) = inf/ gP dm
X
where the infimum is taken over all Borel functions g: X — [0, 00] satisfying

/gdle
.

for all curves v € I'. We say a property of curves holds for p-a.e. curve if the set
of absolutely continuous curves for which it fails has p-modulus zero.

The definition of p-weak gradient is based on inequality in the Fundamental
theorem of calculus along p-a.e. curve [21], [3].

Definition 2. Let (X,d, m) be a metric measure space and p > 1. A Borel function
g: X —[0,00] is a p-upper gradient of f: X — R if

[f(by) = flay)| < /g ds for p-a.e. curve 7.

¥
If p > 1 then the minimal p-upper gradient |V f|mp of f: X — R is the p-upper
gradient characterized, up to m-negligible sets, by the property

IV Flmp <g m-a.e. in X for every p-upper gradient g of f.

For the remainder of the paper we fix @ > 0 and denote 8 = 1/a. Let u be the
measure from Theorem 1 and consider the metric measure space (R™,|-|, ) so that
p < 1+ o implies Mod,, ,(I':) = 0. In this case the function identically equal to
zero is a p-upper gradient for every function; hence |V f|,,, = 0 for any function
f:R" > R.

Now we recall the notion of a Muckenhoupt A,-weight on R"; we only consider
the case p > 1 though a similar definition may be given for p = 1 [16]. If (X, d, m)
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is a metric measure space, with f: X — R and A C X Borel measurable such
that m(A) > 0, then we denote fo = §, f dm = (1/m(A)) [, f dm whenever the
quotient is well defined. If no measure is specified, integrals over subsets of R™ are
with respect to Lebesgue measure L£; we also use the notation £™"(A4) = |A].

Definition 3. Let p > 1. A function w: R™ — R" is a Muckenhoupt Ay,-weight if
for some constant C > 0 and all balls B C R",

() o) s

Muckenhoupt Ap,-weights were first introduced in [23] as precisely those weights
for which the Hardy maximal function of the associated measure is bounded in
LP. The A, condition has numerous applications, for example to weighted Sobolev
spaces [9] and regularity of the solutions of degenerate elliptic equations [12].

We recall that a Borel measure m on a metric space X is doubling if balls have
finite positive measure and there is a constant C' > 1 such that

m(B(z,2r)) < Cm(B(x,r))

for all z € R” and r > 0. The slope |V f|: X — RT of a locally Lipschitz function
f: X — R is defined by

. |f(y) — ()]
Vfl(z) =limsup ———————.
Vi) yoe d(z,y)
A Borel measure m on X admits a weak p-Poincaré inequality if there are constants
C > 0 and A > 1 such that

1/p
(1.2) 1= talam < (][ vl dm)

whenever B is a ball with radius r and f is a locally Lipschitz function on AB. The
notion of a Poincaré inequality on a metric measure space was originally introduced
in [17] to study quasiconformal mappings. Note that, by Holder’s inequality, the
condition of a weak p-Poincaré inequality becomes weaker as p increases. If a
metric measure space equipped with a doubling measure admits a weak p-Poincaré
inequality then it admits a differentiable structure [11]; in fact, a Lip-lip inequality
suffices in place of a Poincaré inequality [19]. Roughly, a Lip-lip inequality states
that at almost every point the variation of a Lipschitz function on small scales is
independent of the precise choice of scale.

We use the fact that if w is a Muckenhoupt A,-weight on R™ then the measure
@ = wL"™ is p-admissible [16]; this means that u is doubling and satisfies a weak
p-Poincaré inequality. For n = 1 the converse holds: if p is p-admissible then w
must be an A,-weight [6]. However, inequality (1.1) seemed easier to check than
verifying inequality (1.2) directly.

If a doubling metric measure space admits a weak p-Poincaré inequality then,
for Lipschitz functions, the p-upper gradient |V f|,, , agrees, up to negligible sets,
with the slope [11], [19]. Hence, for p > 1+ «, if p is the measure in Theorem 1,
then the p-weak slope |V f|, p of Lipschitz functions f: R — R on (R"™, |- |, 1) is
non trivial.

We also note that, since p is absolutely continuous with respect to Lebesgue
measure, the metric measure space (R™, |-|, u) satisfies a Lip-lip inequality. Further,
in any metric measure space (X, d, m), lower semicontinuity of the map, defined on
Lipschitz functions,

fes /X VP dm
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in LP implies the p-weak gradient agrees with the slope for Lipschitz functions [1].
Hence we observe that a Lip-lip inequality is not sufficient for lower semicontinuity
of the integral of the p-th power of the slope; this answers a question raised in [1].

We now give an idea of the construction of the weight w in Theorem 1. Firstly
we suppose n = 1; one starts with the weight w; = 1, then repeatedly defines
wy, = min{wy_1, gx } where gy, is a scaled and translated copy of || centred on some
rational ¢;. We do this for a dense, non repeating, sequence of rationals (gx )%, and
define w = infy wy. The function 1/w? is locally integrable for s < 8 but nowhere
locally integrable for s > 3; this discrepancy allows us to prove the first property in
Theorem 1. Further, provided the copies of |z|* are scaled to be sufficiently thin,
each stage in the construction increases the left hand side of inequality (1.1) only a
small amount; this allows us to prove the second property in Theorem 1. To prove
Theorem 1 for general n we define w(zy,...,2,) = min{w(zy),...,w(z,)} on R™.
Then @ has the same integrability properties as w (but now with respect to £™),
which gives the first property, and the lattice property of A,-weights [20] allows us
to extend the second property from w to .

Acknowledgement The authors acknowledge the support of the grant ERC
ADG GeMeThNES. The authors thank Luigi Ambrosio for highlighting the ques-
tion, mentioned in [3], which led to this paper and for helpful comments during the
preparation of the paper. We also thank an anonymous referee for giving useful
comments and for pointing out the extension of the example to R™ for n > 1.

2. CONSTRUCTION OF THE WEIGHT

Fix a sequence ¢j > 0 such that []; (1 + e;) < oo and enumerate the rational
numbers by a sequence (gi)72, with g # ¢ for k # . We inductively define a
sequence of continuous weights wy: R — RT; among other properties the weights
satisfy wy, < wi—1 and wg(z) > 0if ¢ ¢ {q:1 = 1,...,k}. Denoting by w the
limit of the weights wy we will verify Theorem 1 for the weight @ on R™ given by
W(x1,...,o,) = min{w(xy),...,w(z,)}.

Let wi: R — R be the function which is constant and equal to 1. Fix k € N
for which the weight wy_; has been defined; we show how to define wy. Since wg_1
is continuous and wg_1(gr) > 0 (using the properties described in the previous
paragraph) we can choose Ry > 0 so that

Wr—1(qx)/2 < wi—1(x) < 2wi—1(qk)

for |z — qx| < 4Ry.
Fix rp > 0 such that:

i < wy—1(ar) en,

8ry < €k(Rk — Tk)
and

27’k(p — o+ 1)/(]9 — ].) S Ek(Rk — T‘k).
We let
g () = 2w —1(qr)|(z — qr) /x|

for € R and define w;: R — RT by

wy(v) = min{wg_1(x), gr () }.
The function wy, is continuous, wy < wg—1 and wy > 0if x ¢ {g: 1 =1,...,k}.
Denote I, = (qx — Tk, qr + %) and note that wy = wy_1 outside I,. We also
define Jiy = (qx — R, qi + Ri.), J;7 = [ax + 7k, qe + Ri) and J, = (qk — Ri, g — 7).
Let w: R — RT be given by w = infy, wi,. We define a Borel weight w: R™® — RT
by:
W(x1, ..., 2n) = min{w(zy), ..., w(x,)}
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and let p = wL"™.

3. THE p-MODULUS ON CURVES IS TRIVIAL FOR SMALL p

In this section we show that p < 1+ a implies Mod,, ,(I'c) = 0, where I'. is
the family of non constant absolutely continuous curves in R™. This fact arises
from simple integrability properties of 1/w on R which follow from corresponding
properties of 1/|x|*. Recall that 8 =1/a.

Lemma 1. Let r = et The weight w: R — R has the following integrability
properties:
(1) The function 1/w® is locally Lebesgue integrable if s < .
(2) The function 1/(w?|log(w/r)[**%) is locally Lebesgue integrable.
(3) The function 1/w*® is nowhere locally Lebesgue integrable if s > 3.
(4) The function 1/(w®|log(w/r)|) is nowhere locally Lebesqgue integrable.

Proof. Suppose first s < g and N € N. Clearly, for each integer k > 1, wy, = wy_1

outside [ implies
N 9 N aktTE ]
- = i -
-N Wy -N Wi -t Wk

We show the second term is relatively small. Indeed, since

wile) 2 w1 (a0l = o) /rel”

for z € (qx — Tk, qr + 71) and as < 1, we have,

/Qk+rk 1 - ergs /(Ik‘H"k 1
qe—re Wi We—1(qk)® Jg—r T — qr]®®
< Cri/wi—1(qr)®

< Cryfwi—1(qx)”?
S CEk.

Since w; was constant (so trivially locally integrable) and e; were chosen small we
deduce that the sequence fiVN 1/wj is bounded uniformly in k. By the Monotone
Convergence Theorem we obtain that 1/w® is integrable on the interval [-N, N].
For the second assertion a similar estimate is required: first of all the function
® :t s t(—log(t*/r)) T is increasing in (0, 1), and thus we can make the estimate

qr+Tk 1 qr+Tk 1 2
/ = / T E o ﬂF(Ck)
Qi —Tk (I)(wk) QK —Tk ®(Ck|T|) Ck
where Cj, = (wp_1(qx)/2)? and F is the primitive of 1/® such that F(0) = 0.
Substituting ri < CCrer and using the definition of ® we obtain

Qi+ 1 2
/ . <ZrpQ1) < Csp
av—ri wy| log(wy/r)[1+e — Ch

We now obtain the required integrability as before.
Now suppose s > 8 and [ is a non empty interval. Then we can find k& € N for
which ¢ € I. It follows,

[ = [ 1710 - g

and the right hand side is equal to oo since as > 1. In the same way we have that
wf log(wg /1) ~ C(k)|z — qr|log |z — gx| in a neighborhood of g and so the final
statement follows. O
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Notice the previous lemma implies that w is nonzero outside a set of Lebesgue
measure zero. We recall some elementary facts about the modulus which are valid
on any metric measure space [14].

Lemma 2. Let (X,d,m) be a metric measure space. The modulus Mod,, , satisfies
Mod,, 1 (Tq) < Modp m (I'y)

if Ty and Ty are two curve families such that each curve in Ty has a subcurve in
Ty. Further, Mod, ., (I') = 0 if and only if there is a p-integrable Borel function
g: X — [0,00] such that fwg ds = oo for each v € T'.

Now we can deduce the required properties of the p-modulus on (R",] - |, u).

Proposition 1. Let I'; be the family of non constant absolutely continuous curves
on R"™ and p <1+ «. Then Mod, ,(T';) = 0.

Proof. For each k € N let I'y, be the family of non constant absolutely continuous
curves with image contained in [—k, k|”. Using Lemma 2 it suffices to show that
Mod,, ,(T'x) = 0 for each k.

First suppose p < 1 + «; fix k € N and recall 3 = 1/a. Let g: R* — RT
be equal to 1/@? inside [k, k] and identically 0 outside [k, k]™. Suppose v =
(Y1y---,7n) € Tk and fix ¢ such that the image of 7; contains some non trivial

interval I C R. Then,
/gds > / 1/w(z;)? ds
v ¥

2/ 1/w(t)? ds

i

w(t)?
2/11/ ()7 dt

using Lemma 1. However,

N

k
< n(zk)"*/ w(t) PP dt
—k

which, by Lemma 1, is finite if fp — 1 < § or, equivalently, p < 1 + a. Hence, by
Lemma 2, Mod,, ,(I';) = 0 and the proposition follows.

In the case p = 1 + a we choose g = 1/(@?|log(w/r)|); the argument is then
identical using the analogous statements about integrability from Lemma 1. (]

4. THE MUCKENHOUPT A, CONDITION FOR LARGE p

We suppose throughout this section that p > 1+ a. We first show that w is a
Muckenhoupt Ap-weight on R and then deduce @ is an A,-weight on R” using the
lattice property of A,-weights [20]. To verify w is a Muckenhoupt A,-weight the
idea will be that constructing wy from wy_1 can increase the left side of inequality
(1.1) only very slightly. We use a different argument depending on whether the ball
in (1.1) is relatively small or relatively large.

It will be important during the proof that |z|* is a Muckenhoupt A,-weight on
R; this fact is well known (for example see Remark 4 [6]; this is also valid in R™
provided p > 1 + na) but we prefer to provide here a self-contained proof.
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Lemma 3. The function g(z) = |z|* on R is an A,-weight.

Proof. Let I = [a,b] be an interval. Denote I™ = I'N[0, +00) and I~ = I'N(—00, 0].
Without loss of generality we can assume that [IT| > |I~|; in this case we have
that /= C —I" and so, using that g is an even function, we have

() ()" <= () (o)

Hence it is sufficient to prove (1.1) only for intervals I = [a, b] such that 0 < a < b.
We distinguish two cases:

e 2a > b. In this case, given the monotonicity of g we can estimate each of the
factors in the left hand side of (1.1) with the values of the integrand at the
endpoint: in particular we can estimate it from above by g(b)/g(a) < 2.

e 2a < b. In this case we have that 1/(b—a) < 2/b and so

b b o
][xa dx < 1 /:ro‘ dxﬁi;
@ b—a J a+1

b b 1—
f xa/(l_p) dx < 1 / xa/(l_p) dx < 2bC¥/( P) .
a “b—a 0 _Oz/(lfp)+1

These two inequalities together give us precisely (1.1), with C' depending
only on « and p.

O
The following Lemma will be used to estimate (1.1) for relatively small intervals;
the idea will be that early stages in the construction play no role on small scales.

Lemma 4. Suppose ¢ € R, R > 0 and f: (¢ — R,q + R) — R is Borel with
L/2 < f < 2L for some L > 0.
Let 0 <r < R and g(x) = 2L|(x — q)/r|* for x € R.
Define h: (¢ — R,q+ R) — R by
h(z) = min{f(z), g(x)}.
Then for any interval I C (¢ — R, q + R) we have,

() () s

where the constant C' > 0 depends only on a and p.

Proof. Fix an interval I = (a,b) C (¢—R, g+ R); we consider several cases depending
on the length and position of I.
Suppose |b — a| > r/8%. We have the simple estimate

(4.2) ]{hg]{f§2L.

For the second term in (4.1) we use the bounds on f and the fact that h = f outside
(g—r,q+ 1) to see

+r
/hl/u—p) - /q g/0=0) 4 cp /=),
I - q—r
Using the fact p > 1+« and r < 8%|I| we can continue,
q+r T
/ g1/0=P) (21 /o y1/ (=) /0 [0/ (1=P)
q

-r

< CLY (=P,
< Ccrt/-» 1].
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p—1
(][ hl/(l—p)) <COL!
I

and, by combining this with (4.2), we obtain (4.1).

Now suppose |b—a| < 7/8% and I C [q — (r/4”),q + (r/4®)]. Then h = g on I
and (4.1) follows from Lemma 3.

Finally suppose |b — a| < r/8% and I is not strictly contained in the interval
[q — (r/4%),q + (r/47)]. This implies that |z — q| > r/4°% — /85 for all x € I; it
follows that the values of g, and hence the values of h, on I are comparable to L.
In this case the validity of (4.1) is again clear. O

Thus we obtain

The next lemma will be used to estimate (1.1) for relatively large intervals; the
idea is that wy and wy_1 agree except on a relatively small interval.

Lemma 5. The following estimates hold for both + and —:

/wkSEk/ Wk—1,
It JE

k
/ w077 < ¢, / wl/ 47,
I JZE
Proof. Let L = wy_1(qx). For the first estimate we note,
/ wy < 2T w—1(qr) = 4L
Iy
and
/ Wk —1 Z L/2(Rk — Tk)
st

so the estimate holds since Rj was chosen sufficiently large relative to r;. The
argument for the second estimate is similar: we have, since p > 1 + «a,

| o \1/0-D) _
/wi/u—p)g/” (‘x L) g M/ _P 1
Iy —Tk Tk

p—1—a’
1/(1- _
/iwké(l P > (2L)YO=PI(Ry, — 1)

“k

and again, since Ry, are sufficiently large relative to 7y, we get the conclusion. O

We now put together Lemma 4 and Lemma 5 to obtain the required control on
inequality (1.1) for the weights wy used to construct w.

Lemma 6. There exists a constant C > 0, depending only on p and «, such that
for all intervals I,

(]{ wk> (]{ wi/(lp)y_l < max {(1 +ep)? <]{ wH) (]{ w;/(llza)p_l 70} .

Proof. We clearly can assume I N [, # & since wy = wy_1 outside I. First
suppose |I| > |Ji| so that (without loss of generality) J," C I. Using Lemma 5 we
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1
][wk / Wi +/ Wk
I I\ /1, I\Iy

can estimate,

~

1
< = Ek/ wkfl‘i‘/ Wk—1
] it NI
1
< — ek | w1+ [ wr_1
1] I I

=(1+ Ek)]{ Wg—1.

One obtains the estimate

p—1 p—1
<]{wi/(1p)) < (1tep)! (]{w;/(;m)

in exactly the same way. Hence we obtain the desired inequality for this interval I.
Next we suppose |I| < |Ji| so that I C (qx — 4Rk, qr + 4Ry). Then, from the
construction of wy, we have
wi—1(qx)/2 < wi—1(v) < 2wi—1(qk)

whenever |z — g;| < 4Rjy. By applying Lemma 4 with ¢ = g, R = 4Ry, f = wg—1,
L =wi_1(qx), r =1y and g = g, we obtain

() ()

with constant C' depending only on p and «. This proves the claimed inequality. O

1
<C

By iterating Lemma 6 we can easily show that w is an A,-weight on R; combining
this with the lattice property of A,-weights will then show that @ is an Ap,-weight
on R”™.

Proposition 2. If p > 1+ « then W is an Ay-weight on R™.

Proof. By repeated application of Lemma 6 and the fact e can be chosen small we

deduce
p
I I

is bounded uniformly in k£ and I. Using the monotone convergence theorem we

deduce lhal
p—1
(, w) <' wl/(l p))
I I

is bounded uniformly in I. This shows that w is an Ap-weight on R.
We now observe that

-1

T = (T1,..,%n) = n(x) = w(z;)

is an Ap-weight on R" for each 1 < ¢ < n. Indeed; we may use cubes instead of
Euclidean balls in the left hand side of (1.1) and then the left hand side of (1.1),
corresponding to the weight 7);, reduces to the corresponding expression for the
weight w on R. Such an expression is obviously bounded since w is an Ap,-weight
on R.

By Proposition 4.3 [20] the minimum of a finite collection of A,-weights is again
an A,-weight; hence @ = min{#n1,...,n,} is an A,-weight. d

Taken together, Proposition 1 and Proposition 2 prove Theorem 1.
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5. CHARACTERIZATION OF THE WEAK GRADIENT ON R

Let u be a locally finite Borel measure on R. We give a characterization of
the p-weak gradient for Lipschitz functions defined on (R, |- |, ). The idea is that
integrability properties of the absolutely continuous part of x give information about
which intervals (considered as curves) have non trivial p-modulus; these intervals
then determine the p-weak gradient. A similar characterization has been found
in [5], for measures p whose absolutely continuous part with respect to Lebesgue
measure is bounded by below by a constant, and a weaker result is stated in [7],
Theorem 2.6.4, where the author characterize the measures for which the p-weak
gradient is |f’| for every f € C° (which is equivalent to the closability of the
Sobolev norm he considers).

It is worth noticing that, at least when p = 2, a very similar question has been
investigated by some authors in the calculus of variations, posed as a semicontinuity
problem; in [22, 13] they found exactly the same answer that we find.

Throughout this section we fix p > 1 and let ¢ be the corresponding Hoélder
conjugate so that p~! +¢~' = 1. Given a compact interval I C R we define the
corresponding curve vr: I — R by 77(¢t) = t. Denote the Lebesgue decomposition
of u by g = g + pts. Let pg = fo£' with f,: R — R a Borel function and fix a
Lebesgue null set N C R on which pg is concentrated.

Lemma 7. For any interval [a,b] C R we have Mod, ,, ({Vja5}) > 0 if and only if
f;/(l—P)

is Lebesgue integrable on [a,b].

Proof. This lemma is an easy corollary of Theorem 5.1 in [2]; however we want to
give here a self-contained and more elementary proof since I' consists of only one
curve. If a = b the statement is trivial so we assume a < b.

We write an equivalent definition for Mod,, ,,, using the homogeneity of the prob-
lem (see [2]):

. gl v
(5.1) Mod,, . ({ Ve })/? = inf {b(“) ,
[, 9(x) dz
where the infimum is taken over all Borel functions g which are p-integrable with
respect to g (this set is non empty since p is locally finite).
Let g: R — R be any Borel function. From Hoélder’s inequality we have

b b 1/p b 1/q
(5.2) / g(x) dz < < / 9" () fu(2) dx) ( / Fulz)/ =P dx)

Now, if fa/" ™) is £! integrable on [a,b], by using inequality (5.2) in (5.1) we get
that

p 1
Mod,, ,({Vja H)? > inf{ 1912 10) } > >0

b = /(-
DICORES R F Al e
If otherwise f;/ (=P ig not integrable then, letting f. = max{f,,e}, we use

@) = 0 ifre NU(RN [a,b])
g\xr) = f;/(lfp)(@ otherwise

as a test function in (5.1) and using p, < f-£L! we get

b —1/q
Mod,, . ({Viay D'/? < ( / FH =P () da:) .

Letting ¢ — 0 we obtain, by monotone convergence, that Mod,, ,,({V}a,p}) = 0. O
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Theorem 2. Let
(5.3) N, = {3: € R such that fY=P) is integrable on a neighbourhood of x} .

Let f: R — R be Lipschitz and define, for p almost every x,
[f'@)| ifx e Np\N

0 otherwise.

(5.4) |df [p,u(2) = {

Then |V flp.u(x) = |df |p,u(x) for p-almost every x.

Proof. We first note that equation (5.4) makes sense because f’ exists £l-almost
everywhere, by Rademacher theorem, and so it exists also p,-almost everywhere;
hence f’ exists p-almost everywhere in the complement of N. We note that, thanks
to Lemma 7, we have the following equivalent definition for N,:

(5.5) N, = U {# € R such that Mod, ,, ({Vjz—z,04)}) > 0}

e>0

Denote by B the set of points where f is not differentiable. Set
G ={g9:R — [0,00) bounded Borel function : g(z) > |f'(z)| for L'-a.e. z € N, }.

We will prove that G is exactly the set of bounded p-upper gradients for f. This
implies the theorem: indeed, |df|,, € Gy and for any ¢ € Gy we have that
g(z) > |df|p,u(x) for p almost every x € R.

Step 1. g a bounded p-upper gradient = g € G.
Let D, be the set of Lebesgue points of g with respect to the Lebesgue measure.
Since g is a bounded Borel function, we know that £'(Dg) = 0. Now take a point
€ N, N Dy \ (BUN). Thus there exists € such that Mod,,,, ({Vz—c,o4}) > 0
but then MOdp,u({’Y[m—&wM]}) > 0 for every 0 < § < e. This, together with the
definition of the p-upper gradient, gives us that

x4+
f@+8) = Fa=D< [ Vflls) ds

and so, passing to the limit when § — 0, we get that |f'(z)| < g(x), and so the
thesis.

Step 2. g € Gy = g is a p-upper gradient.
To prove this implication we first show that

I'={y : v has end points a < b, (a,b) "N} # 0}

is Mod,, ,-null. Let B, = J\/'pc. First let {z,}nen C By be a set of points dense in
B,. From the definition of AV, we know that for every n there exists a non negative
function f, € LP(R, u) such that f, is not locally Lebesgue integrable at x,,, that
is:

Tp+E
(5.6) / fu(s)ds =00 Ve >0,

Tpn—E

Now we take f =3 anf, where the a,, are positive real numbers small enough so
that f belongs to LP(R, ). For every curve v € T with end points a < b we have
that x,, € (a,b) for some n (since {z,}nen were dense in B,) and so we have that
[z, —€,2n + €] C (a,b) for € > 0 small enough. In particular, using (5.6),

/f>/f d8>an/ fn(s ds>an/:isfn(s)ds:oo



12 SIMONE DI MARINO AND GARETH SPEIGHT

and so Mod, ,(T") = 0.
Suppose g € Gy and v ¢ T" has end points a < b. Then (a,b) C N, and hence,

(@) - F0)] s[lb|f'(x>|dxs/abg<x> dxé/ﬁ.

Thus the set of curves where the upper gradient property fails is a p negligible set;
therefore g is a p-upper gradient of f.

O

Remark 1. It seems that one can generalize the observations in section 5 about
weak gradients on R to analogous statements about R™; the statement here should
be that the weak gradient at a point is the restriction to a subspace (depending on
the point and the measure) of the ordinary derivative. This generalization involves
the equivalent definition of weak gradient from [11] as an integrand whose integral
represents the Cheeger energy. The Cheeger energy is a functional obtained by
relaxing the integral of the slope using convergence of Lipschitz functions; the paper
[8] provides integral representations of many such functionals. Unfortunately, when
n > 1, apart from peculiar cases, it is not possible to give a concrete description of
the subspaces but a rather abstract one.
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