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Abstract. The structural, surface chemical and catalytic properties of the materials belonging 

to the SiO2-Al2O3 system are reviewed critically. In particular, amorphous silicas, transitional 

aluminas, different silica-aluminas (silica-rich and alumina-rich) and protonic zeolites are 

taken into considerations. The nature of the acid sites, of the Lewis and of the Brønsted 

type, over these surfaces is discussed and rationalized, based on the fundamental chemistry 

and structural chemistry of silicon and aluminum compounds.  

 

1. Introduction. 

The history of catalysts based on mixed oxides of silicon and aluminum is strictly bound to 

the history of hydrocarbon chemistry and, in particular, of the Catalytic Cracking refinery 

process [1]. This process was first developed  by the french Eugene Houdry in the twenties 

of the 20th century, and then realized at the industrial level in USA in the thirties [2,3]. Since 

that times, this process is a key for the full exploitation of heavy oils and the production of 

high-octane gasoline. In particular, it had a relevant role in allowing in the USA the 

preparation of high octane aviation gasoline, thus determining the better performances of 

allied aircrafts than the German ones during second world war.  

Acid-activated bentonite clay catalysts were originally used for this process, starting from 

1937, when it was configured as a fixed-bed process, with several reactors and cyclic 

regeneration of one of them. At the beginning of the forties,  moving bed catalytic cracking 

(MBCC) processes, and the first Fluid Catalytic Cracking processes were put into operation 

[4]. Starting from 1942, synthetic “low-alumina” amorphous silica-alumina catalysts were 

applied, with ca 13% Al2O3 wt/wt [5].  “High-alumina” silica-alumina catalysts containing up 

to 30 % Al2O3 wt/wt [6] were introduced starting from 1955. Synthetic protonic faujasite 

zeolites were developed at Union Carbide and Mobil, and applied to FCC at Mobil in the 

early sixties [7,8,9]. This was the beginning of the large use of acid zeolites as 

heterogeneous catalysts in refinery and petrochemistry [10,11,12]. Also aluminas [10,13] 

and  silica-aluminas [10,14,15]  find a number of applications in industrial chemistry as acid 
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catalysts. On the other hand, silica, alumina, amorphous silica-aluminas and zeolites have 

also a large number of application as supports for sulphide [16], metal [17], halide [18] or 

other oxide catalysts [19]. 

The interest for these materials is not strictly related to the era of fossil fuels, but will be 

further improved in the incoming era of renewable raw materials. In fact, solid acids have a 

very relevant potential role, as catalysts and catalyst supports, e.g.,in the conversion of 

ligneocellulosic biomass [20,21] and wastes [20,22] to useful products, in several steps of 

the new green organic chemistry based on renewables and for a number of environmental 

applications [23].  

In this review the main characteristics and, in particular, the origin of the acid properties of 

materials arising from silica and alumina and their mixtures will be discussed on a 

fundamental chemical ground.  

2. Silicas 

2.1 Basic chemistry of silicas and silicic acids. 

As everybody knows, silicon is a semimetallic element. Tetravalent silicon is soluble in 

strongly basic water solutions as orthosilicate anion, [SiO4]4-. By decreasing pH, the different 

polyhydrogen orthosilicate anions [HnSiO4](4-n)- form progressively up to forming orthosilicic 

acid H4SiO4 which is a weak polyprotic acid with pKa1  9.5 and pKa4  19 [24].  At slightly 

basic, neutral and acidic pH, depending also on its concentration, orthosilicic acid tends to 

polymerize to metasilicic acids (H2SiO3)m, finally giving rise to precipitation [25] and/or 

gelation [26] producing amorphous silica, SiO2 (precipitated silica and silica gel, 

respectively). Actually, some crystalline silicic acids have been prepared and characterized 

[27,28,29,30].  

Correspondingly, both crystalline and amorphous silicas start to be dissolved at pH  8.5 

and are dissolved rapidly and completely in basic solutions (pH  10), while they are 

substantially stable at acidic pH, in equilibrium with 2 10-3 M of H4SiO4 [31]. 

The weak acidic nature of silicic acids  is associated to the very low size of the Si4+ formal 

cation (0.26 Å radius [32]), its moderately high charge and the intermediate electronegativity 

of the element, that make the Si-O bond highly covalent, but do not allow to produce formal 

double bonds with oxygen. According to this, delocalization of the negative charge of the 

deprotonated species, like trihydrogen-silicate anions [H3SiO4]-, is not possible, and this is 

a main reason why orthosilicic acid is not a strong acid.  

Interestingly, it has been reported that acidity of silanols increases with the size of the 

silicate-polymeric species, being polysilicic acids (pKa1  6.5) definitely stronger than 
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pyrosilic (or disilicic) acid (pKa1  9.0) and orthosilicic acid (pKa1  9.5) [33,34]. This can be 

explained by the delocalization of the negative charge of the dissociated species over Si-O-

Si siloxane bonds. In fact, siloxane groups, whose bond angle Si-O-Si is very flexible in 

contrast to the O-Si-O bond angle that is not, have some character of “double bond” which 

is associated to an hyper-conjugation effect, i.e. the nO→σ*Si-O(vicinal) interaction, a bonding 

interaction between an oxygen lone pair and the antibonding orbital of the vicinal Si-O bond 

[35,36,37]. These interactions can allow the delocalization of the terminal anionic charge of 

a silicate species (Si-O-) over the siloxane bridges, the more the larger is the polysilicate 

entity.  

Thus, in practice the orthosilicate anion is a quite strong base, whose strength decreases 

by protonation (SiO4
4- > HSiO4

3- > H2SiO4
2- > H3SiO4

- >> H4SiO4) and by oligomerization to 

polysilicate ions (SiO4
4- > Si2O7

6- > Si3O10
8- >…). Conversely, silicic acids are weak 

polyprotic acid whose acidity increases upon oligomerization.  

 

2.2 Preparations of amorphous silicas. 

Most industrial preparations of amorphous silicas use  sodium silicate as a precursor. This 

material is relatively cheap but may be somehow  contaminated by aluminium and iron. More 

expensive but purer alkoxy-silanes represent alternative precursors. Rice husk ash (RHA) 

can also be a cheap raw material for silicas production  [38,39]. The preparation of silicas 

from solutions of silicate species is obtained around neutral conditions or in acidic 

conditions, as said above.  

Precipitated silicas. Although many different recipes have been proposed, precipitated 

silicas are commonly produced [40] by partial neutralization of sodium or potassium silicate 

solutions. Sulphuric acid is mostly used, mixed with sodium silicate in water still retaining 

alkaline pH. Reaction is performed under stirring at 50-90 °C. The precipitate is then 

washed, filtered and dried. During precipitation, progressive particle growth occurs up to 4-

5 nm clusters, that successively agglomerate to form sponge-like aggregates. Tuning 

preparation procedure parameters (choice of agitation, duration of precipitation, the addition 

rate of reactants, their temperature and concentration, and pH of precipitation, as well as 

drying conditions) allows tuning of final particle size and morphology, thus surface area and 

porosity. Precipitates typically have a broad meso/macroporous morphology. Very high 

surface areas may be obtained with these procedures (up to 750 m2/g), with pore volume in 

the 0.4-1,7 cm3/g range and average pore diameter in the 4-35 nm range. Typical impurities 

of these materials are sodium ions (< 0,8 %) with the likely presence of iron and aluminium 
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ions at the 500-1000 ppm level. Precipitated silica are commercially available such as the 

Sipernat family from Evonik and the Zeosil-Micropearl materials from Rhodia.  

Silica gels. Silica gels are usually produced [41] by dissolving sodium or potassium silicate 

(10-20 % silica)  into an acid, such as  sulphuric acid (pH ~ 0.5-2). If the particles are smaller 

than 100 nm they form silica sols, stabile colloidal dispersions of amorphous silicon dioxide 

particles that can be used e.g. as polishing agent at production of silicon surfaces in the 

electronic industry. A gel is formed when the molecular weight of the micelles reaches 

approximately 6 million, thus the hydrosol viscosity reaches the no-pour point. In a second 

step the liquid is removed leaving a glass-like gel which is broken down into granules and 

then washed, aged, and dried, with 6 % volatiles and 22 Å average pore diameter.  

Silica gels have pores with a wide range of diameters, typically between 5 Å and 3000 Å, 

and broad distributions. Silica gels synthesized with surface area as high as 800-900 m2/g, 

an average pore size of about 20Å and effective pore volumes of 0,40 cm3/g, are known as 

narrow pore silica gels,  while wide pore silica gels are characterized by surface area ~ 400 

m2/g, average pore size of about 110Å  and effective pore volumes of 1,20 cm3/g [42].  

Silica aerogels. Aerogels, first prepared in the late 1920s by Samuel Kistler, are  highly 

transparent materials with very high surface area (>1000 m2/g) and high void volume (85-

98 %), prepared by supercritical drying of wet silica gels . Supercritical drying process can 

avoid capillary stress and associated drying shrinkage, which are usually prerequisite of 

obtaining aerogel structure. The conventional academic method of silica aerogel preparation 

is sol-gel process using organic silicon compounds, such as tetramethyl-orthosilicate 

(TMOS), tetraethyl-orthosilicate (TEOS) or polyethoxydisiloxane (PEDS) as precursors.  

Organo silanes are dissolved in a binary solution, typically water-methanol or water - 

ethanol, and hydrolysed in the presence of a catalyst, frequently an acid (hydrochloric, 

hydrofluoric, formic, nitric, sulphuric acid). Additives may be added to modify gel porosity 

during aging. Drying is performed after washing the gel with a solvent and then raising 

temperature and pressure to obtain supercritical conditions for the solvent (T > 239.5 °C, P 

> 79.783 atm for methanol, T > 241  °C, P > 60,567 atm for ethanol).  In the case of low 

temperature supercritical drying, CO2 is used as the solvent and this allows lower 

temperature  for supercritical drying (T > 31.13 °C, P > 72.786 atm). Industrial preparations 

likely start from “water glass”, a much cheaper raw material, and may apply ambient 

pressure drying by solvent evaporation after previous silylation and hydrophobization of the 

surface. In fact, commercial aerogels may be hydrophobized, e.g. from aerogels from 
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CABOT, mainly used for insulation and daylighting, as intermetallic dielectric materials and 

acoustic applications. 

Mesoporous silicas. After the work of Kresge et al. [43] at Mobil,  and the even previous 

work of  researchers of Toyota [44], mesoporous silicas containing somehow ordered 

structures of well-defined channels or interconnected cavities with size from few to several 

nm, have been developed.  The preparation of these materials [45,46] commonly starts from 

silicon alkoxides hydrolysis performed in the presence of appropriate concentrations of 

detergent molecules acting as templates or Structure Directing Agents (SDA). With 

opportune reaction conditions, pores having different geometries can be obtained.  

Many different materials, with different mostly mesoporous pore structure, but having 

sometimes also some microporosity, may be obtained by different preparation procedures 

and SDAs. Surface areas up to 1500 m2/g are obtained, with well-defined mesoporosity. 

Such mesopores can be constituted by linear channels or interconnected cages, or even 

wormhole-like channels with hexagonal symmetry [47]. Although sometimes considered like 

very large pore zeolites, these materials are essentially amorphous materials with non-

structural although sometimes ordered mesopores.  

Stöber silica and spherical silica micro/nanomaterials with hierarchical structures. 

Monodisperse non porous spherical silica particles were prepared originally by W. Stöber et 

al. in 1968 [48]  by hydrolysing TEOS in a mixed solution of ammonia, alcohol and water 

followed by condensation of silicic acid in basic conditions and calcination at 600 °C . 

Depending on reaction conditions, such non-porous spherical particles have diameters 

mostly between 50 and 600 nm resulting in surface areas between near 100 and few m2/g 

[49]. In more recent years, silica spheres with multilevel pore structure have been obtained. 

Mesoporous hollow silica spheres may be prepared by different methods such as using hard 

templates (spherical particles of solids like polymers) and surfactants as pore structure 

SDAs, or using different fluids (including gas bubbles) as templating molecules [50]. The 

production of more complex materials such as core-in (hollow porous shell) spheres, 

multiple shell spheres and hierarchically porous spheres, with several levels of porosity 

present together, have also been obtained.  

Fumed or pyrogenic silicas. Fumed silicas are produced by flame hydrolysis of silicon 

tetrachloride, a process invented in 1942 by H. Klöpfer a chemist at Degussa (now Evonik). 

This process consists in the reaction of SiCl4 in a hydrogen-oxygen flame at high 

temperature, reported top be near 1100 °C (Degussa – Evonik) or 1800 °C (Cabot) [51], 

producing silica and hydrogen chloride. This procedure produces very small non-porous 



6 
 

amorphous primary particles, with a particle density of 2.20 g/cm3, i.e. only slightly lower 

than that of crystalline silicas. These particles tend to agglomerate in linear and branched 

chain-like structures.  The surface area of these materials is moderately high (100-400 m2/g) 

and fully external, essentially depending from the particle size that ranges 5-16 nm. The 

weight loss by drying is quite low, 1-2,5 % depending roughly on the surface area, the 

morphology being stable nearly up to 800 °C, when sintering starts. From the point of view 

of the metal content these materials are very pure. In particular they do not contain alkali 

metal impurities.  Typical impuritiy of these materials are residual chlorine, and, to a low 

extent, aluminium, titanium and iron. A typical practical characteristic of these materials is 

the very low apparent density (down to 30 g/l) and the volatility of the particles.  

 

Amorphous silicas are mostly characterized by low bulk densities, sometimes as low as 1 

g/cm3, well  lower than crystalline silicas. This is in part related to interparticle porosity as 

well as to defect structure.  

These amorphous states are actually very stable, their sintering and crystallization, usually 

to cristobalite [52], being fast phenomena only at temperatures of the order of > 800 °C, 

giving rise to loss of surface area and porosity 

 

2.3  Solid state chemistry of silica: amorphous versus crystalline phases.  

As it is well-known, silica forms many different crystalline structures [53,54]. Except some 

high- pressure polymorphs like the rutile-type polymorph stishovite, which have octahedrally 

coordinated silicon, all crystalline silica structures present tetrahedrally coordinated silicon 

atom. This is a result of the valency four of silicon and the covalency of the Si-O bond [55]. 

At ambient pressure, SiO2 has several major polymorphs. Those having thermodynamic 

stability ranges at ambient pressure are : low temperature trigonal α-quartz up to 570 °C,  

high temperature hexagonal β-quartz 570-870 °C, hexagonal β-tridymite  870- 1470 °C and 

high temperature cubic β-cristobalite 1470-1705 °C. Other tetrahedral-based crystalline 

phases, metastable at ambient pressure, exist like hexagonal -tridymite and tetragonal -

cristobalite, and coesite, the last being thermodynamically stable at moderately high 

pressures. It seems interesting to remark that crystalline silica structures have relatively low 

density with respect e.g. crystalline aluminas as well as aluminum silicates (Table 1). This 

is largely due to the covalent tetrahedral coordination of silicon, corresponding to 

coordinaton 2 for oxygen, in contrast to the usually predominant coordination 6 of aluminum, 
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with oxygen in coordination 3 and 4. As a result of this, larger and more vacant interstices 

exist in the silica structures, as it will be discussed below.  

Besides the previous structures, a number of silica metastable microporous crystalline 

phases have also been prepared, usually called silicalites [56]. They are fully siliceous 

zeolites, with a much lower density. They are prepared with the typical preparation 

techniques of zeolites (see below), using only a pure silicon source and organic structure 

directing agents (SDAs). Silicalite-1 is largely the better known and most used siliceous 

zeolite. Its crystalline framework is constituted by Si oxide tetrahedral structure, with the 

typical structural microporosity of the MFI structure zeolites. Two types of intersecting 

channels, both formed by 10-membered silicate rings, characterize this material. One 

channel type is straight and has a nearly circular opening (5.3 x 5.6 Å) along  [010], while 

the other one is sinusoidal and has an elliptical opening (5.1 x 5.5 Å), along [100].  

When prepared as a “perfect”, non defective form, its internal surface has an essentially 

covalent and hydrophobic character.  Only the external surface presents hydrophilicity due 

to the presence of silanol groups. Alternatively, silicalite may be prepared in  defective forms, 

where silanol nests substitute for vacant silicon atoms in the framework and in the internal 

cavities, thus generating more hydrophilicity.  Several other fully siliceous zeolites have been 

synthesized in recent times.  

Other purely siliceous zeolite-like materials have been prepared. Silicalite-2 [57] belongs to 

the framework denoted MEL, closely related to MFI, containing a two dimensional 10-ring 

pore structure. Both sets of pores are straight 5.3 x 5.4 Å wide. Purely siliceous zeolite BEA 

has also been prepared, both in the defective and in the non-defective forms [58]. BEA 

structure has a three-dimensional intersecting channel system, two mutually perpendicular 

straight channels each with a cross section of 6.6 - 6.7 Å, and a sinusoidal channel with a 

cross section of 5.6 - 5.6 Å. 

Also other pure silica zeolites, such as ITQ-1, the siliceous form of zeolite MWW (MCM-22) 

[59], ITQ-3 [60], ITQ-29, the siliceous analog of zeolite A (LTA) [61], and fully siliceous FER 

[62] and SSZ73 (SAS topology) [63] have been prepared and characterized. 

The tetrahedral-based structures of the silica polymorphs are associated to corner sharing 

tetrahedra producing a quite covalent Si-O-Si bond networks and differ for the relative 

arrangements of the tetrahedra.  

 

2.4. The surface chemistry of silicas: terminal silanols and siloxane bridges. 
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As said, silica is a largely covalent oxide [55,64], in agreement with the high electronegativity 

of Si4+ [65]. Silicon atoms are revealed by the  Si 2p binding energy XPS peak at ca. 103.5 

eV [66,67] that can be deconvoluted into two peaks representing the Si 2p 3/2 and Si 2p 1/2 

levels. The splitting between signals due to bulk silicon species and surface silicon atoms 

bonded to hydroxyl groups is also usually not detected [68].  

29Si MAS NMR spectra show a main peak denoted as Q4 signal, at 105-115 ppm [69,70], 

which is not influenced by 1H-29Si Cross Polarization experiments, due to bulk silicon atoms 

bonded to other four Si atoms through Si-O-Si bridges. Other signals, definitely weaker, 

denoted as Q3 qnd Q2 are evident, assigned to Si atoms located at the surface and bonded 

to three or two Si atoms through Si-O-Si bridges, as well as to terminal and germinal hydroxyl 

groups, respectively. Thus, the coordination of silicon atoms exposed at the surface is 

completed by hydroxyl groups, producing silanol species. Thus, Lewis acidity is absent in 

normal conditions. In fact, no coordination of basic probes is observed during adsorption, 

only H-bonding.  It has been found that high temperature treatment, such as outgassing at 

> 1100 °C is needed to cause the formation of Lewis acid sites where pyridine and ammonia 

chemisorb by coordination [71]. Thus, the surface of silicas is, in usual conditions, essentially 

constituted by terminal silanols Si-OH (“isolated” or germinal, Fig. 1), as well as by Si-O-Si 

siloxane bridges.  

2.4.1 The terminal silanol groups.  

Indeed “terminal silanol” groups, Si-OH,  essentially dominate the surface chemistry of silica 

in normal conditions [72], as discussed by Zhuravlev and coworkers [73,74] and reviewed 

more recently by Rimola et al. [75]. The presence of silanol sites is detected by using IR 

spectroscopy [76] being these groups responsible for a strong sharp O-H stretching band 

centered at ca 3745-8 cm-1, with a tail or with some definite components at lower frequencies 

due to H-bonded silanol nest species. Isolated silanol groups are responsible for a very 

sharp IR band (O-H stretching) evident near 3740 cm-1 already after outgassing in mild 

conditions. This band sharpens by increasing outgassing temperature, the maximum being 

at the highest treatment temperature located near 3748 cm-1. The band of free silanols is 

clearly asymmetric, having a pronounced tail towards lower frequency more evident in the 

cases of highly porous samples. In practice, it seems quite evident that the band of free 

silanols may actually be composed of different very sharp components, one of them being 

located more or less at 3744 cm-1. This feature, according to [77,78], could be due to the 

geminal silanols, which are hardly distinguished from isolated silanols in the IR spectra, 



9 
 

whose presence is deduced from 29Si MAS NMR data (see below). In the same range, 

maybe at   3741 cm-1, would adsorb also couples of vicinal silanols [79].    

On the other hand, probing the free surface silanols with adsorbed molecules of different 

sizes [80] indicates that part of the tail is due to silanol groups located in small nanopores 

having molecular size, thus not accessible to large molecules. The slightly lower OH 

frequency (ca 3700 cm-1) show that these components are associated to internal but 

essentially free silanol groups, very slightly perturbed for some kind of weak interaction. 

Gallas et al. [81] showed on precipitated silicas OH groups partially unaccessible to D- 

exchange and to interaction with alcohols, whose accessibility depends inversely on alcohol 

size. Two other broad features are usually present in the IR spectra of silicas, recorded after 

outgassing at mild temperature, at 3530-3520 cm-1 and at 3660-3650 cm-1. They have been 

assigned to clusters of vicinal H-bonded silanols [82] which at least in part condense at high 

temperature giving rise to siloxane bridges. In fact, their condensations does not contribute 

significantly to the increase of the band of free silanols [83]. In the case of microporous silica 

samples, these absorptions are stronger (relative to the band of the free silanols) than in the 

case of non-porous or  less porous powders like fumed silica (Fig. 2 [83,84]).  

Free silanol groups are also evident by 1H MAS NMR spectroscopy, because they produce 

a sharp signal centered at 1,7 - 2 ppm [69,85,86,87]. A splitting of this signal may be due    

to external and internal silanol groups (1.8 and 2 ppm, respectively [85]). An additional broad 

signal located near 3 ppm is assigned to H-bonded silanols.  

Terminal silanol groups are also evident being responsible for 1H-29Si Cross Polarization 

MAS NMR signals Q3 (due to Si atoms bonded through oxygen bridges to three other Si 

atoms and to a isolated OH group, at 98-102 ppm). A similar effect is also observed for the 

much weaker signal Q2 (due to Si atoms bonded through oxygen bridges to two other Si 

atoms and to two geminal OH groups, at 90-92.5 ppm) and this is the main evidence of the 

existence of a moderate fraction of germinal silanols Si(OH)2.  

IR and NMR techniques revealed the presence of silanol groups not only on high surface 

area silicas, but also on low surface area crystalline materials such as, e.g quartz dust 

[88,89]. Similarly, they are also present on the surface of silicalites [90,91,92,93], although 

in this case the main maximum is found at slightly lower frequencies, i.e. 3735 cm-1. 

Additionally, the spectra of silicalite may show a broad absorption at  lower frequency (3550–

3500 cm-1) which is very strong at 3500-3200 cm-1, for “defective” silicalite samples. The 

shape and position of indicates that it is due to H-bonded silanols, providing evidence for 

silanol nests associated to defects in the crystal zeolitic lattice. 
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Silanol groups are very weakly Brønsted acidic, as shown by the adsorption of basic 

molecular probes [94], but represent the active sites in the adsorption [95] of both polar 

molecules such as water, giving rise to Hads ~ – 50 kJ/mol, and of non-polar molecules 

such as hydrocarbons, with which hydrogen bonding of moderate strength may occur (< 10 

kJ/mol). This shows that the protonic activity of silanol groups is definitely weak but non-

negligible. In fact, adsorption energy of ammonia on silicas may give rise to evolution of  

150-230 kJ/mol [96]. The density of active silanols in amorphous silica is evaluated to be in 

the range 0.5-8 group /nm2 depending on preparation and pretreatment [97,98,99].  

Recent theoretical investigations [100] concerning the amorphous silica/water interface 

report the existence of two different types of silanols on silicas, with some hydroxyl groups 

(some convex geminals and some type of vicinals) which  are more acidic (pKa  2.1 – 2.9). 

Thus, part of the silica silanols are even more acidic than those of polysicic acids. Instead,  

concave geminals and the isolated groups would have quite a high pKa (8.9 and 10.3, 

respectively), similar to the one of silicic acid in liquid water. This study provides evidence 

of the effect of the local stabilizing mechanisms of the anionic charge of the dissociated 

species in determining the acidity of the silanol groups. Similar values of pKa have been 

calculated for different silanol species on the 100 and 101 faces of quartz [101]. These data 

agree with spectroscopic studies performed at the gas/solid interface showing that the 

silanol groups of silicas are indeed poorly acidic with respect to typical strong Brønsted acids 

(i.e. with pKa < 0). However, most spectroscopic studies performed at the gas/solid interface 

do not provide evidence of different families of silanol groups interacting in strongly different 

ways with the basic probe molecules. Indeed, using very weak basic molecular probes such 

as CO, adsorbed at low temperature (140 K), two different interactions were observed. In 

fact, the adsorption of CO over silica outgassed at medium-high temperature causes the 

partial shift of the band of the free silanols (3745 cm-1) to lower frequencies. The new 

component, assigned to silanols interacting with CO through the lone pair at the carbon 

atom, is centered at 3670 cm-1, but a component at 3590 cm-1 is also evident in the 

subtraction spectrum. This confirms that in the case of pure silica, in spite of the sharpness 

of the band of  the terminal silanols, some heterogeneity of these sites occurs, some of them 

being more acidic than others (OH  75 cm-1; OH   155 cm-1). The extent of these 

shifts are, in any case, in the range of weak Brønsted acidity [83]. In the CO stretching region 

a band at 2155 cm-1 is well shifted above the value of free CO, and this indicates that an 

electron withdrawing center interacts with the carbon atom. This band is due to CO H-

bonded to the silanol groups. 
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The really moderate or weak protonic acidity of the silanol group is associated  to three main 

reasons: 

i) The silanol species is definitely stable 

ii) The delocalization of the anionic charge, and consequently the stabilization of the 

dissociated from, after dissociation would be quite weak 

iii) The stabilization of the protonated form of the base by the silica surface is alo 

weak, due to its covalency and the wek basicity of siloxane bridges (see below). 

These factors make the proton jump associated to Brønsted equilibrium 

O3SiOH +NH3(g)    O3SiOH…NH3      O3SiO-  NH4
+ 

(Fig. 3) unfavoured thermodynamically. 

The value of the XPS O1s binding energy is near 532.8 eV [66,102] in both crystalline and 

amorphous silica. A splitting of this signal, not always observed, is associated to the 

presence of two different species, the siloxane oxygen (Si-O-Si) and the silanol oxygen (Si-

OH), the latter being centered at slightly lower energy [68,103]. These high O1s binding 

energies are indication of weak basicity of surface oxygen species [104,105].  

Indeed protonation of silanol group can occur [106] but only with very strong acids [101], 

due to its very weak basicity. The pKa of the SiOH2
+ group was evaluated to be < -2 [101]. 

However, H- bonding interaction of silanol through its own proton with basic species strongly 

enhances the basicity of its own oxygen atom [107,108]. Conversely, increased Brønsted 

acidity of silanol groups was reported in the presence of coadsorbed acidic species such as 

SO2 [109], possibly showing the reaction of the oxygen atom with such acidic compounds.  

 

2.4.2 The surface siloxane bridges. 

Siloxane bridges have been considered to be fully hydrophobic and unable to receive 

hydrogen bonding [72]. On the other hand, also siloxane bridges have some basicity [110] 

which is however very low [75]. Recent theoretical data indicate that siloxane bridge can be 

protonated too, its reactivity strongly depending on its strain: while vitreous silica has a main 

Si-O-Si angle of near 150°, bridges with 125-135 ° exist and they can undergo protonation 

[111]. Thus, the more strained the Si-O-Si angle, the more the oxygen basicityThe density 

of reactive strained siloxane sites is evaluated to be in the range 0.02-0.004 site/nm2 [112]. 

The possible interaction of empty 3d orbitals of silicon with 2sp3 nonbonding orbitals of 

oxygen was considered to explain this poor basicity. More recently, the already cited hyper-

conjugation effect, i.e. the nO→σ*Si-O(vicinal) interaction, a bonding interaction between an 
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oxygen lone pair and the antibonding orbital of the vicinal Si-O bond is considered [36,37]. 

It is likely that this hyper-conjugation increases by increasing the Si-O-Si angle.  

Evidence for the non-basic nature of the oxygen species at the surface of silica is provided 

by the weak adsorption of CO2, a largely used probe for surface basicity and nucleophilicity, 

which interacts in a molecular way on the hydroxyl groups of porous silicas [113] and fully 

siliceous zeolites [114] without any formation of carbonate or bicarbonate species. On the 

other hand, studies on the adsorption of strong Lewis acids as BF3 reveal the reactivity of 

both siloxane and silanol oxygen species, the former before the latter, producing the opening 

of the siloxane bridge [115] producing SiOBF2 species and, likely F-Si. On the other hand, 

Si-O-Si, appear to reveal some reactivity also with less aggressive polar molecules at least 

at high temperature [79,116,117,118].   

In any case, the reactivity of siloxanes is very weak. However these sites can be involved in 

weak but not fully negligible interactions of the van der Waals type,for which experimental 

evidence was provided, the interaction with silanol groups being considered to be the main 

one, with maybe additional weaker van der Waals interactions involving mainly siloxane 

bonds [95,119,120]. 

 

2.4.3. Radical centers on silica. 

It is well known that a number of radical defects can exist on the surface or in the bulk of 

amorphous and crystalline silicas, in particular when the sample is subjected to grinding or 

irradiation with heavy particles or ionizing radiation [121]. Among them, tri-bonded silicon 

radical (E’ or silyl center) Si• and oxygen vacancies (E” center) Si•  •Si [122,123], siloxyl 

centers or non-bridging oxygen hole centers (NBOHC) Si-O• [124],  silico-peroxy radical 

Si-O-O• [125], and, finally, silicon vacancies (Si-O•)4  [126], etc. Some of these sites can 

also exist at the surface and influence the adsorptive and catalytic activity of silicas. Indeed, 

the existence of oxygen vacancy defect (OVD) sites, of the type Si•  •Si, was observed 

experimentally, whose number was shown to depend on pretreatment temperature, with an 

estimated density of approximately 10-3 sites/nm2 for fused silica heated to 700 °C in vacuum 

[127]. Other chemically distinct defect sites may also be present on the silica surface, but 

with a sufficiently low density that their presence is not detectable using traditional methods.  

Indeed in most conditions, the existence and the role of these defects sites in adsorption is 

assumed to be negligible. 

 

2.5.Silicas as a catalyst. 
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Amorphous silica, which has dozens of industrial applications as an adsorbent and a filler, 

does not seem to have real industrial application as a catalyst, but is very largely used as a 

support for catalysts and as a binder.  

Even if silicas have been usually considered to be quite inert in catalysis, several studies 

report catalytic activity of silicas in oxidation reactions, in particular in the partial oxidation of 

methane(MPO) to formaldehyde [128,129].  

CH4 + 2 O2  →  CH2O + H2O                        

The activity of such silica catalysts was correlated with both the concentration of strained 

siloxane bridges and density of surface reduced sites stabilized in steady state conditions. 

Silica has also been reported to be active for the gas-phase ammoximation of 

cyclohexanone (by reaction with oxygen and ammonia) to the corresponding oxime 

[130,131], a key intermediate in the production of  -caprolactam, and, finally, Nylon 6.  

Silica gels have some acidity allowing catalysis of reactions such as the liquid-phase 

alkylation of phenols and some heterocyclic aromatic compounds with ter-butyl bromide 

[132], for the condensations of aromatic compounds with sulfenyl chlorides RSCl, 

chloromethyl sulfides RSCH2Cl, sulfur chloride S2Cl2 and thionyl chloride SOCl2 [133], and 

has been recently found to act as a good catalyst for the S → O acetyl migration to 

synthesize thiol compounds under mild conditions, showing the merits of high efficiency, 

high selectivity, long-life recyclability, low cost and scalable availability [134]. A very 

interesting potential new application of silica is in the hydrolysis of cellulose [135]. 

Generally silicas have almost no activity in several gas-phase acid catalyzed reactions such 

as e.g. ethanol dehydration [136]. 

Defective silicalite has an important industrial application as an acid catalyst in the vapour 

phase Beckmann rearrangment of cyclohexanone oxime to -caprolactam with the 

Sumitomo process [93,137], occurring near 300°C.  

                            

N

OH

N O

H
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The active sites for this reaction, that is also catalyzed by siliceous beta zeolite [58] and, 

less efficiently, by amorphous silica are thought to be external and/or internal silanol nests.   

2.6. Silicas as support for catalysts.  

Silicas find a large industrial application as the support of catalysts [138,139]. This is due, 

among other reasons, to its good mechanical and thermal stabilities, and ease of scalability. 

Moreover, silicas are relatively surface-inert, thus allowing preserving the active phases and 

stabilizing moderately big metal particles, and providing surface area and porosity.  

In Table 2 some relevant applications of silica as a catalyst support at the industrial level 

are reported.   

Although the most common support of metals for hydrogenation of hydrocarbons is alumina, 

silica is used in several cases. Ni and copper catalysts supported on silica are largely used 

for hydrogenation. In most cases, indeed, the amount of silica is very small, being thus more 

a stabilizer than a support.  Among the applications, the hydrogenation of nitro-compounds 

to anilines, benzene hydrogenation to cyclohexane, and nitriles hydrogenation to amines, 

hydrogenation of carbonyls and dehydrogenations of alcohols [145].  

Amorphous silica, in particular when modified with alkoxy- or chlorosubstituted silyl 

compounds, can be used to weakly interact with molecular organic in contact with water 

solution, thus providing useful catalytic systems for reactions in water [149]. 

 

3. Aluminas: solid state chemistry and surface chemistry 

3.1 Solution chemistry of Al3+ cation and the preparation of  aluminum hydroxides.  

As a typical metal element, aluminum is soluble in acidic solutions in its cationic form Al3+ 

forming the aquo [Al(OH2)6]3+ cation. Al3+ displays a strong Lewis acidic behavior, not only 

coordinating six water molecules forming the hexa-aquo ion, but also coordinating a number 

of basic ligands including, e.g. complexes with several simple molecules such as ammonia 

[150] and pyridine [151,152], as well as with complex ligands [153] giving rise to coordination 

complexes mainly with coordination number four or six, but coordination five is also 

observed [154]. Coordination 3 is rarely observed, due to the excessive Lewis acidity of the 

metal ion [155]. In fact the d0 electronic configuration of the Al3+ ion and its highly ionic bond 

with oxygen do not introduce any constraint to its coordination state. 

In water solution the [Al(OH2)6]3+ cation displays some acidity (pKa 4.85) thus producing by 

dissociation at higher pH the  [Al(OH2)5(OH)]2+ ion, reported to be predominant at 4.8 < pH 
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< 6  [156,157], likely with less tightly bound water molecules in the secondary hydration 

shell. Depending on the conditions, i.e. pH, concentration (hydrolysis ratio) and anions 

present, a number of polynuclear species can also be found in solution such as the dimers 

[Al2(OH)4(H2O)4]4+, trimers [Al3(OH)4(H2O)9]5+, the tridecameric (or Al13-mer) ion 

[Al13O4(OH)24(H2O)12]7+, and the Al30-mer [Al30O8(OH)56(H2O)26]18+ [158,159]. Aluminum 

hydroxides start to precipitate at pH 5-6.  The minimum solubility of Al hydroxides in water 

is near neutrality, in the range pH = 6-7, because at pH > 8.5 the solubility increases again 

with the formation of [Al(OH)4]- anion as well as a dimeric species, likely. [(OH)3Al–O–

Al(OH)3]2− [160]. 

In conditions where the solubility is exceeded, “gelatinous” precipitates, XRD amorphous, 

usually first form. Depending primarily on temperature and pH, as well as on aging time, on 

the nature of anions present and on the copresence of organic components [161], different 

crystalline hydroxides or oxyhydroxides form (Table 3 and Fig. 4 [162]. At low temperature 

in excess water the hydroxides are preferentially formed, bayerite -Al(OH)3 if 5.8 < pH < 9 

or gibbsite -Al(OH)3 for pH < 5.8 and for pH > 9. At temperatures higher than about 80 °C, 

the oxyhydroxides become thermodynamically more stable than the trihydroxides and thus 

tend to form. Boehmite -AlOOH or a low crystallinity form pseudoboehmite are most easily 

formed at atmospheric pressure while the production of diaspore -AlOOH usually needs 

higher pressures.  

The preparation of (pseudo)boehmites is relevant because its decomposition product is  -

Al2O3, the most largely applied transitional alumina for adsorption and catalysis. Indeed, it 

is obtained, even commercially, by different ways, producing materials with different 

crystallinity, morphologies and impurities. Among them, we can cite the following:  

a) acidification of sodium aluminate solutions (e.g. for the preparation of Versal alumina, 

from UOP). 

b) reaction of sodium aluminate with aluminum sulphate (e.g. used by Grace) 

c) neutralization of Al3+ acid solutions 

d) hydrolysis of Al alkoxides produced by reaction of alcohols with Al metal (e.g. the modified 

ALFOL-like process used by  Condea-Sasol)  

e) rehydration of amorphous alumina.  

The precipitation of Bayerite is used for the further preparation of -Al2O3 and of -Al2O3, as 

done by Sasol starting again from alkolates using the modified ALFOL-like process. 

The behavior of Al cations in solution points to the predominant ionicity of the Al3+-O2- bond, 

typical of metal species, in agreement with the moderate electronegativity of Al3+ [65], in 
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contrast to the definite covalency of the Si-O bond. In fact, this is justified by the larger ionic 

radius (0.39 Å for tetrahedral coordination, 0.53 Å for octahedral coordination) and lower 

charge of Al3+ with respect to Si4+. However the amphotericity of aluminum hydroxides 

agrees with the borderline position of aluminum between metals and semimetals. In fact, the 

acidity of Al(OH)3 appears to be comparable to that of the Si(OH)4.  

 

3.2 Preparation of catalytic aluminas. 

-, -, - and -Al2O3, are the most used transitional aluminas in the catalysis and adsorption 

fields. They are  produced (Fig. 4)  by calcination of precipitated hydroxides:  -Al2O3 and -

Al2O3 are mainly produced in sequence by calcination of boehmite -AlOOH (or its poorly 

crystallized form denoted as pseudoboehmite), while - Al2O3 is produced by calcination of 

bayerite -Al(OH)3. -Al2O3 can be produced by calcination of both boehmite and bayerite 

at higher temperature, but usually the preparation for bayerite is preferred.  

However, alternative processes to produce aluminas also exist and are used industrially.  

Degussa-Evonik prepares its Aluminium oxide C, now Aeroxide alumina, -Al2O3 or a 

mixture of - and -Al2O3, by flame hydrolysis of AlCl3 [163]. Spherical -Al2O3 is produced 

by aluminum evaporation and oxidation [164]. 

Although the structure of -Al2O3, -Al2O3 and -Al2O3 are still not fully established, it seems 

quite well supported today [10,165,166]  that they are defective non stoichiometric spinels, 

with different distribution of cations and vacancies and maybe occupancy of non-spinel sites 

[167] as well as different distortion of the unit cell. 27Al MAS NMR data [168,169] and Rietveld 

analyses of the XRD and neutron scattering patterns [170] confirm that Al ions are present 

both in octahedral and in tetrahedral coordination in the three structures. The presence of 

small amounts of pentacoordinated Al3+ is usually observed by 27Al MAS NMR [168,169]. 

The structure of -Al2O3, instead, is well established. This phase is isostructural with beta-

gallia (-Ga2O3), also a spinel-derived structure, where half cations are octahedrally 

coordinated and half tetrahedrally coordinated.  

All alumina and aluminum hydroxides convert at high temperature into -Al2O3, corundum, 

whose structure is hexagonal with all Al ions in octahedral coordination. -Al2O3, corundum, 

is the thermodynamically stable form as the bulk free energy is considered.  

Amorphous alumina can also be prepared by vaopization of Al metal. Its structure is very 

rich in petacoordinated Al3+, as evidenced by 27Al MAS NMR spectra, with minor amounts 

of tetra- and hexa-coordinated aluminum [171]. Amorphous alumina is quite unstable. From 
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amorphous alumina, -Al2O3 is mostly formed by calcination, followed by  -Al2O3 and -

Al2O3 [172]. 

 

3.3 Aluminum coordination in its oxides. 

As already said, the s0, p0,d0 Al3+ cations do not require particular coordination geometries. 

Octahedral coordination is the preferred in oxides and hydroxides, as seen for the stable 

oxide -Al2O3 (corundum), all the four Al(OH)3 polymorphs as well as the two AlOOH 

oxyhydroxide polymorphs, and also for the hydroxide silico-aluminate clays kaolinite and 

pyrophillite. Octahedral coordination also occurs in a number of aluminate mixed oxides 

such as in corundum-type solid solutions with Fe2O3 and Cr2O3, in perovskites when Al 

combines with very large trivalent cations (such as LaAlO3 and NdAlO3), in normal spinels 

when Al combines with small bivalent elements (e.g. MgAl2O4), in the kyanite Al silicate, etc.  

However, tetrahedral coordination is also very common, frequently together with octahedral 

coordination. This occurs in the metastable alumina phases -, -, -, -Al2O3, in mullite and 

sillimanite Al silicates, in inverted spinels such as ZnAl2O4, etc… Tetrahedral coordination 

only also occurs in the form of isolated AlO4 units such as in the AlPO4 polymorphs, but also 

in the form of tridimensional frameworks: this essentially occurs in the cases of alkali- and 

alkali-earth aluminates. This is the case of the “crystobalite-like” structures of NaAlO2 and 

KAlO2, the “tridimite-like” structure of CaAl2O4 krotite, and in several other calcium and 

strontium aluminates [173,174]. Aluminates with a zeolite-like structure also exist such as 

the sodalite-like structures of Ca8[Al12O24](MO4)2, with M = W, S and Cr [175,176]. 

Pentacoordinated aluminum species are definitely less frequent, but exist in a number of 

compounds: the Al silicate andalusite (see below), in the silico-aluminate grandidierite 

Mg0.75Fe2+
0.25Al3(BO4)(SiO4)O [177], in the aluminophosphates AlPO4-21  [178], augelite 

Al2(PO4)(OH)3 and senegalite Al2(PO4)(OH)3•(H2O) [179], in aluminum borates [180], in the 

mixed oxides Al2Ge2O7 and LaAlGe2O7 [181] and Lanthanum – Aluminum gallium borates 

[182], etc. Pentacoordinated Al ions is abundant in amorphous aluminas [171]  and in liquid 

alumina where tetracoordinated Al are predominant but small amounts not only of 6-

coordinated al but also of 3-coordinated Al are observed and in liquid alumina [183]. 

Coordination 3 is expected in gas-phase aluminum oxide clusters [184] but is not found in 

solid oxides usually. However, XRD and neutron diffraction studies of Zhou and Snyder [170] 

suggested that 3-coordinated Al3+ is present in small amount in the structure of -Al2O3. On 

the other hand, Al K-edge XANES measurements indicated that 3-coordinated Al can exist 

in defective zeolites [185].  
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3.4  Lewis acidity and coordination of Al3+ centers.  

According to its valence, Al species can produce compounds with coordination three when 

its bond can be assumed as essentially covalent. However, this is the case only of some 

gas-phase molecules, such as aluminum halides vapours at high temperatures [186]. The 

thermal chemistry of aluminum halides, in particular of aluminum chloride, may be relevant 

to the discussion of Al3+ as a Lewis acid. AlCl3 is also an ionic solid with all Al ions in 

octahedral coordination [187]. However, it melts (or sublimates) at relatively low 

temperatures (192 °C or 182 °C, depending on the source) producing a liquid constituted by 

the dimeric form Al2Cl6, with tetrahedral coordination for Al3+. The dimeric form predominates 

at low temperature also in the gas, with increasing content of the monomeric planar trigonal 

structure increasing in amount at higher temperatures (e.g. 70% at 673 K). 

Interestingly, even if liquid AlCl3 is dimeric (Al2Cl6), its direct reaction with basic molecules 

B gives easily “monomeric” tetrahedral complexes with the BAlCl3 stoichiometry together 

with “monomeric” complexes bonding more than one basic molecule. In particular, the 

reaction of “dimeric” Al2Cl6 with pyridine is easy and gives rise to “monomeric” complexes 

PyAlCl3, with tetrahedral Al ion, and Py3AlCl3 with octahedral Al ion [188,189]. Also with 

weaker bases, such as e.g.  ethyl benzoate, Al2Cl6 reacts producing monomeric tetrahedral 

complexes, i.e. the colourless crystalline compound AlCl3(C6H5COOC2H5)  [190]. The 

aluminum atom is tetrahedrally coordinated by three chlorine atoms and by the carbonyl 

oxygen atom of ethyl benzoate.  

Al alkoxides have, most commonly, coordination four (tetrahedral) or six (mostly octahedral), 

although also coordination five is quite frequently observed (mostly planar-bipyramidal or 

square pyramidal [191]). On the other hand, it has been reported that, when the oxide-

ligands are hindered, aluminum alkoxides can take monomolecular form with trigonal planar 

coordination for aluminum, with very strong Lewis acidity [192]. In general, the coordination 

of Al3+ in its complexes depends on the ligands present [193].  

These data suggest that Al3+ can quite readily change its full coordination from three to six 

depending on the availability, strength and size of ligands, as well as from temperature.  

 

3.5.The surface chemistry of catalytic aluminas. 

3.5.1 Nature of the Lewis acid sites of aluminas. 

The surface chemistry of aluminas has been the object of recent reviews [13,165]. The 

catalytic activity of -, -, - and - aluminas is undoubtedly mostly related to the high ionicity 
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of the surface Al-O bond and, as a     consequence, to the Lewis acidity of a small number 

of low coordination surface aluminum ions. The alumina’s Lewis acid sites are well 

characterized by adsorption of basic probes such as pyridine, carbon monoxide, and several 

other bases followed by IR [13,165,194], ammonia and amines followed by calorimetry 

[195,196], triphenylphosphine followed by 31P NMR [197], pyridine followed by advanced 

15N NMR techniques [198] and UV spectroscopy [199]. They are the strongest Lewis acids 

among binary metal oxides. Volumetric, TPD and calorimetric experiments allowed also to 

determine the amount of such very strong Lewis sites present on transitional alumina 

surfaces, which may however depend on the dehydroxylation degree (depending on the 

activation temperature) and on the peculiar phase and preparation. Several studies are 

performed with very weak bases (such as carbon monoxide) as molecular probes, 

performed after partial dehydroxylation of the surface by outgassing at high temperature 

[200]. However, it has been shown that removal even of adsorbed molecular water is not 

needed to reveal surface Lewis acidity if a base stronger than water (such as pyridine) is 

used as the probe [201]. Recent studies provided some evidence that also surface hydroxyl 

groups (formally formed by dissociative adsorption of water) can be displaced from Al3+ ions 

by molecules whose acidobasicity is similar to water such as alcohols [202]. Thus, in this 

case, also highly hydroxylated surfaces or even wet can act as Lewis acidic catalysts, 

dehydroxylation being not a prerequisite for the appearance of Lewis acidity [201,202]. On 

the other hand, as shown by Soled years ago [203], full dehydroxyltion of transitional 

alumina is actually not possible, needing outgassing at so high a temperature that phase 

transformation to corundum occurs. 

Although it is clear that surface Lewis acid sites on alumina are due to coordinatively 

unsaturated Al3+ ions, some debate still concerns the coordination state of such surface 

ions. Several authors agree, mainly based on IR spectroscopy experiments, that at least 

three different types of Lewis acid sites (weak, medium, strong) exist on partly 

dehydroxylated transitional aluminas [198,200,204,205]. Lewis acid sites are certainly 

coordinatively unsaturated Al3+ ions at the surface, which, in principle, may be 

pentacoordinated (i.e., octahedral with one missing oxide ligand and hence a single free 

coordination site), tetracoordinated (octahedral with two free coordination sites or near-

surface “bulk” tetrahedral sites) and trigonal or tricoordinated (octahedral with three free 

coordination sites or tetrahedral with one free coordination site). In several recent 

publications, it has been inferred that pentacoordinated aluminum ions, which are clearly 

visible in 27Al NMR spectra of -Al2O3 would determine most of the surface and bulk 
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chemistry of this material. The authors proposed pentacoordinated aluminum ions to act as 

the Lewis acid sites absorbing ethanol and catalyzing its decomposition into ethylene [206], 

acting as structural promoters for phase transitions [207], for anchoring of platinum oxide 

[208], as well as for the sintering of supported platinum metal particles [209].  

Barrow et al. [210] confirmed the observation of surface penta-coordinated Al species on -

Al2O3 using 1H-27Al Cross Polarization MAS NMR. However, it must be  taken into account 

that 27Al NMR  may fail in detecting very distorted low coordination species considered to 

be essentially “silent” in normal experiments [211,212], being probably responsible for very 

broad bands, such as in the case of dehydrated zeolites  where a broad feature at 67 ppm 

has been assigned to tri-coordinated Al ions [213]. Accordingly, Wischert et al. [214] stated 

that even current high-field NMR experiments are not (yet) able to provide a complete picture 

of the structure of -Al2O3, and much caution should be exercised when interpreting 27Al 

NMR spectra.  In practice, in the case of aluminas the signal due to surface low coordination 

Al3+ (both surface tetracoordinated and tricoordinated) may be very weak or almost silent, 

thus being not revealed, taking into account the strong intensity of the signal of tetrahedral 

Al ion which are present and abundant even in the bulk. The signal of surface penta-

coordinated Al3+ is well evident also because its amount in the bulk is very low, if any.  

Indeed, IR studies using both CO [200,201,215] and pyridine as surface “basic” probes, 

reveal a significant heterogeneity of the Lewis adsorbed species, suggesting that different 

Lewis sites, i.e. exposed Al3+ with different overall coordination. Some authors simulated the 

adsorption of pyridine on aluminum oxide clusters and found that the calculated shifts of the 

vibrational modes of pyridine adsorbed on tri-coordinated Al3+ ions (giving a tetrahedral 

complex) agree with those measured experimentally for pyridine adsorbed on the strongest 

Lewis sites [216,217]  (8a mode at 1624 cm-1 and 19b mode at 1456 cm-1). Similarly, 

adsorbed CO species absorbing at 2230 cm-1 is certainly associated to very highly 

uncoordinated species. Theoretical calculations, in agreement with experimental data, 

indicate that  CO interacting with penta-coordinated Al3+ gives rise to species with CO   

2150-2160 cm-1, while CO interacting with tetra-coordinated Al3+ gives rise to species with 

CO   2210-2180 cm-1 [218,219,220]. Thus, bands above 2210 cm-1 must be attributed to 

CO of carbon monoxide interacting with tri-coordinated Al3+. Similar sites were supposed 

to be the active sites also for methane dissociation and strongest N2 adsorption [205,221]. 

The behavior we observe upon pyridine adsorption suggests that a contribution to the 

spectra can arise from poly-pyridine species. In fact, the species characterized by the 8a 

mode at 1624 cm-1 and the 19b mode at 1456 cm-1 is initially not observed, but starts to form 
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after outgassing at 473 K, when other species (8a at 1615-10 and 1591   cm-1, 19b at 1447-

1441 cm-1) are disappearing. It is possible that part of the lower frequency bands are due to 

di- or tri-pyridine species that decompose by heating into monopyridine one. This would 

parallel the behavior of AlCl3 that can coordinate a single pyridine molecule forming the 

tetrahedral complex PyAlCl3, but also three pyridine molecules forming the octahedral 

complex Cl3AlPy3 [222]. The likely formation at high pyridine vapour pressure of poly-

pyridine complexes is a further support to the identification of the strongest Lewis sites of 

alumina as tricoordinated Al3+.  

On the other hand, it must be also considered that surface reconstruction of the structure 

can occur depending on the conditions. As for example, surface tricoordinated Al species 

can be formed coming from Al ions in tetrahedral sites exposed on the 110 and 111 surface 

of on the 110-100 edge of the spinel-type structure (Fig. 5). In the bulk spinel structure, the 

tetrahedra share a face with an empty octahedron of a non-spinel site (i.e. an interstice 

which is not occupied in the spinel structure). Surface reconstruction certainly occurs for 

dehydroxylated surfaces [223]. Thus, the exposed 3-coordinated Al ion may reduce its free 

energy by slightly shifting down, below the surface, entering this octahedron to increase its 

coordination to four, five or six. This shift can be reversed in the presence of gas-phase 

bases, thus producing tetrahedral Al species bonded to the base. A similar hypothesis was 

proposed by Busco et al [224] to occur on zeolites.  

Thus, trigonal Al ions certainly represent the strong Lewis sites of alumina producing 

tetrahedral species by interacting with bases, even if they may not exist as such but mask 

themselves as tetrahedral or pentacoordinated species or even as a tetrahedron bonded to 

an hydroxyl-group.  

 

3.5.2.  Acido-basicity and the character of surface hydroxyl- groups of aluminas. 

Together with Lewis acid sites, the ionicity of the Al-O bond also results in the presence of  

surface basic sites. O1s binding energy is relatively high, 531.2 eV [102], but is definitely 

lower with respect to that of silica. Actually, the true particular sites of aluminas for adsorption 

and most catalytic reactions are very likely anion-cation couples which have very high 

activity and work synergistically. The basic counterpart may be oxide anions or hydroxyl 

species. As an example, alcohol adsorption experiments [225,226] allow the 

characterization of such sites where dissociative adsorption occurs. CO2 adsorption forming 

carbonate and bicarbonate species also reveals these sites [227]. The strong activity of -

Al2O3 for position isomerization of olefins, occurring at low temperature only after 
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dehydration of the catalyst [228], is likely associated to the strength of the acido-basic 

couples that allows the formation of surface intermediate allyl species [229]. The strongest 

among these sites may even dissociated methane and hydrogen [214]. 

Many studies have been devoted to the multiplicity of the surface hydroxy groups of 

aluminas. At least five components are usually present in the IR spectrum of the hydroxy 

groups of aluminas, i.e. at ca 3790, 3770, 3740-3720, 3700-3690 and 3580 cm-1, although 

in many cases the observed peaks are multiple. A number of different assignments have 

been proposed for these bands. Surface OH groups can also be revealed by 1H MAS NMR: 

also in this case a large number of peaks may be observed 

[210,230,231,232,233,234,235,236]. 

Although most authors attribute to transitional aluminas essentially Lewis acidic properties, 

several studies show that some of their multiple surface hydroxy groups  also have some 

Brønsted acidity. Actually, among the pure ionic oxides, aluminas is one of the strongest 

Brønsted acids. Indeed, protonation of bases at the surface of -Al2O3 has been reported, 

such as that of n-butylamine [237] and piperidine [94], i.e. bases stronger than the most 

used probe, pyridine. The activity of pure -Al2O3 as a good catalyst of skeletal n-butylene 

isomerization to isobutylene has been attributed to its medium-strong Brønsted acidity, 

sufficient to protonate n-butylenes at high temperature, producing carbenium ions, but too 

low to cause much cracking and coking [238].  

The reasons for the really moderate but not always negligible Brønsted acidity of the 

alumina’s OH very likely stay in their stability in the undissociated form, evidenced by the 

practical impossible dihydroxylation of transitional aluminas, as remarked years ago by 

Soled [203]. On the other hand, the ionic framework of allumina cannot stabilize the negative 

charge arising from hydroxyls dissociation, although it could likely stabilize the protonated 

form of the adsorbed base.  

Although the surface chemistry of -Al2O3 is far less investigated than those of transitional 

aluminas, it seems quite established that also on this polymorph surface Lewis acidity and 

basicity are present, but far weaker. This could be due to the higher coordination of both 

species in the bulk that will reduce the number of highly uncoordinated sites at the surface 

and also the extent of uncoordination of the predominant exposed sites.  

 

3.5.3.. Aluminas as catalysts.   

Transition aluminas, mostly denoted as -Al2O3, but actually being sometimes a mixture of  

-Al2O3, -Al2O3 and -Al2O3, or of -Al2O3 and  -Al2O3, have wide application as catalysts. 
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Among the most prominent ones, they are used in  the catalytic steps of the Claus process, 

the production of sulphur from H2S in the refineries [239]. 

H2S + 2 SO2  → 3 S8 + H2O     

Aluminas for this application have large surface area (300-400 m2/g), pore volumes 0.5 

ml/g of which 0.1 ml/g due to macroporosity (> 750 Å, with loss on ignition of 5.5-6.5 % 

wt/wt [240]. They may be promoted by iron to reduce deactivation by sulphation.  

Aluminas are very active in the dehydration of alcohols to olefins  and to ethers [241], and 

have been used in the sixties for producing ethylene from dehydration of bioethanol at > 

250 °C [242].  

CH3CH2OH →  H2C=CH2 + H2O    

They are applied to produce dimethylether from methanol  

CH3OH → CH3OCH3 + H2O                                     

at 250–280 °C and 0.04–0.05 MPa, as a first step in the methanol to olefin (MTO) process 

[243].  To increase the rate of this reaction increasing the density of Lewis acid sites is 

necessary [244]. 

As reported by deKlerk [245] aluminas are and have been used largely in the refining of 

Fischer Tropsh syncrude. In particular thay are used to increase octane number through 

position isomerization of terminal to internal olefins, for the iskeletal isomerization of n-

pentene to isopentene as well as to dehydrate higher alcohols to olefins.  

Aluminas are reported to be used in the production of  chloromethane from methanol and 

hydrogen chloride [246] 

CH3OH + HCl  → CH3Cl + H2O    

All these reactions implying alcohols as reactants are mostly activated by chemisorption of 

the alcohol through one of  its oxygen lone pairs to the Lewis sites of alumina. 

Aluminas may be used for the dehydrofluorination of alkylfluorides which are byproducts of 

the HF catalyzed isobutane / butylene alkylation process. Fluoroalkanes react at 170-

220°C, being converted to olefins. HF is adsorbed on the alumina to form aluminum 

fluoride, regeneration being needed every 6 months  [247].  

 

3.5.5 Aluminas as supports of catalysts.  

Aluminas find very large application as supports of catalysts. In particular, they are the 

standard supports for many metal and sulphide catalysts. When applications requiring 

relatively  low reaction  temperature (< 500 °C) are considered, such as for hydrotreating 

with supported sulphides or hydrogenation using platinum, palladium or nickel metals as the 
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active phases, high surface area -, - or -Al2O3, can be used. Transitional aluminas are 

also used as supports of partial oxidation reactions occurring at quite low temperatures, 

such as e.g. the oxychlorination of ethylene to ethylene dichloride in the process to produce 

vinyl chloride monomer, performed over alumina supported copper chloride at 300 °C. 

These supports, however, are characterized by high acidity and reactivity, thus not 

applicable when very reactive compunds are present in the reactant mixture. For this reason, 

less reactive and lower surface area  - or  -Al2O3 are used. This is, e.g. the case of Pd 

catalysts for 1,3-butadiene hydrogenation, where the oligomerization of the diene on the 

support has to be avoided. -Al2O3 is also used as the support of silver catalysts for ethylene 

oxidation to ethylene oxide, where also the reactivity of the support must be limited. -Al2O3 

is a common support for total oxidation of volatile organic compounds (VOC), such as those 

based again on Pt and Pd, where temperatures of the order of 400-800 °C are produced. 

Similarly, -Al2O3 seems to be one of the best supports for Rh used in methane catalytic 

partial oxidation (CPO) to syngas, a promising new process to produce hydrogen. Stabilized 

aluminas, such as -, -, - and -Al2O3 containing either silica or alkali, alkali earth or rare 

earth cations, such as K+, Ca2+, La3+, are largely used also for applications at medium- high 

temperature. This is the case for some endothermic reactions such as steam reaforming or 

partial oxidation reactions using nickel platinum  or rhodium catalysts. Also wash-coats of 

car’s catalytic mufflers, based on Pt-Rh or Pd, are based on alumina mixed with ceria, 

zirconia and lanthana.  

 

3.5.6 Other applications of aluminas. Aluminas find also a number of applications in 

adsorption [248], in particular for purification treatments of waters [249],  of as well as in the 

field of catalysis, as “binder” or an “active matrix”. This is in particular the case of the use of 

alumina as a “separated” component of the mixture used as transport bed catalysts in the 

Fluid Catalytic Cracking process. In this case, in fact, the real catalyst component is based 

on Faujasite zeolites, usually Rare Earth –Y or Mg-HY zeolites (see chapter 7). However, 

the mixture of powders used in FCC  reactors contains several components, as cocatalysts, 

binders and active matrices. High surface area alumina, or their precursors such as 

boehmites  [250,251], are added to the catalysts to have the role of Nickel scavenger.  In 

fact, the feed to this process usually contain Ni-porfirin compounds that depose somewhere 

their Ni ions that, reduced to metal, give rise to unwanted dehydrogenating catalytic activity. 

Ni-porphirins tend to react specifically with alumina, where they are partially stabilized in the 

bivalent state, thus reducing the amount of Ni metal produced on tha catalyst. 
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Aluminas are also the precursors for fluorided and chlorided aluminas, which may be 

produced in situ upon halogenation, as well as for silicated aluminas (see below), borated 

aluminas and other “modified aluminas” produced ex situ by chemical treatments 

 

4. Silicated or silica-doped aluminas. 

Some commercial aluminas actually contain small amounts of silica mainly for stabilization 

against the phase transformation to corundum and resistance to coking. Some of these 

materials are prepared by deposing silica over alumina or its hydroxide precursor. This is 

the case in particular of the Siralox family of Sasol (previously Condea), whose preparation 

and characterization has been reported in some detail [252]. Similar materials, denoted as 

silicated aluminas, are prepared by deposition of orthosilicates (like tetraethoxysilane, 

TEOS) at the surface of alumina [253,254,255]. According to Trombetta et al. [256] and to 

Daniell et al. [252] these materials, also denoted as silica-doped aluminas [257] almost 

independtly of the preparation procedures, have the structure of -Al2O3, silica being located 

at least in large part at their surface . This is deduced by the presence of the typical IR 

spectroscopic features of surface silanol group and also by the presence of Si-O stretching 

modes at 1100-1050 cm-1 that are strongly perturbed by adsorption of bases like pyridine 

[83]. 

It is remarkable that the addition of silicate species to alumina (at the surface or in the bulk) 

gives rise to terminal silanols but does not produce bands in the region of bridging OHs. No 

relevant Brønsted acidity is observed on these materials [253,255,256,258] although the 

acidity of the terminal silanol might be slightly enhanced [255,259]. This is explained 

suggesting that Si-OH groups tend to dissociate over the ionic alumina surface. Silicate 

species tend to maximize the interaction with the bulk of alumina by orienting three oxygen 

atoms toward the bulk, while the fourth necessarily stands up, with respect the surface. To 

limit the free energy, the fourth oxygen standing up bonds with a proton. It seems obvious 

that it cannot bend to bridge surface aluminum cations. The resulting Brønsted acidity is 

consequently that of isolated silanols, weak although possibly enhanced by the vicinity of Al 

ions 

The materials rich in alumina reveal the presence of surface Lewis acid sites similar in quality  

to those of alumina [260]. Some studies, however, indicate that they may be decreased in 

amounts but some of them are maybe slightly increased in strength [255]. 

Similar materials are very active for the diethylether (DME) synthesis from methanol at 300 

°C and atmospheric pressure [261]. The presence of silica would increase acidity and 
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resistence to coking. Similar materials are excellent catalysts for the skeletal isomerization 

of butylenes to isobutylene at 400-450 °C [255,262,263]. A similar catalyst was apparently 

reported for the ARCO tert-butyl alcohol dehydration process to produce pure isobutylene: 

the reaction occurs in the vapor phase a 260-370 °C  at about 14 bar , with a conversion of 

98% [264]. 

 

5. Solid state chemistry of aluminum silicates and silico-aluminates. 

5.1 Layered aluminosilicate “oxyhydroxides”.  

A number of crystalline mixed silicon, aluminum oxides and oxy-hydroxides are known. 

Kaolinite, halloystite, pyrophillite and donbassite are Si,Al hydroxide compounds. All are 

layered structures belonging to the phyllosilicate family.  

Kaolinite has layers composed of a phyllosilicate sheet constituted by tetrahedral SiO4 

silicate groups sharing three corners, and a sheet containing octahedral AlO4(OH)2 

complexes (1:1 sheet), giving rise to the overall stoichiometry Al2Si2O5(OH)4 (Si:Al ratio =1). 

Halloysite has essentially the same structure, but the 1:1 unit layers are separated by a 

monolayer of water not present in kaolinite. Anauxite and dickite also have the same layer 

structures of kaolinite. Pyrophillite layer structure has two phyllosilicate sheets sandwich an 

Al-containing octahedral sheet (1:2 sheet), with formula Al2Si4O10(OH)2 (Si:Al ratio =2).  In 

all these cases, silicon is tetrahedral while aluminum is fully octahedral.  

Al for silicon substitution in the phyllosilicate layer gives rise to a charge defect that must be 

compensated by cationic species in the interlayer specieIn the case of micas, like e.g. 

muscovite KAl3Si3O10(OH)2, the charge of the layers is balanced by interlayer hydrated 

potassium ions. In dioctahedral chlorite structures two families of octahedral Al species exist 

together with tetrahedral Al substituting for silicon in the phyllosilicate sheets. An example 

is donbassite, with the empyrical formula [Al2Si4-xAlxO10] [Al2+x/3(OH)8] [265] and a typical 

Si:Al ratio  = 0.56, with both octahedral and tetrahedral Al ions.  

 

5.2. Aluminum silicates 

The above described alumino-silicate “oxyhydroxides” decompose at moderate 

temperatures producing mostly amorphous aluminum-silicon mixed oxides and gaseous 

water. The decomposition of kaolinite produces the so-called “metakaolinite”, which is 

indeed an amorphous silica-alumina with Si:Al atomic ratio  1. This material is obviously 

quite impure of metal elements, as the original kaolinite mineral is. Heating of this material 

produces the progressive crystallization of mullite and usually of cristobalite. In fact, 
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according to thermodynamics (Fig. 6 [266]), between alumina (corundum) and silica (quartz, 

tridimite and cristobalite, depending on the temperature) the only intermediate phase that 

has thermodynamic stability is mullite [267], whose composition (AlVI
2AlIV2+2xSi2-2xO10-x) 

mostly ranges between 3Al2O3.2SiO2 and 2Al2O3.SiO2, i.e. with Si/Al a.r.  0.25-0.33).  

Additionally, three crystalline polymorphic forms of aluminum silicates also exist as 

metastable phases, all with formula Al2SiO5 (Si/Al a.r. 0.5) i.e.  kyanite, andalusite and 

sillimanite [268]. Aluminum coordination is octahedral in kyanite and half octahedral and half 

pentacoordinated in andalusite. In both these cases, isolated tetrahedral sites exist only 

occupated by silicon as orthosilicate species. The structure of sillimanite consists of chains 

of edge-sharing AlO6 octahedra crosslinked by double chains of TO4 tetrahedra with strict 

alternation of Si and Al.   

The structure of mullite can be derived from that of sillimanite. The further substitution of 

some Si by Al in the tetrahedral sites, gives rise to O vacancies and the formation of AlO4 

tetrahedra triclusters sharing a common O atom. In the case of high alumina mullite (with 

Si/Al a.r. 0.25), one every 25 oxygen atom is lost, producing two tetrahedra triclusters, while 

in the case of low alumina mullite (with Si/Al a.r. 0.33) one every 40 oxygen atom is lost, 

producing two tetrahedra triclusters.  

According to thermodynamics, no solubility exists between corundum and silica (Fig. 6). 

However, data agree that some solubility exists of silica in metastable spinel-type alumina. 

A spinel-type phase with composition 6 Al2O3 . SiO2, where Si substitutes for Al in tetrahedral 

coordination, i.e. as a isolate orthosilicate species, has been reported as a metastable form 

[269]. A spinel phase with the composition of mullite from 2Al2O3.SiO2 to Al2O3.SiO2 is also 

observed during the crystallization of mullite from amorphous precipitates [270,271]  and 

upon the thermal transformation of kaolinite first to largely amorphous metakaolinite and 

later to mullite + cristobalite [272,273]. According to Schneider et al. [274] the SiO2 content 

of the γ-alumina gradually rises with temperature and reaches a maximum amount of ≈ 18 

mole% at 1150°C which corresponds to the following structure: IV[Si2Al6] VI[Al12.67*3.33]O32 

where * denotes vacancies. In practice, spinel like phases may exist with maximum Si/Al 

a.r. < 0.5 - 0.2. It seems interesting to remark that the four known crystalline Si,Al mixed 

oxides are all Al-rich, with Si:Al ratio  0.5. Materals with Si:Al > 0.5 are essentially 

amorphous or biphasic. 

 

5.3 Framework aluminosilicates. 
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Framework aluminosilicate structures have the common feature to be constituted by a 

negatively charged [Si1-xAlxO2]x- (with x  0.5) framework constituted by corner sharing 

tetrahedra, with charge balancing cations located in “extraframework” voids. In all cases 

Si/Al a.r. is  1. 

Feldspar structures. 

Potassium and sodium feldspars, such as orthoclase, microcline, sanidine and albite, are 

framework aluminosilicates with formula MAlSi3O8 (M = Na,K) while calcium feldspar, i.e. 

anorthite, has the formula CaAl2Si2O8. In these cases silicon and aluminum atoms occupy 

the centers of corner sharing tetrahedra forming an intricate, three dimensional, negatively 

charged framework. The alkali or alkali earth cations sit within the voids in this structure. In 

pure anorthite, AlO4 and SiO4 tetrahedra alternate regularly forming a fully ordered structure, 

and calciums are located within an irregular cavity bounded by about 10 oxygens. In alkali 

feldspar, ordering of Si and Al tetrahedra occurs in low temperature forms. Aluminum locates 

in one of the two crystallographic positions in microcline while it regularly alternates in the 

two positions in orthoclase. In the case of “high temperature forms”, such as sanidine 

(another KAlSi3O8 polymorph) the tetrahedra are randomly mixed but it should occur without 

production of Al-O-Al bridges [275]. It seems interesting to remark that excess Al could be 

located in extraframework positions in feldspates [276]. 

Feldspathoids and “stuffed silicas”. 

Feldspathoid aluminosilicates have mostly larger Al content than feldspates. Among them, 

stuffed silicas are framework aluminosilicates whose tetrahedral frameworks retain the basic 

geometries of crystalline silica polymorphs [277,278,279,280], with a Si:Al ratio  1. As said 

above, silica structure have low density, associated to the covalence of the bonds. Thus, 

interstices are present in the structure. As for example, quartz structures contain spaces 

that can host ions in tetrahedral or in octahedral coordination (Fig.7) In the case of -

eucryptite, LiAlSiO4, the basic framework is that of -quartz where, however, half Si atoms 

are substituted by Al, the corresponding charge defect being compensated by 

“extraframework” Li ions. The monovalent Li+ cations are located in tetrahedral interstices 

formed by four oxygen atoms each shared by two tetrahedra, occupied by Al and by Si, 

respectively [281].Thus, Li atom is surrounded by eight different tetrahedra in -eucryptite.  

In Fig. 8, left, the coordination of Mg in a Mg0.5AlSiO4 phase recently described [282] is 

reported. Here the framework structure is that of -quartz, and Mg2+ occupying octahedral 

interstices. In the case of the NaAlSiO4 polymorphs nepheline, a stuffed derivative of 
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tridymite, and carnegierite, a stuffed derivative of cristobalite, Na ions occupy six 

coordinated sites.  

Leucite KAlSi2O6 can also be considered in the frame of feldspathoids and of zeolites: its 

framework, analogous to that of analcime (ANA), consists of singly-connected 4-tetrahedra 

membered rings (4-MR) rings, arranged in chains coiled around tetrad screw axes. Every 4-

MR is a part of three mutually perpendicular chains, each parallel to a crystallographic axis. 

An ordered Si/Al distribution was found [283]. Potassium is coordinated to twelve oxygen 

atoms in the cubic form while coordination number is reduced to six in the low-temperature 

tetragonal polymorph.  

Zeolites 

Zeolites differ from other framework aluminosilicates because the cavities hosting charge 

balancing cations are larger, allowing several cations being located in the same cage and 

stay in a highly hydrated form. Cavities are interconnected by channels that give rise to a 

variety of microporous structures which can be penetrated only by sufficiently small 

molecules, so giving rise to the “molecular sieving” effect [284]. The cations are 

exchangeable, so zeolites may also act as cationic exchangers. The Si/Al ratio in natural 

zeolites is quite variable, typically ranging 1- 6, but in synthetic zeolites it can be much 

higher, up to . In fact, pure silica zeolites, usually denoted as silicalites, have also been 

prepared for several zeolite frameworks. Silicalites, obviously, do not contain cations in the 

cavities. 

Cationic zeolites may have Si:Al ratio up to 1, such as is the case of faujasite and A-type 

zeolite. These materials, although being also metastable phases, have significant thermal 

stability.  

 

5.4. Silicon and aluminum in aluminosilicate glasses.  

The structure of aluminosilicate glasses has been the object of a number of studies applying 

vibrational spectroscopies (Ir and Raman), solid state NMR spectroscopy and computational 

techniques. Most of Al ions is in coordination four in glasses with modifier oxides equal to or 

in excess of alumina, e.g., peralkaline compositions with Si/Al > 1 and Al/Na < 1, and form 

an integral part of the rigid silicon-oxygen glass network. However, 27Al NMR studies have 

demonstrated that glasses frequently also contain small amounts of aluminum species in 

coordination five even when stoichiometry does not need it [285], while minimum amounts 

of six-coordinated Al ions can also be present. This is likely associated to the remarkably 

higher densities of SiO2-Al2O3 glasses with respect to silica glass [286,287], see Table 1. 
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Pentacoordinated aluminum may be especially important in mechanisms of viscous 

transport in silica-rich melts. 17O NMR, thallium-probe ion luminescence spectroscopy and 

X-ray photoelectron spectroscopy also show the existence of non-bridging oxygens (NBO) 

[288], i.e. oxygen species bonded to a single tetrahedral group [289], which may interact 

with higher coordination aluminum [290]. Additionally tetrahedral triclusters (oxygen shared 

by three tetrahedral [291,292]) can also balance NBOs to maintain local charge balance 

[293]. The interplay of these “defect” structures determine several relevant properties of 

glasses. 

 

5.5. On the Al/Si distribution in aluminosilicates including zeolites. The “Lowenstein rule” 

and the stability of Al-O-Al bonds in zeolites. 

As we have already seen, the silicon to aluminum atomic ratio crystalline aluminum silicates 

is < 1, and in this case aluminum may have both 4-fold and 6-fold coordination, and also in 

case 5-fold coordination. In contrast, in most silicoaluminates the Si/Al atomic ratio is  1 

and Al is essentially tetrahedral only. The so-called Löwenstein’s rule of “aluminium 

avoidance” [294] states that the Si and Al location is ordered in silicoaluminates, with strict 

alternance of them in tetrahedral framework when Si/Al a.r. is  1. Thus, Löwenstein’s rule 

prohibits –Al–O–Al– linkages from occurring in these materials. This rule is substantially 

obeyed in particular in the case of natural zeolites [295,296] and in most Al-rich zeolites 

such as NaX [297].  Recently, the strict validity of this rule for zeolites was questioned using 

density functional theory (DFT) theoretical calculations for protonic zeolites [298]. Previous 

theoretical calculations mostly agree in showing that “Lowenstein” clusters (without Al-O-Al 

linkage) are more energetically favorable than “non-Lowenstein” clusters (which contain 

such bridges) in the gas phase [299]. However, the energetic preference for the 

Löwensteinian model (with strict validity of the Löwestein rule), with respect to models where 

this rule is relaxed, was found to be  sufficiently small to be overcome by thermal energies 

at high temperatures, at least for zeolite A [300]. Actually, the existence of Al-O-Al bonds in 

tetrahedral networks is not impossible, seen the existence of several calcium and strontium 

aluminates with Al-only tetrahedral networks, as cited above. In practice these bonds can 

occur as defects, in particular after low temperature preparation preocedures, or be the 

result of disorder induced by high temperature, but may be precursors for framework 

dealumination [296].  

The situation is different for protonic zeolites. Protonic zeolites with low Si:Al ratio down to 

1, as H-LTA and H-FAU zeolites (the latter denoted as HX faujasite) can be prepared with 
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difficulty and are unstable, suffering very easy dealumination. This behavior provides 

evidence of the stabilizing effect of cations towards Si;Al tetrahedral structure. Acid zeolites 

with Si:Al ratio > 5 have usually better stability, depending from the structure (as for e.g. H-

FER, H-MOR and H-MFI zeolites) but also dealuminate quite easily, while materials with 

larger Si:Al ratio, like 30-300, such as ultrastable Y Faujasite (USY), have usually batter 

stability.   

The “stability” of these structures, however, should not be only evaluated in terms of 

thermodynamics, as mostly done by theoreticians. Taking into account that zeolites are 

thermodynamically unstable structures and tend to convert into mullite and silica, or to 

amorfize, the lack of Al-O-Al bonds can be associated to the “kinetic” tendency of such 

structures to produce dealumination, in particular but not only in the protonated forms. 

Dealumination is a process implying expulsion of Al ions from the tetrahedral framework, 

producing “extraframework” Al (or Si-Al oxide) debris, and occurs in the case of Si-O-Al-OH-

Si structures, but should occur even easier in the case of Si-O-Al-OH-Al-OH-Si (non 

Löwenstein) structures.  

Zeolite materials with Si/Al a.r. well above 1 exist naturally in cationic forms and/or can be 

prepared in both cationic and protonic forms. In this case, it becomes relevant to determine 

the distribution of Al in the tetrahedral framework. In the case of natural zeolites, ordered 

structures and disordered structures exist [295,296,301]. According to the so-called 

Dempsey’s rule [302], there is a tendency to ordering to maximize the distance between 

each aluminum atom is in order to stabilize the frameworks. In case of protonic zeolites, this 

point may be very relevant for explaining details of catalytic activity. Taking into account that 

these materials are prepared by low temperature procedure, the distribution apparently 

depends on kinetics and on the particular structure, and may vary with several different 

procedure details. To define the Al distribution in this case advanced techniques have been 

developed recently [303].  

 

6.Protonic zeolites: surface chemistry and catalysis.  

Protonic zeolites, i.e. those zeolites where the framework charge is balanced, formally, by 

protons, find industrial applications as acid catalysts in a large number of hydrocarbon 

conversion reactions in refinery and petrochemistry (Table 4). The application of these 

materials is due to three main properties:   

i) the strong Brønsted acidity of bridging Si-(OH)-Al sites generated by the presence 

of aluminium inside the silicate framework and the balancing proton [304,305];  
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ii) the shape selectivity [306,307] and other confinement effects [308] due to the 

molecular sieving properties associated to the well-defined crystal pore sizes, 

where the catalytic active sites are located;  

iii) their environmental friendliness, well superior to that of alternative acid catalysts.  

 

6.1 Preparation of protonic zeolites. 

The original method for preparing zeolites [309] was based on hydrothermal crystallization 

of reactive alkali metal aluminosilicate gels at high pH and, typically 100 ° C and ambient 

pressure. With this method, where alkali cations play the role of directing the formation of 

the zeolite structure, materials with low to intermediate Si/Al ratios (1 – 5) are produced in 

the cationic form. Exchange with ammonium ions allows the production of the ammonium 

forms of zeolites that can be converted into protonic forms by calcination with resulting 

decomposition of ammonium  ions.  

After the pioneering work of Barrer [310], new techniques for the preparation of zeolites have 

been developed, mainly involving the use of “templates” or “organic structure directing 

agents” (OSDAs) [311,312]. Protonic zeolites are thus prepared at 100-200 °C, using 

cationic templates that are later decomposed, burnt off or washed off, leaving protons as 

the only balancing cationic species. With these techniques, the preparation of a number of 

new protonic zeolites with many different structures has also been obtained. With this 

method high silica zeolites and, in the absence of aluminum species, a number of purely 

siliceous zeolites have been prepared. From protonic zeolites, cationic zeolites are produced 

by cationic exchange.  

The addition of fluoride to the reactive gel led to more perfect and larger crystals of known 

molecular sieve structures as well as new structures and compositions. The fluoride ion also 

is reported to serve as a template (or SDA) in some cases. Fluoride addition extends the 

synthesis regime into the acidic pH region.  

The cheapest source of silicon is waterglass, i.e. an acqueous sodium silicate solution with 

small contamination of aluminum. Consequently, it cannot be used to prepare pure silica 

zeolites. To produce purely siliceous zeolites colloidal silica sols, fumed silicas, precipitated 

silicas as well as alkoxy-silanes  can be used as the Si source. They are more expensive, 

and, at least for alkoxy silanes, toxicity concerns appear. As for the source of aluminum, Al 

salts or sodium aluminates are used. 
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6.2. The bridging hydroxyl group.  

The strongly acidic hydroxy groups of zeolites  are well characterised by the presence, in 

the IR spectrum, of moderately sharp and strong bands in the region between 3650 and 

3500 cm-1  (Fig. 8) as well as by evident 1H MAS NMR peaks in the region 3.6 – 8.0 ppm  

[86]. With both techniques, it is possible to reveal the acidity of these groups [76]. In fact 

these spectroscopic signals disappear upon contact with bases like ammonia, pyridines, 

amines and phosphines, in parallel with the appearance of the features of the corresponding 

protonated bases. In the presence of weak basic probes (CO, nitriles) a significant 

perturbation of the spectral characteristics of these groups is evident too.  

Both IR and 1H MAS NMR spectra of zeolites distinguish very well from those of silicas (Figs. 

2 and 8) and silica aluminas. This is shown, as an example, for the zeolite ferrierite H-FER 

as compared to the spectrum of a mesoporous silica-alumina (Al-MCM41) in Fig. 9 [313].  

The position of the  IR band due to bridging OH’s is somehow dependent on the size of the 

zeolite cavities, OH being generally (but not really always) the lower the smaller the cavity. 

In particular, the OH stretching band position and width can be influenced by weak H-

bondings through the cavities [314]. In the case of zeolites with more than one type of quite 

different cavities, splitting of the band of the bridging hydroxy groups can be observed. Some 

authors suggested that a correlation exists between OH stretching frequency and the Si-

O(H)-Al bond angle [315]. As for  1H MAS NMR peaks of protonic zeolites, the trend among 

different studies is for increased chemical shift  corresponding to an increase in the intrinsic 

acid strength [316], i.e., protons are more de-shielded in zeolites perceived to be more 

acidic. On the other hand, the peak position is also sensitive to location: peaks at  3.6–4.3 

ppm are due to bridging OH groups in large cages and channels; peaks at 4.6–5.2 ppm to 

bridging OH groups in small cages of zeolites, while those at 5.2–8.0 ppm are associated to 

disturbed bridging OH groups interacting with framework oxygen [86]. Parallel 1H NMR and 

IR studies show that the IR extintion coefficient of the zeolite’s bridging OH’s is far higher 

than for silanol groups, and this allowed  Kazansky et al. [317]  to propose to use the intensity 

of the IR band to determine the surface acid strength. 

Interestingly, bridging OH’s are only detected in the interior of the zeolitic cavities, being the 

corresponding spectroscopic features (both IR and NMR) absent in any non zeolitic material 

based on silica and alumina [83,318,319] and also on the external surfaces of different 

zeolites.  Thus, the existence of the bridging hydroxy groups Al–(OH)–Si  should imply the 

existence of the cavity. In other words, the cavities (or the microporous zeolitic framework) 
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are possibly involved in the generation and/or stabilization of the bridging OH sites, as well 

as  in the strengthening of their acidity [83,320].  

Besides “zeolitic” bridging OH’s, additional OH groups are or may be observed in the case 

of H-zeolites. Terminal silanols similar to those of silica (OH at 37453 cm-1, 1H NMR signal 

at 1.2-2.2 ppm) have been found to be located at the external surface, while additional 

features (OH at ca. 3780 and 3675 cm-1, 1H NMR signal at 2.4–3.6 ppm) are usually 

attributed to OH’s on extra-framework (EF) alumina or silica-alumina matter. Finally, broad 

absorptions are also frequently detectable in Al-rich zeolites at lower frequencies (3500-

3200 cm-1), likely due to strongly H-bonded OH’s in small cavities, such as Al-rich H-FER 

[321] and H-CHA with Si/Al atomic ratio of 2 [322], but also H-MFI and H-MWW [10,80] in 

agreement with the theoretical work of Yan Li et al. [323].    

 

6.3. On the poor stability and strong Brønsted acidity of protonic sites of H-zeolites. 

All data confirm that the Brønsted acidity of protonic zeolites is due to the bridging OH 

groups. The spectroscopic data agree suggesting that such acidic protons are actually linked 

(in the dry zeolite) through an essentially covalent bond to oxygen atoms bridging between 

a silicon and an aluminum atom. These sites can thus be considered as “perturbed silanol 

groups”, where an oxygen lone pair interacts with the nearest Al cation through a Lewis base 

acid bond. This Lewis acid-base interaction is certainly “favored” thermodynamically and 

“exothermic”. However, all available data indicate that the basicity of the silanol group, i.e. 

the availability of the electron lone pairs at oxygen, is extremely weak. Thus this interaction 

is weak, and definitely weaker as compared to the interaction of the dissociated silanol with 

Al3+ as it occurs in aluminosilicates.  

The poor stability of bridging OH’s in alumina-rich environments is also somehow 

demonstrated by the easy de-alumination of Al-rich zeolites in the protonic form, such as 

e.g. H-X and H-LTA, in contrast to the strong stability of both Al-rich alkali-zeolites (like Na-

X and Na-LTA) and of the highly siliceous protonic zeolites, as USY, and silicalites too. It 

can be supposed that the stabilization of the bridging OH’s is associated to the existence of 

the quite rigid and highly covalent silica-based zeolite crystalline framework, the more, the 

more silica-rich the framework is. In contrast, the Al coordination in silicoaluminates is 

flexible and variable, where coordination 6, 5 and 4 and, to some extent, even 3, are allowed, 

easily obtained and well characterized. Some weak interactions of the proton of bridging 

OH’s with the other oxygen atoms exposed on the zeolite cavities might also give a 

stabilizing contribution. Recently Otsuga et al. [324] reported on a temperature-dependent 
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behavior of acidic OH groups on zeolites: gradual shifts in the peak-top position to lower 

frequencies and decreases in integrated intensity  were observed by infrared spectroscopy, 

more pronounced in the order CHA < MFI < MOR. This behavior was attributed to the 

dissociation of OH groups to form IR inactive species at high temperatures, with proton 

migration in other positions.  

The substantial instability (poor stability) or the bridging silanol is certainly a factor favoring 

its intrinsic strong Brønsted acidity. Another reason for high acidity of protonic centers in 

zeolites is associated to the stabilization of the framework when the proton is lost and the 

silanol converts into a silicate species. The ionic interaction of silicate, a quite strong base, 

with the strongly Lewis acidic Al3+ ion, is quite strong, like it occurs in all aluminsilicates. On 

the other hand, the negative charge formally formed on the silicate’s oxygen upon proton 

jump may be somehow “delocalized” on the four nearly equivalent oxygen atoms 

surrounding the Al cation, as well as over the other siloxane’s oxygens by the already cited 

hyperconjugaton effect.  

A fourth powerful effect is related to the stabilization of the protonated base by the 

“tridimensional solvation” occurring in the zeolite cages by multiple Van der Waals 

interactions with the walls of the cavities, i.e. with the exposed siloxane bridges (Fig. 10). 

This differentiates microporous materials from normal porous or mesoporous surfaces, 

where these solvation effects are certainly less and, overall, weaker.  

Several papers report on the slightly stronger Brønsted acidity of silica-rich protonic zeolites 

with respect to alumina-rich protonic zeolites [325]. This can be explained by the 

delocalization of the negative charge of the dissociated species over Si-O-Si siloxane bonds 

due to the hyper-conjugation effect discussed above. This effect is more efficient the more 

polymerized the silicate species is. Thus, it can explain the slightly stronger acidity of low 

Al-content zeolites with respect to zeolites richer in Al, due to the lerger “polysilicate” 

fragments existing in the former than in the latter.  This phenomenon, with the delocalization 

of the negative charge on the siloxane oxygens of the cavities, could also further strengthen 

the interactions of the cavity walls with the protonated base. 

On the other hand, it must also be considered that the molecular traffic may be more 

hindered on zeolites richer in protons with respect to zeolites with less protons, due to the 

strong interaction of molecules with more adsorbing sites. This might result in lower catalytic 

activity even if the acidity is not weaker [326]. Additional effects due to the cavity shapes 

and sizes (with respect to the base molecular shape and size) may also play a role when 

the acidities and catalytic activities of different zeolites are compared, as discussed below. 
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6.4. On the Lewis acidity of protonic zeolites 

Lewis acidity in protonic zeolite is due to available coordinatively unsaturated Al3+ ions, as 

shown by the adsorption of molecular probes. Studies using hindered probe molecules 

demonstrated that Lewis acid sites may occur at the external surface of  zeolites, where the 

“zeolitic” structure in some way vanishes [80,318]. Additionally, Lewis acidity frequently 

comes from “extraframework” matter, composed by alumina-like or silica-alumina-like 

debris. In fact, protonic zeolite catalysts may contain, as a result of the preparation, or of an 

intentional pretreatment, significant amounts of species external to the framework. Several 

zeolites are actually applied after treatments tending to increase their stability and also, in 

case, to further enhance surface acidity and shape selectivity effects. These treatments, like 

steam dealumination, can cause the decrease of the framework Al content and the release 

from the framework of aluminum-containing species [327] that may contribute in stabilizing 

the framework, but can also contain additional catalytically active acid sites. These particles 

can also narrow the size of the zeolite channels or of their mouths, thus improving the shape 

selectivity effects. Extraframework material is composed by very small particles mostly 

containing Al cations complexed by oxide ions and/or OH’s but sometimes also involving 

silicate species, being similar to silica-alumina debris [327], likely interacting with the 

framework walls, located in the cavities or on the external surface. As said, the presence of 

EF gives rise to the presence of strong additional bands in the IR OH stretching, usually 

above 3750 cm-1 and in the region  3730-3650 cm-1. These species are also responsible for 

1H NMR peaks at -0.5- + 0.7  and 1.7-2.7 ppm  [86] and reveal medium-strong Brønsted 

acidity. Similarly, the detection of octahedral Al ions in 27Al NMR techniques is evidence of 

EF. EF species usually contain exposed Al ions acting as strong Lewis acid sites. 

Recently, it has been pointed out  the possible activity of framework Al ions as Lewis acid 

sites [328]. It seems likely that Al ions can behave as other cations do, in framework 

positions in zeolites. This is the case e.g. of Ti4+ in Ti silicalite TS-1 [91] as well as of Sn4+ 

and other cations, that behave as Lewis acids when in substitutional positions in silicalites 

[329]. It is normally supposed that the access of basic molecules to the framework Al3+ ions 

does not occur mainly because it is hindered by, or competes with, the interaction of the 

base with the near proton.  Nevertheless, in complex pore zeolites it is possible that Al ions 

can interact with basic molecules when the proton is in position internal to another cavity. 

This is the case, e.g., of USY faujasite (Figs. 11 and 12), where it has been proposed [328] 

that framework Al ions can be active in adsorbing bases from the supercage when they are 
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associated to protons located in the sodalite cavity or in the hexagonal prism. Tetrahedral 

framework Al ions can enlarge their coordination to five, without any dehydration, by reacting 

with a base from the other side with respect that where the acidic OH lays. This point has 

also been discussed on theoretical grounds by Busco et al. some years ago [330]. 

The data and our interpretations suggest that also extraframework material-free (or nearly 

free) high silica zeolites may display Lewis acidity and could act as Lewis acid catalysts, due 

to the activity of framework Al atoms. It has been reported, in particular, that the sample 

USY (30), an ultra-stable dealuminated Y faujasite, is an excellent catalyst for some fine 

chemistry reactions most typically catalyzed by homogenous Lewis acids [331].  

 

6.5. Cavity effects in catalysis on protonic zeolites. 

The relations between structural parameters and acid strength of hydroxyl groups of zeolites 

have been object of many discussions. Sastre, Niwa and coworkers concluded that a 

complex mixture of short- and long-range factors is at play [332].  Its seems quite established 

today that protonic zeolites have similar Brønsted acid strengths, with a relevant role of local 

geometric factors differentiating their behavior [333]. Experimental, as well as theoretical, 

data show that, besides the interactions of the functional groups of the reactive molecules 

with the zeolites Brønsted sites, the van der Waals interactions of other unreactive groups 

of atoms with the zeolite cavity walls may be very relevant and stabilize the intermediates. 

These interactions may vary significantly as a function of the type of the zeolite, the 

dimension and shape of the cavities as well as the Al and proton content and the presence 

of EF. Also, they depend on the size and shape of the molecule. These “confinement effects”  

make the cavities of the single zeolite structures unique solvation and reactivity 

environments and play  relevant role in the catalysis by zeolites [334]. Different catalytic 

activities would predominantly reflect differences in the size and solvating properties 

(confinement effect) of their cavities, rather than differences in acid strength [335,336]. As it 

is well known, shape selectivity is a key phenomenon making forbidden (or strongly 

inhibited) reactions involving transition states, intermediates and/or products whose size 

exceeds that of the catalyst cavities [337,338], thus somehow favouring competitive 

reactions. In contrast, confinement effects can directly favour reactions whose transition 

states match the cavity size and are stabilized by the cavity [326,339].  

An example of “positive” confinement effects is the easy formation of aromatics, such as 

benzene, toluene and styrene, and the relatively low coking rate occurring on medium-pore 

zeolites such as H-MFI and LTL, from a number of reactants such as light paraffins and 
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olefins, methanol, ethanol, vegetable oils, etc. This behaviour, differentiating medium pore 

zeolites from small pore zeolites and large pore zeolites, could be associated to the optimal 

size of the cavity for cyclization reactions but too small for extensive coking.  

 

7. Silica-aluminas. 

7.1. Preparations and applications of silica-alumina catalysts. 

Silica-alumina catalysts have been developed in the thirties, forties and fifties of the 20th 

century. A number of different preparations have been reported and are used, even 

industrially, to prepare “silica-alumina” materials. Most of them give rise to fully amorphous 

solids usually denoted as “amorphous silica-aluminas”, or ASAs, although in some cases 

(mainly when they are relatively Al-rich) they are not fully amorphous but contain some low-

crystallinity -alumina phase. Among the many preparations [340,341] we can cite the 

following:  

1. Cogelling. It is basically performed by treating solutions containing both tetravalent 

silicon and trivalent aluminum at acidic pH (1-3) first (to produce a silica sol) and by 

adding a base to enhance pH to near 5-9, washing and drying [342]. These materials 

are characterized by a bulk density near 02-0.6 g/cm3. 

2. In recent years, a number of materials belonging to this system with relevant 

mesoporosity have been prepared and developed at the industrial level, using 

structure directing agents to develop porosity [343]. These materials are essentially 

amorphous SA with non-structural although sometimes ordered mesopores. The 

surface chemistry of these materials appears to be closely similar to that of 

amorphous microporous SAs. Among the best known, Al-MCM41 [344,345] and Al-

SBA [346,347]. 

3. Coprecipitation. It is performed by treating solutions containing both tetravalent 

silicon and trivalent aluminum near neutral pH, washing and drying [348]. 

4. By the “oil drop method”, mixing an alumina sol and a silica sol and feeding the 

mixture on top of a forming tower filled with circulating hot oil. This method is reported 

to be used by UOP to produce spherical silica alumina supports for hydrocracking 

catalysts [349] 

5. Impregnation or grafting of silica gel by an aluminum precursor, drying and calcining 

[83,350,351,352].  

6. Grafting of silica precursors in sufficiently large amounts on alumina or boehmite,  

drying and calcining [353]. This is the case in particular of the Siralox family of Sasol 
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(previously Condea), whose preparation and characterization has been reported in 

some detail [252].  

7. Flame hydrolysis of mixed chlorides. This is the procedure to produce catalyst 

carriers with small aluminum content, Aerosil MOX 80 and 170, produced by Evonik 

[354]. A similar procedure has been described by Huang et al. [355] and by  Gun’ko 

[356] to produce a set of acidic catalysts. 

8. As mixed aerogels, using hydrolysis and supercritical drying of mixed alkoxide 

solutions, followed by calcination [256,357].  

 

The most typical composition of early silica-alumina cracking catalysts is with a SiO2/Al2O3 

molar ratio 10–12 corresponding to a Si/Al ratio of 5-6, and an alumina content of 12–15 

wt.% [358,359]. This kind of materials is still commercialized today (as the Aldrich silica-

alumina catalyst support, grade 135 [360,361] and Grace silica-alumina Davicat catalyst 

[362]) and is applied, e.g. for treating Fischer Tropsch products [363]. According to several 

authors this composition leads to maximum acidity [364] in particular of the Brønsted type 

[365]. On the other hand, high alumina silica-alumina, with  near 30 %wt alumina have also 

been developed and used as cracking catalysts. Authors report that in this range maximum 

total acidity and cracking activity occur [366]. Both high-silica and high alumina catalysts are 

applied, depending on feed and reaction  conditions as supports for hydrocracking catalysts 

[367]: near 50% alumina silica-alumina are reported to be the  best for NiMo sulphide 

catalysts [368,369], although also lower alumina content is reported (e.g. 14% Al2O3 the 

support of a NiW sulphide catalyst) [370]. Silica alumina seems to be also the choice 

supports of catalyst for mild hydrocracking of Fischer Tropsch waxes. In this case, the feed 

being sulphur-free, both supported noble metal catalysts (such as Pt/Silica-alumina applied 

by Shell [371]) and sulphides (either NiMo or CoMo [372]) are applied. 

Silica-aluminas represent also useful supports for many other industrial catalysts. We can 

cite, e.g., Cr-based Phyllips-type olefin oligomerization catalysts [373], unreduced Ni-based 

catalysts for olefin dimerization (NiO 50% by weight, Si:Al 20 6) [374,375], Pd catalysts the 

slurry catalytic hydrogenation of ethylanthraquinone in the manufacture of hydrogen 

peroxide [376], Ni-based catalysts for the front-end hydrogenation of C2 and C3 acetylenics 

in steam cracked cuts [377,378],  Rh-based metathesis catalysts [379], etc.  
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7.2. On the structure of low Al content silica-aluminas. 

Low Al content silica-aluminas (alumina content of 12–15 wt.% corresponding to  a Si/Al 

ratio of 5-4) are generally fully amorphous. Thus, the XRD technique does not give any 

structural information. 27Al MAS NMR technique is largely applied to investigate their 

structure. This technique reveals the presence of tetrahedral Al ions (peak at 50–60 ppm), 

in these cases, with a virtual absence or a very small amount of octahedral Al ions (peaks 

in the range -10 - +5 ppm [355,380,381,382,383,384,385,386]), usually without significant 

detection of pentacoordinated Al, that become apparent at relatively high Al contents. 

Working with catalysts relatively rich in aluminum, Wang et al. [387] proposed recently that 

pentacoordinated aluminum can have a role in the generation of Brønsted acidity in ASAs. 

As discussed above for aluminas’ characterization, we must take into account that such a 

technique may fail in detecting very distorted low coordination species considered to be 

almost “silent” [211,212] in particular for amorphous aluminosilicates [385], being probably 

responsible for extremely broad bands. 

The 29Si MAS NMR spectra of low alumina ASAs show a main peak centered at −110/-100  

ppm similar to that found on silicas, denoted as Q4 (i.e. due to a Silicate tetrahedra bonded 

to four other silicate tetrahedra), that tends to shift to higher (less negative) ppm positions 

by increasing aluminum content. At very high Al content a peak appears at -80 ppm 

attributed to tetrahedral Si surrounded by alumina [384,388]. XPS studies confirm the 

presence of two different Al species: in particular the Al2p signal was found split at 74.4 eV 

and 76.8 eV [389].  

These data are usually interpreted as due to the substitution of Al3+ for Si4+ in the tetrahedral 

framework of amorphous silica. However, this substitution necessarily leads to a charge 

umbalance of this framework that must be compensated.  

We may mention that, in the case of protonic zeolites with similar composition, the presence 

of protons as compensating ions is well evident being associated to strong OH stretching 

bands in IR and also strong 1H MAS NMR signals due to the bridging silanol group (see  

above). As already said, IR spectra show, in the case of some high-Al content zeolites, 

additional broad absorptions in the 3400-3300 cm-1 region, assumed to be associated to H-

bonded H-bonded OH’s [80], whose protons may be not available for acid catalysis but that 

would also contribute in balancing the framework anionic charge. In the case of ASAs, 

neither IR (Fig. 13) nor 1H MAS NMR techniques not show evidence of compensating 

protons. 
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7.3. Surface chemistry of low-Al-content ASAs. 

Starting from the very beginning [390], the catalytic activity for cracking reaction of silica-

aluminas was attributed to their acidity. In particular, it was found that both Lewis and 

Brønsted type acid sites are present on the surface [391,392,393,394].  

The presence of remarkable Brønsted acidity of SAs is deduced by the observed protonation 

of ammonia [395], pyridine [327,396,397,398], amines [399] and phosphines [400] also by 

the strong H-bonding which nitriles [401,402] and with CO [83,327] detected using IR 

spectroscopy [83,201,327,394,403,404], MAS NMR techniques [405], TPD [406] and 

calorimetric measurements [397], by the amine titration method [407] as well as deduced by 

its catalytic activity. This was originally taken with some surprise, because of the absence 

of Brønsted acidity apparent in the two pure compounds silica and alumina.  

The IR spectra of ASAs activated in vacuum always present a very sharp IR band near 3747 

cm-1 certainly due terminal silanols, spectroscopically very similar to those of pure silicas 

and of any silica-containing material. A tail towards lower frequencies is likely due (as on 

pure silica too) to H-bonded and geminal silanols. Several papers reported on the 

characterization of the acidity of terminal silanols and the complete absence of bands 

assignable to bridging OH’s [76,83,260,262,327,346,408,409,410]. 1H MAS NMR studies of 

silica-aluminas prepared with different techniques [381,410,411,412,413,414] usually show 

a single peak at  1.7 - 1.8 ppm assigned to terminal silanols as observed on pure siloicas, 

with a broader component located at variable positions between 2.5 and 3.8 ppm, attributed 

to Al-OH’s. In contrast the typical bridging OH of zeolites resonates sharp above 3.8 ppm, 

as cited above.  

Some papers emphasized the additional presence of very small bands near 3600 cm-1 in 

the spectra of mesoporous SAs [415-418], supposed to be due to bridging zeolite-type sites. 

Also theoretical works at least up to the end of nineties, modeled the active site for zeolites 

and SA in the same way, as Al-(OH)-Si bridging hydroxy groups. Accordingly, it was 

supposed that the active site for SA and protonic zeolites is the same (i.e. it is constituted 

by the bridging hydroxy groups bonded to a silicon and an aluminum atom) [419].  On the 

other hand, Busca [94] previously reported that the Brønsted acidic sites in ASA absorb at 

3741 cm-1, while the sites which di not protonate pyridine absorb both at higher and lower 

frequencies (3746 and 3735 cm-1), all being necessarily terminal. Trombetta et al. [262,344] 

proposed that nearby Al ions can increase the Brønsted acidity of terminal silanols by 

bridging their dissociated form thus stabilizing it. Poduval et al. [420] reported data 
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suggesting that bands typical of bridging OD’s might be evident in the spectra of deuterated 

silica alumina, but are masked on those of undeuterated samples.  Garrone et al. [421] 

reported that small amounts of water adsorbed on mesoporous silica-alumina produce a 

weak band at 3611 cm-1 together with another at 3697 cm-1 (symmetric and asymmetric OH 

stretchings) and that adsorbed water adsorbs CO showing significant protonic acidity. 

Blanchard et al. [362] more recently confirmed that the presence of some water in the line 

give rise to stronger adsorption of CO on silica-alumina. Sanchez Escribano et al [201] 

however, showed that water does not modifies the Brønsted acidity of ASA with respect to 

pyridine protonation, being thus an intrinsic property of this material. On the other hand, 

water vapour is reported to act as a poison for silica-alumina acid catalysts. Cairon [422] 

confirmed the previous data showing very strongly acidic terminal silanols on amorphous 

SA but emphasized the complexity of the corresponding absorptions.  

Bevilacqua et al [83] investigated the surface hydroxy groups and the surface acidity of 

silica, silicalite, mesoporous and microporous SAs, silicated aluminas, aluminated silicas 

and silicalite, and of some zeolites, by IR spectroscopy. CO, pyridine and lutidine have been 

used as molecular basic probes. The data suggest that bridging hydroxy group Si – OH – Al 

are fully stable structures only in the cavities of zeolites, where they produce the strong 

bands at 3630-3500 cm-1 well correlated with the framework Al content. Extremely small 

bands near 3610 cm-1 may be found on some SA samples only (mostly prepared in organic 

media) and on aluminated silicas after activation by outgassing, thus being not due to 

adsorbed water. These bands certainly correspond to very few OH groups, and impurities 

(like bicarbonates) might contribute to their formation. It has been suggested that, in 

disordered mesoporous or microporous amorphous materials, zeolite-like pores may 

accidentally form and host zeolite-like bridging hydroxy- groups. The conclusion [83] was  

that terminal silanols whose acidity is enhanced by nearby Al3+ Lewis acid sites represent 

the predominant Brønsted acid sites in non-zeolitic materials based on combinations of silica 

and alumina. Part of these sites may be located in the internal cavity of small pores, even 

having molecular (or zeolitic) size but, due to the flexibility of the amorphous structure, this 

does not change significantly their structure and acidity.  

This approach was considered and developed by Chizallet et al. [423,424] on the basis of 

theory and experiment. These authors confirmed the possible existence and strong acidity 

of pseudobridging OH’s formed by the interaction of a silanol groups with the fifth 

coordinative valency of tetrahedrally coordinated Al or Si atoms.  



43 
 

Data from Hensen et al. [425] confirmed the existence of a small number (< 10 mol/g) of 

very strong Brønsted acid sites on silica-aluminas together with a second family of weaker 

Brønsted acid sites (50-250 mol/g), suggesting that they might arise from the interaction of 

silanol groups with strong Lewis acid sites. Huang et al. [355] observed the formation of very 

strong Brønsted sites on flame derived silica-alumina and concluded that they may be 

associated to silanols interacting with one tetracoordinated Al ion and a second 

pentacoordinated Al ion. More recently the same group reported evidence of 

pentacoordinate aluminum being involved in the Brønsted sites in ASA’s [387]. 

As observed since many years, strong Lewis acid sites also exist at the surface of low 

aluminum content ASAs. The spectrum of adsorbed pyridine is simpler on ASAs with respect 

to that observed on -Al2O3: In practice, one only strongly adsorbed species is found whose 

typical absorptions are similar but at little lower frequencies than those observed on 

aluminas. The 8a mode is found at 1622 cm-1 with respect to 1624 cm-1 found on -Al2O3. 

The position of these bands is almost identical to those observed on zeolites and attributed 

to pyridine interacting with framework Al3+ [328]. According to these data, it seems likely that 

Lewis acidity of ASAs is essentially associated to similar Alions, which are already 

tetrahedral bonded in the silica framework and can expand their coordination to five by 

bonding a base.   

Studies show that ASAs do not display any relevant surface basicity and/or nucleophilicity. 

In particular, CO2 adsorption does not produce any carbonate or bicarbonate species, 

occurring only through molecular adsorption on surface OH’s and on Lewis acid sites [201]. 

7.4.  On the structure of low-Al-content ASAs: the Al-stuffed silica model. 

It is clear that the fundamental structure of ASAs is a disordered tetrahedral network very 

similar to that of amorphous silica. In this framework, aluminum for silicon sostitition occurs 

to a moderate extent. Charge compensation for the resuting negative charge does not came 

from rpotons. Thus, charge compensation can either be obtained by loss of oxide ions, 

producing e.g. tetrahedra triclusters as proposed to occur for glasses [291,292], or by 

additional presence of extra-framework aluminum cations.  

As discussed above, silica frameworks leave interstitial sites that can be occupied by 

balancing cations. This occurs with alkali and alkali hearth cations in the structures of the 

so-called “stuffed silicas”, where such ions occupy tetrahedral or octahedral sites in the 

structure of crystalline silica polymorphs (quartz, cristobalite, tridimite). Amorphous silicas 

are slightly less dense than crystalline polymorphs, thus their disordered structures certainly 
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also contain similar interstices likely in higher amounts. On the other hand, the Al3+ ion is 

smaller in size than alkali and alkali earth ions. Thus, Al3+ ions can be located in similar 

interstices, either tetrahedral or octahedral, or even with coordination five. When located in 

tertrahedral interstices, these interstitial “extraframework” Al3+ ions are nearly 

indistinguishable from substitutional tetrahedral Al3+ ions. When in tetraherdral interstices, 

Al3+ will be located near five to eight framework tetrahedra, three of which can be occupied 

by Al3+ ions, the others by silicon. In practice, this would create some clusters of AlO4 

tetrahedra in a framework that is mainly formed by SiO4 tetrahedra. Clustering of Al 

tetrahedra may justify the inhomogeneity of Al distribution in silica-aluminas observed by 

Sarbu and Delmon [426]. A typical composition of such low-alumina ASAs is Al2O3 15 %wt, 

which corresponds to a Si/Al at. ratio near 4. A possible ideal composition is then 

Si16(AlF)3(AlEF)O38, where AF and AEF indicate framework tetrahedral Al3+ and 

“extraframework” compensating Al3+, respectively. This means that one “extraframework” 

compensating Al3+ ion is present every 19 tetrahedra at most, with respect to one 

monovalent alkali ion per two tetrahedra as it occurs in stuffed silica silicolauminates. 

This model can justify an all-tetrahedral coordination for aluminum (when tetrahdedral 

interstices are occupied by Al3+), but also justifies the presence of aluminum ions in 

coordination 5 and 6 when it occupies larger interstices. This probably depends on 

preparation procedure and on the Si/Al ratio. The model proposed here also justifies the 

possible preparation of acid catalyst by simple deposition of aluminum compounds over 

amorphous silica, producing materials that can be denoted as “aluminated silicas”. 

With this “stuffed amorphous silica” model for ASA, no alumina-like oxygen atoms exist, i.e. 

do not exist Al-O-Al groups in an alumina-like environment. This explains the lack of 

nucleophilic and/or basic sites on low alumina ASA, as found by CO2 adsorption [201], in 

contrast to the nucleophilicity of alumina’s surface hydroxyls and oxide species, and the 

acidobasicity of alumina catalysts. The Lewis acidity of ASAs is probably mostly due to 

framework Al ions, as proposed above, being the extraframework interstitial Al ions less in 

number and probably mostly not exposed at the surface. Nevertheless, it seems likely that 

interstitial Al ions can be located just below the surface and can accidentally be nearby a 

silanol group. The interaction of such Al3+ ion with the silanol group is weak, just because 

the basicity of the silanol’s oxygen is very weak and the structure is flexible, not forcing this 

interaction. However, when a base is available, the silanol’s proton can jump to protonate it 

and the nearby interstitial Al3+ can enlarge its coordination sphere to bridge the silanol 
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anionic form (Fig. 14). This process can certainly strongly stabilize the system, allowing 

proton jump.  

This explains why ASAs show terminal silanols able to protonate pyridine, are more active 

than aluminas as Brønsted acid catalysts, but are less active than aluminas as Lewis acidic 

and/or acidobasic catalysts.  

 

7.5. Alumina-rich silica-alumina materials: solid state and surface chemistry. 

In agreement with these data, the “coprecipitation” and cogelling of significant amounts 

alumina (> 20%) with silica gives rise to materials quite refractory to crystallization with a 

large amount of pentacoordinated Al found by 27Al MAS NMR [381,427]. A similar situation 

occurs when aluminas are modified with large amounts of silicas, as in the preparation of 

the materials of the Siralox family. These materials tend to crystallize partially to spinel type 

alumina (-Al2O3 and -Al2O3 [428]). These materials are essentially biphasic being roughly 

constituted by mixtures of an amorphous phase (essentially an ASA phase) together with 

asilica-covered alumina phase. The balance of Lewis to Brønsted acid is shifted further 

towards Lewis acidity, due to the contribution of alumina Lewis acidity. However, the total 

acidity amount increases by increasing the alumina amount.   

 

8.Conclusions. 

The data reported above and the proposed interpretations allow to give a somehow 

comprehensive picture of the surface and bulk chemistry of the materials belonging to the 

SiO2-Al2O3 system. The main key points are the covalency and rigidity of the SiO4 tetrahedra 

and the ionicity the Al-O bonds and resulting elasticity of the coordination spheres around 

Al3+.  The Lewis acidity in the system are associated to the small size and moderately high 

charge of the Al3+ ion, resulting in its ability to modify its coordination and to strongly bond 

n-bases. On alumina, tri-coordinated by the vicinity of Al3+ ions can form by dehydration as 

well as by substitution of surface OH’s and may act as very strong Lewis sites. On silica-

aluminas as well as on zeolites both tetrahedral Al ions substitutional for silicon in te silica-

like framework, as well as “extraframework” and interstitial Al ions contribute to Lewis acidity.  

The Brønsted acidity in the system arises from the moderate acidity of the silanol group that 

may be strongly enhanced by the vicinity of Al3+ ions, mainly due to the stabilization by the 

Al3+ ions of the dissociated form of silanol (silicate anion). The rigidity of the silica-rich zeolite 

frameworks contribute to the formation of the bridging silanols (that are essentially an 

instable structure) thus generating very strong Brønsted acidity.   
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Table 1. Densities (specific gravity) of phases in the SiO2-Al2O3 system. 

Phase        Density g/cm3 

 

Corundum     -Al2O3   3.98 

-Al2O3        3.65 

Kyanite    Al2SiO5   3.61 

Sillimanite    Al2SiO5   3.24 

Mullite     Al4+2xSi2-2xO10-x  3.11-3.26 

Andalusite     Al2SiO5   3.15 

Low-quartz     SiO2    2.65 

(SiO2)1-x-(Al2O3)x glasses (x  25-60)    2.43-2.81 

High-quartz (> 573°C)   SiO2    2.53 

Low-cristobalite (< 200 - 270°C)  SiO2    2.32 

Low-tridymite    SiO2    2.26-2.27 

High-tridymite (> 200 - 450°C)  SiO2    2.22-2.26 

High-cristobalite (> 200 - 270°C)  SiO2    2.20 

Silica glass    SiO2    2.21 

Fumed amorphous silica  SiO2    2.20 

Precipitated silica   SiO2    1.9-2.1 

Stöber silica    SiO2    2.04-2.10 

Silicalite-1    SiO2    1.80 

Silica gel    SiO2    1.80-2.20 

Mesoporous silica   SiO2    1.60-2.20 
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Table 2. Some relevant industrial applications of amorphous silica as catalyst support. 

 

Reaction     Catalyst composition      Reaction conditions 

SO2 oxidation to SO3      5-10 % V2O5 / 10-25 % M2SO4 (M= K, Cs) /SiO2  380-500°C, 1-2 bar  [140] 

Propene ammoxidation to acrylonitrile  Bi, Fe, Cr, Ni, Co, Mg molybdates supported on silica  450°C, 1.5 bar [141] 

Hydrogenation of vegetable oils 

to margarine     22% Ni, 4% SiO2 dispersed in hydrogenated edible fats  180-230 °C, 2-6 bar [142] 

Acetylene hydrogenation reaction  

in VCM process      < 1% Pd/SiO2                                                                  25-100 °C,  20-35 bar [143] 

Various hydrogenations   Cu/SiO2, Ni/SiO2         [144, 145] 

Olefin oligomerization    50 % H3PO4/SiO2 (Kieselguhr)     50-200°C, 10-40 bar [144] 

Olefin metathesis     8% WO3/SiO2       250-400°C, 30 bar [147] 

Olefin sterospecific polymerization 1% CrII / SiO2 Phillips process     100 °C, 25 bar [148]
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Table 3. Crystal data of aluminum hydroxides, oxy-hydroxides and oxides.  

 

 

 

 

 

 

 

 

 

 

*Alternative models have been proposed 

Mineral 
name 

Formula  Space Group  Z  

Bayerite -Al(OH)3 P21/n 8 

Gibbsite -Al(OH)3 P21/n 8 

Nostrandite Al(OH)3 P1 4 

Doyleite Al(OH)3 P1or P1 2 

Diaspore -AlOOH Pbnm 4 

Boehmite -AlOOH P21/c or Cmc21 4 

Tohdite 5Al2O3 .H2O doubtful   

 -Al2O3 Fd3m * 10,66 

 -Al2O3 P4m2 * 16 

 -Al2O3 C2/m 4 

 -Al2O3 Fd3m 10.66 

 -Al2O3 Pna21  8 

 -Al2O3 doubtful  

Corundum -Al2O3 R3c 6 
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Table. 4 . industrial application of some acidic zeolites. 

 

 

 

  

Zeolite 
usual 
name 

IZA 
code 

Main cavities Reaction Phase Temp.  
Pressure 

 

Ferrierite H-FER 10 MR 4.2x5.4 
8 MR   3.5x4.8 
intersecting 

olefins 
isomerisation 
 

G 350 °C Lyondell – 
 CDTech 

ZSM-5 H-MFI 10 MR  5.3x5.6  
10 MR 5.1x5.5  
intersecting 

benzene alkylation 
to ethylbenzene 

G 390-450 °C  
15-20 bar. 

Mobil-
Badger  

toluene 
disproportionation 

G 420-480 °C,  
20-40 bar, 

 Mobil  

olefins 
oligomerization 

G 200-350 °C 
10-50 bar 

Mobil  
Lurgi 

beta H-BEA 12 MR 7.6x6.4 
12 MR 5.5x5.5 
intersecting 

benzene alkylation 
to cumene 

L 150-200 °C 
10-40 bar. 

UOP  
Polimeri 
Europa-
ENI  

mordenite H-MOR 12 MR 6.5x7.0 
8 MR  3.4x4.8 side 
pokets 
 

benzene alkylation 
to cumene 

L 150-200 °C 
10-40 bar. 

Dow-
Kellogg  

C8 aromatics 
isomerizaton 

G 370-430°C 
7-15 bar 

 

alkane 
isomerization 

G 200 °C. 
15-30 bar 

Sud 
Chemie 
 

MCM-22 H-
MWW 

12 MR   
7.1 capped 
10 MR elliptical 

benzene alkylation 
to cumene and 
ethylbenzene 

L 150-200 °C 
10-40 bar. 

Mobil 
 

Faujasite H-FAU 
(HY) 

12 MR 7.4x7.4 
intersecting 

fluid catalytic 
cracking 

G 500-750 °C 
2 bar 

Grace, 
BASF 

isobutene alkylation L 40-90°C Akzo 
Nobel, 
Lurgi 
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Figure captions.  

Figure 1. Models for surface species in amorphous siolicas. 

Figure 2. FT-IR spectra of silica gel (A) and fumed silica (B) after outgassing at 300 K (a), 

473 K (b), 673 K (c), 873 K (d). In the inset: the two samples outgassed at 873 K, enlarged. 

Figure 3. Model for ammonia adsorption on silica. 

Figure 4. Most common evolution paths for phase transformations of aluminum hydroxides 

and oxides upon heat treatment in the preparation of catalytic materials 

Figure 5.Model for strongest Lewis acid sites on gamma-alumina. A: cutting of the spinel-

type structure along 111 plane. B: model for surface reconstruction. C: Top view of the site.  

Figure 6. Phase diagram for the SiO2-Al2O3 system, reprinted with permission from Ref. 

[266]. 

Figure 7. Coordination of interstitial ions in stuffed silica compounds: Mg2+ -quartz 

framework of Mg0.5AlSiO4 and Li+ in the ß-quartz framework of  LiAlSiO4 (-eucryptite). 

reprinted with permission from Ref.[282]. 

Figure 8. IR spectra of the surface hydroxyl- groups of protonic zeolites and other materials 

belonging to the SiO2-Al2O3 system 

Figure 9.  IR spectra and 1H MAS NMR spectra of H-FER zeolite and Al-containing MCM-

41 mesoporous silica-alumina. NMR spectra are reprinted with  perfmission from Ref. [313]. 

Figure 10. Model for pyridine adsorption on protonic zeolites. 

Figure 11. Structure of faujasite with location of the different tetrahedral crystallographic 

positions.  

Figure 12. Model for pyridine adsorption on Brønsted sites of H-USY when the proton is 

located in the small cavities (sodalite cage or hexagonal prism) and pyridine adsorbs from 

the supercage (left), or when both proton and pyridine are located in the supercage (in the 

middle).  

Figure 13. Skeletal IR spectra of silica, amorphous silica-alumina and gamma alumina. 

Figure 14. Model for ammonia protonation on silica-alumina.  
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Densities of  

Phase      Density g/cm3 

Corundum     3.98 

-Al2O3     3.65 

Kyanite     3.61 

Sillimanite    3.24 

Mullite      3.17 

Andalusite     3.15 

Low-quartz     2.65 

(SiO2)1-x-(Al2O3)x glasses (x  25-60) 2.43-2.81 

High-quartz (> 573°C)    2.53 

Low-cristobalite (< 200 - 270°C)   2.32 

Low-tridymite     2.26-2.27 

High-tridymite (> 200 - 450°C)   2.22-2.26 

High-cristobalite (> 200 - 270°C)  2.20 

Silica glass    2.21 

Fumed amorphous silica  2.20 

Precipitated silica   1.9-2.1 

Stöber silica    2.04-2.10 

Silicalite-1    1.8 
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