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Abstract

Many-objective optimization problems (MaOPs) are multi-objective optimization prob-

lems which have more than three objectives. MaOPs face significant challenges be-

cause of search efficiency, computational cost, decision making, and visualization.

Many well-known multi-objective evolutionary algorithms do not scale well with an

increasing number of objectives. The objective reduction can alleviate such difficulties

— however, most research in objective reduction use non-dominated sorting or Pareto

ranking. However, Pareto is effective in problems having less than four objectives.

In this research, we use two approaches to objective reduction: random-based and

linear coefficient-based. We use the sum of ranks instead of Pareto Ranking. When

applied to many-objective problems, the sum of ranks has outperformed many other

optimization approaches. We also use the age layered population structure (ALPS).

We use ALPS in our approach to remove premature convergence and improve results.

The performance of the proposed methods has been studied extensively on the famous

benchmark problem DTLZ. The original GA and ALPS outperform the objective re-

duction algorithms in many test cases of DTLZ. Among all reduction algorithms,

a linear coefficient based reduction algorithm provides better performance for some

problems in this test suite. Random based reduction is not an appropriate strategy

for reducing objectives.
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Chapter 1

Introduction

1.1 Problem Description

Many objective optimization problems (MaOPs) refer to optimization problems that

contain four or more objectives. Recently, Maops are getting much attention as

many real-world applications demand effective solutions that involve many criteria.

A myriad of research is being conducted to effectively optimize MaOPs. Evolutionary

algorithms (EAs) are a promising approach in solving MaOPs. EAs can deal with

problems having different objectives residing in different search spaces, such as convex,

nonconvex, multi-model, discontinuous, and degenerate space. However, it is evident

that a large number of objectives affects the performance of EAs. It is also difficult

to visualize solution trade-offs as well as high computational costs. Different ideas

have been explored to overcome these obstacles [39, 30].

It is necessary to mention that all objectives in many MaOps are not equally

important. If it is possible to divide the objectives set into a redundant set and an

essential set then one can optimize the the essential objective set, since optimization

will be simpler. In this regard, objective reduction is a possible way to deal with all

difficulties that arise with MaOPs having a large number of objectives. Research [15]

has explored appropriate methods for reducing objective set. Feature selection is one

of the popular methods for objective reduction. Two methods of feature selection

are filter and wrapper methods. These two methods help to find essential and redun-

dant objective sets. Wrapper methods use error rates to score the subset, while filter

methods use proxy measures to score the features . The backward selection algorithm

(BSS) is a popular wrapper method, where objectives are reduced sequentially. For

example, linear correlation coefficient determines the coefficient values between ob-

jectives and can be used to sequentially select objectives to remove. BSS is useful for



CHAPTER 1. INTRODUCTION 2

large numbers of objectives.

The effectiveness of a MaOP also depends on which objective fitness strategy is

used. Fitness strategies for MaOPs can be categorized into three main types: Pareto

dominance based many-objective evolutionary algorithms (PDMOEAs), indicator-

based many-objective evolutionary algorithms, and decomposition-based evolution-

ary algorithms [34]. Among these, PDMOEAs are using extensively, as they are

based on the concept of non-dominated sorting of solutions. In non-dominated sort-

ing, solutions are ranked as 1 when they are not dominated by any other solutions.

The non-dominated solutions in the remaining set are ranked as 2, and the process

continues until all solutions are ranked. This focuses on the essential attributes of

many-objective optimization problems, where one solution cannot improve without

worsening another one. Therefore, PDMOEAs are widely using as they can overcome

some contradictory challenges of MaOPs. However, it is difficult to maintain the

diversity of solutions that converge towards the true Pareto front. Also, PDMOEAs

can only provide a diverse solution set when the number of objectives is not more

than three. With a large number of objectives (four or more), the convergence ability

of PDMOEAs decreases drastically, because large number of objectives causes expo-

nential increase in the number of non-dominated solutions and the PDMOEAs rank

all the population as rank 1. As a result, Pareto dominance flattens out, and no

selection pressure is assigned by the fitness assignment process.

It is necessary to rank all the population effectively to get globally optimal solu-

tions. Assuming the importance of a practical ranking approach, Bentley and Wake-

field proposed the average ranking (sum of ranks or SR) as a fitness assignment tech-

nique [10]. SR favours individuals that are good performers in as many objectives as

possible. In comparison with Pareto ranking, a solution can be non-dominated if just

one objective is non-dominated. In SR, all of the objectives are ranked separately,

and the sum of these ranks is assigned as the fitness. SR gives satisfactory results

compared with Pareto dominance when the number of objectives increases. However,

the solution derived by the SR converge to only a sub-area of the Pareto front and

the solutions obtained are not diverse as Pareto solution [29]. Also, SR gives only

one solution per run it is not be possible to compare some aspects of performance

with Pareto-based approaches. To compare the result of PDMOEA and SR, we need

solutions from many SR runs (one solution per run). However, there is a possibility

that a significant number of SR solutions from different SR runs are attracted to the

same sub-area of the Pareto front. In this situation solutions from different runs will

not be varied as the Pareto solution set.
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An EA named the age layered population structure (ALPS) genetic algorithm [27]

focuses on reducing premature convergence of evaluation. ALPS has some specific

attributes which make it significantly different from other EAs. Attracting local

optima is one of the main reasons that EAs converge early. ALPS helps the EAs

maintain diversity using age layers which restrict selection for reproduction. ALPS

also generates new individuals in the bottom layer at regular intervals, which adds

genetic diversity throughout the run. Using ALPS and SR, it may be possible to

optimize solutions while improving the generated set of solutions. However, it is

unlikely that ALPS can produce solutions as diverse as PDMOEAs.

1.2 Goals and Motivation

We know Pareto ranking cannot scale well when the number of objectives increases.

Research shows that objective reduction is a useful technique for machine learning

to handle many real-world applications [15, 39, 30]. To make EAs more effective

for complex MaOPs, many objective reduction methods have been proposed. The

primary goal of this thesis is to explore new strategies for MaOPs. We want to make

EAs more effective by using the sum of ranks instead of Pareto ranking. We know that

the SR can provide a better result for a large number of objectives. SR with ALPS can

create a more optimmized solution for MaOPs. We also want to use different strategies

of objective reduction using backward sequential selection algorithm (a feature subset

selection algorithm) [6] . We will compare random and linear coefficient reduction

techniques in our research. Moreover, we want to incorporate SR and ALPS with the

above described objective reduction strategies. Our other goal is to study the DTLZ

[22] benchmark problem set and compare our result for different objective reduction

approaches.

1.3 Thesis Structure

At the end of this chapter we provide a table of all acronyms. We provide background

knowledge in Chapter 2. Chapter 3 gives a literature review. Chapter 4 will introduce

the experiments that we conducted, and in particular, ideas about objective reduction.

Chapter 5 will provide details and discussion of experiments results, and statistical

significance of results. Finally, we include our conclusions and future work in Chapter

6.

Please see Table 1.1 for acronyms used throughout the thesis.
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Common acronyms Abbreviation
GA Genetic Algorithm
ALPS Age Layered Population Structure
BSS Backward Sequential Selection
NSGA-II Non-dominated Sorting Genetic Algorithm -II
NSGA-III Non-dominated Sorting Genetic Algorithm -III
DTLZ Benchmark Problem Suite
PCC Pearson Correlation Coefficient
PCA Principle Component Analysis
SR Sum of Ranks
IGD Inverted General Distance
VRPTW Vehicle Routing Problem With Time Windows
SBX Simulated Binary Crossover

Table 1.1: Common Acronyms
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Chapter 2

Background

2.1 Introduction

The chapter includes relevant background information on many-objective optimiza-

tion and various fitness evaluation techniques for these problems. Overviews of the ge-

netic algorithm (GA), age-layered population structure (ALPS) are provided. Lastly,

this chapter discusses an idea about benchmark problems studied and performance

measurements of many-objective optimization problems.

2.2 Many-objective Optimization Problems

Many-objective optimization problems (MaOPs) refer to the class of problems hav-

ing four or more objectives with many decision variables and constraints. A general

MaOPs can be mathematically formulated as

Minimize/Maximize fm(x), m = 1, 2, .....,M ;

subject to gj(x) ≥ 0, j = 1, 2, ...., J ;

hk(x) = 0, k = 1, 2, ..., K;

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, 2, ...., n.

(2.1)

where x is a decision vector, gi(x) and hk(x) are constraint functions [20]. This multi-

objective minimization definition defines a lattice structure, and Pareto dominance is

usually used to define this structure (see Section 2.3.2).

The main difficulty in MaOPs is finding the best solution set which optimizes all

objectives concurrently. One of the simple methods of solving MaOPs is converting

MaOPs problems into a series of single-objective optimization problems (SOO). This
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procedure uses a suitable way to optimize the scalarization function. A scalarization

function is a function of the original objectives. However, this simple approach cannot

eliminate the complexities in solving complex SOOs [36].

Another method based on the role of the decision maker (DM) can be adopted

for solving MaOPs. The DM helps to select a solution using their experience, consid-

ering constraints and other perspectives of MaOPs [36]. Based on the DM role, the

optimization methods of MaOPs can be categorized into two categories:

1. Generating method

2. Preference-based method

The generating method provides a solution set without the interference of DM,

whereas the preference method uses references provided by the DM. The main three

sub-categories of the generating method are no-preference method, posteriori methods

with scalarization approach, and posteriori methods with a multi-objective approach.

Among these, no reference methods do not require any input from the DM. An

example of posteriori method with scalarization approach is the weighting method,

which needs a solution from SOO. It is valid for the problem with few objectives, but

it is difficult to select suitable values for weights [36].

The posteriori method with for MaOPs provides Pareto optimal solutions and

more information for the DM. Based on the role of the DM, the preference-based

process has been categorized into two parts: priori methods and interactive methods.

Priori methods solve SOO problems which need a function formulated with original

objectives and reference from the DM. Dependency on the DM can result in scarcity

of knowledge and other obstacles. In an interactive approach, a solution can be

provided by interacting with the DM while evaluating the MaOPs. The DM plays a

promising role to find a computationally efficient solution by using these references

in every iteration of the problem evaluation [36].

2.3 Fitness Evaluation Techniques For MaOPs

2.3.1 Weighted-Sum

The weighted sum approach converts multiple objective scores into a single fitness

[10]. In this technique, some objectives get higher priority, which creates bias in the

solution. The difficulty in determining the appropriate weights is another disadvan-

tage of this approach.
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For example, let X be a vector with x1, x2, x3,...., xn individuals, where n is the

number of objectives. If we assign a weight w1, w2, w3,...., wn for each of the n

objectives then the fitness score W(X) will be:

W (X) =
m∑
i=1

wmxm (2.2)

A solution with a minimum weighted sum is a more optimal solution. And a vector

X≤ Y if W(X) is less or equal to W(Y).

2.3.2 Pareto Ranking

Pareto ranking represents an important technique of MaOPs, where it is not pos-

sible to improve one objecive without making another objective worse. In MaOPs,

sometimes one cannot optimize all objectives simultaneously. Pareto ranking pro-

vides non-dominated solutions which are known as the Pareto front and is defined as

follows [2].

Pareto Dominance: Let Xi and Xj be two solutions vector where Xi, Xj ∈ F
and |Xi| =|Xj| = M. We can say that Xi dominates Xj if and only if:

∀m ∈ {1, 2, ..,M} : fm (Xi) ≤ fm (Xj) ∧ ∃m ∈ {1, 2, ..,M} fm (Xi)<fm (Xj) [i 6= j]

(2.3)

In other words a solution is dominated by another solution if it is better in at least

one objective and not worse in the other objectives, where fm is the objective function

[24].

Using Pareto dominance, we next define Pareto ranking. First, we arrange the

solutions in non-dominated order, and give a rank of 1 to the first non-dominated set.

Then the solutions of first non-dominated set are removed, and the next set of non-

dominated is given a rank of 2. The process continues until all solutions are ranked.

Pareto ranking can indicate Pareto non-dominated solutions, where every objective

gets the same priority. However, with four or more objectives, it is increasing likely

that all solutions become non-dominated and have a rank of 1. Therefore, Pareto

ranking cannot work well with a large number of objectives as selective pressure

vanishes [28].

Two more definitions are as follows. The Pareto front is the solution set currently

being chosen that is Pareto non-dominated. The true Pareto front is the set of optimal

non-dominated solutions in the problem being studied.
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2.3.3 Normalized Sum Of Ranks

An alternative strategy for many-objective optimization was introduced by Bent-

ley and Wakefield [5]. Average ranking or sum of ranks (SR) outperforms Pareto

ranking when a large number of objectives is involved. SR does not give a set of non-

dominated solutions like Pareto ranking, but instead, gives one solution at a time.

The mechanism of SR calculation as follows

1. Compute the raw score of all objectives values for all individuals.

2. Rank objectives based on minimization (or maximization) of objectives values.

3. Makes a summation of each individual’s rank vector according to formula 2.4

(below).

If we consider a solution x with the set of ranks (Rx1, Rx2, Rx3, . ..., Rxm), where

Rxj is the rank of x for jth objective and m is the number of objectives, then the sum

of rank is calculated as :

SR(x) =
M∑
j=1

Rxj (2.4)

In SR, unfair distribution of scores can happen in (2.4). The reason is that some

objectives have more ranks than others and they can create bias in the sum. For

example, if objective A has more ranks (less repetition of objective scores) than

objective B, then B’s contribution in the sum is dwarfed by A’s score. To overcome

this, it is necessary to normalize objective scores. In normalization, we find the

highest rank of each objective, and divide each rank of that objective by this value.

This normalizes each objective score between 0 and 1. It thus scales all ranks to the

same range, and removes unfair distribution caused by a different magnitude ranges

of ranks. After normalization, a summation of the normalized objective values for

each individual is calculated and used for fitness.

In Table 2.1, we consider 3 objectives for the sum of ranks. First, we compute

the fitness per objective and rank all individuals in the population. We calculate the

sum of ranks and perform a re-rank. We see that, objective B has more repetitive

values than other two objectives. Because of this imbalance, B’s contribution will

be overwhelmed by the other objectives. To overcome this situation, we normalize

the objectives scores in Table 2.2 and make a summation of them. We rank the

individuals based on their normalized sum of ranks. The solutions with rank 1 will

be considered as better solution in whole population.
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Individual Obj(A) Obj(B) Obj(c) R(A) R(B) R(C) SR Re-rank
1 1 9 5 2 1 2 5 1
2 2 100 4 3 2 1 6 2
3 10 9 9 4 1 4 9 3
4 16 100 8 5 2 3 10 4
5 16 9 500 5 1 5 11 5
6 0 1000 1000 1 3 6 10 4

Table 2.1: Sum of Ranks [33]

Individual NR(A) NR(B) NR(C) NSR Re-rank
1 0.4 0.333 0.333 1.066 1
2 0.6 0.6667 0.1667 1.4337 2
3 0.8 0.333 0.6667 1.7997 3
4 1 0.6667 0.5 2.1667 4
5 1 0.333 0.833 2.166 4
6 0.2 1 1 2.2 5

Table 2.2: Normalized Sum of Ranks [33]

2.4 Genetic Algorithm

The genetic algorithm (GA) is an evolutionary algorithm inspired by the Darwin’s

theory of natural selection. It was invented in 1960 by John Holland [26]. Using

this algorithm, fittest individuals are selected to make offspring for future genera-

tions based on natural selection. GA is popular for solving search and optimization

problems. It uses biologically inspired idea such as selection, crossover, and mutation

to provide high-quality solutions.

Figure 2.1 shows the entire process of the GA. The GA starts with the creation

of an initial population, which represents potential solutions. Based on the problem

definition, the fitness of every individual is calculated to identify the relative potential

strengths of each individual.

Fitness proportional selection operators such as tournament selection or roulette-

wheel selection are used to determine the parents for creating offspring using crossover

and mutation operator. New populations are updated with new offspring. The pro-

cedure will continue until an ideal solution is found, or the maximum number of

generations is reached.

Some more details of the GA are as follows:

Representation and initial population: Initial population consists of ran-

domly generated integers, floating-point or binary strings called chromosomes. It is
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Figure 2.1: Work Flow of Genetic Algorithm
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Figure 2.2: Crossover and Mutation

necessary to represent each chromosome based on the aspect of the problem being

optimized.

Fitness Based Selection Operator: The fitness based selection operator called

tournament selection is used to select an individual based on fitness to produce off-

spring. It selects K (from user parameter) random individuals and keeps the best 2

for crossover.

Reproduction Operator: Crossover and mutation are used to generate new

offspring from selected parents. In crossover, two individuals pair to recombine their

genes to create new offspring. Genes from parent chromosomes are mated using ran-

dom crossover points. For example, in Figure. 2.2, random slices of the chromosomes

are exchanged between the parents. By pairing genes, two new individuals are cre-

ated. Mutation introduces randomness in the search space. In mutation, one offspring

is created by flipping a random bit in the parent .

Algorithm 1 shows the pseudo-code for a simple GA. In this algorithm, the initial

population is created with random individuals. Fitness of all individuals is computed

by the fitness function. The fittest (elite) individuals in population, are transferred

to the next generation. After that, the selection procedure is applied to select parents

from the current generation to make offspring using crossover and mutation. Finally

the existing population is replaced by the new population. The GA will continue
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until the maximum generation is reached or a solution is found.

Algorithm 1 Pseudocode for GA

1: procedure GA
2: Randomly generate individual to make population
3: while until number of generation or cannot find ideal solution do
4: Evaluate chromosome fitness
5: Select elite individual
6: Select parent for reproduction
7: Do crossover and mutation to generate offspring
8: replace old population with new population

9: end while
10: end procedure

2.5 Age-Layered Population Structure

Age layered population structure (ALPS) was invented by Hornby [27] to reduce pre-

mature convergence in meta-heuristic search using an evolutionary algorithm. The

main differences between ALPS with the traditional genetic algorithm are (a) it peri-

odically generates new individuals in the population and (b) it segregates individuals

in different layers according to their age. Using the age of an individual, ALPS re-

stricts how individuals compete and breed with other individuals. Hornby applied

ALPS in many problems, and results showed that it performed well compared to GA.

A randomly generated individual starts their age from age 0, as their genetic

material has just been introduced into the population. An individual’s age is counted

by how long it has been used as a parent in the run. The individuals who came from

reproduction, such as mutation and crossover, take the age of their oldest parent plus

one. The individuals who are used as a parent to create offspring get one added to

their previous age, as their genetic material has been used to generate offspring.

The ALPS scheme separates individuals into age layers (see Table 2.3). These

values are multiplied by an age gap parameter to define the maximum age of indi-

viduals in each layer. For example, given a polynomial aging scheme in Table 2.3

with an age gap of 7 and 6 layers, the maximum ages for the layers will be 7, 14, 28,

63, 112. There is no age limit for top layer. A corresponding layer opens when the

preceding layer reaches its maximum age. For example, layer 1 will open in age 8

as layer 0 reaches its maximum age. Individuals move into the next layer when they

reach maximum age of the layer. ALPS periodically generates random individuals
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Age-Scheme
Layer

0 1 2 3 4 5
Linear 1 2 3 4 6 7

Fibonacci 1 2 3 5 13 21
Polynomial (n2) 1 2 4 9 16 25
Exponential (2n) 1 2 4 8 16 32

Table 2.3: Age Scheme for ALPS [27]

in the lowest layer, which directs the search into new directions, and reduces the

probability of premature convergence. The individuals in a higher layer always can

be replaced with individuals from the lower layer. An individual can stay in the top

layer indefinitely [27].

Another important characteristic of ALPS is that individuals only compete and

mate with individuals from the same layer or the preceding lower layer. As a result,

an individual with high fitness cannot dominate the entire population. This prevents

ALPS converging prematurely.

Algorithm 2 describes the ALPS algorithm [9]. Like the GA, the initial population

is generated randomly. If generation is zero or layer 0 is in initialize mode, a new

population will be generated in layer 0. The population is evaluated for every layer.

If the individuals of layers are involved in reproduction, age of offspring and parents

will be updated. If individuals reach the maximum age of the layer they move to next

layer. The process continues until the ideal solution found or maximum number of

generation is reached.

Algorithm 2 Pseudocode for ALPS

1: procedure ALPS( )
2: Read parameter file
3: SetLayer(number of layers, age gap, aging scheme)
4: while number of generation or !termination criterion met do
5: if generation==0 or layer0 is in initialize mode then
6: Randomly generate individual in layer 0
7: else
8: EvaluatePopulation()

9: end if
10: end while
11: end procedure
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1: procedure EvaluatePopulation( )
2: if (layer0) then
3: Select individual from current layer
4: else
5: Select individual from current layer,current layer-1

6: end if
7: Do crossover
8: Do mutation
9: Update parents(Individual) age
10: Set offspring(Individual) age
11: if (individual.age>layer.agelimit) then
12: move to upper layer

13: end if
14: end procedure

2.6 Non-dominated sorting genetic algorithm (NSGA-

II)

In the non-dominated sorting approach, solutions are divided into the different non-

dominated sets, and given a different label in each non-dominated set [28]. First,

solutions are searched based on the non-dominated method (one objective cannot be

improved without worsening other objectives) and this solution are defined set by

label “first non-dominated set” and removed from the solution set. Non-dominated

sorting is continued to find the second non-dominated set, and labeled as “second

non-dominated set”. Both non-dominated sets are removed from the solution set,

and non-dominated sorting continues until all solutions are labeled and so fort.

NSGA-II is one of the popular non-dominated sorting GA which eliminates three

difficulties of normal GA [18]. NSGA-II uses many sophisticated mechanisms to pro-

vide solutions that are well spread and closer to the Pareto front. In this research,

they improved computational complexity, remove non-elitism approach, and the de-

pendence of sharing parameter. In this algorithm, the crowding distance metric has

been used as a diversity maintenance operator. Crowding distance of a particular

solution is calculated by taking the average distance of its neighbouring solutions.

NSGA-II also includes elitism, which helps to improve the GA’s performance. The

main difference with a regular GA is that, NSGA-II uses elitism to create a 2N-size

population with the current population N and its best individuals. After comparing

solutions, it keeps the best N solutions for future generations. Solutions are ana-

lyzed using tournament selection using non-dominated sorting and crowding distance



CHAPTER 2. BACKGROUND 15

between solutions.

2.7 Objective Reduction

The challenges for MaOPs increases exponentially with the growth of the number of

objectives. It also involves high computation costs to optimize all the objectives to-

gether. Also, the visualization of high dimensional solution spaces become impossible.

Objective reduction can be a useful solution in this situation. Objective reduction

strategies focus on redundant and essential objective sets to make the objective set

smaller and easier to optimize. The essential objective set is capable of making the

reduced Pareto front similar to the Pareto front of the original objective set. That

way, it will retain all of the characteristics of the original Pareto front. This way,

by reducing the redundant set, it is possible to eliminate many of the difficulties of

MaOPs.

2.7.1 Wrapper Method vs. Filter Method

Feature selection is one of the simpler methods for objective reduction, that helps with

data visualization, and improves performance. There are two methods considered for

feature selection: filter method and the wrapper method [37]. The difference between

these two methods is as follows. The wrapper methods depends on the optimization

algorithm for selecting features and uses the algorithm to decide which objectives to

reduce. methods consider all combinations of features, calculate their values and select

the best solution from these combinations. Filter methods use general characteristics

of the training data to select features to reduce. Wrapper methods can provide

better performance, but are more computationally expensive than filter methods.

Filter methods are useful for reducing features from extensive feature sets. In filter

methods, features are ranked based on the selection criteria, and features are removed

based on having low rank. The main disadvantage of filter methods is that they ignore

the interaction between objectives and the optimization algorithm [37].

2.7.2 Backward Sequential Selection

Backward sequential selection (BSS) [6] is a popular method for feature selection

(later, we reduce the objective set in our runs using the BSS strategy). In this method,

an initial essential objective set starts with all objectives. Then redundant objectives

are removed sequentially. The final essential set will result after removing the desired
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number of redundant objectives. This method is effective when the objective sets are

large. The main difficulty of BSS is that it cannot evaluate the objective after it has

been discarded, as it is a “greedy” reduction method.

2.7.3 Pearson Correlation Coefficient

Pearson correlation coefficient (PCC) is also known as linear correlation coefficient. It

calculates a linear correlation between two variables X and Y. The value of PCC lies

between -1 and 1. The value 1 represents positive correlation, 0 means no correlation,

and -1 represents a negative correlation. The PCC for a sample of data can be

calculated using the following equation:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2.5)

where n is the sample size, xi, yi are sample point indexd with i and x̄,ȳ are sample

mean [3].

2.8 DTLZ Benchmark Suite

To learn about the performance of an optimization algorithm, it is necessary to choose

a test problem. According to [22], the main characteristics of a test problem should

be:

1. Scalability of any number of objectives and decision variables.

2. Test problems must have difficulties similar to real-world problems.

3. Test problems should satisfy two main goals of many-objective optimization

such as convergence near the true Pareto optimal front, and diversity of solu-

tions. Test problems also should introduce hindrance to get widely distributed

Pareto optimal solutions.

4. The availability of decision variables is another important factor of many-

objective optimization test problems. They should have an exact Pareto optimal

solution with exact shape and location in decision space.

The DTLZ problem suite was introduced by Dev et al.[22]. We use the DTLZ1-

DTLZ7 benchmark test suite, which represents different shapes and complexities, and
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Name Problem Properties

DTLZ1 f1 =
1
2

∏M−1
i=1 xi(1 + g(xM )) Linear

fm=2:M−1 =
1
2

(∏M−m
i=1 xi

)
(1− xM−m+1) (1 + g(xM ))

fM = 1
2(1− x1)(1 + g(xM ))

g(xM) = 100
[
|xM |+

∑
xi∈xM

((xi − 0.5)2 − cos(20π(xi − 0.5)))
]

DTLZ2 f1 =
∏M−1
i=1 cos(xiπ/2)(1 + g(xM )) Concave

fm=2:M−1 =
∏M−1
i=1 cos(xiπ/2)sin(yM −m+ 1π/2)(1 + g(xM ))

fM = sin(1 + g(xM ))

g(xM) =
∑

xi∈XM
(xi − 0.5)2

DTLZ3 Similar to DTLZ2 except the g function is replaced by g function Concave
from DTLZ1 Multimodal

DTLZ4 Similar to DTLZ2 except all xi ∈ x are replaced by xαi Concave
where α>0

DTLZ5 Similar to DTLZ2, except all x2, ..., xM − 1 ∈ X Degenerate

are replaced by
1 + 2g(r)xi
4(1 + g(r))

where g(r) = g(xM ) from DTLZ2

DTLZ6 Similar to DTLZ5 except g is replaced by g =
∑

xi∈XM
x0.1i Degenerate

DTLZ7 fm=1:M−1 = xm Mixed

fM = (1 + g(xM ))M −
∑M−1

i=1 [
fi
i+ g

(1 + sin(3πfi))] Disconnected

g(xM ) = 1 +
9

|XM |
∑

xi∈xM
xi

Table 2.4: Summary of DTLZ benchmark problem [8]

introduces practical environments and challenges seen in the real-world problems. It

is also widely used in MaOPs research.

Table 2.4 summarizes the DTLZ problem suite and the properties of the Pareto

fronts. The values of xi are restricted to [0,1].

2.9 Performance Measurements

2.9.1 Hypervolume

The hypervolume indicator is one of the popular performance indicators to compare

the performance of many-objective optimization algorithms. Hypervolume is the n-

dimensional space in the objective space contained by n-solution points generated

from an optimization algorithm. Hypervolume metrics provides single scale measure-

ment by measuring the size of the space covered by the solution set. The values of

hypervolume indicate how a solution set spreads in solution space, along with the

distance of solutions set to the Pareto optimal front. By containing the entire Pareto
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front in the solution set, an optimization algorithm can provide a maximum hyper-

volume result. Because of this property, hypervolume can give better results for large

solution sets than small solution sets. Hypervolume is measured based on reference

points, which can be the worst possible points in the solution set. A disadvantage is

that, hypervolume computation is NP-hard, and therefore computationally expensive

with increasing numbers of objectives. Because of this disadvantage, it is not possible

to calculate exact hypervolume metrics when processing large objective sets [14].

We use a fast method called WFG algorithm for calculating hypervolume mea-

surement which is included in ECJ [1]. In the WFG algorithm, the hypervolume

metric is calculated based on the sum of exclusive hypervolumes [38]. This WFG

algorithm uses domination to keep the solution set small for efficiency sake.

2.9.2 Inverted General Distance

Inverted general distance (IGD) is another widely used performance measurement

technique in many-objective optimization research. The advantage of IGD is that it

represents the quality of the approximated Pareto front by considering how solutions

spread and converge towards the true Pareto front.

The IGD computes the minimum distance between the objective vectors of Pareto

front and the objective vectors of the approximate front, and finds the average with

respect to the true Pareto front. If the POF* is the approximated Pareto front and

the POF is the true Pareto front, then the IGD will be

IGD =

√∑n
i=1 d

2
i

|POF |
(2.6)

where the |POF| is the number solutions in the true Pareto front, and di is the

minimum Euclidean distance between the solution of POF* and the member of the

true Pareto front. To get a close convergence towards the true Pareto front, IGD

should be minimum. As the IGD needs to compute the minimum distance for every

solution of approximate Pareto front, it becomes computationally expensive for a

large number of approximate Pareto solutions [31]. Moreover the IGD is not Pareto

compliant and the result of IGD changes with the size of reference front [11].
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Chapter 3

Literature Review

3.1 Many Objective Optimization

Research on many-objective optimization (MaO) is gaining popularity because of

real-world applications and challenges to optimize their solutions. Several algorithms

have been developed to find the optimal solutions for MaOPs. Among these, NSGA-

II (non dominated sorting genetic algorithm) [18], NSGA-III [17] and SPEA2 [40]

(strength Pareto evolutionary algorithm) are famous optimization algorithms. Among

these NSGA-II maintains a crowding comparison procedure with tournament selection

which enables NSGA-II to make diverse and converged solutions for a large number

of objectives.

Bentley and Wakefeld [10] first introduced six multi-objective ranking methods for

genetic algorithms. The main goal was to show how the GA can converge to acceptable

solutions. They examined separate objectives with unequal effective ranges. Multi-

objective ranking methods can be categorized into two parts:

1. Range dependent: The fitness vectors of solution vectors change when an

effective range of objective vectors changes.

2. Range independent: The fitness vectors of solution vectors do not change

when an effective range of objective vectors changes.

Effective range is defined by the minimum and maximum value of possible ob-

jective values. The valid range should be the same for all objectives to treat all

solutions equally by the GA. The sum of weighted objectives (weighted sum) is an

example of a range dependent method. Here, a predefined weight is required to make

useful domains, and the weight may change if the objective range change. Non-

dominated sorting is considered an independent range method because it does not
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need objective weighting. Bentley and Wakefeld worked in both range-dependent

and range-independent methods. They also proved that objectives discussed in the

range-dependent multi-objective ranking methods can dominate others, which results

in weak solutions. Much research has since been done using range dependent and

independent range methods in many-objective optimization.

Corne and Knowles [16] emphasize that average ranking (sum of ranks) performs

better than many other ranking methods when the number of objectives increases. For

example, problems with Pareto ranking is that a significant portion of the population

is non-dominated, and the selection pressure disappears. They introduce a coverage

relationship similar to dominance relations, where a solution vector si covers other

solution vector sj when si is not worse than sj on any objectives. They described the

favour relation for assigning relative rank over the population. In the favour relation,

we can consider favour si over sj in which number of objective values i (i <n) of si

are better than on the same objectives of sj, and j (j<i) objectives of sj are better

than same objectives of si.

Kukkonen [28] also introduced an alternative of Pareto dominance relation named

ranking dominance for MaOPs. Pareto dominance cannot distinguish solutions with

a large number of objectives. Ranking dominance performs advanced search in this

situation. But in ranking dominance, individual objectives deteriorate, which hinders

converging to Pareto front. For this reason, a ranking dominance relation has been

proposed where diversity and convergence will be maintained.

Recently, Palakonda, and Mallipeddi [34] proposed a new algorithm named “

Pareto dominance based algorithms with the ranking method ”. In this algorithm,

two main goals of the evolutionary algorithms such as diversity and convergence are

achieved.

3.2 ALPS

Using ALPS (see section 2.5) on MaOPs is a new concept.Very little work has been

proposed based on this idea.

Biswas [13] and Opoku-Amankwaah [33] have used ALPS with multi-objective

optimization problems. They study the multi-depot vehicle routing problem with

time windows (VRPTW) in their research. Biswas used Pareto ranking and first

introduced multi-objective optimization for VRPTW. In this work, a new crossover

named best route crossover is used with ALPS. Opoku-Amankwaah implemented

ALPS with three inter-layer strategies, and used SR . Biswas and Opoku-Amankwaah
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both got competitive and better results in many test cases. But in both cases, they

worked on only two objectives of the vehicle routing problem, which is not a MaOPs.

ALPS has been used with the SPEA2 algorithm in the Portfolio optimization prob-

lem [7]. A non-linear multi-factor model has been generated using these algorithms.

SPEA2 with ALPS provided excellent results in many experiments. They showed

that the ALPS algorithm with a large age gap can produce better results. Large gaps

create more age layers, which are able to increase diversity on the population.

NSGA-II has been used to develop a new system, MOJITO [32], which optimizes

analog circuit topology with multi-objective and multi-topology sizing. In this work,

NSGA-II is used in every layer of ALPS to optimize two objectives.

3.3 Objective Reduction

Purshouse and Fleming first introduced the possibility of objective reduction in the

field of MOEAs [35]. They discuss in detail various relationships between single ob-

jectives. In this work, relation between single objectives has been divided into three

categories: conflict, harmony, and independence between objectives. When improve-

ment of one objective deteriorates the performance of others, the relation is referred

as conflicting objectives. The opposite relation is harmony. In the independence rela-

tion, the global optimization problem can be divided into sub-problems to solve sep-

arately. They also focused on the effect of objectives on evolutionary multi-objective

optimization [35].

Deb and Saxena worked with Pareto-optimal solutions through dimensionality re-

duction [21]. They proposed a new MO procedure for solving large-objective problems

by focusing on finding representative sets of Pareto optimal to minimize the objec-

tive set. They use principle component analysis (PCA) based NSGA-II to eliminate

redundant sets. This was the first attempt to solve problem with upto 50 objectives.

Also, the algorithm successfully generated actual combinations of objectives to get

the true Pareto front.

An important contribution in MaOPs is explored by Brockhoff and Zitzler [15].

They tried to cover all of the theoretical foundations of objective reduction and specific

algorithms for those reductions. They observed how adding and omitting objectives

impacts the optimizations. They proposed a logical foundation for objective reduc-

tion, as well as two algorithms for reducing the number of objectives systematically.

Based on this research, lots of research has emerged to find more practical approach

for MaOPs.
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Yuan et al. [39] introduced the idea of objective reduction idea with feature selec-

tion. They proposed three many-objective formulations that maintain the dominance

structure for the solutions set. Three error measures (η, δ, γ) were used. The first

two formulations are based on the Pareto dominance structure, and the third one

utilizes the correlation between objectives. They also introduce objective reduction

algorithms with NSGA-II for each error formulation, where a good tradeoff of solu-

tions can be achieved. They optimize problems based on the number of objectives

selected and the error ratio.

A summary of these and other papers is in Table 3.1. We categorized the table

based on the performance measures and test problem suites.
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Paper Name DTLZ IGD HV
Finding Acceptable Pareto-Optimal Solutions using
Multiobjective Genetic Algorithms [16]

NO NO NO

Techniques for Highly Multiobjective Optimisation:
Some Nondominated Points are Better than Others [10]

NO NO NO

Ranking-Dominance and Many-Objective Optimization
[28]

YES NO NO

Pareto Dominance-Based Algorithms With Ranking
Methods for Many-Objective Optimization [34]

YES NO YES

Using Age Layered Population Structure for the
Multi-Depot Vehicle Routing Problem [13, 33]

NO NO NO

Ranking Methods for Many-Objective Optimization
[24]

YES NO NO

Effects of Combining ALPS and SPEA2 Genetic
Programming algorithms in a Portfolio Optimization
Problem [7]

NO NO NO

Objective Reduction in Evolutionary Multiobjective
Optimization: Theory and Applications [15]

YES NO YES

Objective Reduction in many objective
optimization-Evolutionary multiobjective approaches
and complrehensive analysis [39]

YES YES YES

Objective reduction for many-objective optimization
problems using objective subspace extraction [30]

YES NO NO

Searching for Pareto-optimal solutions through
dimensionality reduction for certain large-dimensional
multi-objective optimization problems [21]

YES NO NO

Simultaneous Multi-Topology Multi-Objective Sizing
Across Thousands of Analog Circuit Topologies [32]

NO NO NO

A Fast and Elitist Multiobjective Genetic Algorithm:
NSGA-II [18]

YES NO NO

Table 3.1: Summary of Literature Review
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Chapter 4

System Design

4.1 Introduction

This chapter provides implementation details of our experiments and proposed method-

ology. We will explain the system design concerning the GA and ALPS. The methods

of objective reduction will also be discussed. At the end of this chapter, we will de-

scribe parameter settings for the DTLZ benchmarks for all of the experiments.

4.2 Many Objective Optimization Without Objec-

tive Reduction

We divided our research into two parts based on objective reduction methods. In

the first part, we implemented the DTLZ test suite (DTLZ1-DTLZ7) [22] using GA

and ALPS. We maintain consistent parameter settings in both algorithms to remove

bias in the results. Later, we perform these experiments with a simple DTLZ im-

plementation as many-objective optimization problems, and we compare our results

with an other algorithm as well as with our own algorithms. We used ECJ [1] to

implement all of the experiments. Also, we used Awuley’s ALPS [9] and Gircys’s SR

implementation [25] in our experiments.

4.2.1 Chromosome Representation and Initial Population

We used the decision variables from the DTLZ test suite to build a chromosome

for our algorithms. The value of the decision variables are real numbers and the

ranges are within 0.0 and 1.0. For example, decision variables in DTLZ1(3,8) will be
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(0.456,0.894,0.729,0.235,0.569,0.468,0.145,0.367). The initial population is generated

randomly. Maximum generations and population size will vary as required.

4.2.2 Fitness Evaluation

We used tournament selection to select individuals for reproduction (see Section 2.4).

4.2.3 Fitness-Proportional Selection

The fitness-proportional selection is used to select individuals for reproduction in

order to make offspring for the next generation. We used tournament selection, which

selects parent individuals based on their ranking. In tournament selection, a user-

specified number of individuals are chosen randomly. Among these, two individuals

with the best fitness are selected to generate offspring for the next generation. For

mutation, one most fit individual is used.

4.2.4 Crossover and Mutation

We used simulated binary crossover (SBX) [12] and polynomial mutation [19] in GA

and ALPS. The binary-coded GAs are very effective for discrete search. But our

optimization problems need continuous search spaces. The search power of other

real-coded crossover operators are not adequate in this search space. SBX is popular

for real-coded GA as it has similar search power of single-point crossover of binary-

coded GA. SBX with real coded GA can eliminate the precision difficulties and fixed

mapping problem [12]. Polynomial mutation [19] is also designed for real-coded GA.

Following [22], the SBX recombination operator (η c=15) and polynomial muta-

tion operator (η m=20) have been used in all experiments. These two operators are

recommended for the DTLZ test suite in [22]. The crossover probability is 0.9, and

mutation probability is 1/D where D the number of decision variables in the DTLZ

test problem considered.

4.3 Many Objective Optimization With Objective

Reduction

We divided our objective reduction parts into two parts. To reduce objectives for

our many-objective optimization problems, we used objective masks. We generate an

objective mask for every individual. A mask has K bits for K objectives. A mask
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bit of 1 indicates that the corresponding objective will be considered in the ranking

method, and 0 indicates the opposite. The definition of masks is described below.

4.3.1 Individual-based Masking

We implemented objective masks for both GA and ALPS. Individual-based masking

means we set a mask for every individual. In order to make the mask, we first initialize

an array with zero which will be used to hold bitmask values for an individual. After

that, we reassign the value 1 in random positions of this array. This masking technique

is thus called random masking. We say a mask bit is on for an objective when the

value of this corresponding position is 1. For instance, if we have four objectives,

and we assign bitmask [0,0,1,1] for an individual, then we can say that objectives 3

and 4 are used for fitness for this individual. It is important to note that, in random

masking, we always maintain one essential constraint. Bits are set on for exactly half

of the objectives, i.e. if the number of the objectives is four, then we must have 2 bits

on in the mask. This is necessary so that the sum of ranks will be naturally balanced

all the time, otherwise, unbalanced SR scores can arise. For example, if an individual

has only one bit on (bit=1) it has to compete with other individuals that have more

than many bits on. It is easier to optimize 1 objective than many . Moreover, it is

also possible that an individual contains a mask with no bits turn on. In this regard,

the SR will not score them. Using this strategy, we assume that the population will

be evenly scored. We also use a parameter named mask duration, which indicates

how long or how many generations an individual will continue using this mask. If we

use the value 5 for mask duration, then every five generations a new mask will be

set for every individual. We use values of 1,5 and 10 for the mask-duration. During

crossover and mutation, offspring will inherit a mask from one of their parents.

4.3.2 Layer-based Masking

We also implement a layer-based masking strategy for ALPS. In layer-based masking,

we generate the same mask value for all individuals of the same layer. We also use

the mask duration similar to that in individual-based masking, to reset the masking

values at regular intervals for the entire ALPS layer. We adopted two techniques to

set the mask value for every layer.

1. Random Masking: We generate the mask values in a similar manner to

individual-based masking. The main difference is that, in individual masking,
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every individual has its own mask value, where in layer masking, every individ-

ual in the layer shares the same mask.

2. Correlation Coefficient Masking: We use statistical linear correlation and

backward selection algorithm [6] to implement this approach. First, we initialize

an array to generate a mask for each layer, and set the value 1 in every position.

As usual, every position represents an objective, and initially, every bitmask is

turned on. Then we calculate the linear correlation between two objectives

using the Pearson Correlation Coefficient formula. If we have four objectives

A, B, C, D, we make a table with the coefficient values of AB, AC, AD, BC,

BD, and CD (Note that AB=BA). Then, we find the highest correlation value

from the table and take one objective randomly from that entry pair. We turn

the bit mask off for that objective and delete all entries associated with that

objective from the coefficient table. The process will continue till a preassigned

number of objectives remain (user parameter). We set the mask this way for

all individuals of a specific layer.



28

Chapter 5

Experiments

5.1 Introduction

In this chapter, we include all experiments using regular GA, ALPS, and objective

reduction. This chapter provides overall experimental details and analyzes the per-

formance of the algorithms. In the first experiment, we compare our normalized

sum of rank-based GA with other works. We will introduce ALPS in many-objective

optimization problem in the next experiment and compare the result with regular

GA.

5.2 General Setup

In every experiment, we maintain the same parameter settings for all DTLZ test suite

[22] (see Table 5.1). DTLZ1-DTLZ7 from the DTLZ test suites are used to evaluate

all algorithms. We select different test problems to observe the different shapes and

locations of the optimal solution in the solution space. In each problem set, we

considered 4, 6, 8, and 10 objectives, respectively. The decision variable depends

on the number of objectives (M) and parameter K where K is 5, 10 and 20. It is

calculated by M − 1 +K . We used SBX crossover and polynomial mutation. The

mutation probability is 1/D, and the crossover probability is 0.9 for all experiments.

The maximum generation number is 700 and population size is 1200 for all of the

experiments. Tournament selection with size 4 has been used.

The parameter settings for ALPS are included in Table 5.2 . We used polynomial

ageing scheme where age gap is 5. The number of layers for ALPS is 5. The layer-

replacement strategy is ReverseTournamentWorst. The population size for each layer
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is 240 (240*5= 1200 generations in one evaluation).

To calculate the hypervolume and the IGD matrix, we took 30 solutions from

30 runs and used the 30 solutions as the solution set for hypervolume and IGD

calculation. For the IGD matrix, we calculate the result based on the true Pareto

front provided in Jmetal. We can calculate the IGD matrix for DTLZ1-DTLZ4 and

DTLZ7 as Jmetal has provided Pareto front only these test suites with 4,6 and 8

objectives. As IGD calculates the distance between approximate front to true front,

it evaluates an algorithm as a “best” when this algorithm provides small IGD values.

For the hypervolume matrix, we normalize all of the objective values [23] and set

reference point as (1,1,1,..,1)N . Hypervolume result is best when it is high. Bold face

will indicate better result for all cases.

5.3 Result NSGA-II, GA, ALPS and Normalized

Sum Of Rank

In this part, we compared our result using GA and ALPS with NSGA-II. We ran

the NSGA-II in Jmetal [2]. However, the IGD result is not Pareto compliant, and

it depends on the size of the Pareto Front. The population size is 1200, and the

generation size is 700 for both of the algorithms.

5.3.1 Result Analysis

IGD

Table 5.3 shows the IGD result between NSGA-II, GA, and ALPS. From these Ta-

bles, we can see that NSGA-II outperforms GA and ALPS in every case except

DTLZ2(8,17). The reason is that, NSGA-II uses sophisticated non-dominated sorting

and crowding distance sorting approach which makes diverse and converged solution.

Also, we know that SR provides only one solution per run, whereas non-dominated

sorting approach provides a set of solutions. Original GA with SR cannot provide

a diverse solution like NSGA-II. Also, the fitness evaluation technique of these two

algorithms is different. As IGD focuses on convergence as well as diversity, it is

apparent that we cannot get good result with GA and ALPS, that will outperform

NSGA-II. Therefore, in the rest of the thesis, we will compare our algorithms with

each other. In Figure 5.1, we generated a graph using GA for exemplary data. In

this graph, we put the average objective scores of the best individual from 30 runs in
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Problem K Objectives(M) Decision Variable(D) Mutation Prob.(1/D)

DTLZ1 5

4 8 0.125
6 10 0.1
8 12 0.08
10 14 0.07

DTLZ2 10

4 13 0.076
6 15 0.066
8 17 0.058
10 19 0.0526

DTLZ3 10

4 13 0.076
6 15 0.066
8 17 0.058
10 19 0.0526

DTLZ4 10

4 13 0.076
6 15 0.066
8 17 0.058
10 19 0.0526

DTLZ5 10

4 13 0.076
6 15 0.066
8 17 0.058
10 19 0.0526

DTLZ6 10

4 13 0.076
6 15 0.066
8 17 0.058
10 19 0.0526

DTLZ7 20

4 23 0.04
6 25 0.04
8 27 0.037
10 29 0.034

Table 5.1: Parameter settings for DTLZ
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GA Parameter
Generation 700
Population 1200
mutation-probability 1/D
crossover-prabability 0.9
crossover-type SBX
crossover-distribution-index 20
mutation-type polynomial
mutation-distribution-index 20
Selection Tournament
Size 4
Jobs 30
Fitness Sum of rank
Diversity Penalty 10

ALPS Parameter
Age-gap 5
number-of-layers 5
Population size 240
selection-pressure 0.8
Tournament-size 4
Aging-scheme Polynomial
Layer-replacement ReverseTournamentWorst

Table 5.2: Parameter settings for GA and ALPS
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Figure 5.1: Best individual of GA for DTLZ1

y-axis and generation in x-axis. In this figure, we see that the GA is trying to get the

best solutions throughout the generation. Although the information is not useful, as

there exist noise due to different runs jumping around several space.

5.4 Experiment for DTLZ with ALPS and GA

In this experiment, we optimize the DTLZ test suite with ALPS. Our main goal will be

comparing the IGD and the hypervolume result with GA to observe the performance

of ALPS in regards to MaOPs. We know that many-objective evolutionary algorithms

(MOEAs) can be attracted by local optima, which can lead to early convergence in

many EAs. ALPS can reduce this premature convergence by generating new genes

through the new individuals. By introducing new individuals in the bottom layer

ALPS restricts premature convergence. As a result, every time the new search space

is extended, search can be able to focus on the global optima.

5.4.1 Result Analysis

Hypervolume

The hypervolume result represents the performance of the algorithms based on the

diversity of solutions. Table 5.4 represents the comparison results between GA and
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Problem Algorithm Result
M=4 M=6 M=8

DTLZ1
NSGAII 0.001942952 0.493794442 0.206775984
GA 5.274900632 6.611777213 1.948641322
ALPS 2.76089036 1.964830765 1.489876904

DTLZ2
NSGAII 0.005059919 0.03454788 0.060221254
GA 0.050318577 0.067223691 0.049765828
ALPS 0.067740799 0.060183795 0.05378555

DTLZ3
NSGAII 0.005137123 7.896551534 11.010406
GA 36.95092159 38.50124834 35.1878284
ALPS 35.07309141 26.6088674 34.32926854

DTLZ4
NSGAII 0.004973564 0.023082208 0.06730297
GA 0.084007912 0.08304716 0.068599965
ALPS 0.105053564 0.095198168 0.07789963

DTLZ7
NSGAII 0.004933684 0.03900 0.047500682
GA 0.924303479 1.263734703 1.454404778
ALPS 1.004190122 1.534017005 1.568327064

Table 5.3: IGD result between NSGA-II, GA, and ALPS

ALPS. Twenty-one test cases were considered for optimization. Among 21 test

cases, ALPS outperformed GA for 6 test cases. These test cases are DTLZ2(6,15),

DTLZ4(8,15), DTLZ5(6,15), DTLZ5(8,17), DTLZ6(4,13), DTLZ6(6,15). GA made

better result in other test cases. ALPS performed well with a large number of objec-

tives. So, ALPS can make solutions which are near the Pareto front even for a large

number of objectives. As the hypervolume result represents the diversity of solution

set, it is evident that in each run GA can make solutions in different sub-area of the

Pareto front.

IGD

The IGD matrix represents the performance of an algorithm according to the diversity

of a solution set and the convergence towards Pareto front. Table 5.5 shows the IGD

values of DTLZ test for GA and ALPS. From this table, it can be observed that ALPS

and GA exceed each other in many test instances. ALPS outperforms GA in DTLZ1

for all objectives. We know that this search space contains (11K − 1) local optima

[22] where EAs can be attracted by these fronts. From the IGD result, it is evident

that ALPS has significantly smaller IGD result than GA, which represents excellent

diversity as well as the convergence of ALPS. ALPS also outperforms GA in DTLZ2

and DTLZ3 with 6 objectives.
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Problem Algorithm
Result

M=4 M=6 M=8 M=10

DTLZ1
GA 21 0.7960 0.8191 0.7761 0.7961
ALPS 0.7355 0.6688 0.7119 0.6265

DTLZ2
GA 0.6278 0.3974 0.4613 0.4258
ALPS 0.4115 0.4094 0.4108 0.2908

DTLZ3
GA 0.6457 0.6572 0.7283 0.7250
ALPS 0.4206 0.3408 0.3421 0.1858

DTLZ4
GA 0.7652 0.6014 0.5333 0.4723
ALPS 0.2994 0.5291 0.4248 0.5815

DTLZ5
GA 0.4535 0.3542 0.1766 0.1723
ALPS 0.2155 0.3547 0.1296 0.2762

DTLZ6
GA 0.2604 0.2455 0.1634 0.1479
ALPS 0.3597 0.2805 0.0943 0.0905

DTLZ7
GA 0.4791 0.1794 0.1438 0.1163
ALPS 0.0805 0.0137 0.0149 0.0006

Table 5.4: Hypervolume result between GA and ALPS

Furthermore, GA provides a better result than ALPS in DTLZ7 and DTLZ4.

DTLZ7 has a disconnected Pareto front. MOEAs has to maintain stable and diverse

subpopulation to perform well in this test problem. Based on the IGD result, we can

say that the GA maintained distributed subsolutions through the runs. Moreover,

DTLZ4 introduces a dense solutions where GA provides a better result from ALPS.

It can be said that GA makes a diverse solutions set with 30 solutions where all the

solutions are not in the same subarea of Pareto front.

In a nutshell, ALPS made better result in IGD where GA was better for ALPS.

So, we can say, ALPS can make solutions more converged to the Pareto front, but

GA is useful in making the diverse solutions.

5.5 Experiment With Objective Reduction in GA

In this experiment, we implemented objective reduction using random masking in the

GA.

We compare GA with three variations of random masking, named GA objective

reduction K1 (GAORK1), GA objective reduction K5 (GAORK5), and GA objective

reduction K10 (GAORK10). Here K is a predefined parameter that denotes a time

period when generating new random mask is regenerated. K=1 means a new objective

mask will be created in every generation while K=10 indicates all individuals will
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Problem Algorithm
Result

M=4 M=6 M=8

DTLZ1
GA 5.2749 6.6117 1.9486
ALPS 2.7608 1.9648 1.4898

DTLZ2
GA 0.0503 0.0672 0.0497
ALPS 0.0677 0.0601 0.0537

DTLZ3
GA 36.9509 38.5012 35.1878
ALPS 35.0730 26.6088 34.3292

DTLZ4
GA 0.0840 0.0830 0.0685
ALPS 0.1050 0.09519 0.0778

DTLZ7
GA 0.9243 1.2637 1.4544
ALPS 1.0042 1.5340 1.5683

Table 5.5: IGD result between GA and ALPS

maintain their specific objective mask for ten generations at an extent.

5.5.1 Hypervolume

Table 5.6 shows the hypervolume result for this experiment. For this comparison, we

used DTLZ1-DTLZ7 test cases. From this result, it is observed that GA outperformed

most of the objective reduction GA. Only GAORK1 and GAORK10 beat the GA

in two test instances which are DTLZ5(4,13) and DTLZ6(4,13). We can say that

random-based objective reduction cannot make a diverse set of solution like original

GA. To keep the same solutions as the original Pareto front , the algorithm must

generate essential objectives which must contain the characteristics of the original

front. As we cannot determine the essential objective set, the result is focusing on

only the same sub-area all the time.

5.5.2 IGD

Table 5.7 represents the IGD results of this experiment. It is observed that GA with

random masking cannot outperform regular GA in any instances. It is hard to say the

specific reason behind this result, but we can speculate that because random masking

is not following any particular rules to reduce the objective set, it cannot determine

which objectives are essential or redundant. If the mask discards essential objectives,

then it is hard to perform well using objective reduction. The reverse thing can

happen if random masking selects actual redundant objectives which means we can

get good result. But overall random mask was not found to be effective.
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Problem Algorithm
Result

M=4 M=6 M=8 M=10

DTLZ1

GA 0.7960 0.8191 0.7761 0.7961
GAORK1 0.4227 0.3263 0.1166 0.0359
GAORK5 0.7837 0.4506 0.3857 0.1124
GAORK10 0.5896 0.4178 0.3477 0.0854

DTLZ2

GA 0.6278 0.3974 0.4613 0.4258
GAORK1 0.2526 0.0415 0.0062 0.0023
GAORK5 0.2529 0.2320 0.0468 0.0076
GAORK10 0.2939 0.1911 0.0570 0.0099

DTLZ3

GA 0.6457 0.6572 0.7283 0.7250
GAORK1 0.3499 0.0234 0.0224 0.0025
GAORK5 0.3697 0.2060 0.1840 0.0059
GAORK10 0.3518 0.3064 0.0525 0.0172

DTLZ4

GA 0.7652 0.6014 0.5333 0.4723
GAORK1 0.2271 0.1828 0.0368 0.0279
GAORK5 0.3108 0.2836 0.1134 0.0434
GAORK10 0.3363 0.2866 0.1100 0.0377

DTLZ5

GA 0.4535 0.3542 0.1766 0.1723
GAORK1 0.5723 0.0642 0.0248 0.0067
GAORK5 0.2842 0.1464 0.0734 0.0357
GAORK10 0.2847 0.1832 0.0943 0.0111

DTLZ6

GA 0.2604 0.2455 0.1634 0.1479
GAORK1 0.2004 0.0352 0.0117 0.0035
GAORK5 0.2327 0.1908 0.0568 0.0085
GAORK10 0.2894 0.1943 0.0633 0.0097

DTLZ7

GA 0.4791 0.1794 0.1438 0.1163
GAORK1 0.0518 3.10E-35 1.28E-05 3.39E-07
GAORK5 0.0042 8.07E-30 2.31E-05 2.51E-07
GAORK10 0.0001 5.46E-55 7.94E-06 6.10E-07

Table 5.6: Hypervolume result for objective reduction in GA
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Problem Algorithm
Result

M=4 M=6 M=8

DTLZ1

GA 5.2750 6.6111 1.9486
GAORK1 18.4562 12.9656 8.9800
GAORK5 14.2864 13.2906 8.7931
GAORK10 21.3774 13.1975 8.1152

DTLZ2

GA 0.0503 0.0672 0.0497
GAORK1 0.1849 0.1809 0.1295
GAORK5 0.1667 0.1829 0.1865
GAORK10 0.1751 0.1865 0.1304

DTLZ3

GA 36.9509 38.5012 35.1878
GAORK1 130.2412 116.9390 91.6698
GAORK5 111.6325 110.5309 78.2435
GAORK10 117.8958 97.3544 81.8913

DTLZ4

GA 0.0840 0.0830 0.0685
GAORK1 0.1779 0.1568 0.1307
GAORK5 0.1668 0.1591 0.1290
GAORK10 0.1684 0.1532 0.1285

DTLZ7

GA 0.9243 1.2637 1.4544
GAORK1 2.1100 3.4253 3.5415
GAORK5 2.3573 3.4814 3.5466
GAORK10 2.3480 3.5956 3.5921

Table 5.7: IGD result for objective reduction in GA

In summary , GA with random reduction is not appropriate strategy for objective

reduction.

5.6 Experiment With Random Objective Reduc-

tion in ALPS

In this experiment, we implemented two techniques with ALPS for random objective

reduction. First, we added individual-based random masking for the objective re-

duction in ALPS. We next performed layer-based random masking. Indeed, random

masking was not satisfactory in the GA. But we want to do random objective reduc-

tion in ALPS , in case it could benefit form it. We know that ALPS introduces new

individuals at the regular intervals, which can create the possibility to make good

solutions. When generating new individuals, ALPS creates random masks for the

new individuals. As a result, the probability of getting an appropriate masking may

increase. Therefore, our main intention is to see whether random masking in ALPS
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can outperform random masking with GA.

We use a strategy like random masking in GA, where all masks have the same

number of bits set to “on”. In individual-based masking, we have three algorithms

named ALPS Objective Reduction Random K1 (ALPSORK1), ALPS Objective Re-

duction Random K5 (ALPSORK5), and ALPS Objective Reduction Random K10

(ALPSORK10).

In individual masking, a different objective mask is generated for every solu-

tion where a specific objective mask is created per layer in layer masking. In layer

masking, we executed random masking and coefficient masking. For layer-based ran-

dom masking we implemented 3 algorithms named ALPS Objective Reduction Layer-

wise Random K1 (ALPSORLRK1), ALPS Objective Reduction Layer-wise Random

K5 (ALPSORLRK5), ALPS Objective Reduction Layer-wise Random K10 (ALP-

SORLRK10).

5.6.1 Hypervolume

Table 5.8 and 5.9 show the hypervolume result for this experiment. In Table 5.8,

we compared the original ALPS with the individual-based random objective re-

duction in ALPS. Here we can see that individual-based random objective reduc-

tion outperformed original ALPS in many cases. ALPSORK1 performed well in

DTLZ3(10,19). ALPSORK5 outperformed ALPS in DTLZ2(4,13), DTLZ3(4,13),

DTLZ3(10,17), DTLZ5(4,13) and DTLZ(10,19). Also, ALPSORK10 exceed ALPS

for all in DTLZ4 except DTLZ4(10,19). Here, it is evident that random objective

reduction algorithms with ALPS performed well in the hypervolume result. We can

speculate that by generating random mask in regular interval ALPS is generating

diversity in solution space. In Table 5.9, we compare individual-based random ob-

jective reduction with layer-based random objective reduction. According to this

result, individual-based random masking and layer-based random masking outper-

formed each other in many cases. Layer-based random reduction performed well

in DTLZ1(6,15), DTLZ3(4,13), DTLZ3(8,15) , DTLZ4(4,13), DTLZ4(8,15). From

DTLZ1-DTLZ4, layer-based random masking outperformed individual-based random

masking for 4 and 8 objectives where individual-based masking performed well for

6 and 10 objectives. In DTLZ6, individual-based random reduction outperformed

layer-based random reduction in all cases where layer-based random reduction beat

individual-based random reduction for all cases of DTLZ7.
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Problem Algorithm
Result

M=4 M=6 M=8 M=10

DTLZ1

ALPS 0.7355 0.6688 0.7119 0.6265
ALPSORK1 0.5699 0.3230 0.4272 0.2912
ALPSORK5 0.8852 0.6629 0.5403 0.3658
ALPSORK10 0.6634 0.6514 0.4038 0.3401

DTLZ2

ALPS 0.4115 0.4094 0.4108 0.2908
ALPSORK1 0.4039 0.1111 0.0748 0.0415
ALPSORK5 0.4012 0.1743 0.1636 0.1818
ALPSORK10 0.4339 0.1985 0.0730 0.1294

DTLZ3

ALPS 0.4206 0.3408 0.3421 0.1858
ALPSORK1 0.3790 0.3213 0.0629 0.3130
ALPSORK5 0.5500 0.3307 0.1365 0.0558
ALPSORK10 0.5042 0.2571 0.0978 0.0761

DTLZ4

ALPS 0.2994 0.5291 0.4248 0.5815
ALPSORK1 0.4370 0.4958 0.3615 0.4517
ALPSORK5 0.5101 0.4704 0.3958 0.3895
ALPSORK10 0.5676 0.5854 0.5566 0.5018

DTLZ5

ALPS 0.2155 0.3547 0.1296 0.2762
ALPSORK1 0.6160 0.2673 0.1719 0.0493
ALPSORK5 0.7109 0.2934 0.2287 0.3218
ALPSORK10 0.4043 0.3017 0.3467 0.1249

DTLZ6

ALPS 0.3597 0.2805 0.0943 0.0905
ALPSORK1 0.3077 0.0860 0.0358 0.0073
ALPSORK5 0.3241 0.1926 0.0532 0.0131
ALPSORK10 0.2790 0.1365 0.0548 0.0163

DTLZ7

ALPS 0.0805 0.0137 0.0149 0.0006
ALPSORK1 0.0142 0.0002 0.0006 0.0003
ALPSORK5 0.0115 0.0009 0.0042 0.0016
ALPSORK10 0.0186 0.0005 0.0016 9.73E-05

Table 5.8: Hypervolume result between ALPS and ALPS with random objective
reduction
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Problem Algorithm
Result

M=4 M=6 M=8 M=10

DTLZ1

ALPSORK1 0.5699 0.323 0.4272 0.2912
ALPSORK5 0.8852 0.6629 0.5403 0.3658
ALPSORK10 0.6634 0.6514 0.4038 0.3401
ALPSORLRK1 0.6238 0.6831 0.4446 0.1886
ALPSORLRK5 0.8785 0.3423 0.391 0.1826
ALPSORLRK10 0.5708 0.5789 0.3084 0.2462

DTLZ2

ALPSORK1 0.4039 0.1111 0.0748 0.0415
ALPSORK5 0.4012 0.1743 0.1636 0.1818
ALPSORK10 0.4339 0.1985 0.073 0.1294
ALPSORLRK1 0.477 0.1131 0.075 0.0327
ALPSORLRK5 0.3828 0.1313 0.071 0.0352
ALPSORLRK10 0.1832 0.1483 0.0763 0.0295

DTLZ3

ALPSORK1 0.379 0.3213 0.0629 0.3130
ALPSORK5 0.5500 0.3307 0.1365 0.0558
ALPSORK10 0.5042 0.2571 0.0978 0.0761
ALPSORLRK1 0.5886 0.2433 0.2033 0.0528
ALPSORLRK5 0.6004 0.1714 0.1901 0.0767
ALPSORLRK10 0.3957 0.1596 0.1382 0.0817

DTLZ4

ALPSORK1 0.4370 0.4958 0.3615 0.4517
ALPSORK5 0.5101 0.4704 0.3958 0.3895
ALPSORK10 0.5676 0.5854 0.5566 0.5018
ALPSORLRK1 0.4562 0.5909 0.3651 0.6034
ALPSORLRK5 0.4167 0.3688 0.5053 0.4784
ALPSORLRK10 0.5081 0.4780 0.456 0.4034

DTLZ5

ALPSORK1 0.6160 0.2673 0.1719 0.0493
ALPSORK5 0.7109 0.2934 0.2287 0.3218
ALPSORK10 0.4043 0.3017 0.3467 0.1249
ALPSORLRK1 0.3344 0.2677 0.0972 0.1302
ALPSORLRK5 0.4625 0.2136 0.1514 0.2199
ALPSORLRK10 0.383 0.2407 0.1342 0.0960

DTLZ6

ALPSORK1 0.3077 0.0860 0.0358 0.0073
ALPSORK5 0.3241 0.1926 0.0532 0.0131
ALPSORK10 0.279 0.1365 0.0548 0.0163
ALPSORLRK1 0.2467 0.1031 0.0246 0.0346
ALPSORLRK5 0.1990 0.1199 0.0264 0.0259
ALPSORLRK10 0.2195 0.1081 0.0263 0.0138

DTLZ7

ALPSORK1 0.0142 0.0002 0.0006 0.0003
ALPSORK5 0.0115 0.0009 0.0042 0.0016
ALPSORK10 0.0186 0.0005 0.0016 9.73E-05
ALPSORLRK1 0.2569 0.0144 0.0597 0.0500
ALPSORLRK5 0.0859 0.0184 0.0281 0.0057
ALPSORLRK10 0.1155 0.0358 0.0304 0.0088

Table 5.9: Hypervolume result between ALPS individual-based random reduction
and layer-based random reduction
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5.6.2 IGD

Table 5.10, 5.11 represents the IGD values of this experiment. In Table 5.10, we

compare the result of the algorithm based on individual-based masking with nor-

mal ALPS. We can see that individual-based masking performs well in DTLZ4 and

DTLZ7. In other instances, ALPS beats objective reduction ALPS. It is necessary to

say that, in our previous experiment, ALPS cannot make improve over GA in DTLZ4

and DTLZ7. But the objective reduction algorithm made a better results in these

two instances. For DTLZ7, random masking with ALPS outperforms GA . However,

random masking cannot make a significant impact on GA but can cause considerable

positive impact with ALPS. The main reason is that, considering a different sets of

objectives at regular interval. That means if an essential objective set is discarded, it

can be recovered by introducing new objective sets, which increases the possibility of

better performance. In Table 5.11, we make a comparison between individual-based

random objective reduction for ALPS and layer-based random objective reduction for

ALPS . Layer-based random reduction performed well for large number of objectives.

Also, layer-based reduction beat individual based reduction at least in one instance

of every test problem.

5.7 Experiment With Coefficient-Based Objective

Reduction in ALPS

In coefficient masking, we calculated the linear coefficient values between objectives

and discarded those objectives with high coefficient values. We set our coefficient

parameter as 2. This value indicated that we reduce two objectives using coeffi-

cient masking for every problem instances. For layer-based comefficient masking we

implemented 3 algorithms named ALPS Objective Reduction Layer-based Pearson

Coefficient K1 (ALPSORLPK1), ALPS Objective Reduction Layer-based Pearson

Coefficient K5 (ALPSORLPK5) and ALPS Objective Reduction Layer-based Pear-

son Coefficient K10 (ALPSORLPK10).

5.7.1 Hypervolume

In this part, we compare the hypervolume result of layer-based random reduction

with the layer-based coefficient reduction in Table 5.12. From this result, we can see
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Problem Algorithm
Result

M=4 M=6 M=8

DTLZ1

ALPS 2.7609 1.9648 1.4899
ALPSORK1 10.5791 8.1653 5.7017
ALPSORK5 5.8032 6.5576 3.1547
ALPSORK10 11.6713 5.2989 4.8269

DTLZ2

ALPS 0.0677 0.0602 0.0538
ALPSORK1 0.1063 0.1259 0.0798
ALPSORK5 0.0984 0.1097 0.0611
ALPSORK10 0.0945 0.1045 0.0724

DTLZ3

ALPS 35.0731 26.6089 34.3293
ALPSORK1 55.9097 56.8601 57.2904
ALPSORK5 58.6247 56.7505 36.7820
ALPSORK10 65.2850 67.6739 50.6708

DTLZ4

ALPS 0.1051 0.0952 0.0779
ALPSORK1 0.1149 0.1045 0.0878
ALPSORK5 0.0962 0.0927 0.0788
ALPSORK10 0.0965 0.0883 0.0791

DTLZ7

ALPS 1.0042 1.5340 1.5683
ALPSORK1 0.8802 1.2032 1.3236
ALPSORK5 0.8927 1.4150 1.4059
ALPSORK10 0.8063 1.3106 1.3463

Table 5.10: IGD result between ALPS and ALPS with random objective reduction
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Problem Algorithm
Result

M=4 M=6 M=8

DTLZ1

ALPSORK1 10.5791 8.1653 5.7017
ALPSORK5 5.8032 6.5576 3.1547
ALPSORK10 11.6713 5.2989 4.8269
ALPSORLRK1 8.9764 4.5455 5.5277
ALPSORLRK5 4.2700 6.4494 4.4131
ALPSORLRK10 9.8046 4.6311 5.1464

DTLZ2

ALPSORK1 0.1063 0.1259 0.0798
ALPSORK5 0.0984 0.1097 0.0611
ALPSORK10 0.0945 0.1045 0.0724
ALPSORLRK1 0.1029 0.1030 0.0876
ALPSORLRK5 0.1101 0.1038 0.0854
ALPSORLRK10 0.1230 0.1101 0.0868

DTLZ3

ALPSORK1 55.9097 56.8601 57.2904
ALPSORK5 58.6247 56.7505 36.7820
ALPSORK10 65.2850 67.6739 50.6708
ALPSORLRK1 49.4902 52.2869 41.7958
ALPSORLRK5 62.5383 71.1562 46.3227
ALPSORLRK10 56.5755 61.8125 49.0568

DTLZ4

ALPSORK1 0.1149 0.1045 0.0878
ALPSORK5 0.0962 0.0927 0.0788
ALPSORK10 0.0965 0.0883 0.0791
ALPSORLRK1 0.1020 0.0881 0.0812
ALPSORLRK5 0.1129 0.0982 0.0753
ALPSORLRK10 0.1060 0.0914 0.0816

DTLZ7

ALPSORK1 0.8802 1.2032 1.3236
ALPSORK5 0.8927 1.4150 1.4059
ALPSORK10 0.8063 1.3106 1.3463
ALPSORLRK1 0.7835 1.1769 1.2899
ALPSORLRK5 0.7398 1.2775 1.1325
ALPSORLRK10 0.8109 1.1587 1.0886

Table 5.11: IGD result between individual-based random reduction and layer-based
random reduction of ALPS
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that ALPS layer-based coefficient reduction performed well with the large number of

objectives for all DTLZ test suite except DTLZ4. The layer-based random reduction

also outperformed coefficient masking in many cases. But, in DTLZ4, DTLZ6, and

DTLZ7, layer-based random reduction defeated layer-based coefficient in every case

except for 6 objectives. Layer-based coefficient reduction performed well for DTLZ1,

DTLZ2, and DTLZ5. In DTLZ3 both performed well in two cases.

5.7.2 IGD

In Table 5.13, we compare all layer-based objective reduction algorithms. We can see

that layer-based coefficient reduction provides good result in many instances of DTLZ

test suite, especially for large objectives. Layer-based random reduction outperforms

coefficient masking in only DTLZ1 (4 obj.), DTLZ3 (4 obj.) and DTLZ7 (4 and 6

objectives).

The main goal of objective reduction algorithms is reducing redundant objective

set and also maintaining diversity and convergence of solution set. In this regards,

coefficient-based reduction overcame both of the challenges for the IGD and the hyper-

volume measurements. Moreover, we only reduced 2 coefficients here. If we increased

the number of reduction, it may provide even better results.

5.8 Statistical Significance

When we need to compare algorithms it is preferable to use statistical significance to

get a firmer idea of algorithm performance. Because of the nature of SR solutions, it

is very difficult to do statistical significance with IGD and hypervolume measures. To

do the statistical significance, we need many IGD or hypervolume results. However,

we make a solution set with 30 solutions from 30 runs (one solution from one run) to

calculate a single IGD or hypervolume result. In this situation, it will take a significant

amount of runs and time to complete a larger number of IGD or hypervolume results.

Because of this, we propose an idea for using statistical significance. We calculated

the minimum distance from each solution (30 total) to the true Pareto front and used

these 30 distances for statistical significance calculations. It is important to note that

this calculation is different from the IGD and the hypervolume. It is possible that an

algorithm which performed well in IGD and hypervolume cannot perform well with

our distance calculation. and hypervolume performance matrix focus on diversity as

well as convergence towards the Pareto front. But in our approach, we are focusing
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Problem Algorithm Result
M=4 M=6 M=8 M=10

DTLZ1

ALPSORLRK1 0.6238 0.6831 0.4446 0.1886
ALPSORLRK5 0.8785 0.3423 0.3910 0.1826
ALPSORLRK10 0.5708 0.5789 0.3084 0.2462
ALPSORLPK1 0.4166 0.5684 0.1761 0.3839
ALPSORLPK5 0.6035 0.3626 0.2289 0.0844
ALPSORLPK10 0.6560 0.4706 0.4753 0.1955

DTLZ2

ALPSORLRK1 0.4770 0.1131 0.0750 0.0327
ALPSORLRK5 0.3828 0.1313 0.0710 0.0352
ALPSORLRK10 0.1832 0.1483 0.0763 0.0295
ALPSORLPK1 0.3971 0.1293 0.1008 0.0129
ALPSORLPK5 0.2482 0.1867 0.0465 0.0389
ALPSORLPK10 0.3348 0.1830 0.0492 0.0142

DTLZ3

ALPSORLRK1 0.5886 0.2433 0.2033 0.0528
ALPSORLRK5 0.6004 0.1714 0.1901 0.0767
ALPSORLRK10 0.3957 0.1596 0.1382 0.0817
ALPSORLPK1 0.3860 0.2530 0.1573 0.0528
ALPSORLPK5 0.8015 0.2966 0.0819 0.0758
ALPSORLPK10 0.5292 0.3604 0.1844 0.0161

DTLZ4

ALPSORLRK1 0.4562 0.5909 0.3651 0.6034
ALPSORLRK5 0.4167 0.3688 0.5053 0.4784
ALPSORLRK10 0.5081 0.4780 0.4560 0.4034
ALPSORLPK1 0.5379 0.4107 0.4197 0.2828
ALPSORLPK5 0.5657 0.4051 0.4436 0.5796
ALPSORLPK10 0.4208 0.4221 0.4040 0.4171

DTLZ5

ALPSORLRK1 0.3344 0.2677 0.0972 0.1302
ALPSORLRK5 0.4625 0.2136 0.1514 0.2199
ALPSORLRK10 0.3830 0.2407 0.1342 0.0960
ALPSORLPK1 0.4042 0.2500 0.1925 0.3242
ALPSORLPK5 0.4548 0.3130 0.1878 0.0996
ALPSORLPK10 0.3918 0.1871 0.1396 0.1291

DTLZ6

ALPSORLRK1 0.2467 0.1031 0.0186 0.0346
ALPSORLRK5 0.1990 0.1199 0.0264 0.0259
ALPSORLRK10 0.2195 0.1081 0.0263 0.0268
ALPSORLPK1 0.1948 0.0887 0.0242 0.0074
ALPSORLPK5 0.2059 0.1100 0.0194 0.0104
ALPSORLPK10 0.2001 0.0701 0.0629 0.0045

DTLZ7

ALPSORLRK1 0.2569 0.0144 0.0597 0.0500
ALPSORLRK5 0.0859 0.0184 0.0281 0.0057
ALPSORLRK10 0.1155 0.0358 0.0304 0.0088
ALPSORLPK1 0.2765 0.0285 0.0121 0.0146
ALPSORLPK5 0.0527 0.0483 0.0266 0.0083
ALPSORLPK10 0.1579 0.0126 0.0232 0.0218

Table 5.12: Hypervolume result between ALPS layer-based random reduction and
layer-based coefficient reduction
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Problem Algorithm Result(M=4) Result(M=6) Result(M=8)

DTLZ1

ALPSORLRK1 8.9764 4.5455 5.5277
ALPSORLRK5 4.2700 6.4494 4.4131
ALPSORLRK10 9.8046 4.6311 5.1464
ALPSORLPK1 8.5425 4.2070 6.0596
ALPSORLPK5 7.8320 4.1786 4.7203
ALPSORLPK10 9.9927 3.6505 3.4633

DTLZ2

ALPSORLRK1 0.1029 0.1030 0.0876
ALPSORLRK5 0.1101 0.1038 0.0854
ALPSORLRK10 0.1230 0.1101 0.0868
ALPSORLPK1 0.1139 0.1086 0.0739
ALPSORLPK5 0.1119 0.1015 0.0846
ALPSORLPK10 0.1026 0.1054 0.0822

DTLZ3

ALPSORLRK1 49.4902 52.2869 41.7958
ALPSORLRK5 62.5383 71.1562 46.3227
ALPSORLRK10 56.5755 61.8125 49.0568
ALPSORLPK1 72.6242 55.6170 49.7999
ALPSORLPK5 50.3784 51.5576 52.8551
ALPSORLPK10 58.0014 49.1427 40.6074

DTLZ4

ALPSORLRK1 0.1020 0.0881 0.0812
ALPSORLRK5 0.1129 0.0982 0.0753
ALPSORLRK10 0.1060 0.0914 0.0816
ALPSORLPK1 0.1095 0.0960 0.0744
ALPSORLPK5 0.0894 0.0928 0.0828
ALPSORLPK10 0.1044 0.0977 0.0789

DTLZ7

ALPSORLRK1 0.7835 1.1769 1.2899
ALPSORLRK5 0.7398 1.2775 1.1325
ALPSORLRK10 0.8109 1.1587 1.0886
ALPSORLPK1 0.8551 1.2408 1.1998
ALPSORLPK5 0.8481 1.2131 1.1800
ALPSORLPK10 0.7625 1.1640 1.1675

Table 5.13: IGD result between layer-based random reduction with layer-based coef-
ficient reduction in ALPS
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Algorithm Results(M=4) Results(M=6) Results(M=7)
GA 198.1704 202.6239 185.2771
ALPS 82.8640 106.1653 107.0111
GAORK1 346.4852 269.3821 227.9081
GAORK5 354.5016 279.0873 251.6517
GAORK10 383.1681 289.1909 238.5397
ALPSORK1 238.7649 197.2436 173.3853
ALPSORK5 252.4335 200.5174 161.0399
ALPSORK10 245.9198 177.1890 159.5583
ALPSORLRK1 213.1332 187.8548 180.0100
ALPSORLRK5 224.9485 187.6209 173.5455
ALPSORLRK10 217.2850 174.7711 162.8595
ALPSORLPK1 215.4489 186.2649 173.3645
ALPSORLPK5 228.0512 185.7157 166.4767
ALPSORLPK10 221.1316 181.9990 166.8288

Table 5.14: Statistical Significance of DTLZ1

on only convergence towards the Pareto front, and this makes a significant difference

in performance consideration of these algorithms. However, our primary goal was to

find out is there any statistical significance or not, which this technique permits. We

used the Wilcoxon Mann Whitney rank sum test test with 0.05 confidence level to do

the statistical significance for these algorithms [4].

5.8.1 DTLZ1

In DTLZ1 (Table 5.14) , we see that ALPS has the least mean distance in all of the test

instances, where GAORK1, GAORK5, and GAORK10 cannot perform well in many

cases. ALPSORLRK10 made significant results for 6 objectives and ALPSORK5,

ALPSORK10 got small means for 6 and 8 objectives. ALPSORLRK1 works well for

4 objectives. Also, ALPS, GA, ALPSORK10 and ALPSORLRK5 were significantly

better for 8 objectives.

5.8.2 DTLZ2

In DTLZ2 (Table 5.15), we see that GA and ALPS were significantly better in all

of the test instances . In DTLZ2, no objective reduction algorithm performed well

except ALPSORK5 and ALPSORK10, where ALPSORK5 is performing well for 4

objectives and ALPSORK10 is for 4 and 6 objectives.
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Algorithm Results(M=4) Results(M=6) Results(M=8)
GA 0.8237 0.9664 0.8916
ALPS 1.1714 1.0642 1.1985
GAORK1 2.4406 2.3977 2.4365
GAORK5 2.3540 2.3756 2.4187
GAORK10 2.4242 2.3823 2.4175
ALPSORK1 1.62 21 1.7690 1.7701
ALPSORK5 1.6121 1.4575 1.4437
ALPSORK10 1.5401 1.5221 1.4948
ALPSORLRK1 1.8076 1.7494 1.7798
ALPSORLRK5 1.8591 1.8911 1.8531
ALPSORLRK10 1.9348 1.8703 1.7705
ALPSORLPK1 1.9049 1.7946 1.8540
ALPSORLPK5 1.8953 1.8948 1.8819
ALPSORLPK10 1.8785 1.8146 1.8579

Table 5.15: Statistical Significance of DTLZ2

5.8.3 DTLZ3

Like DTLZ2, ALPS got the minimum distance for all of the test cases (see Table

5.16). The main difference with DTLZ2 is, ALPSORK5 got the least mean among

all of the objective reduction algorithms.

5.8.4 DTLZ4

For DTLZ4 (Table 5.17), ALPSORK10, ALPSORLRK1, and ALPSORLRk10 got

minimum mean 3 for 6 and 8 objectives. Like other instance, GA and ALPS outper-

formed all of the algorithms.

5.8.5 DTLZ7

In DTLZ7 (Table 5.18), all of the objective reduction algorithms statistically perform

well, specially all layer-based objective reduction algorithms. Individual-based reduc-

tion performed well only for 4 objectives. GA and ALPS cannot perform well in this

test suite.

5.8.6 Summary of Statistical Difference

Table 5.19 shows the overall result of all algorithms based on statistical significance.

Again, it is necessary to remember that the algorithm that works well in IGD or
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Algorithm Results(M=4) Results(M=6) Results(M=8)
GA 1120.38 1101.49 1013.56
ALPS 831.63 827.58 882.77
GAORK1 2046.40 2050.87 2028.20
GAORK5 1907.48 1955.34 1983.13
GAORK10 2032.72 1964.64 1988.24
ALPSORK1 1443.35 1409.77 1438.16
ALPSORK5 1365.68 1349.94 1260.97
ALPSORK10 1460.44 1401.42 1372.63
ALPSORLRK1 1409.07 1405.43 1415.04
ALPSORLRK5 1419.09 1485.61 1425.96
ALPSORLRK10 1413.24 1458.09 1433.87
ALPSORLPK1 1540.57 1440.29 1464.42
ALPSORLPK5 1513.29 1515.39 1578.57
ALPSORLPK10 1493.53 1451.31 1436.78

Table 5.16: Statistical Significance of DTLZ3

Algorithm Results(M=4) Results(M=6) Results(M=7)
GA 0.8504 0.9294 1.0461
ALPS 1.0487 1.1154 1.2283
GAORK1 2.4200 2.3736 2.4162
GAORK5 2.3278 2.3715 2.3973
GAORK10 2.3416 2.3610 2.3854
ALPSORK1 1.6288 1.6239 1.6128
ALPSORK5 1.4911 1.4285 1.4788
ALPSORK10 1.4066 1.4791 1.4704
ALPSORLRK1 1.5710 1.5031 1.4688
ALPSORLRK5 1.6672 1.5467 1.5150
ALPSORLRK10 1.5746 1.4198 1.5353
ALPSORLPK1 1.6023 1.5148 1.5209
ALPSORLPK5 1.6153 1.5165 1.6177
ALPSORLPK10 1.6311 1.5222 1.4762

Table 5.17: Statistical Significance of DTLZ4
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Algorithm Results(M=4) Results(M=6) Results(M=7)
GA 16.1133 25.0659 32.6283
ALPS 16.9646 24.6028 34.4722
GAORK1 29.3621 47.3527 63.2068
GAORK5 32.6001 48.9782 64.1198
GAORK10 32.6155 49.6901 65.0988
ALPSORK1 12.7930 20.9122 27.3136
ALPSORK5 13.2474 20.7571 26.5202
ALPSORK10 13.5960 20.5256 26.3222
ALPSORLRK1 12.9228 19.6684 24.2324
ALPSORLRK5 11.4299 17.6387 22.2964
ALPSORLRK10 11.6656 17.6767 22.7714
ALPSORLPK1 11.8510 17.6386 23.0869
ALPSORLPK5 11.5574 17.4697 22.1732
ALPSORLPK10 11.7429 17.3821 22.7586

Table 5.18: Statistical Significance of DTLZ7

hypervolume may not work well in statistical difference. In this approach, an al-

gorithm works well when it has a solution with minimum distance from the Pareto

front. From Table 5.19, we see that ALPS and GA did better in 12 and 7 instances.

ALPSORK5 and ALPSORK10 objective reduction algorithms performed well for 2

test cases . All layer-based algorithm performed well specially layer-based random

reduction ALPSORLRK5 performed well for 7 test cases.

5.9 Summary

In summary, GA and ALPS without objective reduction performed well in many cases

where layer-based objective reduction algorithms made better performance among all

the reduction algorithms. Table 5.20- Table 5.23 are representing the overall summary

of all of the experiments. In Table 5.20 and 5.22, considering all of the experiments,

we included how many times an algorithm was better in hypervolume and IGD mea-

surement. From Table 5.21 and 5.23, we can know that which algorithm is better

for which test cases using hypervolume and IGD result. In hypervolume (Table 5.20)

measurement, GA defeated all of the algorithms. ALPSORK5 and ALPSORk10 were

best for two instances. All layer-based reduction methods beat other algorithms for

1 time. According to IGD (Table 5.22), GA and ALPS exceed different algorithms

in 6 cases. ALPSORK5, ALPSORLRK5, and ALPSORLPK10 made the best result

for one instance. Among all objective reduction algorithms, individual based-random
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Algorithm Better In
GA 7
ALPS 12
GAORK1 0
GAORK5 0
ALPSORK1 0
ALPSORK5 2
ALPSORK10 2
ALPSORLRK1 3
ALPSORLRK5 7
ALPSORLRK10 3
ALPSORLPK1 3
ALPSORLPK5 3
ALPSORLPK10 3

Table 5.19: Comparison between all algorithms (Statistical Significance)

reduction, and layer-based coefficient reduction performed better. Considering hy-

pervolume and IGD measurement, objective reduction with GA cannot find good

results for these test cases, whereas ALPS objective reduction outperforms others in

many situations. Also, it is apparent that among all reduction algorithms, layer-based

coefficient reduction, and individual-based random reduction in ALPS reduction per-

formed well in both IGD and hypervolume measurements. From Figure 5.2 and 5.3, it

is obvious why GA objective reduction could not be performed well in any test cases.

From Figure 5.3, we see that the average score of objectives F1 became steady for

long time and the objective score of F4 is noisy while the average score of objectives

is changing over the generation in layer-based coefficient masking (Figure 5.2). In the

layer-based coefficient masking, algorithms are trying to get a good solution which

will be more near to the optimal solution.
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Algorithm Better In
GA 17
ALPS 3
GAORK1 0
GAORK5 0
GAORK10 0
ALPSORK1 0
ALPSORK5 2
ALPSORK10 2
ALPSORLRK1 1
ALPSORLRK5 1
ALPSORLRK10 0
ALPSORLPK1 1
ALPSORLPK5 0
ALPSORLPK10 1

Table 5.20: Comparison between all algorithms (Hypervolume)

Problem Better Algorithm
M=4 M=6 M=8 M=10

DTLZ1 ALPSORK5 GA GA GA
DTLZ2 GA ALPS GA GA
DTLZ3 ALPSORLPK5 GA GA GA
DTLZ4 GA GA ALPSORK10 ALPSORLRK1
DTLZ5 ALPSORK5 ALPS ALPSORK10 ALPSORLPK1
DTLZ6 ALPS ALPS GA GA
DTLZ7 GA GA GA GA

Table 5.21: Comparison between all algorithms (hypervolume)
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Algorithm Better In
GA 6
ALPS 6
GAORK1 0
GAORK5 0
GAORK10 0
ALPSORK1 0
ALPSORK5 1
ALPSORK10 0
ALPSORLRK1 0
ALPSORLRK5 1
ALPSORLRK10 0
ALPSORLPK1 0
ALPSORLPK5 0
ALPSORLPK10 1

Table 5.22: Comparison between all algorithms (IGD)

Problem Better Algorithm
M=4 M=6 M=8

DTLZ1 ALPS ALPS ALPS
DTLZ2 GA GA GA
DTLZ3 ALPS ALPS ALPS
DTLZ4 GA GA GA
DTLZ7 ALPSORK1 ALPSORLRK5 ALPSORLPK10

Table 5.23: Comparison between all algorithms (IGD)
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Figure 5.2: Average score for layer-based coefficient objective reduction of ALPS
(DTLZ2)

Figure 5.3: Average score for individual-based random objective reduction of GA
(DTLZ2)
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Chapter 6

Conclusion

6.1 Summary

A rich diversity of optimized solutions is considered one of the challenging tasks for

many MOEAs. The complexities involved to get such solutions increases with the

growth of the number of objectives. We conducted this thesis based on two primary

purposes. The first one is to introduce an algorithm using ALPS and SR. The second

goal is to explore diiferent approaches of objective reduction with ALPS and SR. To

reach our goals, we did many benchmark experiments to observe and analyze the

results.

In the first part, we did experiments with the original GA and ALPS on the

DTLZ test suite using SR. We found that GA and ALPS both did better in many

problems. However, ALPS provided better results in the IGD performance while

GA has better hypervolume measurements. In IGD, we considered 15 test instances.

ALPS performed well in 7 instances where GA was good for 8 instances. Using the

IGD results, we can say that ALPS gives solutions that are more converged to the

true Pareto front. For the hypervolume result, we used 21 instances for comparing

results. GA was better for 16 test cases while ALPS did better for 5 test cases. From

this result, it is evident that the solutions from the GA are more diverse than ALPS,

and they are not in the same sub-area of Pareto front as in ALPS.

Next, we implemented random objective reduction and correlation-based objec-

tive reduction. We used random reduction for GA and ALPS, and correlation-based

reduction in ALPS. We made two variations for random-based reduction: individual-

wise random masking, and layer-wise random masking. In correlation-based objective

reduction, we used Pearson correlation to calculate the correlation between two ob-

jectives, and we omitted two highly correlated objectives using BSS.
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Result showed that GA with random-based reduction could not provide better re-

sults in any problem set. Moreover, in most cases of objective reduction ALPS with

random-based reduction outperform GA with random reduction. On the other hand,

in general, correlation-based masking worked well for many test cases. The rea-

son is that correlation-based masking can determine redundant objectives, which is

important in objective reduction. In conclusion, GA and ALPS without objective

reduction were competitive in many problems, while correlation-based objective re-

duction is preferable for other problems. Random reduction is not a recommended

strategy.

6.2 Future Work

A myriad of new work can be done to extend our research.

Because of time limitations, we could not adequately compare our result with

others research.

Initially, we tried to compare our results with other research papers. However, most

other research uses Pareto dominance. As SR and Pareto dominance are two different

approaches and generate different kinds of solutions, it is hard to compare them. In

spite of that, we wanted to compare the hypervolume results of GA with other papers.

But most papers used a mean result of the 30 hypervolume results. This is easy

with Pareto dominance since each run produces multiple non-dominated solutions.

However, as we get one solution from one SR run, we need many runs to make 30

hypervolume results for our research. We did compare our IGD results with NSGA-II

runs. However, the results are not easily compared as both used different approaches

and we did not have access to their details of these experiments. Because of this

limitation, we focused on comparing our algorithms with each other.

Work to find an appropriate means for comparing the SR with Pareto dominance

should be done. A recommended approach is to re-run other algorithms (NSGA-II,

SPEA2, etc.) and pay consideration to issues such as hypervolume with statistical sig-

nificance. Besides, when measuring hypervolume, SR cannot provide a good result as

the solutions are not diverse like Pareto based EAs. Future work can be conducted to

increase the hypervolume result for SR by introducing diversity strategies. Although

ALPS outperformed objective reduction algorithms, it is not competitive with other

MOEAs like NSGA-III and SPEA2. This is because, these algorithms use sophis-

ticated diversity mechanisms. ALPS can be modified to get results that are closer

to the Pareto front. Correlation-based objective reduction can be implemented with
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many variations. In our correlation-based approach, we reduced only two objectives

for every problem set. Further reduction of objectives should be explored. We know

that correlation reduction gave the best performance amongst all of the reduction

algorithms we tried. By discarding additional objectives, it may outperform regular

GA and ALPS. Comparisons of it with other popular reduction strategies such as

Principle Component Analysis (PCA) [5] should also be undertaken, as PCA may

produce even better results. Finally, introducing new approaches in random objec-

tive reduction may bring improved performance. If it is possible to find redundant

objectives using random masking, a satisfactory result may be seen for many MOEAs.
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